# **TUGAS AKHIR**

# PENGARUH KEMIRINGAN SUDUT TERHADAP KINERJA SOLAR WATER HEATER DOUBLE SLOPE

Diajukan Untuk Memenuhi Syarat Memperoleh Gelar Sarjana Teknik Mesin Pada Fakultas Teknik Universitas Muhammadiyah Sumatera Utara

**Disusun Oleh:** 

**ZULKARNAIN** 1607230168



PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA MEDAN 2021

#### HALAMAN PENGESAHAN

Proposal penelitian Tugas Akhir ini diajukan oleh:

Nama

: ZULKARNAIN

NPM

: 1607230168

Program Studi

: Teknik Mesin

Judul Tugas Akhir

: Pengaruh Kemiringan sudut Terhadap

Kinerja

Solar water heater double slope

Bidang ilmu

: Konversi Energi

Telah berhasil dipertahankan di hadapan Tim penguji dan diterima sebagai penelitian tugas akhir untuk memperoleh gelar sarjana Teknik pada Program Studi Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, 15 oktober 2021

Mengetahui dan menyetujui:

Dosen Penguji

osen Penguji

H. Muharnif S.T., M.sc.,

Dosen Penguji

Riadini Wanty Lubis S.T., M.T

Dosen Penguji

Ketua Program Studi Teknik Mesin

Chandra A Siregar, S.T., M.T

Chandra A Siregar, S.T., M.T

# SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Saya yang bertanda tangan di bawah ini;

Nama Lengkap Tempat /Tanggal Lahir NPM

: Lidah Tanah : 1607230168 Fakultas : Teknik Program Studi : Teknik Mesin

Menyatakan dengan sesungguhnya dan sejujurnya, bahwa laporan Tugas Akhir saya yang berjudul:

: Zulkarnain

"Pengaruh Kemiringan Sudut Terhadap Kinerja Solar Water Heater Double Slope",

Bukan merupakan plagiarisme, pencurian hasil karya milik orang lain, hasil kerja orang lain untuk kepentingan saya karena hubungan material dan non-material, ataupun segala kemungkinan lain, yang pada hakekatnya bukan merupakan karya tulis Tugas Akhir saya secara orisinil dan otentik.

Bila kemudian hari diduga kuat ada ketidaksesuaian antara fakta dengan kenyataan ini, saya bersedia diproses oleh Tim Fakultas yang dibentuk untuk melakukan verifikasi, dengan sanksi terberat berupa pembatalan kelulusan/ kesarjanaan saya.

Demikian Surat Pernyataan ini saya buat dengan kesadaran sendiri dan tidak atas tekanan ataupun paksaan dari pihak manapun demi menegakkan integritas akademik di Program Studi Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, 15 Oktober 2021

Saya yang menyatakan

Zulkarnain

BAAJX481445040

#### **ABSTRAK**

Pemanas air tenaga surya/matahari merupakan energi surya yang sampai ke bumi, dapat dikumpulkan dan diubah menjadi energi panas yang berguna melalui suatu alat yaitu kolektor surya. Kolektor surya menggunakan kemiringan sudut 30° 45° 60° sebagai penyerap panas dan fluida kerja melewati pipa. Pemanas air tenaga surya merupakan salah satu alat yang menggunakan kolektor surya dengan memanfaatkan energi panas matahari untuk memanaskan air. Besarnya radiasi matahari yang diterima oleh kolektor surya di antaranya dipengaruhi oleh sudut (β) bidang permukaan kolektor surya. Kemiringan sudut berhubungan dengan sudut datang matahari langsung (θ) sehingga dapat mempengaruhi besarnya radiasi matahari yang diterima kolektor surya. Pemanas air tenaga surya yang diteliti dapat digunakan sebagai alat alternatif mengubah air dingin menjadi air hangat untuk mandi. Potensi radiasi surya yang paling besar pada jam 12:00-12:00 yakni 908,712 w/m² Disebabkan oleh posisi matahari tegak lurus dengan alat pemanas air tenaga surya. Setelah dilakukan penelitian kemiringan sudut 30° merupakan sudut yang paling efektif dimana temperatur air yang di dapat 45°c pada pukul jam setengah 12:30 WIB, laju perpindahan panas radiasi 92,86 Watt perhari serta air yang dihasilkan 106 liter/hari.

#### **ABSTRACT**

Solar water heaters are solar energy that reaches the earth, can be collected and converted into useful heat energy through a device, namely a solar collector. The solar collector uses an angle of 30° 45° 60° as a heat sink and working fluid passes through the pipe. A solar water heater is a device that uses a solar collector by utilizing solar thermal energy to heat water. The amount of solar radiation received by the solar collector is influenced by the angle (β) of the surface of the solar collector. The tilt angle is related to the angle of incidence of the direct sun (θ) so that it can affect the amount of solar radiation received by the solar collector. The researched solar water heater can be used as an alternative tool to convert cold water into warm water for bathing. The greatest potential for solar radiation at 12:00-12:00 is 908.712 w/m². Caused by the position of the sun perpendicular to the solar water heater. After doing research the slope angle of 30° is the most effective angle where the water temperature is 45°c at half past 12:30 WIB, the radiation heat transfer rate is 92.86 Watts per day and the water produced is 106 liters/day.

#### **KATA PENGANTAR**

Dengan nama Allah Yang Maha Pengasih lagi Maha Penyayang. Segala puji dan syukur penulis ucapkan kehadirat Allah SWT yang telah memberikan karunia dan nikmat yang tiada terkira. Salah satu dari nikmat tersebut adalah keberhasilan penulis dalam menyelesaikan laporan Tugas Akhir ini yang berjudul "Pengaruh Kemiringan Sudut Terhadap Kinerja *Solar Water Heater Double Slope*" sebagai syarat untuk meraih gelar akademik Sarjana Teknik pada Program Studi Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara (UMSU), Medan.

Banyak pihak telah membantu dalam menyelesaikan laporan Tugas Akhir ini, untuk itu penulis menghaturkan rasa terimakasih yang tulus dan dalam kepada:

- Bapak Chandra A Siregar, S.T., M.T.selaku Dosen Pembimbing serta ketua program Fakultas Teknik Universitas Muhammadiyah Sumatera Utara yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- Bapak H. Muharnif, S.T., M.Sc., selaku Dosen Pembanding I dan Penguji yang telah banyak memberikan koreksi dan masukan kepada penulis dalam menyelesaikan Tugas akhir ini.
- 3. Ibu Riadini Wanti Lubis, S.T., M.T., selaku Dosen Pembanding II dan penguji yang telah banyak memberikan koreksi dan masukan kepada penulis dalam menyelesaikan Tugas Akhir ini
- 4. Ahmad Marabdi Siregar, S.T., M.T sebagai Seketaris Program studi Teknik Mesin, Univeritas Muhammadiyah Sumatera Utara.
- 5. Bapak Munawar Alfansury Siregar S.T,.M.T. selaku Dekan Fakultas Teknik Universitas Muhammadiyah Sumatera Utara
- 6. Bapak Dr. Ade Faisal S.T,.Phd selaku Wakil Dekan I Fakultas Teknik Universitas Muhammadiyah Sumatera Utara
- Seluruh Bapak/ Ibu Dosen di Program Studi Teknik Mesin Universitas Muhammadiyah Sumatera Utara

- 8. Orang tua penulis: Mariamah Sinaga dan Irwansyah, yang telah bersusah payah membesarkan dan membiayai studi penulis
- Bapak/Ibu Staf Administrasi di Biro Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara
- 10. Sahabat-sahabat penulis: Abdi Kurniawan, Wahyu pratama, Ari Gunawan, Toto Ardianto tumanggor, dan lainnya yang tidak mungkin namanya disebut satu persatu.

Laporan Tugas Akhir ini tentunya masih jauh dari kesempurnaan, untuk itu penulis berharap kritik dan masukan yang konstruktif untuk menjadi bahan pembelajaran berkesinambungan penulis di masa depan. Semoga laporan Tugas Akhir ini dapat bermanfaat bagi dunia teknik Mesin

Medan, 15 Oktober 2021

Zulkarnain

## **DAFTAR ISI**

| LEMBAR PENGESAHAN<br>LEMBAR PERNYATAN KEASLIAN TUGAS AKHIR |        | ii                             |                  |
|------------------------------------------------------------|--------|--------------------------------|------------------|
|                                                            |        | iii                            |                  |
| ABSTRAK                                                    |        |                                | iv               |
| ABSTR                                                      |        |                                | V                |
|                                                            |        | GANTAR                         | vi               |
| DAFTA                                                      |        |                                | vii              |
| DAFTA                                                      |        |                                | X<br>•           |
| DAFTA                                                      |        | AMBAR<br>OTASI                 | xi<br>xii        |
| DATIA                                                      | IN 11( | OTASI                          | XII              |
| BAB 1                                                      | PEN    | IDAHULUAN                      | 1                |
|                                                            |        | Latar Belakang                 | 2                |
|                                                            |        | Rumusan masalah                | 2<br>2<br>2<br>2 |
|                                                            |        | Ruang lingkup                  | 2                |
|                                                            |        | Tujuan                         | 2                |
|                                                            | 1.5.   | Manfaat                        | 2                |
| BAB 2                                                      | TIN    | JAUAN PUSTAKA                  | 3                |
|                                                            | 2.1.   | Solar Water Heater             | 3                |
|                                                            |        | 2.1.1 Teori dasar radiasi      | 5                |
|                                                            |        | 2.1.2 Pemanfaatan Energi Surya | 5                |
|                                                            |        | Kolektor Penyerap Panas        | 6                |
|                                                            | 2.3    | Perpindahan Panas              | 7                |
|                                                            |        | 2.3.1 Kondukasi                | 7                |
|                                                            |        | 2.3.2 Konveksi                 | 7                |
|                                                            |        | 2.3.3 Radiasi                  | 8                |
|                                                            | 2.4    | Jenis-jenis kolektor           | 8                |
|                                                            |        | 2.4.1 Solar water heater       | 9                |
|                                                            |        | 2.4.2 Solar cooker             | 9                |
|                                                            |        | 2.4.3 Solar drier              | 9                |
|                                                            |        | 2.4.4 Solar architecture       | 10               |
|                                                            |        | 2.4.5 Solar distilation water  | 11               |
|                                                            | 2.5    | LCD (Liquid Crystal Display)   | 11               |

| BAB 3 | METODE PENELITIAN    |                                      | 15 |
|-------|----------------------|--------------------------------------|----|
|       | 3.1                  | Tempat dan Waktu                     | 15 |
|       |                      | 3.1.1. Tempat Penelitian             | 15 |
|       |                      | 3.1.2. Waktu Penelitian              | 15 |
|       | 3.2                  | Bahan dan Alat Penelitian            |    |
|       |                      | 3.2.1 Bahan yang digunakan           | 16 |
|       |                      | 3.2.2 Alat-alat penelitian           | 16 |
|       | 3.3                  | Bagan Alir Penelitian                | 19 |
|       | 3.4                  | Prosedur Penelitian                  | 20 |
|       | 3.5                  | Prosedur Pengujian                   |    |
| BAB 4 | HASIL DAN PEMBAHASAN |                                      | 22 |
|       | 4.1                  | Hasil Pengambilan data               | 22 |
|       |                      | 4.1.1 Hasil Pengujian kemiringan 30° | 22 |
|       | 4.2                  | Hasil Pengambilan Data               | 27 |
|       |                      | 4.2.1 Hasil Pengujian Kemiringan 45° | 27 |
|       | 4.3                  | Hasil Pengambilan Data               | 32 |
|       |                      | 4.3.1 Hasil Pengujian Kemiringan 60° | 32 |
|       | 4.4                  | Data Perhitungan Pada Kolektor       | 37 |
| BAB 5 | KESIMPULAN DAN SARAN |                                      | 40 |
|       | 5.1.                 | Kesimpulan                           | 40 |
|       | 5.2                  | Saran                                | 40 |

