UJI EFEKTIFITAS JAMUR ENTOMOPATOGEN Beauveria bassiana dan Metarhizium anisopliae John PADA TARAF KONSENTRASI YANG BERBEDA TERHADAP HAMA RAYAP (Coptotermes curvignathus H) DI LABORATORIUM

SKRIPSI

Oleh:

BAMBANG ARIANTO NPM: 1404290054 Program Studi: AGROTEKNOLOGI

FAKULTAS PERTANIAN
UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA
MEDAN
2018

UJI EFEKTIFITAS JAMUR ENTOMOPATOGEN Beuveria bassiana dan Metarhizium anisopliae Jhon PADA TARAF KONSENTRASI YANG BERBEDA TERHADAP HAMA RAYAP (Coptotermes curvignathus H) DI LABORATORIUM

SKRIPSI

Oleh:

BAMBANG ARIANTO 1404290054 AGROTEKNOLOGI

Disusun Sebagai Salah Satu Syarat untuk Menyelesaikan Strata 1 (S1) pada Fakultas Pertanian Universitas Muhammadiyah Sumatera Utara

Komisi Pembimbing

Ir. Irna Syofia, M.P.

Hilda Svafitri Darwis S

Hilda Syafitri Darwis, S.P., M.P. Anggota

Disahkan Oleh :

Dekan

B & .

Munar, M.P.

Tanggal Lulus: 13-10-2018

PERNYATAAN

Dengan ini saya:

Nama

: Bambang Arianto

NPM

: 1404290054

Menyatakan dengan sebenarnya bahwa skripsi dengan judul Uji Efektifitas Jamur Entomopatogen Beuveria bassiana dan Metarhizium anisopliae Jhon Pada Taraf Konsentrasi Yang Berbeda Terhadap Hama Rayap (Coptotermes curvignathus H) di Laboratorium adalah berdasarkan hasil penelitian, pemikiran dan pemaparan asli dari saya sendiri. Jika terdapat karya orang lain, saya akan mencantumkan sumber yang jelas.

Demikian pernyataan ini saya buat dengan sesungguhnya dan apabila di kemudian hari ternyata ditemukan adanya penjiplakan (plagiarisme), maka saya bersedia menerima sanksi akademik berupa pencabutan gelar yang telah diperoleh. Demikian pernyataan ini saya buat dalam keadaan sadar tanpa paksaan dari pihak manapun.

Medan,....

Yang menyatakan

D6A99AFF491107697

Bambang Arianto

RINGKASAN

BAMBANG ARIANTO, "Uji Efektifitas Jamur Entomopatogen Beuveria bassiana dan Metarhizium anisopliae Jhon Pada Taraf Konsentrasi Yang Berbeda Terhadap Rayap (Coptotermes curvignatus Laboratorium". Dibimbing oleh Ir. Irna Syofia., M.P sebagai Ketua Komisi Pembimbing dan Hilda Syafitri Darwis, S.P., M.P sebagai Anggota Komisi Pembimbing. Penelitian dilaksanakan di Laboratorium Growth Center Kopertis Wilayah I, dimulai bulan Januari sampai Februari 2018. Penelitian bertujuan Untuk mengetahui efektifitas Beuveria bassiana dan Metarhizhium anisopliae pada Coptotermes curvignathus pada taraf konsentrasi yang berbeda terhadap hama rayap (Coptotermes curvignathus). Penelitian ini menggunakan metode Rancangan Acak Lengkap (RAL) Faktorial dengan 2 taraf 4 ulangan yaitu Faktor jenis Entomopatogen (E₁) Metarhizium anisopliae dan (E₂) Beuveria bassiana dan Faktor Dosis Entomopatogen $D_1=2\%$, $D_2=4\%$, $D_3=6\%$. Rayap yang digunakan adalah jenis Coptotermes curvignatus H. Hasil pengamatan menunjukkan bahwa semua jamur entomopatogen yang di uji efektif terhadap mortalitas rayap, dan yang lebih efektif adalah jenis jamur entomopatogen Metarhizium anisopliae, pada pengamatan 4 HSA sebesar 64,69%. Ciri hama yang mati adalah aktifitas makan yang menurun, pergerakan rayap menjadi lambat, tubuh rayap menjadi kaku serta ditumbuhi jamur dan kemudian mati.

SUMMARY

BAMBANG ARIANTO, "Effectiveness Test of Entomopathogenic Beuveria bassiana and Metarhizium anisopliae Jhon on Different Concentration Levels on Termites (Coptotermes curvignatus H) in the Laboratory". Supervised by Ir. Irna Syofia, M.P. as Chair of the Advisory Commission and Hilda Syafitri Darwis, S.P., M.P. as a Member of the Advisory Commission. The study was conducted at the Kopertis Region I Growth Center Laboratory, starting on January to February 2018. The study aimed to determine the effectiveness of Beuveria bassiana and Metarhizhium anisopliae on Coptotermes curvignathus at different concentration levels on termite pests (Coptotermes curvignathus). This study uses Factorial Completely Randomized Design with 2 levels of 4 replications namely Entomopathogenic type (E₁) Metarhizium anisopliae and (E₂) Beuveria bassiana and Entomopathogenic Dose Factor $D_1 = 2\%$, $D_2 = 4\%$, $D_3 = 6\%$. The termites used were the type of Coptotermes curvignatus H. The results showed that all entomopathogenic fungi tested were effective against termite mortality, and the most effective was the entomopathogenic fungus Metarhizium anisopliae, at 4 DAA (Day After Application) observation at 64.69%. Characteristics of dead pests are decreased feeding activity, termite movement becomes slow, termite body becomes stiff and mold grows and then dead.

RIWAYAT HIDUP

Bambang Arianto, dilahirkan pada tanggal 04 Februari 1996 di Simpang Tiga Tanjung Leidong Kecamatan Kualuh Leidong Kabupaten Labuhan Batu Utara, Provinsi Sumatera Utara. Merupakan anak kedua dari tiga bersaudara dari pasangan Ayahanda Joni dan Ibunda Nurhayati S.

Riwayat pendidikan formal yang pernah ditempuh penulis adalah sebagai berikut :

- Tahun 2008 telah menyelesaikan pendidikan Sekolah Dasar (SD) Negeri 118201 Pekan Leidong, Kecamatan Kualuh Leidong, Kabupaten Labuhan Batu Utara, Provinsi Sumatera Utara.
- Tahun 2011 telah menyelesaikan pendidikan Sekolah Menengah Pertama (SMP) di SMP N2 Kualuh Leidong, Kecamatan Kualuh Leidong, Kabupaten Labuhan Batu Utara, Provinsi Sumatera Utara.
- Tahun 2014 telah menyelesaikan pendidikan Sekolah Menengah Atas (SMA) di SMA N1 Kualuh Leidong, Kecamatan Kualuh Leidong, Kabupaten Labuhan Batu Utara, Provinsi Sumatera Utara.
- 4. Tahun 2014 telah diterima sebagai mahasiswa Strata-1 (S1) pada program studi Agroteknologi di Fakultas Pertanian Universitas Muhammadiyah Sumatera Utara (UMSU), Medan.

Kegiatan yang pernah diikuti selama menjadi mahasiswa Fakultas Pertanian UMSU adalah:

 Mengikuti Masa Perkenalan Mahasiswa Baru (MPMB) Fakultas Pertanian UMSU tahun 2014.

