TUGAS AKHIR

ANALISIS KINERJA MARKA YELLOW BOX JUNCTION (YBJ) DALAM MENCEGAH KEMACETAN DI JALAN Ir. H. JUANDA DAN BRIGJEND KATAMSO (STUDI KASUS)

Diajukan Untuk Memenuhi Syarat-Syarat Memperoleh Gelar Sarjana Teknik Sipil Pada Fakultas Teknik Universitas Muhammadiyah Sumatera Utara

Disusun Oleh:

AMINSYAH 1207210092

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA MEDAN 2017

HALAMAN PENGESAHAN

Tugas Akhir ini diajukan oleh:

Nama : AMINSYAH

NPM : 1207210092

Program Studi: Teknik Sipil

Judul Skripsi : Analisis Kinerja Marka Yellow Box Junction (YJB) Dalam

Mencegah Kemacetan Di Jalan Ir. H. Juanda-Brigjend Katamso

(STUDI KASUS).

Bidang ilmu : Transportasi.

Telah berhasil dipertahankan di hadapan Tim Penguji dan diterima sebagai salah satu syarat yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, April 2017

Mengetahui dan menyetujui:

Dosen Pembimbing I / Penguji Dosen Pembimbing II / Penguji

Ir. Zurkiyah, MT Mizanuddin Sitompul, ST, M.T

Dosen Pembanding I / Penguji Dosen Pembanding II / Penguji

Hj. Irma Dewi, S. T, M. MSi Dr. Ade Faisal, S.T, M.Sc

Program Studi Teknik Sipil Ketua,

Dr. Ade Faisal, ST, MSc

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Saya yang bertanda tangan di bawah ini:

Nama Lengkap : AMINSYAH

Tempat /Tanggal Lahir: PINING 04 JULI 1992

NPM : 1207210092

Fakultas : Teknik

Program Studi : Teknik Sipil

menyatakan dengan sesungguhnya dan sejujurnya, bahwa laporan Tugas Akhir saya yang berjudul:

"Analisis Marka Yellow Box Junction (YBJ) Dalam Mencegah Kemacetan Lalu Lintas Di jalan Ir. H. Juanda-Brigjend Katamso",

bukan merupakan plagiarisme, pencurian hasil karya milik orang lain, hasil kerja orang lain untuk kepentingan saya karena hubungan material dan non-material, ataupun segala kemungkinan lain, yang pada hakekatnya bukan merupakan karya tulis Tugas Akhir saya secara orisinil dan otentik.

Bila kemudian hari diduga kuat ada ketidaksesuaian antara fakta dengan kenyataan ini, saya bersedia diproses oleh Tim Fakultas yang dibentuk untuk melakukan verifikasi, dengan sanksi terberat berupa pembatalan kelulusan/kesarjanaan saya.

Demikian Surat Pernyataan ini saya buat dengan kesadaran sendiri dan tidak atas tekanan ataupun paksaan dari pihak manapun demi menegakkan integritas akademik di Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, April 2017

Saya yang menyatakan,

Materai Rp.6.000,-

AMINSYAH

ABSTRAK

ANALISIS KINERJA MARKA YELLOW BOX JUNCTION (YBJ) DALAM MENCEGAH KEMACETAN DI JALAN Ir. H. JUANDA DAN BRIGJEND KATAMSO (STUDI KASUS)