## **DAFTAR PUSTAKA**

LAMPIRAN LEMBAR ASISTENSI SK PEMBIMBING BERITA ACARA SEMINAR TUGAS AKHIR DAFTAR RIWAYAT HIDUP

# **DAFTAR TABEL**

| Tabel 2.1 Spesifikasi Arduino uno ( <a href="http://www.arduino.cc">http://www.arduino.cc</a> ) | 10 |
|-------------------------------------------------------------------------------------------------|----|
| Tabel 3.1 Jadwal Kegiatan Penelitian                                                            | 12 |

#### **DAFTAR GAMBAR**

Gambar 2.1 Matahari Dan Bumi

Gambar 2.2 Konduksi

Gambar 2.3 Konveksi

Gambar 2.4 Radiasi

Gambar 2.5 Solar Water Heater

Gambar 2.6 Solar Cooker

Gambar 2.7 Solar Drier

Gambar 2.8 Solar Architture

Gambar 2.9 Solar Distilation Water

Gambar 2.10 Lcd (Liquid Cristal Display)

Gambar 3.1 Kaca Bening

Gambar 3.2 Air

Gambar 3.3 Arduino Uno

Gambar 3.4 Flow Meter Sensor

Gambar 3.5 Sensor Suhu DS18B20

Gambar 3.6 Selenoid Water Valve

Gambar 3.7 Sensor Dht 11

Gambar 3.8 Rol Busur

Gambar 3.9 Laptop

Gambar 3.10 Bagan Alir Penelitian

# **DAFTAR NOTASI**

| 1.  | Q = Jumlah kalor yang dipindahkan  (W)                                         | 4          |
|-----|--------------------------------------------------------------------------------|------------|
| 2.  | $k = \text{Konduktivitas termal bahan } (W / m.^{\circ}C)$                     | 4          |
| 3.  | $A = \text{Luas bidang pemanasan } (m^2)$                                      | 4          |
| 4.  | $\frac{\Delta t}{\Delta x} = \text{Gradien temperatur } (^{\circ}C / m)$       | 4          |
| 5.  | L = Tebal bahan  (m)                                                           | 5          |
| 6.  | $h = \text{Koefisien perpindahan kalor konveksi} (W / m.^{\circ}C)$            | 6          |
| 7.  | $A = \text{Luas penampang perpindahan kalor secara konveksi}(m^2)$             | $\epsilon$ |
| 8.  | $T_S = \text{Temperatur permukaan}(^{\circ}C)$                                 | 6          |
| 9.  | $T\infty$ = Temperatur fluida yang terletak jauh dari permukaan (° $C$ )       | 6          |
| 10. | . $\varepsilon = \text{Emisivitas permukaan}$                                  | 7          |
| 11. | $\sigma$ = Konstanta Stefan-Boltzmann (5,67.10 <sup>-3</sup> $W/m^2$ . $K^4$ ) | 7          |
| 12. | $T_S = \text{Temperatur daerah sekeliling permukaan } (^{\circ}C)$             | 7          |

#### **BAB 1**

#### **PENDAHULUAN**

#### 1.1 Latar Belakang

Matahari merupakan sumber utama kebanyakan tenaga yang kini terdapat di bumi. Matahari sebagai bintang terdekat dengan bumi, memberikan tenaga ke bumi secara terus menerus. Bagian matahari tidak dapat didekati untuk penelitian secara langsung. Berdasarkan penelitian permukaan matahari dan pertimbangan teori, diperkirakan bahwa suhu matahari bagian dalam lebih kurang  $15 \times 10^6 k$ . matahari dapat diandaikan seperti benda hitam yang suhu permukaan tetap pada kisaran  $T = 6000^\circ k$ . Matahari adalah sumber energi primer, yang memberi pengertian bahwa semua energi yang dihasilkan secara alami ataupun secara proses teknologi semuanya bersumber dari matahari. Walau bagaimanapun oleh karena itu matahari begitu penting dan diperlukan manusia, maka pada kebanyakan masa bintang ini dianggap sebagai sebuah bintang yang amat istimewa dan luar biasa.

Energi surya yang sampai ke bumi, dapat dikumpulkan dan di ubah menjadi energi panas yang berguna melalui suatu alat yaitu kolektor surya. Dalam aplikasinya kolektor surya banyak digunakan sebagai alat pemanas air pada rumah-rumah.

Kolektor surya munggunakan kemiringan sudut 30°, 45° dan kemiringan sudut 60° sebagai penyerap panas dan fluida kerja melewati pipa. Untuk mendapatkan hasil pemanasan yang lebih maksimal pelat kolektor tersebut menggunakan aluminium dibentuk pipa segi enam 0,2 mm yang berfungsi untuk menyerap radiasi surya yang dipancarkan oleh matahari. Untuk menjaga agar tidak terjadi kerugian panas secara radiasi dan konversi ke atmosfer, Maka digunakan kaca pelindung sehingga mengurangi terjadinya efek rumah kaca dan untuk lebih memperkecil efek rumah kaca maka kaca pelindung di variasi antara satu kaca penutup.

Pemanas air tenaga surya atau *solar water heater* bekerja berdasarkan fenomena alami, warna gelap pada kolektor menyerap panas, dan air panas mengalir ke wadah penyimpanan. Sistem ini sangat sederhana dan bagian yang bergerak hanyalah air itu sendiri.

Prinsip kerja *solar water heater* ( pemanas air secara langsung ) matahari memanaskan kolektor yang sudah di isi air baku, air yang sudah dipanaskan melalui tenaga ( sinar radiasi ) mengalir ke dalam wadah penampungan sedangkan air dingin turun dibagian bawah kolektor.

Matahari memanaskan air tersebut di dalam kolektor, dan sirkulasi berlangsung terus menerus. Prinsip ini disebut efek thermisiphon. Makin besar perbedaan temperatur air, maka makin cepat aliran air panas mengalir ke dalam wadah penampungan.

#### 1.2 Rumusan Masalah

- 1. Bagaimana mengembangkan *solar water heater double slope* dengan menggunakan kemiringan sudut pengumpul surya.
- 2. Bagaimana pengaruh variasi kemiringan sudut kolektor surya.

#### 1.3 Ruang Lingkup

- 1. Kapasitas kolektor atau *solar water heater* yang di gunakan sebanyak 63 liter.
- 2. Kemiringan Sudut Yang Digunakan Kolektor Surya Sebesar 30°, 45°, dan kemiringan 60°.

#### 1.4 Tujuan Penelitian

- 1. Untuk menganalisa terhadap efesiensi penyerapan panas pada pipa honeycomb terhadap kolektor.
- 2. Untuk menganalisa terhadap efesiensi *Solar Water Heater* Double Slope dengan variasi kemiringan sudut 30°, 45°, dan kemiringan sudut 60°.

## 1.5 Manfaat Penelitian

- 1. Memanfaatkan energi surya sebagai energi alternatif pengganti energi fosil untuk memanaskan air.
- 2. Mendapatkan kolektor surya pemanas air dengan efesiensi yang lebih baik.

#### BAB 2

#### TINJAUAN PUSTAKA

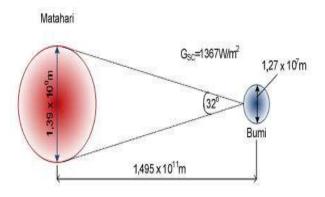
#### 2.1 Solar water heater

Solar water heater merupakan salah satu alat yang menggunakan kolektor surya dengan memanfaatkan energi panas matahari untuk memanaskan air. Besarnya radiasi matahari yang diterima oleh kolektor surya di antaranya dipengaruhi oleh sudut ( $\beta$ ) bidang permukaan kolektor surya. Sudut kemiringan berhubungan dengan sudut datang matahari langsung ( $\theta$ ) sehingga dapat mempengaruhi besarnya radiasi matahari yang diterima oleh kolektor surya. Dengan memvariasikan nilai sudut kemiringan kolektor surya, dapat di ketahui nilai sudut yang optimal kolektor surya untuk menyerap energi panas matahari. arah hadap kolektor surya di variasikan pada arah mata angin yang optimal. Kemudian sudut kemiringan kolektor surya divariasikan pada kemiringan sudut  $30^{\circ}$ ,  $45^{\circ}$ , dan kemiringan sudut  $60^{\circ}$ .(KA.Ridwan et al., 2019)

Kolektor surya dibuat dengan menggunakan dengan kaca penutup jenis kaca bening dan tube pemanas yang terbuat dari honeycomb aluminium. Aliran air dalam honeycomb pemanas diatur konstan pada debit 63 lier/jam kolektor 30 mm pengujian dilakukan di jl. Moh Yakup Lubis, Bandar Klippa, Kec. Percut Sei Tuan, Kabupaten Deli Serdang, Sumatera Utara 20371 di gedung lantai 2 mulai dari jam 08:00 hingga 16:00 WIB dengan pengambilan data setiap setengah jam sekali. Berdasarkan hasil pengujian, kolektor surya mengalami penyerapan radiasi optimal pada kemiringan sudut 30° menghadap utara.(Siregar et al., 2018)

Energi surya adalah energi panas matahari yang potensinya mencapai 207,9 GW sementara pemanfaatannya hanya sekitar 78,5 MW Dengan tantangan penyediaan energi dan potensi energi surya tersebut, banyak dilakukan penelitian untuk dapat mengoptimalkan pemanfaatan energi surya. Salah satu pemanfaatan energi surya adalah penggunaan kolektor surya untuk mengumpulkan energi panas matahari. *Solar water heater* merupakan salah satu alat yang menggunakan kolektor surya untuk memanaskan air.(Sulistyo et al., 2016)

Kolektor surya digunakan untuk mengumpulkan energi panas radiasi matahari yang kemudian energi panas tersebut diteruskan ke dalam air yang mengalir di dalamnya. Besarnya energi panas matahari yang diterima kolektor surya, bergantung dari intensitas radiasi matahari tiap waktu, sudut pasang serta kemampuan kolektor surya untuk menyerap energi panas radiasi matahari. Kemiringan sudut dan arah hadap kolektor surya berhubungan dengan sudut datang radiasi langsung matahari. (Sulistyo et al., 2016)


Radiasi matahari langsung mempunyai sudut datang  $(\theta)$  untuk mencapai permukaan. Dengan mengatur kemiringan sudut permukaan kolektor surya dapat mengoptimalkan energi radiasi matahari yang diterima kolektor surya. Selain kemiringan sudut, arah hadap kolektor surya juga mempengaruhi besarnya energi panas radiasi matahari yang dapat diterima kolektor surya. Selain memvariasikan kemiringan sudut, pada penelitian ini juga meneliti arah hadap kolektor surya untuk mendapatkan penyerapan energi matahari yang optimal. Modifikasi komponen-komponen pada kolektor surya merupakan cara untuk dapat meningkatkan performansi *solar water heater* (Yadav dan Chandel, 2013)

Rancang bangun *solar water heater* dengan variasi kemiringan sudut serta arah hadap kolektor surya diharapkan mampu menjadi salah satu alternatif dalam optimalisasi pemanfaatan energi matahari, kemiringan sudut kolektor divariasi sebesar 30°, 45°, dan kemiringan sudut 60°. Ini di maksudkan untuk mencari identitas yang paling baik antara ketiga variasi kemiringan sudut tersebut.(Siregar & Siregar, 2019)

Pemanas air sistem kokektor honeycomb ini bekerja berdasarkan fenomena sifon panas (*thermosyphone*) yaitu *konveksi* alamiah yang mengalirkan air panas kedalam wadah.