- Melaksanakan Praktek Kerja Lapangan (PKL) di PT. Socfindo Aek Loba, desa Aek Loba Kecamatan Aek Kuasan Kabupaten Asahan Provinsi Sumatera Utara pada tahun 2017.
- 3. Melaksanakan penelitian skripsi di Laboratorium Kementrian Pendidikan dan Kebudayaan Growth Centre Kopertis Wilayah 1, Jln. Peratun, No.1 Medan.

KATA PENGANTAR

Alhamdulillah, Puji syukur kehadirat Allah SWT. Karena berkat rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan skripsi yang berjudul "UJI EFEKTIFITAS JAMUR ENTOMOPATOGEN Beuveria bassiana dan Metarhizium anisopliae Jhon PADA TARAF KONSENTRASI YANG BERBEDA TERHADAP RAYAP (Coptotermes curvignathus H) DI LABORATORIUM". Skripsi ini disusun sebagai salah satu syarat untuk menyelesaikan S1 di Fakultas Pertanian Universitas Muhammadiyah Sumatera Utara (UMSU) Medan.

Pada kesempatan ini penulis mengucapkan terima kasih kepada:

- 1. Kedua orang tua yang telah memberikan banyak dukungan baik berupa moral dan materil, sehingga penulis dapat menyelesaikan skripsi ini.
- Ibu Ir. Asritanarni Munar, M.P. Sebagai Dekan Fakultas Pertanian Universitas Muhammadiyah Sumatera Utara.
- 3. Ibu Dr. Dafni Mawar Tarigan, S.P., M.Si. selaku Wakil Dekan I Fakultas Pertanian Universitas Muhammadiyah Sumatera Utara.
- 4. Bapak Muhammad Thamrin, S.P., M.Si. selaku Wakil Dekan III Fakultas Pertanian Universitas Muhammadiyah Sumatera Utara.
- 5. Ibu Ir. Irna Syofia, M.P. Selaku Ketua Komisi Pembimbing.
- 6. Ibu Hilda Syafitri Darwis, S.P., M.P. Selaku Anggota Komisi Pembimbing.
- Ibu Dr. Ir. Wan Afriani Barus, M.P. Sebagai Ketua Program Studi Agroteknologi Fakultas Pertanian Universitas Muhammadiyah Sumatera Utara.
- 8. Erzan Anjani Harefa, Taufik Ismail, Rahmat Ilhami, dan rekan-rekan Agroteknologi 2 stambuk 2014 Fakultas Pertanian Universitas

Muhammadiyah Sumatera Utara yang telah membantu sekaligus memberikan semangat kepada penulis.

Pegawai Laboratorium Kementrian Pendidikan dan Kebudayaan Growth Centre
 Kopertis Wilayah – 1, yang telah membantu dan memberikan bimbingan kepada penulis.

Penulis menyadari bahwa skripsi ini masih jauh dari kesempurnaan. Oleh karena itu, penulis mengharapkan adanya kritik dan saran dari pembaca agar skripsi ini menjadi lebih baik.

Medan, Oktober 2018

Penulis

DAFTAR ISI

	Halaman
RINGKASAN	i
SUMMARY	ii
RIWAYAT HIDUP	iii
KATA PENGANTAR	v
DAFTAR ISI	vii
DAFTAR TABEL	ix
DAFTAR GAMBAR	X
DAFTAR LAMPIRAN	xi
PENDAHULUAN	1
Latar Belakang	1
Tujuan Penelitian	3
Hipotesis Penelitian	3
Kegunaan Penelitian	3
TINJAUAN PUSTAKA	4
Biologi Hama Rayap	4
Gejala Serangan	7
Jamur Beauveria bassiana	8
Cara Infeksi	8
Jamur Metarhizium anisopliae	9
Cara infeksi	10
BAHAN DAN METODE	11
Tempat dan Waktu	11
Bahan dan Alat	11
Metode Penelitian	11
Pelaksanaan Penelitian	13
Penyediaan Coptotermes curvignathus	13
Penyediaan B. Bassiana dan M anisopliae	13
Persiapan kayu pakan	13
Persianan Wadah	14

Aplikasi perlakuan Jamur Entomopathogen	14
Parameter Pengamatan	14
Persentase mortalitas Hama	14
Persentase kehilangan pakan	15
Gejala Kematian Hama Rayap	15
HASIL DAN PEMBAHASAN	16
KESIMPULAN DAN SARAN	21
Kesimpulan	21
Saran	21
DAFTAR PUSTAKA	22
LAMPIRAN	24

DAFTAR TABEL

Nomor	Judul Ha	laman
1.	Uji Beda Rataan Mortalitas Hama (%) Pada Perlakuan	
	Jenis Jamur Entomopatogen 2-5 HSA	. 16
2.	Uji Beda Rataan Berat Pakan (g) Pada Semua Perlakuan	. 18

DAFTAR GAMBAR

Nomor	Judul Halam	ıan
1.	Telur Coptotermes curvignathus. H	4
2.	Siklus Nimfa Rayap	5
3.	Rayap Kasta Prajurit	6
4.	Rayap Kasta Pekerja	6
5.	Rayap Kasta Reproduktif	7
6.	C. curvignathus terinfeksi M. Anisopliae	19
7.	C. curvignathus terinfeksi B. bassiana	20

DAFTAR LAMPIRAN

Nomor	Judul Hal	Halaman	
1.	Bagan Penelitian	24	
2.	Data Pengamatan Mortalitas Hama 2 HSA	25	
3.	Transformasi Data y= $\sqrt{y + 0.5}$ 2 HSA	25	
4.	Daftar Sidik Ragam	25	
5.	Data Pengamatan Mortalitas Hama 3 HSA	26	
6.	Transformasi Data y= $\sqrt{y + 0.5}$ 3 HSA	26	
7.	Daftar Sidik Ragam	26	
8.	Data Pengamatan Mortalitas Hama 4 HSA	27	
9.	Transformasi Data y= $\sqrt{y + 0.5}$ 4 HSA	27	
10.	Daftar Sidik Ragam	27	
11.	Data Pengamatan Mortalitas Hama 5 HSA	28	
12.	Transformasi Data y= $\sqrt{y + 0.5}$ 5 HSA	28	
13.	Daftar Sidik Ragam	28	
14.	Data Pengamatan Berat Pakan Sebelum Aplikasi	29	
15.	Data Kehilangan Pakan	29	
16.	Data Berat Pakan Transformasi Data y= $\sqrt{y + 0.5}$	29	
17.	Daftar Sidik Ragam	30	

PENDAHULUAN

Latar Belakang

Kelapa sawit (*Elaeis guineensis* Jack) diyakini berasal dari Afrika Barat, Walaupun demikian, kelapa sawit ternyata cocok dikembangkan di luar daerah asalnya, termasuk Indonesia. Hingga kini kelapa sawit telah diusahakan dalam bentuk perkebunan dan pabrik kelapa sawit oleh sekitar tujuh negara produsen terbesarnya. Rayap dapat menimbulkan masalah diperkebunan kelapa sawit terutama pada areal baru bekas hutan. Ada dua jenis yang menyerang kelapa sawit, yakni *Coptotermes curvignathus* dan *macrotermes gilvus*, yang menyerang batang dan pelepah daun, baik jaringan yang masih hidup maupun jaringan mati (Soepadiyo, dan Haryono., 2003).