Aminsyah 1207210092 Ir. Zukiyah, M.T Mizanuddin Sitompul, S.T, M.T

Yellow box junction adalah kotak kuning bujur sangkar yang memiliki garis diagonal yang saling berhubungan di lengan jalan, yang bertujuan untuk memecahkan kondisi lalu lintas yang sering macet di sejumlah titik khususnya di perkotaan dan persimpangan. Yellow box sudah banyak di pakai di Indonesia, pemakaian yellow box di kota Medan dapat dilihat pada persimpangan ruas jalan Ir. H. Juanda-Sisingamangaraja dan jalan Ir. H. Juanda-Brigjend Katamso. Ketiga jalan tersebut memiliki kegiatan padat, karena jalan ini merupakan akses untuk menuju pusat kegiatan masyarakat dari kawasan perkantoran, dan lainnya. Berdasarkan hasil analisis yang berpedoman pada Manual Kapasitas Jalan Indonesia (MKJI) 1997, persimpangan jalan Ir. H. Juanda-Brigjend Katamso memiliki kapasitas simpang 1919 smp/jam, derajat kejenuhan 0,446, panjang antrian 106,1 m, jumlah kendaraan terhenti 568 smp/jam, dan untuk pelanggaran yellow box junction adalah sebesar 3,09%. Sedangkan persimpangan jalan Ir. H. Juanda-Brigjend Katamso memiliki kapasitas 1337 smp/jam, derajat kejenuhan 0,314, panjang antrian 72,5 m, jumlah kendaraan terhenti 290 smp/jam, dan pelanggaran yellow box junction adalah 8,82%. Lengan jalan memiliki tingkat pelayanan C. Berdasarkan hasil survei yang telah diamati secara langsung dapat dinyatakan bahwa angka pelanggaran dari para pengendara kendaraan bermotor terhadap penempatan marka YBJ adalah cukup rendah. Dapat disimpulkan bahwa pemakaian yellow box di kota Medan sudah tepat. Akan tetapi pelanggaran yang terjadi di yellow box masih banyak terjadi terutama oleh para pengguna sepeda motor.

Kata kunci: Persimpangan, derajat kejenuhan (DS), tundaan (DT), *yellow box junction*.

ABSTRACT

PERFORMANCE ANALYSIS BRAND YELLOW JUNCTION BOX (YBJ) PREVENT THE JAM ON THE STREET Ir. H. JUANDA AND BRIGJEND KATAMSO

Aminsyah 1207210092 Ir. Zurkiyah, M.T Mizanuddin Sitompul, ST. M.T

Yellow box junction is a yellow box square having diagonal lines interconnected in the arm, which aims to solve the traffic conditions are often jammed at some point, especially in urban areas and intersections. Yellow box is already widely in use in Indonesia, use the yellow box in Medan can be seen at the cross roads Ir. H. Juanda street Singamangaraja and Ir. H. Juanda-Brigjend Katamso. The third way has a solid activity, as is the access road to get to the community center of the regional offices, and more. According to analysis based on the Indonesian Highway Capacity Manual (MKJI) in 1997, a crossroads Ir. H. Juanda has the capacity intersection Brigjend Katamso 1919 smp /hour, the degree of saturation 0.446, queue length 106.1 m, the number of vehicles stalled 568 smp /hour, and for violations yellow box junction amounted to 3.09%. While crossroads Ir. H. Juanda-Brigjend Katamso has a capacity of 1337 smp /hour, the degree of saturation 0.314, queue length 72.5 m, the number of vehicles stalled 290 smp / hour, and violations yellow box junction was 8.82%. Arm road has a service level C. Based on the survey results that have been observed directly can be stated that the number of violations of motorists on placement of markers enough YBJ is low. It can be concluded that use of the yellow box in the city of Medan was appropriate. But the violations that occurred in the yellow box is still a lot going on, especially by motorcycle users.

Keywords: Intersection, degree of saturation (DS), delay (DT), yellow box junction.