#### 2.1.1 Teori Dasar Radiasi

Matahari mempunyai diameter  $1,39\times10^9 m$ . Bumi mengelilingi matahari dengan lintasan berbentuk ellipse dan matahari berada pada salah satu pusatnya. Jarak rata-rata matahari dari permukaan bumi adalah  $1,49\times10^{11} m$ . Daya radiasi rata-rata yang diterima atmosfer bumi yaitu  $(G_{sc})1367W/M^2$ . Gambar 2.1 menunjukkan antara matahari dan bumi.



Gambar 2.1 matahari dan bumi

(Ambarita,H,2011)

Lintasan bumi terhadap matahari berbentuk ellipse, maka jarak antara bumi dan matahari tidak konstan. Jarak terdekat adalah  $1,47\times10^{11}m$  yang terjadi pada tanggal 3 Januari 2011, dan jarak terjauh pada tanggal 3 juli 2020 dengan jarak  $1,52\times10^{11}m$ . Karena adanya perbedaan jarak ini, menyebabkan radiasi yang diterima atmosfer bumi juga akan berbeda.

Beberapa istilah yang biasanya dijumpai pada perhitungan radiasi adalah:

1.Air Massa adalah perbandingan massa udara sampai ke permukaan bumi pada posisi tertentu dengan massa udara yang dilalui sinar jika matahari tepat pada posisi zenit

#### 2.1.2 Pemanfaatan Energi Surya

Dalam era ini, penggunaan sumber daya alam yang tidak dapat diperbarui semakin meningkat seiring dengan meningkatnya populasi manusia, kemajuan teknologi dan lain lain. Namun hal ini berbanding terbalik dengan ketersediaan sumber daya alam tersebut. Sehingga para ilmuwan telah mencoba mengembangkan potensi sumber daya alam yang dapat diperbarui contohnya air, angin dan energi surya.

## 2.2 Kolektor penyerap panas

Kolektor surya merupakan suau peralatan penerima radiasi surya sekaligus mengkonversinya menjadi energi berbentuk panas. Kolektor surya menyerap energi dari matahari melalui plat kolektor dan mengkonversinya menjadi panas lalu panas tersebut digunakan langsung atau disimpan terlebih dahulu pada suatu penyimpanan panas. Panas yang dihasilkan kemudian di transferkan ke fluida kerja yang bersirkulasi di dalam kolektor surya kemudian dimanfaatkan dalam berbagai macam aplikasi. Salah satu contoh dalam penggunaan kolektor surya adalah solar water heater yang menggunakan media air sebagai fluida kerjanya.

## 2.3 Perpindahan panas

Perpindahan panas adalah salah satu dari disiplin ilmu teknik termal yang mempelajari tentang perpindahan energi dalam bentuk panas yang terjadi karena adanya perbedaan temperature diantara kedua benda atau material. Dimana, energi akan berpindah dari temperatur media yang lebih tinggi ke temperatur media yang lebih rendah. Proses perpindahan panas akan terus berlangsung sampai ada kesetimbangan temperatur yang terjadi pada kedua media tersebut. Proses terjadinya perpindahan panas ini berlangsung dalam 3 mekanisme, yaitu: *Konduksi*, *Konveksi*, *Radiasi*.

#### 2.3.1 Konduksi

Konduksi adalah perpindahan panas yang terjadi pada suatu benda padat, atau pada benda yang diam. Konduksi terjadi akibat adanya perbedaan temperatur antara permukaan yang satu dengan permukaan yang lain pada benda tersebut. umumnya logam, Hubungan dasar untuk perpindahan panas dengan cara konduksi diusulkan oleh. Hubungan ini menyatakan baha  $q_k$ , laju aliran panas dengan cara konduksi dalam suatu bahan, sama dengan hasilkan dari tiga buah besaran berikut (J.B.J. Fourier dalam tahun 1882):

$$qk = -kA\frac{dT}{dx}$$
 2.2

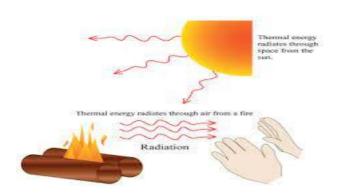


Gambar 2.2 Konduksi

#### 2.3.2. Konveksi

*Konveksi* adalah bila suatu benda padat berhubungan (kontak) dengan fluida yang berbeda suhunya, akan terjadi perpindahan panas (energi) secara konveksi dari benda bersuhu tinggi ke fluida bersuhu rendah (atau sebaliknya jika suhu fluida lebih tinggi), laju perpindahan panas dengan cara konveksi antara suatu permukaan dan suatu fluida dapat dihitung dengan hubungan :

$$qc = \overline{h_c} A \Delta T$$
 2.4




Gambar 2.3 konveksi

#### 2.3.3. Radiasi

Radiasi adalah perpindahan panas radiasi terjadi secara langsung oleh perbedaan suhu, maka sebagian energi radiasi tersebut akan dipantulkan, sebagian akan diserap, dan sebagian lagi akan diteruskan. Intensitas radiasi matahari akan berkurang penyerapan dan pemantulan yang dilakukan oleh atmosfer, sebelum intensitas matahari mencapai permukaan bumi, Jadi walaupun antara bumi dan matahari merupakan ruang hampa, panas matahari tetap sampai ke bumi melalui perpindahan panas secara radiasi. Besarnya laju perpindahan panas secara radiasi adalah:

$$q_r = \sigma A 1 T 1^4 B t u / h r$$



2.4 Radiasi

#### 2.3.4. Efesiensi Kolektor

Pengertian efesiensi kolektor

Prinsip dasar untuk menghitung efesiensi kolektor ini adalah dengan membandingkan besar kenaikan temperatur fluida yang mengalir di dalam kolektor dengan intensitas cahaya matahari yang diterima kolektor.

Untuk kerja suatu kolektor surya biasanya dinyatakan dalam efesiensi yang didefenisikan sebagai:

$$\eta a = \frac{q_{u.}a}{A_{o.} \times IT} 100\%$$

$$\eta = \frac{\dot{m}.C_{P}(T_{Fo} - T_{Fi})}{A_{C}I_{T}}$$

### 2.4. Jenis-jenis pemanas air tenaga surya

#### 2.4.1. *Solar water heater* (pemanas air tenaga surya)

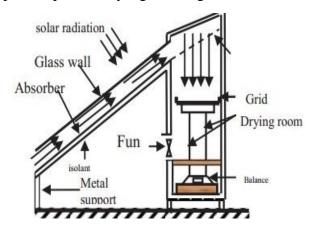
Prinsip kerja *solar water heater* adalah memanaskan air dialiran pipa-pipa yang pipih, biasanya dicat warna hitam untuk memaksimalkan penyerapan energi surya. Air yang telah mencapai suhu yang diinginkan disimpan ke sebuah silinder sebagai tempat penyimpaan. *Solar water heater* juga dilengkapi beberapa sensor untuk menjaga suhu air yang diinginkan. *Solar water heater* juga dapat memanaskan air menggunkan listrik jika cuaca hujan/mendung



Gambar 2.5 Solar Water Heater (Tang,R,2011)

#### 2.4.2. Solar Cooker

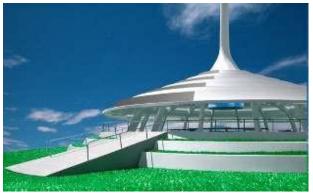
Solar Cooker adalah alat memasak yang menggunakan energi surya . Solar Cooker ini juga memiliki berbagai bentuk konstruksi, Beberapa bentuk memiliki cara kerja yang sedikit berbeda tapi pada prinsipnya Solar Cooker menggunakan energi surya, dan diubah menjadi energi panas untuk mamasak makanan




Gamabar 2.6 Solar Cooker

(http://www.niftyhomestead.com/blog/solar-cooker/)

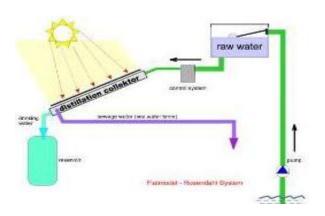
#### 2.4.3 *Solar Drier*


Pada Negara-negara berkembang, produk-produk pertanian dan perkebunan sering dikeringkan menggunakan tenaga matahari. konsep inilah yang digunakan sebagai acuan untuk menciptakan *Solar Driers*. Cara kerjanya udara yang masuk kedalam kolektor akan dipanaskan oleh energi surya, udara yang telah panas kemudian masuk kedalam kotak pengering. Kotak pengering inilah yang diisi produk-produk pertanian yang dikeringkan



Gambar 2.7 *Solar Drier* (Sumber:Choicha ,S, 2014)

#### . 2.4.4 Solar Architecture


Dalam bidang arsitektur, pemanfaatan energy surya telah dikembangkan. Pemanfaatan dalam bidang ini sudah cukup banyak diterapkan di jepang. Dari segi artistik juga mendapatkan tanggapan positif demikian juga dari segi pemanfaatan energy termalnya. Fungsi dari solar architecture adalah untuk membuat ruangan menjadi nyaman



Gambar 2.8 *Solar archicture* (www://inhabitat.com/solar-pavilion)

## 2.4.5 Solar Distilation water

Solar Destilasi/ purification digunakan untuk memurnikan air maupun memisahkan air dengan air garam. Cara kerjanya adalah air laut dipompakan setelah itu melewati kolektor, dengan panas dari energi surya ini, air akan menguap dan menyisihkan garam. Uap dikondensasikan menjadi air. Sehingga didapat 2 hasil yaitu garam dan air tawar.



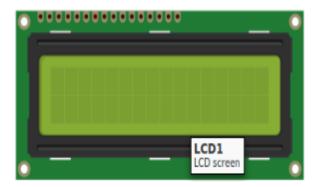
Gambar 2.9 Solar Distilation Water

(http://benjimester.hubpages.com/hub/solar-water-distiller-solar-still)

2.5 Menurut beberapa teori dapat disimpulkan bahwa pengontrolan adalah pengendalian suatu proses sistem kerja yang dapat dikendalikan sesuai dengan keinginan manusia dalam mengerjakan segala aktivitas.

Sistem kontrol berdasarkan cara kerjanya dapat dibagimenjadi dua bagian, yaitu sistem kontrol loop tertutup.