Rayap subteran *Coptotermes curvignathus* merupakan salah satu serangga hama utama pada kelapa sawit terutama pada kelapa sawit khususnya di lahan gambut. Serangannya dapat mematikan tanaman dan kasusnya semakin berat dengan diterapkannya zero burning dalam pembukaan lahan. Pengendaliannya sulit dilakukan karena banyaknya sisa kayuan yang merupakan bahan makanan dan tempat berkembang biak yang sesuai. Selama ini pengendlian dilakukan dengan insektisida. Beberapa insektisida efektif menekan serangan rayap tapi tidak mampu mencegah reinfestasi baru. Dalam jangka panjang, pengendalian secara kimiawi ini tidak efisien dan dapat mencemari lingkungan. Suatu strategi pengendalian rayap pada kelapa sawit dilahan gambut dapat dilakukan dengan pendekatan ekologi dan hayati serta aplikasi selektif teknik - teknik pengendalian yang kompatibel dan yang memiliki dampak negatif minimal (Purba dkk, 2002).

Pada areal perkebunan kelapa sawit dapat dijumpai beberapa jenis rayap, tetapi yang menimbulkan masalah adalah *C. curvignathus* Holmgren dan *Macrotermes gilvus* Hagen. Rayap *C.curvignathus* lebih berbahaya karena menyerang jaringan hidup dan dapat mematikan tanaman kelapa sawit. Rayap ini merupakan spesies asli yang banyak terdapat pada hutan primer di Indonesia dan Malaysia, terutama didataran rendah serta daerah dengan penyebaran curah hujan merata sepanjang tahun *C. curvignathus* mudah dibedakan dengan jenis rayap lainnya dari ciri pertahanan dirinya, prajurit yang terganggu segera mengeluarkan cairan putih dari kelenjar dikepalanya untuk mempertahankan diri. Banyak jenis tanaman yang dapat diserang oleh *C. curvignathus* diantaranya karet, kapuk, kopi, kelapa, ubi kayu dan kelapa sawit (Ginting *dkk*, 2002).

Pada areal kelapa sawit terserang *C. curvignathus* di Sumatera Utara sering dijumpai rayap kasta pekerja dan tentara yang mati karena infeksi jamur entomopatogenik. Setelah diisolasi pada medium PDA dan diidentifikasi melalui pengamatan mikroskopik ternyata jamur entomopatogenik tersebut terdiri dari 3 spesies yang termasuk kelompok fungi imperfecti, yaitu *Metarhizium anisopliae*, *Beauveria bassiana*, dan *Aspergillus flavus* (*Zaini*, 2002).

Sampai saat ini, pengendalian serangan rayap skala lapangan sebagian besar memakai bahan kimia yang sangat beracun dan tidak ramah lingkungan. Metode pengendalian rayap lainnya adalah secara biologi. Cara ini memanfaatkan nematoda, bakteri, dan jamur yang diumpankan kepada rayap sehingga akan mengganggu sistem pencernaan rayap (Prasetiyo dan Yusuf, 2005).

Tujuan Penelitian

Untuk mengetahui efektifitas *B. bassiana* dan *M. anisopliae* pada *C. curvignathus* pada taraf konsentrasi yang berbeda terhadap hama rayap (*C. curvignathus*).

Hipotesis Penelitian

- 1. Ada pengaruh jenis jamur entomopatogen terhadap mortalitas rayap (*C. curvignathus*).
- 2. Ada pengaruh pemberian taraf konsentrasi jamur entomopatogen yang berbeda terhadap mortalitas hama rayap (*C. curvignathus*).
- 3. Ada interaksi antara jenis jamur entomopatogen dan pemberian taraf konsentrasi terhadap mortalitas hama rayap (*C. curvignathus*).

Kegunaan Penelitian

- Sebagai salah satu syarat untuk menyelesaikan jenjang pendidikan S-1 di Fakultas Pertanian Universitas Muhammadiyah Sumatera Utara.
- Sebagai sumber informasi bagi petani dan pihak pihak lain yang membutuhkan di bidang kelapa sawit.

TINJAUAN PUSTAKA

Biologi Rayap Coptotermes curvignathus Holmgren

Menurut (Nandika dkk, 2003) klasifikasi rayap sebagai berikut :

Kingdom : Animalia

Phyllum : Arthropoda

Class : Insecta

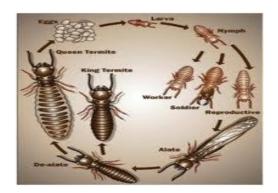
Ordo : Isoptera

Family : Rhinotermitidae

Genus : Coptotermes

Spesies : Coptotermes curvignathus Holmgren

Rayap yang ditemukan di daerah tropis jumlah telurnya dapat mencapai ± 36000 sehari bila koloninya sudah berumur ± 5 tahun. Bentuk telur rayap ada yang berupa butiran yang lepas dan ada pula yang berupa kelompok terdiri dari 16-24 butir telur yang melekat satu sama lain. Telur-telur ini berbentuk silinder dengan ukuran panjang yang bervariasi antara 1-1,5 mm (Hasan, 1986). Telur *C. curvignathus* akan menetas setelah berumur 8-11 hari (Nandika *dkk*, 2003).



Gambar 1 : Telur *C. curvignathus*. H Sumber : https://adearisandi.files.wordprees.com

Nimfa muda akan mengalami pergantian kulit sebanyak 8 kali, sampai kemudian berkembang menjadi kasta pekerja, prajurit dan calon laron

(Nandika dkk, 2003).

Kepala berwarna kuning, antenna, labrum, dan pronotum kuning pucat. Bentuk kepala bulat ukuran panjang sedikit lebih besar dari pada lebarnya. Antenna terdiri dari 15 segmen. Mandibel berbentuk seperti arit dan melengkung diujungnya, batas antara sebelah dalam dari mandibel kanan sama sekali rata. Panjang kepala dengan mandibel 2,46-2,66 mm, panjang mandibel tanpa kepala 1,40-1,44 mm dengan lebar pronotum 1,00-1,03 mm dan panjangnya 0,56 mm, panjang badan 5,5-6 mm. Bagian abdomen ditutupi dengan rambut yang menyerupai duri. Abdomen berwarna putih kekuning-kuningan (Nandika *dkk*, 2003).

Gambar 2 : Siklus Nimfa Rayap Sumber : https://m.kaskus.co.id

Kasta prajurit ditandai dengan bentuk tubuh yang kekar karena penebalan (sklerotisasi) kulitnya agar mampu melawan musuh dalam rangka tugasnya mempertahankan kelangsungan hidup koloninya. Mereka berjalan hilir mudik di antara para pekerja yang sibuk mencari dan mengangkut makanan. Setiap ada gangguan dapat diteruskan melalui "suara" tertentu sehingga prajurit-prajurit bergegas menuju ke sumber gangguan dan berusaha mengatasinya. Jika terowongan kembara diganggu sehingga terbuka tidak jarang kita saksikan pekerja-pekerja diserang oleh semut sedangkan para prajurit sibuk bertempur

melawan semut-semut, walaupun mereka umumnya kalah karena semut lebih lincah bergerak dan menyerang. Tapi karena prajurit rayap biasanya dilengkapi dengan mandibel (rahang) yang berbentuk gunting maka sekali mandibel menjepit musuhnya, biasanya gigitan tidak akan terlepas walaupun prajurit rayap akhirnya mati (Tarumingkeng, 2001).