DAFTAR ISI

LEMBAR F	PENGESAHAN	ii
LEMBAR I	KEASLIAN SKRIPSI	iii
ABSTRAK		iv
ABSTRACK		v
KATA PEN	IGANTAR	vi
DAFTAR IS	SI	viii
DAFTAR T	'ABEL	xi
DAFTAR C	SAMBAR	xiii
DAFTAR N	IOTASI	xiv
BAB 1 PEN	IDAHULUAN	
1.1.	Latar Belakang	1
1.2.	Rumusan Masalah	2
1.3.	Ruang Lingkup Penelitian	2
1.4.	Tujuan Penelitian	3
1.5.	Manfaat Penelitian	3
	1.5.1. Manfaat Teoritis	3
	1.5.2. Manfaat Praktis	3
1.6.	Sistematika Pembahasan	4
BAB 2 TIN	JAUAN PUSTAKA	
2.1.	Kotak Kuning di Persimpangan Yellox Box Juction	5
	2.1.1 Landasan teori tentang marka yellow box juction	5
	2.1.1.1. Persyaratan Penempatan Yellow Box Junction	6
	2.1.1.2. Cara Menggunakan Yellow Box Junction	6
2.2.	Marka Jalan	8
	2.2.1 Jenis-jenis Marka	8
2.3.	Pengertian Persimpangan	10
	2.3.1 Jenis Pertemuan Gerakan Persimpangan	10
	2.3.2 Memisah <i>Diverging</i>	11

11
11
11
12
12
13
14
14
15
15
15
16
18
19
20
22
23
23
24
24
26
26
29
29
30
31
31 32
32

3.6.	Teknik Pengumpulan Data	34
3.7.	Pengambilan Data Geometrik	35
3.8.	Alat yang di gunakan	36
BAB 4 ANA	ALISIS DATA	
4.1.	Tinjauan Umum	37
4.2.	Data Traffic Light Simpang	37
4.3.	Data Lalu Lintas	39
4.4.	Perhitungan Volume dan Kapasitas	39
4.5.	Perilaku Lalu Lintas	43
	4.5.1 Panjang Antrian	43
	4.5.2 Jumlah Kendaraan Terhenti	44
	4.5.3 Tundaan	45
4.6.	Perhitungan Volume dan Kapasitas	48
4.7.	Perilaku Lalu Lintas	52
	4.7.1 Panjang Antrian	52
	4.7.2 Jumlah Kendaraan Terhenti	54
	4.7.3 Tundaan	54
BAB 5 KES	IMPULAN DAN SARAN	
5.1.	Kesimpulan	71
5.2.	Saran	71
DAFTAR P	USTAKA	72
LAMPIRAN	1	
DAFTAR R	IWAYAT HIDUP	

DAFTAR TABEL

Tabel 2.1	Komposisi lintas lintas pada ruas jalan (MKJI, 1997)	20
Tabel 2.2	Ekivalen mobil penumpang jalan perkotaan terbagi	21
Tabel 2.3	Ekivalen mobil penumpang jalan perkotaan tak terbagi	21
Tabel 2.4	Karaktristik tingkat pelayanaan MKJI, (1997)	22
Tabel 2.5	Faktor penyesuian ukuran kota	25
Tabel 2.6	Kecepatan arus bebas dasar FVo untuk jalan perkotaan	27
Tabel 2.7	Penyesuaian FVw untuk pengaruh lebar jalur lalu lintas pada	
	kecepatan arus bebas kendaraan ringan	28
Tabel 2.8	Faktor penyesuaian FFVCS untuk pengaruh ukuran kota pada	
	kecepatan arus bebas kendaraan ringan	29
Tabel 3.1	Geometrik persimpangan jalan Ir. H. Juanda-Sisingamangaraja	35
Tabel 3.2	Geometrik persimpangan jalan Ir. H. Juanda-Sisingamangaraja	35
Tabel 4.1	Fase sinyal persimpangan jalan Ir. H. Juanda-Sisingamangaraja	37
Tabel 4.2	Fase sinyal persimpangan jalan Ir. H. Juanda-Brigjend Katamso	42
Tabel 4.3	Data lalu lintas yang diperoleh dari survey lapanagan	39
Tabel 4.4	Arus jenuh simpang jalan Ir. H. Juanda-Sisingamangaraja	42
Tabel 4.5	Pelanggaran yellow box junction	47
Tabel 4.6	Data lalu lintas yang diperoleh dari survey lapanagan jalan Ir. H.	
	Juanada-Brigjend katamso	48
Tabel 4.7	Arus jenuh Jalan Ir. H. Juanda-Brigjend Katamso	51
Tabel 4.8	Data jumlah pelanggaran yellow box junction	57
Tabel 4.9	Volume lalu lintas perjam jalan Ir. H. Juanda-Sisingamangaraja	59
Tabel 4.10	Geometrik persimpangan Ir. H. Juanda-Sisingamangaraja	61
Tabel 4.11	Arus lalu lintas persimpangan jalan Ir. H. Juanda-	
	Sisingamangaraja	62
Tabel 4.12	Perhitungan kapasitas persimpangan jalan Ir. H. Juanda-	
	Sisingamangara	63
Tabel 4.13	Perhitunga panjang antrian persimpangan jalan Ir. H. Juanda-	
	Sisingamangara	64
Tabel 4 14	Volume lalu lintas periam ialan Ir H Juanda-Berigiend Katamso	65