Metode yang digunakan dalam sistem kontrol penerangan ini adalah metode simulasi yaitu metode penelitian yang bertujuan untuk mencari gambaran melalui sebuah sistem berkala kecil ada sederhana (model) dimana di dalam model tersebut akan dilakukan manipulasi atau kontrol untuk melihat pengaruhnya penelitian ini membutukan lingkungan yang benar-benar serupa dengan keadaan atau sistem yang asli.(Dahlan, 2017)




Gambar 2.10 Arduino Uno

## 2.6 LCD (Liquid Crystal Display)

LCD adalah modul display atau penampilan .Pada sistem ini digunakan LCD 16x2 tipe M1632 dengan ukuran 80mm x 36mm x 12.5mm. LCD ini banyak digunakan karena memiliki beberapa fitur,diantaranya adalah sebagai berikut :

- 1. Terdiri dari 16 karakter dan 2 baris
- 2. Mempunyai 192 karakter tersimpan
- 3. Terdapat karakter generator terprogram
- 4. Dapat diprogram dengan mode 4 bit dan 8 bit. (Dahlan, 2017).



Gambar 2.11 LCD (Liquid Cristal Display)

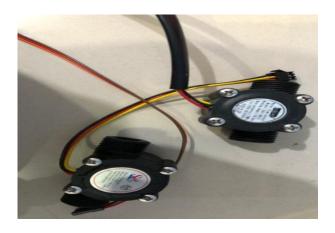
2.7. Metode yang digunakan adalah metode riset dan pengembangan (R&D) yang menghasilkan produk alat pengukur suhu yang dapat digunakan dalam penentuan kualitas air. Berikut adalah gambar sensor DS18B20 Waterproof yang digunakan dalam penentuan temperatur seperti yang terlihat pada gambar (Rozaq & DS, 2017)



Gambar 2.12 (Senasor DS18B20)

2.8 Selenoid valve merupakan subuah katup yang digerakkan oleh energy listrik yang mempunyai kumparan sebagai penggeraknya. Kumparan ini berfungsi untuk menggerakan piston yang dialiri oleh arus AC ataupun DS sebagai daya penggera. Solenoid valve memiliki 2 buah saluran yaitu saluran masuk (inlet port) dan saluran keluar (outlet port). Saluran masuk berfungsi sebagai lubang masukan untuk cairan atau air. Saluran keluar berfungsi sebagai terminal atau tempat keluarnya cairan [6]

Selain itu, solenoid valve juga memiliki respon membuka dan menutup yang cepat berdasarkan penelitian sebelumnya, solenoid valve sangat penting untuk digunakan pada sebuah sistem yang menggunakan control otomatis [7]. Selenoid valve juga memiliki tingkat keandalan yang tinggi awet dan memiliki nilai ekonomis[8].(Sansy Bhawana Mulia, Spd. & Mindit Eriyadi, S.pd., 2018)


Selenoid vale adalah salah satu kran yang dirancang menggunakan solenoid sebagai control nya, kran ini aktif ketikan diberikan tegangan minilal 12 voltdengan arus 1,2 ampere unruk tiap kran. Kran ini hanya mampu on dan off saja karena solenoid pada prinsipnya bekerja pada dua kondisi yaitu hanya on dan off. Gambar 2.12 menunjukkan bentuk fisik dan bagian yang terdapat pada solenoid valve. (Raufun & Ardiansyah, 2018)



Gambar 2.13 selenoid valve

## 2.9. Flowmeter (water flow sensor)

Flowmeter adalah alat untuk mengukur jumlah atau laju aliran air dari suatu fluida yang mengalir dalam pipa atau sambungan terbuka. Alat ini terdiri dari primary device, yang disebut sebagai alat utama dan secondary device (alat bantu sekunder). Flowmeter umumnya terdiri dari dua bagian, yaitu alat utama dan alat bantu skunder. Alat utama menghasikan suatu signal yang merespon terhadap aliran karena laju aliran tersebut telah terganggu. Alat utamanya merupakan sebuah orifis yang menggagu laju aliran, yaitu menyebabkan terjadinya penurunan tekanan. Alat bantu skunder menerima sinyal dari alat utama lalu menampilkan, merekam, dan /atau menstransmisikannya sebagai hasil dari laju aliran.(Suharjono et al., 2015).



Gambar 2.14 Flow Meter Sensor

## BAB 3 METODOLOGI

## 3.1 Tempat Dan Waktu

## 3.1.1 Tempat

Penelitian Pengaruh Kemiringan Sudut Terhadap Kinerja *Solar Water Heater Double Slope* 

dilaksanakan di Laboratorium Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Sumatera Utara.

#### 3.1.2 Waktu

Waktu pelaksanaan penelitian dan kegiatan pengujian dilakukan sejak tanggal usulan oleh Program Studi Teknik Mesin Universitas Muhammadiyah Sumatera Utara seperti yang tertera pada tabel 3.1 dibawah ini.

Tabel 3.1 jadwal dan kegiatan saat melakukan penelitian.

| No | Uraian Kegiatan              | Waktu |   |   |   |   |   |
|----|------------------------------|-------|---|---|---|---|---|
|    | Craidii Regiataii            | 1     | 2 | 3 | 4 | 5 | 6 |
| 1  | Pengajuan Judul              |       |   |   |   |   |   |
| 2  | Studi Litelatur              |       |   |   |   |   |   |
| 3  | Desain Alat                  |       |   |   |   |   |   |
| 4  | Perakitan Alat               |       |   |   |   |   |   |
| 5  | Pengujian Alat               |       |   |   |   |   |   |
| 6  | Penulisan Bab 1<br>s/d Bab 3 |       |   |   |   |   |   |
| 7  | Seminar                      |       |   |   |   |   |   |
|    | Proposal                     |       |   |   |   |   |   |
| 8  | Pengujian dan                |       |   |   |   |   |   |
|    | Pengolahan Data              |       |   |   |   |   |   |
| 9  | Penyelesaian                 |       |   |   |   |   |   |
|    | penulisan                    |       |   |   |   |   |   |
| 10 | Sidang                       |       |   |   |   |   |   |

## 3.2 Bahan Dan Alat

## 3.2.1 Bahan yang di gunakan

# 1. Kaca bening

Kaca digunakan sebagai media penghantar panas matahari ke kolektor panas berbentuk honeycomb berdiameter 30 mm seperti yang terlihat pada gambar 3.1.



Gambar 3.1 Kaca Bening

## 2. Air

Air digunakan sebagai media uji yang dipanaskan didalam honeycomb seperti yang terlihat pada gambar 3.2.



Gambar 3.2 Air

# 3.2.2 Alat yang digunakan

## 1. Arduino UNO

Alat ini digunakan sebagai pembaca sensor yang ada pada kolektor panas honeycomb seperti yang terlihat pada gambar 3.3.



Gambar 3.3 Arduino UNO

## 2. Flow Meter Sensor

Flow meter ini digunakan untuk membaca debit air yang masuk pada kolektor panas honeycomb seperti yang terlihat pada gambar 3.4



Gambar 3.4 Flow Meter Sensor

## 3. Sensor Suhu DS18B20

Sensor ini digunakan untuk membaca temperatur air yang ada pada kolektor panas seperti yang terlihat pada gambar 3.5.



Gambar 3.5 Sensor suhu DS18B20

## 4. Solenoid Water Valve

Solenoid ini digunakan sebagai katup otomatis yang akan membuka dan menutup aliran masuk dan keluar air seperti yang terlihat pada gambar 3.6.



Gambar 3.6 Selenoid Water Valve

## 5. Sensor DHT 11

Sensor ini digunakan sebagai alat yang akan membaca temperatur lingkungan selama pengujian seperti yang terlihat pada gambar 3.7.



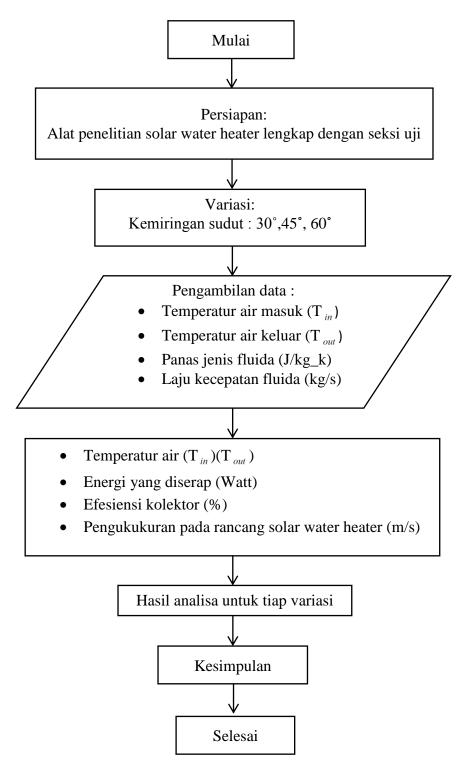
Gambar 3.7 Sensor DHT 11

## 6. Rol Busur

Rol busur digunakan sebagai alat yang akan mengukur sudut kemiringan kolektor panas seperti yang terlihat pada gambar 3.8.



Gambar 3.8 Rol Busur


# 7. Laptop

Laptop yang digunakan untuk menyimpan data temperatur kolektor dan temperatur lingkungan selama pengujian dengan spesifikasi Intel  $^{\mathbb{R}}$  Core  $^{\mathbb{T}M}$  i3-4005U CPU @ 1.70 GHz 1.70 GHz seperti yang terlihat pada gambar 3.9.



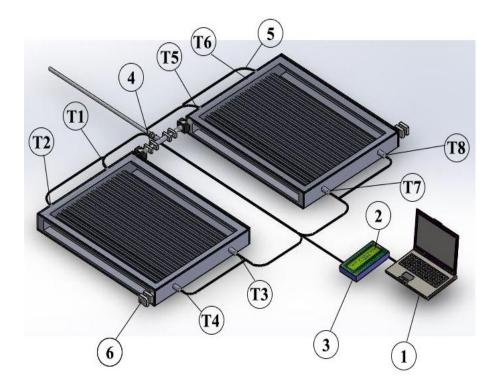
Gambar 3.9 Laptop

## 3.3 Bagan Alir Penelitian



Gambar 3.10 Bagan Alir Penelitian

#### 3.4 Prosedur Percobaan


Prosedur percobaan yang dilakukan pada penilitian ini meliputi :

- 1. Mempersiapkan peralatan dan bahan yang dibutuhkan untuk pengujian
- 2. Meletakkan kaca diatas honeycomb berdiameter 30 mm untuk menyerap panas matahari
- 3. Membuat jalur masuk air ke honeycomb berdiameter 30 mm
- 4. Membuat sudut kemiringan honeycomb dengan sudut 30°
- 5. Membuat Kemiringan Sudut honeycomb 45°
- 6. Membuat Kemiringan sudut honeycomb 60°
- 7. Menghubungkan arduino ke laptop sebagai metode pengambilan data temperatur air di dalam honeycomb
- 8. Mencatat hasil yang di dapat oleh sensor menggunakan software plx daq
- 9. Selesai.

## 3.5 Gambar alat penelitian

Dalam penelitian ini,memerlukan plat aluminium dengan ketebalan 0,2mm yang dibentuk sarang lebah (*honeycomb*), untuk membuat komponen utama sebagai pemanas air. Plat aluminium adalah komponen utama yang berfungsi untuk menangkap atau menyerap panas matahari sebagai upaya pemanasan air.