Gambar 3 : Rayap Kasta Prajurit Sumber : Dokumentasi Penelitian

Kasta pekerja membentuk sebagian besar koloni rayap. Tidak kurang dari 80% populasi dalam koloni merupakan individu-individu pekerja (Tarumingkeng, 2001). Kasta pekerja terdiri dari nimfa dan dewasa yang steril, memiliki warna yang pucat dan mengalami penebalan di bagian kutikula, tanpa sayap dan biasanya tidak memiliki mata, memiliki mandibel yang relatif kecil (Nandika *dkk*, 2003).

Gambar 4 : Rayap Kasta Pekerja Sumber : Dokumentasi Penelitian

Kasta reproduktif terdiri atas reproduktif primer dan reproduktif suplementer. Kasta reproduktif primer bersayap dari rayap dewasa atau laron yang bersayap dua pasang, berbentuk sama yaitu bulat memanjang bagian luar dari sayap sama dengan bagian dalamnya. Sayap – sayap ini terletak membujur diatas abdomen. Panjangnya melebihi ukuran panjang tubuhnya. Warna tubuh coklat muda sampai coklat tua dan lebih gelap dari warna tubuh dari anggota kasta – kasta lainnya (Hasan, 1986).

Gambar 5 : Rayap Kasta Reproduktif Sumber : Dokumentasi Penelitian

Gejala Serangan

Pada tanaman kelapa sawit muda gejala serangan rayap diketahui dari adanya penumpukan tanah pada pangkal pelepah sampai ke pucuk tanaman. Di dalam lapisan tanah tersebut dapat ditemukan rayap prajurit yang melakukan penggerekan ke dalam batang, mencapai titik tumbuh dan akhirnya tanaman tersebut mati (Bakti, 2004).

Gejala serangan *C. Curvignathus* pada bagian luar tanaman kelapa sawit dewasa adalah berupa lapisan tanah mulai dari pangkal batang sampai ke tandan buah. Pada bagian dalam batang gejala tersebut adalah berupa lubang besar dan adanya sarang kembara *C. Curvignathus* yang menyerupai lapisan karton yang bercampur dengan kotoran serta dikelilingi oleh kumpulan tanah liat. Sarang

kembara tersebut hanya berisi rayap dari kasta prajurit, pekerja dan nimfa, sedangkan raja, ratu, telur berada pada sarang utama. Sarang utama biasanya berada di dalam kayu mati yang berada di bawah atau di atas permukaan tanah (Prayogo, 2006).

Jamur Beuveria bassiana

Jamur *B. bassiana* juga dikenal sebagai penyakit *white muscardine* karena miselium dan konidium (spora) yang dihasilkan berwarna putih, bentuknya oval,dan tumbuh secara zig zag pada konidiofornya. Pada konidia *B. bassiana* akan tumbuh suatu tabung yang makin lama makin panjang mirip seuntai benang dan pada suatu waktu benang itu mulai bercabang. Cabang-cabang yang timbul selalu akan tumbuh menjauhi hifa utama atau hifa yang pertama. Cabang-cabang tersebut akan saling bersentuhan. Pada titik sentuh akan terjadi lisis dinding sel (*anastomosis*) sehingga protoplasma akan mengalir ke semua sel hifa. Miselium yang terbentuk akan makin banyak dan membentuk suatu koloni (Hughes, 2014).

Cara Infeksi

Mekanisme infeksi dimulai infeksi langsung hifa atau spora *B. Bassiana* kedalam kutikula melalui kulit luar serangga. Pertumbuhan hifa akan mengeluar kan enzim seperti protease, lipolitik, amilase, dan kitinase. Enzim-enzim tersebut mampu menghidrolisis kompleks protein didalam integument, yang menyerang dan menghancurkan kutikula, sehingga hifa tersebut mampu menembus dan masuk serta berkembang didalam tubuh serangga. Mekanisme infeksi secara mekanik adalah infeksi melalui tekanan yang disebabkan oleh konidium *B. bassiana* yang tumbuh. Secara mekanik infeksi jamur *B. Bassiana* berawal dari penetrasi miselium pada kutikula lalu berkecambah dan membentuk apresorium,

kemudian menyerang epidermis dan hipodermis. Hifa kemudian menyerang jaringan dan hifa berkembang biak di dalam haemolymph (Yuniarti, 2008).

Pada perkembangannya didalam tubuh serangga *B. Bassiana* akan mengeluarkan racun yang disebut beauvericin yang menyebabkan terjadinya paralisis pada anggota tubuh serangga. Paralisis menyebabkan kehilangan koordinasi sistem gerak, sehingga gerakan serangga tidak teratur dan lamakelamaan melemah, kemudian berhenti sama sekali. Setelah lebih-kurang lima hari terjadi kelumpuhan total dan kematian. Toksin juga menyebabkan kerusakan ringan, terutama pada saluran pencernaan, otot, sistem syaraf, dan sistem pernapasan (Chamley, 2013).

Jamur Metarhizium anisopliae

M. anisopliaea adalah jamur yang dikelompokkan ke dalam division Amastigomycotina. Jamur ini merupakan jamur tanah bila dalam keadaan saprofit, tetapi memiliki kemampuan sebagai pathogen pada beberapa ordo serangga seperti Lepidoptera, Coleoptera, Hymenoptera, Orthoptera, Hemiptera dan Isoptera. M. anisopliae merupakan pilihan dalam mengendalikan populasi serangga hama karena menyebabkan penyakit "green muscardin fungus" yang patogen terhadap serangga sasaran. Spora jamur yang melekat pada permukaan kutikula larva akan membentuk hifa yang memasuki jaringan internal larva melalui interaksi biokimia yang kompleks antara inang dan jamur. Selanjutnya, enzim yang dihasilkan jamur berfungsi mendegradasi kutikula larva serangga, hifa jamur akan tumbuh ke dalam sel-sel tubuh serangga, dan menyerap cairan tubuh serangga. Hal ini akan mengakibatkan serangga mati dalam keadaan tubuh yang mengeras seperti mumi (jumar,2000).

Cara infeksi

Cara jamur *M. anisopliae* memasuki tubuh larva melalui dua jalan, yaitu: (1). Ketika inang menelan individual patogen selama proses makan (dikenal sebagai passive entry); (2). Ketika patogen masuk melalui lubang alami atau penetrasi langsung ke kutikula serangga (disebut *active entry*). Kemampuan stadia infektif *M. anisopliae* untuk bertahan hidup diluar inangnya adalah faktor utama dalam pengembangan biosinsektisida berbahan aktif jamur *M. anisopliae*. Salah satu manfaat dari penggunaan bioinsektisida berbahan aktif jamur *M. anisopliae* adalah esensial karena tidak toksik bagi manusia dan vertebrata lainnya. Umumnya bioinsektisida ini menyerang pada hama tertentu dan jarang yang berdampak buruk pada serangga berguna. Bioinsektisida juga cepat mengalami penurunan aktivitas dilapangan dan tidak persisten. Kenyataan ini membuat bioinsektisida itu perlu diaplikasikan berkali-kali untuk memberi efek pengendalian yang berarti bagi serangga hama (Irwan, 2016).

DESKRIPSI UMUM DAERAH PENELITIAN

Tempat dan Waktu

Penelitian ini dilakukan di Laboratorium Kementrian Pendidikan dan Kebudayaan Growth Centre Kopertis Wilayah – 1, Jln. Peratun, No.1 Medan.

Penelitian ini dilakukan pada bulan Januari sampai Februari 2018.

Bahan dan Alat

Bahan yang digunakan adalah *C. curvignathus* kasta pekerja, kasta prajurit, *M. anisopliae*, *B. bassiana*, batang sawit melapuk, Aquades dan bahan pendukung lainnya.