Tabel 4.15 Geometrik persimpangan jalan Ir. H. Juanda-Brigjend Katamso	67
Tabel 4.16 Arus lalu lintas persimpangan Ir. H. Juanda-Brigjend Katamso	68
Tabel 4.17 Kapasitas persimpangan Ir. H. Juanda-Brigjend Katamso	69
Tabel 4.18 Perhitungan panjang antrian	70

DAFTAR GAMBAR

Gambar 2.1	Cara pemakaian yellow box juction	7
Gambar 2.2	Contoh simpang jalan bersinyal	12
Gambar 2.3	Contoh simpang susun jalan bebas hambatan	13
Gambar 2.4	Tipe simpang 3 Lengan dan 4 lengan	17
Gambar 3.1	Lokasi penelitian simpang Ir. H. Juanda-Sisingamangaraja	31
Gambar 3.1	Lokasi penelitian simpang Ir. H. Juanda-Brigjend Katamso	32
Gambar 3.2	Diagram alir penelitian	33
Gambar 4.1	Siklus traffic light simpang Ir. H. Juanda-Sisingamangaraja	38
Gamabar 4.2	Siklus <i>traffic light</i> simpang Ir. H. Juanda-Brigjend Katamso	38

DAFTAR NOTASI

C = Kapasitas ruas jalan (smp/jam).

c = Waktu siklus, yaitu selang waktu untuk perubahan sinyal yang lengkap (yaitu antara dua awal hijau yang beruntun pada fase yang sama).

C = Kapasitas jalan (smp/jam).

DS = Derajat kejenuhan.

Dj = Tundaan rata-rata pada pendekat jalan (det/smp).

DTj = Tundaan lalu lintas rata-rata pada pendekat jalan (det/smp).

DGj = Tundaan geometri rata-rata pada pendekat jalan (det/smp).

E(FRcrit) = Rasio arus simpang.

Emp = Ekivalensi mobil penumpang.

Emp LV = Nilai ekivalensi mobil penumpang untuk kendaraan ringan.

Emp HV = Nilai ekivalensi mobil penumpang untuk kendaraan berat.

Emp MC = Nilai ekivalensi mobil penumpang untuk sepeda motor.

F = Faktor penyesuaian.

 F_{CS} = Faktor penyesuaian ukuran kota.

 F_{SF} = Faktor penyesuaian hambatan samping.

F_G = Faktor penyesuaian terhadap kelandaian

 F_P = Faktor penyesuaian parkir.

 F_{LT} = Faktor penyesuaian belok kiri.

 F_{RT} = Faktor penyesuaian belok kanan.

FR = Arus dibagi dengan arus jenuh (Q/S).

FRcrit = Nilai FR tertinggi dari semua pendekat yang berangkat16 suatu fase sinyal.

g = Waktu hijau (det).

gi = Tampilan waktu hijau pada fase I (detik).

G = Kelandaian.

 $_{GR}$ = Rasio hijau.

HV = Kendaraan berat (bus, truk as 2, truk as 3, truk as 5, triler).

LV = Kendaraan ringan (mobil penumpang, angkutan umum, taxi, pik up, mobil box).

LTI = Jumlah waktu hilang per siklus (detik).

MV = Kendaraan total bermotor.

MC = Kendaraan bermotor (sepeda motor, roda 3).