Alat aluminium ini dibentuk dengan sedemikian rupa, sesuai dengan kebutuhan. Tidak hanya itu plat aluminium yang dibentuk sarang lebah (*Honeycomb*) berdimeter 30 mm dengan panjang 1000 mm x 800 mm juga untuk mengalirkan air panas kedalam tangki penampung air. Diujung pipa bagian bawah juga disematkan katub otomatis (*Silenoid valve*) sebagai pengatur suhu air apabila air telah mencapai suhu yang diinginkan maka air akan mengalir ke tangki atau ember penampung air panas. Air yang berada didalam tangki penampungan air panas secara otomatis dialirkan kesetiap bak kamar mandi dan langsung bisa digunakan.



Gambar 3.11 Kolektor surya/Solar Water Heater

## 3.5.1 Bagian-bagian Alat penelitian:

1. Laptop

Laptop digunakan untuk menyimpan data temperature kolektor

2. Lcd

Lcd digunakan untuk menampilakan data

3. Arduino

Arduino pembaca sensor pada kolektor

4. Flow meter sensor

Flow meter sensor digunakan membaca debit air masuk

## 5. Sensor suhu DS18B20

- Temperatur 1 membaca temperatur suhu air masuk yang ada dalam kolektor
- Temperatur 2 membaca temperatur suhu air pada kolektor
- Temperatur 3 membaca temperatur suhu air pada kolektor
- Temperatur 4 membaca temperatur suhu air keluar
- Temperatur 5 membaca temperatur suhu air masuk yang ada dalam kolektor
- Temperatur 6 membaca temperatur suhu pada kolektor
- Temperatur 7 membaca temperatur suhu pada kolektor
- Temperatur 8 membaca suhu air keluar

#### 6. Selenoid Water Valve

Digunakan sebagai katup otomatis yang membuka menutup aliran air

#### **BAB 4**

#### HASIL DAN PEMBAHASAN

## 4.1 Hasil pengambilan data

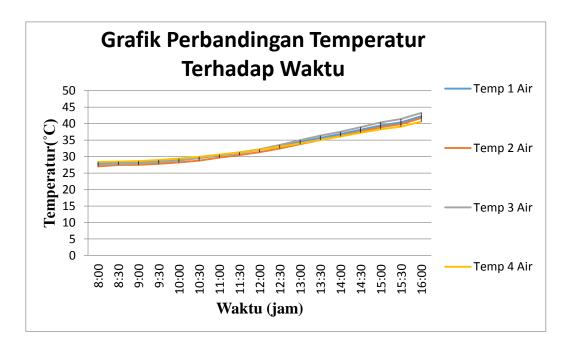
Hasil pengujian yang dilakukan pada kolektor honeycomb berdiameter 30 mm dengan kapasitas air di dalam kolektor 63 liter.

Dari hasil pengujian diperoleh bahwa panas yang di hasilkan dengan Kemiringan Sudut 30° temperatur yang di hasilkan 44°C. Penelitian yang dilakukan pada kolektor honeycomb berdiameter 30 mm dilakukan selama 8 jam berdasarkan terbitnya matahari hingga terbenamnya matahari untuk mendapatkan hasil penyerapan panas yang maksimal seperti yang terlihat pada gambar 4.1.

## 4.1.1 Hasil Pengujian Kemiringan sudut 30°

| 4   | A            | В       | С      | D       | Е      | F        | G                                     | H                                                  |             | J | K | L | M  | N          | 0       | Р | ( |
|-----|--------------|---------|--------|---------|--------|----------|---------------------------------------|----------------------------------------------------|-------------|---|---|---|----|------------|---------|---|---|
| 1 C | OMPUTER TIME | TEMP 1  | TEMP 2 | TEMP 3  | TEMP 4 | TEMP 5   | TEMP 6                                | TEMP 7                                             | TEMP 8      |   |   |   |    |            |         |   |   |
| 5   | 12.48.34 PM  | 34,8125 | 35,5   | 31,9375 | 31     | 32,25    | 32,25                                 | 30                                                 | 29,125      |   |   |   |    |            |         |   |   |
| 6   | 12.48.37 PM  | 34,875  | 35,5   | 31,9375 | 31     | 32,25    | 22.25                                 | 20                                                 | 20 125      |   |   |   |    |            |         |   |   |
| 67  | 12.48.40 PM  | 34,875  | 35,5   | 31,9375 | 31     | 32 PLX-D | AQ for Excel "Version                 | n 2" by Net^De                                     | /il X       |   |   |   |    |            |         |   |   |
| 88  | 12.48.44 PM  | 34,875  | 35,5   | 31,9375 | 31     | 32,      | 2 (                                   | Control                                            | v. 2.11     |   |   |   |    |            |         |   |   |
| 9   | 12.48.47 PM  | 34,875  | 35,5   | 31,9375 | 31     | 32       | · · · · · · · · · · · · · · · · · · · | Custom Che                                         |             |   |   |   |    |            |         |   |   |
| 0   | 12.48.51 PM  | 34,875  | 35,5   | 31,9375 | 31     | 32. PL   |                                       | <ul> <li>Custom Che</li> <li>Custom Che</li> </ul> |             |   |   |   |    |            |         |   |   |
| 11  | 12.48.54 PM  | 34,875  | 35,5   | 31,9375 | 31     | 32. Set  | tings                                 | Custom Che                                         |             |   |   |   |    |            |         |   |   |
| 72  | 12.48.58 PM  | 34,875  | 35,5   | 31,9375 | 31     | 32, po   |                                       | Reset on Co                                        |             |   |   |   |    |            |         |   |   |
| 73  | 12.49.01 PM  | 34,9375 | 35,5   | 32      | 31     | 32,3     |                                       |                                                    | 1           |   |   |   |    |            |         |   |   |
| 74  | 12.49.05 PM  | 34,875  | 35,5   | 31,9375 | 31     | 32,3 Ba  | ud: 9600                              | Reset Timer                                        |             |   |   |   |    |            |         |   |   |
| 75  | 12.49.08 PM  | 34,9375 | 35,5   | 32      | 31     | 32,3     | Connect                               | Clear Columns                                      |             |   |   |   |    |            |         |   |   |
| 6   | 12.49.12 PM  | 34,9375 | 35,5   | 31,9375 | 31     | 32       | Connect                               | Cicar Columns                                      |             |   |   |   |    |            |         |   |   |
| 7   | 12.49.15 PM  | 34,9375 | 35,5   | 32      | 31     | 32,3     | ause logging                          | Display direct d                                   | ebug =>     |   |   |   |    |            |         |   |   |
| 78  | 12.49.18 PM  | 34,9375 | 35,5   | 31,9375 | 31     | 32,3     |                                       |                                                    |             |   |   |   |    |            |         |   |   |
| 79  | 12.49.22 PM  | 34,9375 | 35,5   | 31,9375 | 31     |          | et name to post to:                   | Simple Data                                        | ₩ Lited     |   |   |   |    |            |         |   |   |
| 80  | 12.49.25 PM  | 35      | 35,5   | 32      | 31     | 32,3     | ad after renaming                     | ) '                                                |             |   |   |   |    |            |         |   |   |
| 31  | 12.49.29 PM  | 35      | 35,5   | 32      | 31     | 32,3     | Controller                            | Messages:                                          |             |   |   |   |    |            |         |   |   |
| 32  | 12.49.32 PM  | 35      | 35,5   | 31,9375 | 31     | 32,3     |                                       | O Status                                           |             |   |   |   |    |            |         |   |   |
| 33  | 12.49.36 PM  | 34,9375 | 35,5   | 32      | 31     | 32,3     | ot move this windo                    |                                                    | January I   |   |   |   |    |            |         |   |   |
| 84  | 12.49.39 PM  | 35,0625 | 35,5   | 32      | 31     | 32,3     | That might                            | crash Excel!                                       | : logging : |   |   |   |    |            |         |   |   |
| 85  | 12.49.43 PM  | 34,9375 | 35,5   | 32      | 31     | 32,375   | 32,375                                | 29,5                                               | 29,1875     |   |   |   |    |            |         |   |   |
| 36  | 12.49.46 PM  | 34,9375 | 35,5   | 32      | 31     | 32,375   | 32,375                                | 29,5                                               | 29,25       |   |   |   |    |            |         |   |   |
| 87  | 12.49.50 PM  | 35,0625 | 35,5   | 32      | 31     | 32,3125  | 32,375                                | 30                                                 | 29,1875     |   |   |   |    |            |         |   |   |
| 88  | 12.49.53 PM  | 35,0625 | 35,5   | 32      | 31     | 32,375   | 32,375                                | 30                                                 | 29,1875     |   |   |   |    |            |         |   |   |
| 89  | 12.49.56 PM  | 35,0625 | 35,5   | 32      | 31     | 32,375   | 32,375                                | 30                                                 | 29,1875     |   |   |   |    |            |         |   |   |
| 90  | 12.50.00 PM  | 34,9375 | 36     | 32      | 31     | 32,375   | 32,375                                | 30                                                 | 29,1875     |   |   |   |    |            |         |   |   |
| 91  | 12.50.03 PM  | 35,0625 | 35,5   | 32      | 31     | 32,375   | 32,4375                               | 30                                                 | 29,1875     |   |   |   |    |            |         |   |   |
| 92  | 12.50.07 PM  | 35,0625 | 35,5   | 32      | 31     | 32,375   | 32,375                                | 30                                                 | 29,1875     |   |   |   | Ac | tivate V   | Vindows |   |   |
| 93  | 12.50.10 PM  | 35,0625 | 36     | 32      | 31     | 32,4375  | 32,375                                | 30                                                 | 29,1875     |   |   |   |    | to Settina |         |   |   |

Gambar 4.1 Data hasil pengujian *honeycomb* Kemiringan sudut 30°


Data yang didapatkan melalui pengujian yang dilakukan pada tanggal 25 september 2021. Hasil pengujian yang dilakukan selama 8 jam dalam sehari dituangkan dalam bentuk tabel yang menunjukkan data rata-rata selama 30 menit, data ini ditampilkan pada tabel 4.1 dibawah ini.