Alat yang digunakan adalah stoples, tabung reaksi, kawat kasa putih, gunting, pisau, karet gelang, pinset bambu, kertas lebel, keranjang, kuas, timbangan, *beaker glass, handsprayer*, label nama, dan alat pendukung lainnya.

_ .

METODE PENELITIAN

Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) dengan 2 faktor dan 4 ulangan.

- 1. Faktor Jenis Entomopatogen
- $E_1 = Metarhizium anisopliae$
- $E_2 = Beauveria bassiana$
- 2. Faktor Konsentrasi Entomopatogen
- $D_1 = \ 2 \ g/l$
- $D_2 = 4 g/l$
- $D_3 = 6 g/l$

Jumlah kombinasi perlakuan adalah 6 kombinasi perlakuan, yaitu:

- $E_1D_1 \hspace{1cm} E_2D_2 \hspace{1cm} E_1D_1 \hspace{1cm} E_2D_1$
- $E_2D_3 \hspace{1cm} E_1D_2 \hspace{1cm} E_1D_3 \hspace{1cm} E_1D_3$
- E_1D_3 E_2D_3 E_2D_2
- $E_2D_1 \hspace{1cm} E_1D_1 \hspace{1cm} E_2D_1 \hspace{1cm} E_1D_1 \\$
- E_2D_2 E_2D_1 E_2D_2 E_1D_2
- E_1D_2 E_1D_3 E_1D_2 E_2D_3

Jumlah ulangan : 4 ulangan

Jumlah hama per toples : 30 ekor

Jumlah hama seluruhnya : 720 ekor

Penelitian ini dilakukan dengan menggunakan Rancangan Acak Lengkap (RAL) faktorial dengan model rancangan :

$$Y_{ijk} = \quad + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \P_{jk}$$

Keterangan:

Yijk = nilai pengamatan dari faktor E (Entomopatogen dan konsentrasi) taraf ke-i dan faktor D taraf ke-j pada i ulangan yang ke- k

 μ = nilai tengah umum

 α_i = Pengaruh faktor E pada taraf ke-i

 β_i = pengaruh faktor D pada taraf ke-j

 $(\alpha\beta)_{ij} = Interaksi \, antar \, faktor \, E \, taraf ke-i \, dan \, faktor \, D \, taraf ke-j$

€_{jk} = Pengaruh galat faktor E taraf ke-i dan faktor D taraf ke-j pada ulangan ke-k Dengan jumlah ulangan 4 ulangan.

HASIL DAN PEMBAHASAN

Persentase Mortalitas

Data mortalitas hama rayap *C. Curvignathus* pada pengamatan 2-5 hari setelah aplikasi (HSA) beserta sidik ragam dapat dilihat pada lampiran 2 sampai 13. Berdasarkan hasil analisis sidik ragam dapat diketahui bahwa pemberian *M. anisopliae* berpengaruh tidak nyata dengan *B. bassiana* terhadap mortalitas *C. curvignathus* pada pengamatan 2-3 HSA, sedangkan pada pengamatan 4-5 HSA pemberian *M. anisopliae* berpengaruh sangat nyata dengan *B. bassiana*. Adapun interaksinya berpengaruh tidak nyata dapat dilihat pada Tabel 1.

Tabel 1. Persentase mortalitas hama rayap *Coptotermes curvignathus* pada pengamatan 2-5 HSA

Perlakuan		Penga	matan	
renakuan	2 HSA	3 HSA	4 HSA	5 HSA
			.%	
E1	8,58	31,37	64,69 A	88,58 A
E2	7,18	27,19	58,58 B	83,59 B
D1	4,95 C	24,56 C	55,80 C	74,96 C
D2	8,29 B	28,73 B	60,39 B	86,64 B
D3	10,40 A	34,56 A	68,71 A	96,66 A
E1D1	4,95 tn	25,82	60,8	78,27
E1D2	9,12	30,8	61,62	87,47
E1D3	11,65	37,47	71,65	100
E2D1	4,95	23,3	50,8	71,65
E2D2	7,45	26,65	59,15	85,8
E2D3	9,15	31,62	65,77	93,32

Keterangan: Angka yang diikuti oleh huruf yang sama pada kolom yang sama berbeda sangat nyata pada taraf 0,01% menurut Uji DMRT

Pada Tabel 1 memperlihatkan bahwa pada pengamatan 2 HSA mortalitas hama yang tertinggi pada konsentrasi D_3 berpengaruh sangat nyata dengan perlakuan D_2 dan D_1 dengan nilai berurutan sebesar 10,40%, 8,29%, 4,95%. Adapun interaksinya berpengaruh tidak nyata.

Pada Tabel 1 memperlihatkan bahwa pengamatan 3 HSA mortalitas hama tertinggi pada konsentrasi D_3 berpengaruh sangat nyata dengan perlakuan D_2 dan D_1 dengan nilai berurutan sebesar 34,56%, 28,73%, 24,56%. Adapun interaksinya berpengaruh tidak nyata.

Pada Tabel 1 memperlihatkan bahwa pengamatan 4 HSA mortalitas hama tertinggi terdapat pada jenis jamur E_1 berpengaruh sangat nyata dengan jenis jamur E_2 yaitu dengan nilai berurutan 64,69% dan 58,58% dan pada pengamatan konsentrasi D_3 berpengaruh sangat nyata dengan D_2 dan D_1 dengan nilai berurutan 68,71%, 60,39%, 55,80%. Adapun interaksinya berpengaruh tidak nyata, hal ini sesuai dengan Ningsih (2010) bahwa faktor bersifat antagonis (saling menekan pengaruh masing – masing) sehingga akan merugikan jika diterapkan bersama – sama.

Pada Tabel 1 memperlihatkan bahwa pengamatan 5 HSA mortalitas hama tertinggi terdapat pada jenis jamur E₁ berpengaruh sangat nyata dengan jenis jamur E₂ yaitu dengan nilai berurutan 88,58% dan 83,59%. Dapat diketahui bahwa jamur *M. anisopliae* paling efektif dibandingkan dengan jamur *B. bassiana*, dikarenakan virulensi jamur tersebut lebih tinggi. Hal ini erat kaitannya dengan beberapa jenis toksin yang dihasilkan, kemampuan jamur *M. anisopliae* untuk menginfeksi dan melakukan penetrasi terhadap tubuh serangga lebih cepat dan dapat menyebabkan kematian larva lebih tinggi. Hal ini sesuai dengan Prayogo *et al.* (2005), bahwa media tumbuh, tingkat virulensi, vabilitas dan patogenitas jamur entomopatogen sangat menentukan keberhasilan cendawan dalam proses menginfeksi inang. Kematian larva terjadi karena konidia jamur *M. anisopliae* memiliki aktivitas membunuh larva karena menghasilkan *cyclopeptida*, *destruxin* dan *desmethyl destruxin*. Pada konsentrasi D₃ berpengaruh sangat nyata

dengan perlakuan D₂ dan D₁ dengan nilai berurutan sebesar 96,66%, 86,64%, 74,96%. Hal ini di duga semakin banyaknya jamur yang diaplikasikan pada media, maka akan semakin mempercepat proses infeksi jamur terhadap larva uji. Hal ini sesuai dengan Idham (2007) . Semakin banyak jumlah konidia jamur yang melekat pada tubuh serangga akan akan mempengaruhi waktu jamur untuk menghidrolisis tubuh serangga. konidia membentuk hifa yang memasuki jaringan internal larva melalui interaksi biokimia yang kompleks antara inang dan jamur. Selanjutnya, enzim yang dihasilkan jamur berfungsi mendegradasi kutikula larva serangga, hifa jamur akan tumbuh ke dalam sel-sel tubuh serangga, dan menyerap cairan tubuh serangga. Adapun interaksinya berpengaruh tidak nyata.

Persentase Kehilangan Pakan

Data pengamatan kehilangan pakan dan sidik ragam dapat dilihat pada lampiran 14-16. Dari analisis sidik ragam pada pengamatan kehilangan pakan tidak berpengaruh nyata. Hasilnya dapat dilihat pada Tabel 2.

Tabel 2. Persentase Kehilangan Pakan (%)

Perlakuan	Kehilangan pakan
E1D1	14,35
E1D2	11,23
E1D3	9,44
E2D1	14,88
E2D2	12,75
E2D3	10,27

Pada Tabel 2 dapat dilihat bahwa kehilangan pakan yang tertinggi terdapat pada perlakuan E_2D_1 yaitu sebesar 14,88%, Sedangkan kehilangan pakan yang terendah terdapat pada perlakuan E_1D_3 yaitu sebesar 9,44%. Hal ini menunjukkan pengamatan berat pakan tidak berpengaruh nyata terhadap berat pakan yang diamati. Hal ini disebabkan jumlah rayap yang masih hidup pada perlakuan tidak

mempengaruhi jumlah pakan yan hilang pada setiap perlakuan aplikasi. Hal ini dapat terjadi karena rayap yang masih hidup tidak mampu memanfaatkan pakan sebagai sumber makanan karena sudah terkontaminasi jamur .

Hal ini memperlihatkan bahwa jenis jamur dapat mengakibatkan rayap kehilangan nafsu makan kemudian kehilangan pergerakan dan lama kelamaan mati.. Hal ini sesuai dengan Hardi dan kurniawan (2008), salah satu alternatif yang memiliki prospek baik untuk mengendalikan rayap adalah dengan memanfaatkan insektisida nabati, yaitu insektisida yang bahan dasarnya ramah terhadap lingkungan.

Pengamatan Gejala Kematian Secara Visual

C. curvignathus yang terinfeksi jamur M. anisopliae terlihat ditumbuhi miselium berwarna putih lalu lama kelamaan miselium berubah warna menjadi hijau pekat. Pada keadaan ini rayap dalam keadaan kaku peristiwa ini disebut mumifikasi karena larva mengeras dan dibungkus oleh miselium dari jamur tersebut.

Rayap yang terinfeksi jamur M. anisopliae

Gambar 6. *C. curvignathus* terinfeksi *M. Anisopliae* Sumber: Dokumentasi Penelitian

Hal ini sesuai dengan Idham (2007), konidia membentuk hifa yang memasuki jaringan internal larva melalui interaksi biokimia yang kompleks antara

inang dan jamur. Selanjutnya, enzim yang dihasilkan jamur berfungsi mendegradasi kutikula larva serangga, hifa jamur akan tumbuh ke dalam sel-sel tubuh serangga, dan menyerap cairan tubuh serangga. Hal ini akan mengakibatkan serangga mati dalam keadaan tubuh yang mengeras seperti mumi.

C. curvignathus yang terinfeksi oleh jamur B. bassiana telah ditutupi olah hifa yang di sebabkan jamur B. bassiana. Awalnya hifa berwarna putih di mulai dari bintik-bintik kecil lalu hifa lama kelamaan menutupi tubuh rayap secara keseluruhan. Jamur tersebut telah menggambil alih tubuh inangnya yang mengakibatkan rayap tersebut mati. Kemudian rayap mengalami mumifikasi dengan adanya konidia yang menutupi badan hama yang terinfeksi oleh patogen tersebut.

Rayap yang terinfeksi jamur B. bassiana

Gambar 7. C. curvignathus terinfeksi B. bassiana

Sumber: Dokumentasi Penelitian

Hal ini sesuai dengan pendapat Tri (2007), hifa kemudian menyerang jaringan dan hifa berkembang biak didalam haemolymph. Hifa ini lah yang menyebabkan matinya sel - sel sasaran, sel - sel yang terserang oleh patogen inilah yang terjadi mumifikasi.

KESIMPULAN DAN SARAN

Kesimpulan

- 1. Jamur *M. anisopliae* lebih cepat dalam mengendalikan hama larva *C. curvignathus* sebesar 88,58%.
- 2. Perbedaan taraf konsentrasi berpengaruh dalam mengendalikan larva

 C. curvignathus dan konsentrasi 6 g/l adalah yang paling cepat dalam mengendalikan hama sasaran
- 3. Interaksi antar jamur entomopatogen dengan konsentrasi yang berbeda tidak berpengaruh terhadap mortalitas larva *C. curvignathus*

Saran

Berdasarkan hasil penelitian disarankan untuk melakukan penelitian lanjutan dengan taraf konsentrasi yang berbeda dari setiap jamur entomopatogen yang digunakan.

DAFTAR PUSTAKA

- Bakti, D. 2004. Pengendalian Rayap Coptotermes curvignathus Holmgren menggunakan Nematoda Steinernema carpocapsae W. dalam Skala Laboratorium. Jurnal Natur Indonesia, 6(2):81-83.
- Chamley. 2013. Boophilus microplus infection by Beauveria amorpha and Beauveriabassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Current Microbiol. 5: 257–261.
- Denik Madia Ningsih, 2010. Departement of Food Science and Techonology, Brawijaya University.
- Ginting, C.S, Ps. Sudarto, dan Chenon. D. R., 2002. Strategi Pengendalian Rayap Pada Kelapa Sawit di Lahan Gambut. Warta PPKS. Medan.
- Hardi T dan R Kurniawan.2008.Pengendalian Rayap Tanah pada Tanaman Kayu Putih dengan Ekstrak Sereh Wangi.Balai Besar Penelitian Bioteknologi dan Pemuliaan Tanaman Hutan, Universitas Nusa Bangsa
- Hasan. T., 1986. Rayap dan Pemberantasannya (Penaggulangan dan Pecegahan). CV. Yasaguna, Jakarta.
- Hughes SJ. 2014. Phycomycetes, Basidiomycetes, and Ascomycetes as Fungi Imperfecti. In: Taxonomy of Fungi Imperfecti (B. Kendrick, ed.), pp. 7-36. University of Toronto Press, Toronto
- Idham, 2007. Potensi dan perkembangan pemanfaatan jamur entomopatogen *Metarhizium anisopliae* dalam budidaya pertanian. Jurnal Inti Tani Volume 8 Nomor 98, hlm 43-39. ISSN 2890-7189.
- Irwan, 2016. POTENSI BIOINSEKTISIDA FORMULASI CAIR BERBAHAN AKTIF Beauveria bassiana (BALS.) VUILL DAN Metarhizium sp. UNTUK MENGENDALIKAN WERENG COKLAT PADA TANAMAN PADI. Jurnal Sain dan Teknologi Tadulako, Volume 5 Nomor 3, hlm 25-30. ISSN 2089-8630.
- Jumar, 2000. Upaya mempertahankan keefektifan cendawan entomopatogen untuk mengendalikan hama tanaman pangan. J. Litbang pert. 25(2):47-56.
- Juarnagi , 2010. Perhitungan Mortalitas Kematian. Serangan Hama Kumbang Badak . Dalam Pertemuan Tekhnis Kelapa Sawit. Jurnal Sain dan Teknologi Kelapa Sawit , Volume 7 Nomor 9, hlm 25-30. ISSN 5326-4327.
- Nandika D,Y, Riamayadi dan F. Diba, 2003. Rayap, Biologi dan Pengendalian. Muhammadiah University Press, Surakarta.
- Prasetiyo, K.W. *dan* S. Yusuf, 2005. Mencegah dan Membasmi Rayap Secara Ramah Lingkungan dan Kimiawi. Agromedia Pustaka, Jakarta.