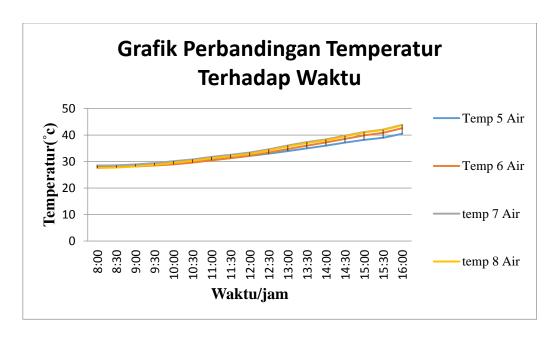
Tabel 4.1 Tabel data hasil pengujian honeycomb berdiameter 30 mm menggunakan kemiringan sudut 30°

| Jam   | Kemiringan | Temp 1  | Temp 2  | Temp 3  | Temp 4  |
|-------|------------|---------|---------|---------|---------|
| Wib   | Sudut      | Air     | Air     | Air     | Air     |
| 8:00  |            | 27.9098 | 27.0362 | 27.5745 | 28.3854 |
| 8:30  |            | 28.0383 | 27.4717 | 27.7313 | 28.4747 |
| 9:00  |            | 28.2273 | 27.5    | 27.9503 | 28.6526 |
| 9:30  |            | 28.4796 | 27.8165 | 28.2767 | 28.9541 |
| 10:00 |            | 28.8769 | 28.2239 | 28.8264 | 29.3986 |
| 10:30 |            | 29.53   | 28.7991 | 29.5677 | 29.9498 |
| 11:00 |            | 30.3755 | 29.7096 | 30.4735 | 30.6354 |
| 11:30 |            | 31.125  | 30.4542 | 31.3226 | 31.2757 |
| 12:00 | 30°        | 32.0617 | 31.3674 | 32.2486 | 32.1253 |
| 12:30 |            | 33.1575 | 32.4891 | 33.5278 | 33.0158 |
| 13:00 |            | 34.4367 | 33.8013 | 34.9885 | 34.027  |
| 13:30 |            | 35.667  | 35.048  | 36.3346 | 35.0557 |
| 14:00 |            | 36.8513 | 36.2707 | 37.4989 | 36.1313 |
| 14:30 |            | 38.1466 | 37.5917 | 38.9225 | 37.2197 |
| 15:00 |            | 39.4817 | 38.9512 | 40.3985 | 38.3183 |
| 15:30 |            | 40.4095 | 39.8646 | 41.4023 | 39.0957 |
| 16:00 |            | 42.2117 | 41.7094 | 43.2598 | 40.6258 |

Berdasarkan hasil pengujian yang diakukan pada tanggal 25 september 2021 kolektor panas honeycomb berdiameter 30 mm dengan kemiringan sudut 30°, Didapatkan data berupa temperatur panas air yang dihasilkan mencapai suhu tertinggi pada sensor 3 sebesar 43°C. pada sensor 1, 42°C pada sensor 2, 41°C, pada sensor 3, 43°C dan pada sensor 4, 40°C. Temperatur tertinggi didapatkan pada waktu pengujian pukul 12:00 wib

Tabel 4.1 merupakan honeycomb berdiameter 30 mm. Grafik perubahan suhu/temperatur terhadap pengaruh waktu. Pada grafik tersebut menunjukan adanya pengaruh waktu yang menghasilkan suhu/temperatur yang ingin di capai. Jam kedua menunjukan adanya perubahan suhu yang cukup signifikan dengan nilai perubahan suhu dari temperatur yang dihasilkan mencapai 43°C




Gambar 4.1 Grafik Perbandingan Temperatur Terhadap Waktu

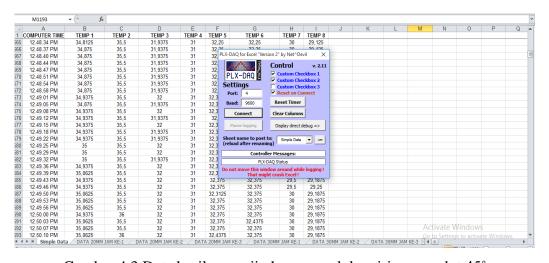
Tabel 4.2 Tabel data hasil pengujian honeycomb berdiameter 30 mm menggunakan kemiringan sudut 30°

| jam(wib) | Kemiringan   | Temp 5  | Temp 6  | temp 7  | temp 8  |  |
|----------|--------------|---------|---------|---------|---------|--|
|          | Sudut        | Air     | Air     | Air     | Air     |  |
| 8:00     |              | 28.4569 | 27.8035 | 28.5    | 27.5444 |  |
| 8:30     |              | 28.547  | 27.9579 | 28.5043 | 27.7291 |  |
| 9:00     |              | 28.7254 | 28.1725 | 28.9585 | 28.1234 |  |
| 9:30     |              | 29.0407 | 28.4854 | 29.4266 | 28.7749 |  |
| 10:00    |              | 29.4671 | 28.9427 | 30.1413 | 29.4978 |  |
| 10:30    |              | 29.9814 | 29.5827 | 30.8231 | 30.25   |  |
| 11:00    |              | 30.6444 | 30.4629 | 31.7424 | 31.2396 |  |
| 11:30    |              | 31.268  | 31.2748 | 32.5415 | 31.9943 |  |
| 12:00    | $30^{\circ}$ | 32.1084 | 32.2035 | 33.3696 | 32.8595 |  |
| 12:30    |              | 32.9749 | 33.3764 | 34.583  | 34.2254 |  |
| 13:00    |              | 33.9473 | 34.7265 | 36.0371 | 35.7132 |  |
| 13:30    |              | 34.9738 | 35.9746 | 37.3013 | 36.9776 |  |
| 14:00    |              | 36.0172 | 37.1777 | 38.3493 | 38.0194 |  |
| 14:30    |              | 37.1135 | 38.5035 | 39.7009 | 39.4951 |  |
| 15:00    |              | 38.1733 | 39.8718 | 41.1    | 40.9166 |  |
| 15:30    |              | 38.9538 | 40.8138 | 42.026  | 41.8822 |  |
| 16:00    |              | 40.4258 | 42.5539 | 43.8094 | 43.6559 |  |

Berdasarkan hasil pengujian yang diakukan pada tanggal 25 september 2021 kolektor panas honeycomb berdiameter 30 mm dengan kemiringan sudut 30°, Didapatkan data berupa temperatur panas air yang dihasilkan mencapai suhu tertinggi pada sensor 7 sebesar 43°C. pada sensor 5, 40°C pada sensor 6, 42°C, pada sensor 7, 43°C dan pada sensor 8, 43°C. Temperatur tertinggi didapatkan pada waktu pengujian pukul 15:00 wib

Tabel 4.2 merupakan honeycomb berdiameter 30 mm. Grafik perubahan suhu/temperatur terhadap pengaruh waktu. Pada grafik tersebut menunjukan adanya pengaruh waktu yang menghasilkan suhu/temperatur yang ingin di capai. Jam kedua menunjukan adanya perubahan suhu yang cukup signifikan dengan nilai perubahan suhu dari temperatur yang dihasilkan mencapai 43°C




Gambar 4.2 Grafik perbandingan temperatur terhadap waktu

## 4.2 Hasil pengambilan data

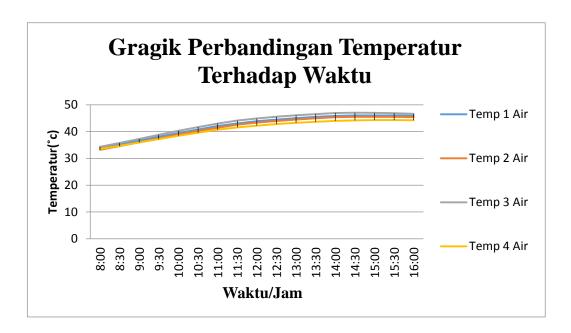
Hasil pengujian yang dilakukan pada kolektor honeycomb berdiameter 30 mm dengan kapasitas air di dalam kolektor 63 liter.

Dari hasil pengujian diperoleh bahwa panas yang di hasilkan dengan kemiringan sudut 30° temperatur yang di hasilkan 44°C. Penelitian yang dilakukan pada kolektor honeycomb berdiameter 30 mm dilakukan selama 8 jam berdasarkan terbitnya matahari hingga terbenamnya matahari untuk mendapatkan hasil penyerapan panas yang maksimal seperti yang terlihat pada gambar 4.2.

## 4.2.1 Hasil Pengujian Kemiringan sudut 45°



Gambar 4.3 Data hasil pengujin honeycomb kemiringan sudut 45°


Data yang didapatkan melalui pengujian yang dilakukan pada tanggal 26 september 2021. Hasil pengujian dilakukan 8 jam dalam sehari dituangkan dalam brntuk tabel yang menunujukkan data rata-rata selama 30 menit, data ini ditampilkan pada tabel 4.3 dibawah ini

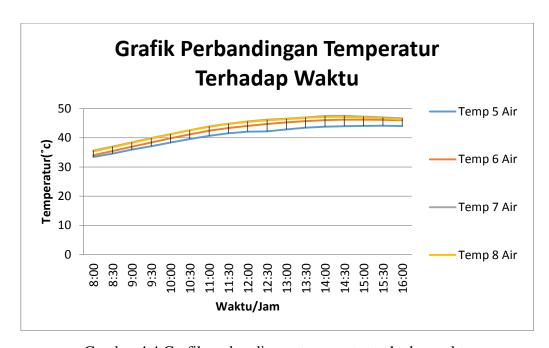
Tabel 4.3 Tabel data hasil pengujian honeycomb berdiameter 30 mmmenggunakan Kemiringan sudut 45°

| Jam   | Kemiringan<br>sudut | Temp 1  | Temp 2  | Temp 3  | Temp 4  |
|-------|---------------------|---------|---------|---------|---------|
| (wib) |                     | Air     | Air     | Air     | Air     |
| 8:00  |                     | 33.8285 | 33.208  | 34.3042 | 33.5445 |
| 8:30  |                     | 35.219  | 34.5717 | 35.7717 | 34.7019 |
| 9:00  |                     | 36.6509 | 35.9782 | 37.2582 | 35.9244 |
| 9:30  |                     | 38.0898 | 37.4432 | 38.7909 | 37.1913 |
| 10:00 |                     | 39.4707 | 38.8913 | 40.2924 | 38.4291 |
| 10:30 |                     | 40.7954 | 40.2087 | 41.694  | 39.588  |
| 11:00 |                     | 42.0609 | 41.4432 | 43.0096 | 40.7077 |
| 11:30 |                     | 43.066  | 42.5349 | 44.1111 | 41.5546 |
| 12:00 | 45°                 | 43.8753 | 43.3144 | 44.9148 | 42.2273 |
| 12:30 |                     | 44.5    | 43.9386 | 45.5556 | 42.7939 |
| 13:00 |                     | 45.0169 | 44.4782 | 46.0759 | 43.2735 |
| 13:30 |                     | 45.4617 | 44.9717 | 46.5125 | 43.6174 |
| 14:00 |                     | 45.8608 | 45.3624 | 46.9255 | 43.9861 |
| 14:30 |                     | 46.037  | 45.5    | 47.0538 | 44.156  |
| 15:00 |                     | 46.0559 | 45.5    | 47.0003 | 44.2705 |
| 15:30 |                     | 46.0019 | 45.5    | 46.8485 | 44.3147 |
| 16:00 |                     | 45.8815 | 45.3804 | 46.6353 | 44.2239 |

Berdasarkan hasil pengujian yang diakukan pada tanggal 26 september 2021 kolektor panas honeycomb berdiameter 30 mm dengan kemiringan sudut 45°, Didapatkan data berupa temperatur panas air yang dihasilkan mencapai suhu tertinggi sebesar 47°C. pada sensor 1, 5°C pada sensor 2, 45°C, pada sensor 3, 46°C dan pada sensor 4, 44°C. Temperatur tertinggi didapatkan pada waktu pengujian pukul 12:00 wib

Tabel 4.3 merupakan honeycomb berdiameter30 mm. Grafik perubahan suhu/temperatur terhadap pengaruh waktu. Pada grafik tersebut menunjukan adanya pengaruh waktu yang menghasilkan suhu/temperatur yang ingin di capai. Jam kedua menunjukan adanya perubahan suhu yang cukup signifikan dengan nilai perubahan suhu dari temperatur yang dihasilkan mencapai 47°C