- Prayogo, 2006. Biologi dan Pengendalian Rayap Kelapa Sawit. Rineka Cipta, Jakarta.
- ———,2005. Jamur entomopatogen *Metarhizium anisopliae* dan *paecilomycesfumosoroseus* sebagai salah satu alternatif untuk mengendalikan telur hama penghisap polong kedelai . *Beritapuslitbangtan* (32):10.
- Purba, R, Y, Sudharto dan R. Desmier de Chenon, 2002. Gejala Serangan dan Bioekologi Coptotermes cirvignathus Holmgren (Isoptera:Rhinotermidae) pada Tanaman Kelapa Sacit di Lahan Gambut .Warta PPKS, Medan, Sumatera Utara.
- Soepadiyo, dan S. Haryono., 2003. Manajemen Agrobisnis Kelapa Sawit. Gadjah Mada University Press, Yogyakarta
- Tarumingkeng, R.C., 2001. Pengenalan Dan Pengendalian Hama Dan Penyakit Tanaman Kelapa Sawit. PPKS, Medan.
- Tri, 2007. Uji Patogenisitas Agen Hayati Prosiding Seminar Ilmiah dan Pertemuan Tahunan PEI an PFI XVIII Komda Sul-Sel. 306-318.
- Wahyudi, 2002. Jamur Patogen Serangga Sebagai Bahan Baku Insektisida. Pemanfaatan Mikroba dan Parasitoid Dalam Agroindustri Tanaman rempah dan obat. Perkembangan teknologi Tanaman Rempah dan Obat (XII): 21-28pp.
- Yuniarti, P. 2008. Enkapsulasi Propagul Jamur Entomopatogen *Beauveria bassiana* Menggunakan Alginat dan Pati Jagung sebagai Produk Mikoinsektisida. Jurnal Ilmu Kefarmasian Indonesia 6(2): 51-56.
- Zaini. 1991. Hama tanaman Kelapa Sawit dan Pengendaliannya. Available at. Hp://litbang.deptan.go id/hama kelapa sawit. Diakses tanggal 20 oktober 2017.

LAMPIRAN

Lampiran 1. Bagan penelitian

E_1D_1 I	E ₂ D _{2 IV}	E_2D_4 I	E ₂ D _{1 IV}	
E ₂ D _{3 II}	E_1D_2 I	E ₂ D _{3 III}	E_1D_3 II	
E_1D_3 III	E ₂ D _{3 IV}	E ₁ D _{3 IV}	E ₂ D _{2 I}	
E_1D_3 IV	E_2D_1 I	E_1D_1 II	E_1D_1 III	u ∤
E_2D_2 II	E_1D_1 III	E_2D_2 I	E ₂ D _{3 I}	
		E_1D_2 III	E_2D_3 IV	S
E_1D_2 II	E_1D_3 I	D ₁ D ₂ III	2223 IV	

Keterangan:

 $E_1 = M.$ anisopliae

 $E_2 = B.$ basiiana

 $D_1 \qquad = 2g/l$

 $D_2 \hspace{1cm} = 4g/l$

 $D_3 = 6g/l$

I, II, III, IV = Ulangan

Lampiran 2. Data Pengamatan Persentase Mortalitas Hama (%) 2 Hari Setelah Aplikasi

perlakuan —	ulangan				Σ	Rataan
periakuan —	1	2	3	4	2	Νατααπ
E1D1	3,3	6,6	6,6	3,3	19,8	4,95
E1D2	6,6	6,6	13,3	10	36,5	9,125
E1D3	10	13,3	13,3	10	46,6	11,65
E ₂ D ₁	6,6	3,3	6,6	3,3	19,8	4,95
E2D2	6,6	6,6	10	6,6	29,8	7,45
E2D3	6,6	10	10	10	36,6	9,15
Σ	39,7	46,4	59,8	43,2	189,1	
Rataan	6,62	7,73	9,97	7,2		7,9

Lampiran 3.Transformasi Data y= Ü 2 Hari Setelah Aplikasi

monlolruon —		ulang		rataan		
perlakuan –	1	2	3	4	Σ	Tataan
E1D1	1,95	2,66	2,66	1,95	9,23	2,31
E1D2	2,66	2,66	3,71	3,24	12,28	3,07
E1D3	3,24	3,71	3,71	3,24	13,91	3,48
E ₂ D ₁	2,66	1,95	2,66	1,95	9,23	2,31
E ₂ D ₂	2,66	2,66	3,24	2,66	11,23	2,81
E2D3	2,66	3,24	3,24	3,24	12,39	3,10
Σ	15,85	16,90	19,24	16,28	68,27	
Rataan	2,64	2,82	3,21	2,71		2,84

Lampiran 4. Daftar Sidik Ragam Mortalitas Hama

SK	DB	JK	KT	F.HIT —	-	F. TABEL
SK.	DВ	JK	K1 F.HII -			0,01
Perlakuan	5	4,38	0,88	6,26	**	4,25
E	1	0,28	0,28	1,97	tn	8,29
D	2	3,95	1,98	14,11	**	6,01
EXD	2	0,15	0,08	0,54	tn	6,01
GALAT	18	2,52	0,14			
TOTAL	28					
KK	13,15	Ketera	Keterangan		sangat nyata	
			· ·		tidak	c nyata

Lampiran 5. Data Pengamatan Persentase Mortalitas Hama (%) 3 Hari Setelah Aplikasi

perlakuan –	ulangan					Rataan
periakuan –	1	2	3	4	Σ	Nataan
E1D1	23,3	20	30	30	103,3	25,825
E1D2	26,6	30	36,6	30	123,2	30,8
E ₁ D ₃	30	36,6	40	43,3	149,9	37,475
E ₂ D ₁	23,3	23,3	23,3	23,3	93,2	23,3
E ₂ D ₂	20	26,6	30	30	106,6	26,65
E ₂ D ₃	26,6	30	33,3	36,6	126,5	31,625
Σ	149,8	166,5	193,2	193,2	702,7	
Rataan	24,97	27,75	32,20	32,2		29,3

Lampiran 6.Transformasi Data y= W 3 Hari Setelah Aplikasi

norlolayon —		ulangan				Rataan	
perlakuan –	1	2	3	4	Σ	Nataali	
E1D1	4,88	4,53	5,52	5,52	20,45	5,11	
E1D2	5,21	5,52	6,09	5,52	22,34	5,59	
E1D3	5,52	6,09	6,36	6,62	24,60	6,15	
E ₂ D ₁	4,88	4,88	4,88	4,88	19,51	4,88	
E ₂ D ₂	4,53	5,21	5,52	5,52	20,78	5,19	
E ₂ D ₃	5,21	5,52	5,81	6,09	22,63	5,66	
Σ	30,22	31,75	34,19	34,16	130,32		
Rataan	5,04	5,29	5,70	5,69		5,43	

Lampiran 7. Daftar Sidik Ragam Mortalitas Hama

SK	DB	JK KT F.H		F.HIT		F. TABEL		
SK	DВ	JK	K1	г.пп		0,01		
Perlakuan	5	4,21	0,84	5,23	**	4,25		
E	1	0,83	0,83	5,16	tn	8,29		
D	2	3,32	1,66	10,30	**	6,01		
EXD	2	0,07	0,03	0,21	tn	6,01		
GALAT	18	2,90	0,16					
TOTAL	28							
KK	7,39	Ketera	Keterangan		sangat nyata			
				tn	tidal	< nyata		

Lampiran 8. Data Pengamatan Persentase Mortalitas Hama (%) 4 Hari Setelah Aplikasi

perlakuan –		ulang			Rataan	
periakuan –	1	2	3	4	Σ	Nataan
E1D1	63,3	53,3	63,3	63,3	243,2	60,8
E1D2	66,6	63,3	60	56,6	246,5	61,625
E1D3	70	70	76,6	70	286,6	71,65
E2D1	53,3	46,6	53,3	50	203,2	50,8
E ₂ D ₂	60	53,3	63,3	60	236,6	59,15
E ₂ D ₃	63,3	56,6	66,6	76,6	263,1	65,775
Σ	376,5	343,1	383,1	376,5	1479,2	
Rataan	62,75	57,18	63,85	62,75		61,6

Lampiran 9.Transformasi Data y= W 4 Hari Setelah Aplikasi

norlolanon -		ulang		7	Rataan	
perlakuan –	1	2	3	4	Σ	Nataan
E1D1	7,99	7,33	7,99	7,99	31,30	7,82
E1D2	8,19	7,99	7,78	7,56	31,51	7,88
E ₁ D ₃	8,40	8,40	8,78	8,40	33,97	8,49
E ₂ D ₁	7,33	6,86	7,33	7,11	28,64	7,16
E ₂ D ₂	7,78	7,33	7,99	7,78	30,88	7,72
E ₂ D ₃	7,99	7,56	8,19	8,78	32,52	8,13
Σ	47,68	45,47	48,06	47,61	188,81	
Rataan	7,95	7,58	8,01	7,93		7,87

Lampiran 10. Daftar Sidik Ragam Mortalitas Hama

SK	DB	IV	JK KT F]	F. TABEL		
	DВ	JK	K1	F.HIT		0,01		
Perlakuan	5	3,94	0,79	7,83	**	4,25		
E	1	0,94	0,94	9,34	**	8,29		
D	2	2,74	1,37	13,62	**	6,01		
EXD	2	0,26	0,13	1,29	tn	6,01		
GALAT	18	1,81	0,10					
TOTAL	28							
KK	4,03	Ketera	ngan	**	sang	at nyata		
				tn	tidak	nyata		

Lampiran 11. Data Pengamatan Persentase Mortalitas Hama (%) 5 Hari Setelah Aplikasi

perlakuan -		ul		7	Rataan		
periakuan	1	2	3	4	Σ	Natdall	
E1D1	83,3	76,6	76,6	76,6	313,1	78,275	
E1D2	90	90	86,6	83,3	349,9	87,475	
E1D3	100	100	100	100	400	100	
E2D1	70	76,6	70	70	286,6	71,65	
E2D2	83,3	86,6	90	83,3	343,2	85,8	
E ₂ D ₃	93,3	90	90	100	373,3	93,325	
Σ	519,9	519,8	513,2	513,2	2066,1		
Rataan	86,65	86,63	85,53	85,53333		86,1	

Lampiran 12.Transformasi Data y= W 5 Hari Setelah Aplikasi

norlolanon -		ulang	7	Rataan		
perlakuan –	1	2	3	4	Σ	катаан
E1D1	9,15	8,78	8,78	8,78	35,50	8,87
E1D2	9,51	9,51	9,33	9,15	37,51	9,38
E1D3	10,02	10,02	10,02	10,02	40,10	10,02
E ₂ D ₁	8,40	8,78	8,40	8,40	33,97	8,49
E ₂ D ₂	9,15	9,33	9,51	9,15	37,15	9,29
E2D3	9,69	9,51	9,51	10,02	38,74	9,68
Σ	55,93	55,95	55,56	55,54	222,97	
Rataan	9,32	9,32	9,26	9,26		9,29

Lampiran 13. Daftar Sidik Ragam

						F. TABEL
SK	DB	JK	KT	F.HIT		0,01
Perlakuan	5	6,05	1,21	38,40	**	4,25
Е	1	0,44	0,44	13,96	**	8,29
D	2	5,51	2,75	87,43	**	6,01
EXD	2	0,10	0,05	1,59	tn	6,01
GALAT	18	0,57	0,03			
TOTAL	28					
KK	1,91	Ketera	Keterangan		sang	at nyata
				tn	tidal	k nyata

Lampiran 14. Data Pengamatan Berat Pakan (g) Setelah Aplikasi

perlakuan –		ulang		- Σ	rataan	
periakuan –	1	2	3	4	2	Tataari
E1D1	5,25	4,96	5,12	5,22	20,55	5,14
E1D2	5,4	5,15	5,37	5,41	21,33	5,33
E1D3	5,65	5,47	5,15	5,46	21,73	5,43
E2D1	5,02	5,07	5,18	5,15	20,42	5,11
E2D2	5,1	5,3	5,17	5,36	20,93	5,23
E2D3	5,45	5,2	5,46	5,52	21,63	5,41
Σ	31,87	31,15	31,45	32,12	126,59	
Rataan	5,31	5,19	5,24	5,35		5,27

Lampiran 15. Data Kehilangan Pakan (%)

perlakuan –		ulang		- Σ	rataan	
periakuan	1	2	3	4	2	Tataan
E ₁ D ₁	12,5	17,3	14,6	13	57,4	14,35
E1D2	10	14,6	10,5	9,83	44,93	11,23
E1D3	5,83	8,83	14,1	9	37,76	9,44
E2D1	16,3	15,5	13,6	14,1	59,5	14,88
E2D2	15	11,6	13,8	10,6	51	12,75
E2D3	9,16	13,3	10	8,6	41,06	10,27
Σ	68,79	81,13	76,6	65,13	291,65	
Rataan	11,47	13,52	12,77	10,86		12,15

Lampiran 16. Data Berat Pakan Transformasi Data y= \overline{\text{W}}

perlakuan –		ulang		Σ	rataan	
periakuan –	1	2	3	4	2	Tataan
E1D1	3,61	4,22	3,89	3,67	15,38	3,85
E1D2	3,24	3,89	3,32	3,21	13,66	3,41
E ₁ D ₃	2,52	3,05	3,82	3,08	12,47	3,12
E ₂ D ₁	4,10	4,00	3,75	3,82	15,67	3,92
E ₂ D ₂	3,94	3,48	3,78	3,33	14,53	3,63
E ₂ D ₃	3,11	3,71	3,24	3,02	13,08	3,27
Σ	20,51	22,35	21,80	20,14	84,80	_
Rataan	3,42	3,73	3,63	3,36		3,53

Lampiran 17. Daftar Sidik Ragam Kehilangan Pakan

CV	DB	IV	KT	БШТ		F. TABEL
SK	DВ	JK	ΚI	F.HIT		0,01
P	5	3,08	0,61	2,17	tn	4,25
E	1	0,01	0,01			
Galat	18	5,12	0,28			
Total	24	7,74				

Keterangan : tn = tidak nyata