Gambar 4.3 Grafik perbandingan temperatur terhadap waktu

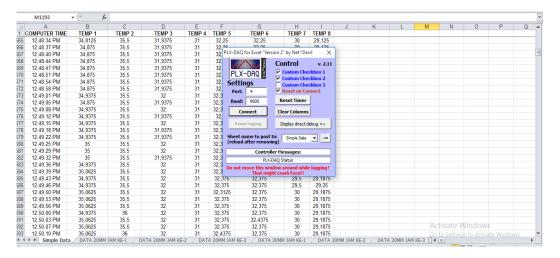
Tabel 4.4 Tabel data hasil pengujian honeycomb berdiameter 30 mm menggunakan kemiringan sudut 45°

| Jam   | Kemiringan<br>Sudut | Temp 5  | Temp 6  | Temp 7  | Temp 8  |
|-------|---------------------|---------|---------|---------|---------|
| (wib) |                     | Air     | Air     | Air     | Air     |
| 8:00  |                     | 33.4439 | 34.0567 | 35.6416 | 35.3197 |
| 8:30  |                     | 34.5837 | 35.4785 | 37.0239 | 36.7579 |
| 9:00  |                     | 35.937  | 36.9296 | 38.4214 | 38.2552 |
| 9:30  |                     | 37.1141 | 38.3903 | 39.8996 | 39.7601 |
| 10:00 |                     | 38.3685 | 39.8239 | 41.2935 | 41.1769 |
| 10:30 |                     | 39.5818 | 41.1467 | 42.6    | 42.5261 |
| 11:00 |                     | 40.655  | 42.4069 | 43.893  | 43.7585 |
| 11:30 |                     | 41.5415 | 43.3704 | 44.8231 | 44.7301 |
| 12:00 | 45°                 | 42.1023 | 44.0963 | 45.6048 | 45.4225 |
| 12:30 |                     | 42.222  | 44.7226 | 46.1974 | 45.9915 |
| 13:00 |                     | 42.8747 | 45.274  | 46.5087 | 46.3854 |
| 13:30 |                     | 43.4617 | 45.7139 | 46.9935 | 46.7948 |
| 14:00 |                     | 43.818  | 46.0428 | 47.4454 | 47.1365 |
| 14:30 |                     | 43.9399 | 46.1916 | 47.4978 | 47.1457 |
| 15:00 |                     | 44.0519 | 46.2203 | 47.2533 | 46.9743 |
| 15:30 |                     | 44.1103 | 46.1564 | 47      | 46.6717 |
| 16:00 |                     | 44.0318 | 45.9997 | 46.6543 | 46.2788 |

Berdasarkan hasil pengujian yang diakukan pada tanggal 26 september 2021 kolektor panas honeycomb berdiameter 30 mm dengan kemiringan sudut 45°, Didapatkan data berupa temperatur panas air yang dihasilkan mencapai suhu tertinggi sebesar 47°C . pada sensor 5, 44°C pada sensor 6, 45°C, pada sensor 7, 46°C dan pada sensor 8, 46°C. Temperatur tertinggi didapatkan pada waktu pengujian pukul 15:00 wib

Tabel 4.4 merupakan honeycomb berdiameter 30 mm. Grafik perubahan suhu/temperatur terhadap pengaruh waktu. Pada grafik tersebut menunjukan adanya pengaruh waktu yang menghasilkan suhu/temperatur yang ingin di capai. Jam kedua menunjukan adanya perubahan suhu yang cukup signifikan dengan nilai perubahan suhu dari temperatur yang dihasilkan mencapai 47°C




Gambar 4.4 Grafik perbandingan temperatur terhadap waktu

## 4.3 Hasil pengambilan data

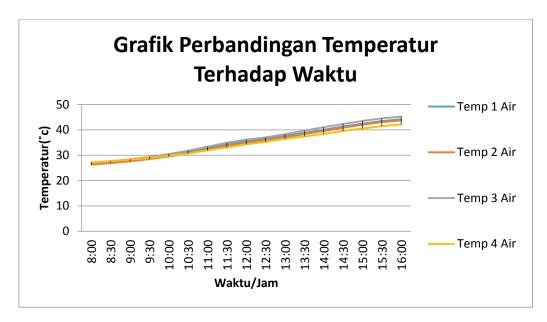
Hasil pengujian yang dilakukan pada kolektor honeycomb berdiameter 27 mm dengan kapasitas air di dalam kolektor 63 liter.

Dari hasil pengujian diperoleh bahwa panas yang di hasilkan dengan sudut kemiringan 60°, temperatur yang di hasilkan °C. Penelitian yang dilakukan pada kolektor honeycomb berdiameter 30 mm dilakukan selama 8 jam berdasarkan terbitnya matahari hingga terbenamnya matahari untuk mendapatkan hasil penyerapan panas yang maksimal seperti yang terlihat pada gambar 4.5.

## 4.3.1 Hasil Pengujian Kemiringan sudut 60°



Gambar 4.5 Data hasil pengujin honeycomb kemiringan sudut 60°


Data yang didapatkan melalui pengujian yang dilakukan pada tanggal 27 september 2021. Hasil pengujian dilakukan 8 jam dalam sehari dituangkan dalam brntuk tabel yang menunujukkan data rata-rata selama 30 menit, data ini ditampilkan pada tabel 4.5 dibawah ini.

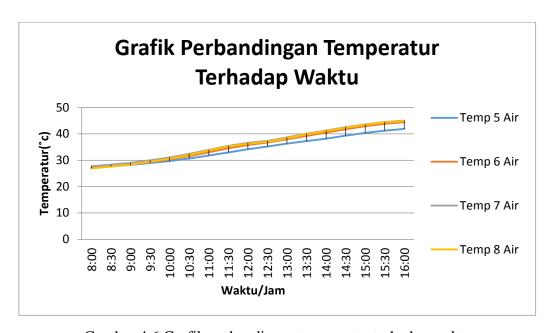
Tabel 4.5 Tabel data hasil pengujian honeycomb berdiameter 30 mm menggunakan kemiringan sudut  $60^{\circ}$ 

| Jam   | kemiringan | Temp 1  | Temp 2  | Temp 3  | Temp 4  |
|-------|------------|---------|---------|---------|---------|
| (wib) | sudut      | Air     | Air     | Air     | Air     |
| 8:00  |            | 26.9657 | 26.266  | 26.9173 | 27.1516 |
| 8:30  |            | 27.5973 | 26.9043 | 27.6457 | 27.6639 |
| 9:00  |            | 28.2918 | 27.6266 | 28.3753 | 28.2385 |
| 9:30  |            | 29.1859 | 28.4891 | 29.3382 | 28.9577 |
| 10:00 |            | 30.1831 | 29.5087 | 30.4604 | 29.7495 |
| 10:30 |            | 31.3807 | 30.7358 | 31.765  | 30.7336 |
| 11:00 |            | 32.7724 | 32.1441 | 33.3504 | 31.9228 |
| 11:30 |            | 34.2329 | 33.65   | 34.9277 | 33.1158 |
| 12:00 | 60°        | 35.483  | 34.9394 | 36.1604 | 34.3093 |
| 12:30 |            | 36.4485 | 35.8987 | 37.0352 | 35.3431 |
| 13:00 |            | 37.5852 | 37.0325 | 38.3014 | 36.4426 |
| 13:30 |            | 38.8272 | 38.3493 | 39.7009 | 37.4334 |
| 14:00 |            | 40.0592 | 39.5524 | 41.0521 | 38.4258 |
| 14:30 |            | 41.3243 | 40.8662 | 42.3424 | 39.5557 |
| 15:00 |            | 42.483  | 42.0066 | 43.5477 | 40.5737 |
| 15:30 |            | 43.4759 | 43.0708 | 44.5765 | 41.4584 |
| 16:00 |            | 44.1672 | 43.7127 | 45.2464 | 42.1179 |

Berdasarkan hasil pengujian yang diakukan pada tanggal 27 september 2021 kolektor panas honeycomb berdiameter 30 mm dengan Kemiringan sudut 60°, Didapatkan data berupa temperatur panas air yang dihasilkan mencapai suhu tertinggi sebesar 44°C . pada sensor 1, 44°C pada sensor 2, 43°C, pada sensor 3, 45°C dan pada sensor 4, 42°C. Temperatur tertinggi didapatkan pada waktu pengujian pukul 12:00 wib

Tabel 4.5 merupakan honeycomb berdiameter 30 mm. Grafik perubahan suhu/temperatur terhadap pengaruh waktu. Pada grafik tersebut menunjukan adanya pengaruh waktu yang menghasilkan suhu/temperatur yang ingin di capai. Jam kedua menunjukan adanya perubahan suhu yang cukup signifikan dengan nilai perubahan suhu dari temperatur yang dihasilkan mencapai 44°C




Gambar 4.5 Grafik perbandingan temperatur terhadap waktu

Tabel 4.6 Tabel data hasil pengujian honeycomb berdiameter 30 mm menggunakan kemiringan sudut  $60^{\circ}$ 

| Jam   | kemiringan | Temp 5  | Temp 6  | Temp 7  | Temp 8  |
|-------|------------|---------|---------|---------|---------|
| (Wib) | sudut      | Air     | Air     | Air     | Air     |
| 8:00  |            | 27.1747 | 27.0178 | 27.7234 | 26.8907 |
| 8:30  |            | 27.684  | 27.7065 | 28.3587 | 27.6155 |
| 9:00  |            | 28.2314 | 28.4271 | 29.0262 | 28.3543 |
| 9:30  |            | 28.943  | 29.3338 | 29.9978 | 29.4277 |
| 10:00 |            | 29.7003 | 30.3685 | 31.0611 | 30.6105 |
| 10:30 |            | 30.649  | 31.595  | 32.4083 | 31.9934 |
| 11:00 |            | 31.8027 | 33.0568 | 33.9563 | 33.6872 |
| 11:30 |            | 32.9916 | 34.5397 | 35.4587 | 35.2155 |
| 12:00 | 60°        | 34.1675 | 35.7876 | 36.6061 | 36.2652 |
| 12:30 |            | 35.2057 | 36.7236 | 37.3524 | 37.0187 |
| 13:00 |            | 36.2973 | 37.9299 | 38.6667 | 38.4021 |
| 13:30 |            | 37.2727 | 39.2189 | 40.0568 | 39.8523 |
| 14:00 |            | 38.2271 | 40.4935 | 41.3122 | 41.1354 |
| 14:30 |            | 39.381  | 41.7569 | 42.5482 | 42.355  |
| 15:00 |            | 40.369  | 42.9098 | 43.614  | 43.4723 |
| 15:30 |            | 41.2339 | 43.8305 | 44.5429 | 44.3825 |
| 16:00 |            | 41.8843 | 44.4655 | 45.0504 | 44.8668 |

Berdasarkan hasil pengujian yang diakukan pada tanggal 27 september 2021 kolektor panas honeycomb berdiameter 30 mm dengan kemiringan sudut 60°, Didapatkan data berupa temperatur panas air yang dihasilkan mencapai suhu tertinggi sebesar 44°C. pada sensor 5, 41°C pada sensor 6, 44°C, pada sensor 7, 45°C dan pada sensor 8, 44°C. Temperatur tertinggi didapatkan pada waktu pengujian pukul 15:00 wib

Tabel 4.6 merupakan honeycomb berdiameter 30 mm. Grafik perubahan suhu/temperatur terhadap pengaruh waktu. Pada grafik tersebut menunjukan adanya pengaruh waktu yang menghasilkan suhu/temperatur yang ingin di capai. Jam kedua menunjukan adanya perubahan suhu yang cukup signifikan dengan nilai perubahan suhu dari temperatur yang dihasilkan mencapai 45°C



Gambar 4.6 Grafik perbandingan temperatur terhadap waktu

## 4.4 Data perhitungan pada kolektor

|                  | ṁ            | Ср       | $T_{in}$   | $T_{out}$  | IT         |
|------------------|--------------|----------|------------|------------|------------|
|                  | (kg/s)       | (J/kg.K) | (°C)       | (°C)       |            |
| Kemiringan Sudut | Laju         | Panas    | Temperatur | Temperatur | Intensitas |
|                  | Kecepatan    | jenis    | Air        | Air        | Matahari   |
|                  | Fluida/udara | fluida   | Masuk      | Keluar     |            |
| 30°              | 0,0627       | 4.1793   | 27,909     | 43,655     | 242,82     |
| 45°              | 0,0626       | 4.1793   | 33,828     | 46,278     | 295,97     |
| 60°              | 0,1257       | 4.1793   | 26,965     | 44,866     | 301,18     |

## 4.4.1 Data Perhitungan Kolektor 1

## 1. Kemiringan Sudut 30°

a.perhitungan energi yang diserap

$$Q_{ua} = \mathcal{M}.Cp.\Delta T$$
  
= 0,0627×4,1793×15,746  
= 4,126 Watt

Maka hasil dari energi yang diserap dengan kemiringan sudut 30° sebesar 4,126 Watt.

## b. Efisiensi kolektor

$$\eta = \frac{Q_{ua}}{\Delta_c \times IT} \times 100\%$$

$$= \frac{4,126}{0,8 \times 242,82} \times 100\%$$

$$= \frac{4,126}{194,256} \times 100\%$$

$$= 0,021\%$$

Maka efisiensi kolektor dengan kemiringan 30° adalah sebesar 0,021%

2.Kemiringan Sudut 45°

a.perhitungan energi yang diserap

$$Q_{ua} = m.Cp.\Delta T$$
  
= 0,0626×4,1793×12,45  
= 3,257 Watt

Maka hasil dari energi yang diserap kolektor dengan kemiringan 45° sebesar 3,257 Watt.

b. Efisiensi kolektor

$$\eta = \frac{Q_{ua}}{\Delta_c \times IT} \times 100\%$$

$$= \frac{3,257}{0,8 \times 295,97} \times 100\%$$

$$= \frac{3,257}{236,77} \times 100\%$$

$$= 0.013\%$$

Maka efisiensi kolektor dengan kemiringan 45° sebesar 0,013%

3.Sudut Kemiringan 60°

a.perhitungan energi yang diserap

$$Q_{ua} = M.Cp.\Delta T$$
  
= 0,1257×4,1793×17,901  
= 9,404 Watt

Maka hasil dari energi yang diserap kolektor dengan kemiringan 60° sebesar 9,404 Watt.

## b. Efisiensi kolektor

$$\eta = \frac{Q_{ua}}{\Delta_c \times IT} \times 100\%$$

$$= \frac{9,404}{0,8 \times 301,18} \times 100\%$$

$$= \frac{9,404}{240,944} \times 100\%$$

$$= 0,03\%$$

Maka efisiensi kolektor I dihari pertama sebesar 0,03%

#### **BAB 5**

## **KESIMPULAN DAN SARAN**

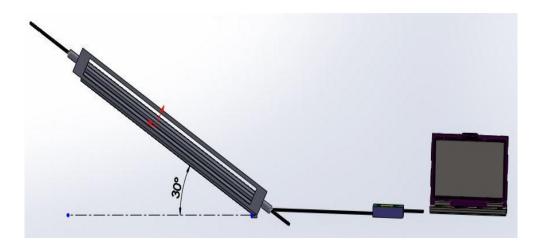
## 5.1. Kesimpulan

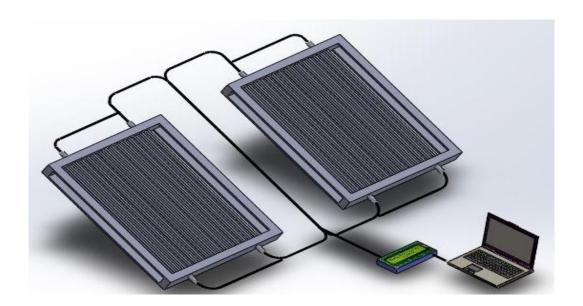
Berdasarkan analisis data dan pembahasan, dapat diambil kesimpulan diatas adalah sebagai berikut:

- Dari hasil penelitian yang telah dilakukan solar water heater dengan kemiringan sudut 30° memiliki efesiensi kinerja yang lebih tinggi bila dibandingkan dengan variasi kemiringan sudut lainnya.
- Berdasarkan data yang telah diperoleh dari hasil penelitian sudut 30° merupakan kemiringan sudut yang paling efektif

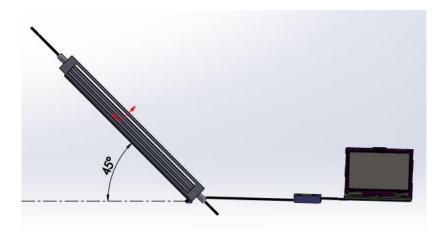
## 5.2 Saran

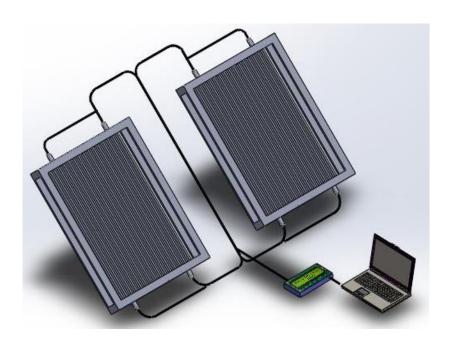
Alat rancang solar water heater double slope ini masih memiliki bebarapa kekurangan, untuk itu penulis ingin memberikan saran sebagai berikut:


 Pada penelitian selanjutnya, penulis berharap alat solar water heater ini dapat dibandingkan dengan alat yang telash ada dipasaran sebagai bahan acuan kedepannya

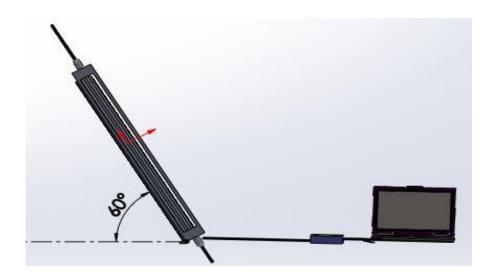

## **DAFTAR PUSTAKA**

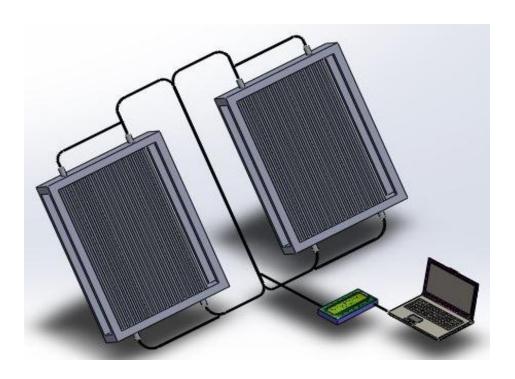
- Dahlan, B. Bin. (2017). SISTEM KONTROL PENERANGAN MENGGUNAKAN ARDUINO UNO PADA UNIVERSITAS ICHSAN GORONTALO. *ILKOM Jurnal Ilmiah*, *9*(3), 282–289. https://doi.org/10.33096/ilkom.v9i3.158.282-289
- KA.Ridwan, Syarif, A., Buhori, A., & Apriansyah. (2019). *KAJIAN RANCANG BANGUN SOLAR WATER HEATER (SWH) ANALISIS TERHADAP KOEFISIEN LAJU KONVEKSI DAN EFISIENSI PEMANASAN AIR. 10*(03), 9–13.
- Raufun, L., & Ardiansyah, S. (2018). Prototype Pengontrol Pengisian Tandon Air Secara Paralel Menggunakan Solenoid Valve Berbasis Atmega 2560. *Informatika*, 7(2), 30–35.
- Rozaq, I. A., & DS, N. Y. (2017). *UJI KARAKTERISASI SENSOR SUHU DS18B20 WATERPROOF BERBASIS ARDUINO UNO SEBAGAI SALAH SATU PARAMETER KUALITAS AIR*. 303–309. sensor, suhu, DB18B20,
  Arduino uno
- Sansy Bhawana Mulia, Spd., M. ., & Mindit Eriyadi, S.pd., M. . (2018). PERFORMA SOLENOID PADA VALVE ALAT PENGISIAN AIR MINUM OTOMATIS. *Elektra*, *3*(2), 53–60. https://pei.e-journal.id/jea/article/view/55
- Siregar, C. A., & Siregar, A. M. (2019). Studi Eksperimental Pengaruh Kemiringan Sudut Terhadap Alat Destilasi Air Laut Memanfaatkan Energi Matahar. *Jurnal Rekayasa Material, Manufaktur Dan Energi Http://Jurnal.Umsu.Ac.Id/Index.Php/RMME*, 2(2), 165–170.
- Siregar, C. A., Siregar, M. A., & Lubis, S. (2018). Pengaruh Jarak Kaca Terhadap Efisiensi Alat Destilasi Air Laut yang Memanfaatkan Energi Matahari di Kota Medan. *Journal of Mechanical Engineering, Manufactures, Materials and Energy*, 2(2), 51–55. https://doi.org/10.31289/jmemme.v2i2.2115
- Suharjono, A., Rahayu, L. N., & Afwah, R. (2015). Aplikasi Sensor Flow Water Untuk Mengukur Penggunaan Air Pelanggan Secara Digital Serta Pengiriman Data Secara Otomatis Pada PDAM Kota Semarang Amin. *Teknik Elektro, Politeknik Negeri Semarang, Vol.13*(1), 7–12. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiH7I3Om7DwAhUObn0KHZGYC0sQFjABegQIAhAD&url=https%3A%2F%2Fjurnal.polines.ac.id%2Findex.php%2Ftele%2Farticle%2Fview%2F151%2F143&usg=AOvVaw1cjVXdpVb7BTpCqce\_sf4P
- Sulistyo, A., Safitra, A. G., & Nurisma, R. A. (2016). *OPTIMALISASI*PENYERAPAN RADIASI MATAHARI PADA SOLAR WATER HEATER


  MENGGUNAKAN VARIASI SUDUT KEMIRINGAN. 40–45.


# 1. Kemiringan sudut $30^\circ$ Alat kolektor/Solar Water Heater menggunakan kemiringan sudut $30^\circ$







# 2. Kemiringan Sudut $45^\circ$ Alat kolektor/Solar Water Heater menggunkan kemiringan sudut $45^\circ$





## 3. kemiringan sudut Alat kolektor/Solar Water Heater menggunkan kemiringan sudut $60^{\circ}$