MKJI = Manual kapasitas jalan Indonesia.

NQ1 = Jumlah smp yang tertinggal dari fase hijau sebelumnya.

NQ2 = Jumlah smp yang dating selama fase merah.

NS = Angka henti.

P = Parkir.

Psv = Rasio kendaraan terhenti pada suatu pendekat.

Pt = Rasio kendaraan membelok pada suatu pendekat.

Q = Volume (kend/jam).

Q = Volume kendaraan (smp/jam).

S = Arus jenuh.

SO = Arus jenuh dasar.

Smp = Satuan mobil penumpang.

UM = Data survei tidak bermotor.

We = Leher efektifpen dekat.

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Permintaan akan jasa transportasi semakin lama semakin meningkat sejalan dengan semakin tingginya arus lalu lintas di suatu perkotaan. Pertumbuhan penduduk yang semakin tinggi dan banyaknya kepemilikan kendaraan bermotor juga berpengaruh terhadap tingginya arus lalu lintas pada suatu wilayah perkotaan. Berbagai aktifitas perkotaan terutama di kota-kota besar dimana mobilitas penduduknya cukup tinggi akan semakin menimbulkan permasalahan lalu lintas dan pergerakan manusia di daerah tersebut.

Jalan raya sebagai prasarana untuk memperlancar transportasi, dewasa ini sering mengalami hambatan karena pengguna jalan raya menginginkan lebih cepat sampai tujuan. Untuk menanggulangi hal ini merupakan tugas kepolisian untuk mengatur lalu lintas. Melihat kenyataan bahwa masih banyak kemacetan lalu lintas yang terjadi di persimpangan khususnya di daerah perkotaan, dimana belum ada sistem pengaturan dan pengendalian pada persimpangan yang tepat, dengan bertambahnya jumlah kendaraan bermotor yang semakin meningkat pesat sistem pengendalian dan pengaturan pada sebagian persimpangan sudah perlu dilakukan.

Salah satu alternatif untuk menanggulangi kemacetan tersebut adalah dengan menggunakan marka *yellow box* atau lengkapnya *yellow box junction (YBJ)*, merupakan garis kuning berukuran besar membentuk bujur sangkar di perempatan jalan, garis kotak tersebut bukan sembarang garis, melainkan garis yang bertujuan untuk mencairkan kondisi lalu lintas yang sering macet di sejumlah titik. Tujuan lainnya mencegah kepadatan lalu lintas di jalur dan berakibat pada tersendat arus kenderaan di jalur lain yang tidak padat. Salah satu persimpangan jalan yang telah menggunakan *yellow box junction* dapat di temukan pada Jalan Ir. H. Juanda-Sisingamaraja dan Ir. H. Juanda-Brigjen Katamso. Penerapan marka *yellow box* sudah banyak dipakai di Indonesia, tetapi masih banyak dari pengguna kendaraan

bermotor yang belum mengetahui arti marka tersebut dan masih acuh tak acuh terhadap marka, sehingga marka tersebut tidak berjalan secara efisien.

Umumnya *yellow box junction* para pengguna jalan di daerah yang rawan macet dengan kepadatan lalu lintas yang tinggi, dengan hadirnya *YBJ* difungsikan agar persimpangan di jalan-jalan utama tidak terkunci pada saat puncak lalu lintas terjadi. Jalan dengan marka *yellow box junction* tidak bisa dilalui pengguna jalan dari arah lain ketika masih ada kenderaan dari arah lainnya yang berada di zona *YBJ*, meskipun lampu lalu lintas telah hijau.

Sehubungan dengan permasalahan tersebut di atas, maka diperlukan studi dan analisa untuk mengetahui nilai persentase pelanggaran dan tingkat pengetahuan masyarakat tentang marka tersebut sehingga dapat dicari solusi permasalahannya.

1.2 Rumusan Masalah

Berdasarkan uraian latar belakang, permasalahan yang terjadi pada persimpangan yang mempunyai marka *yellow box junction* mencegah kepadatan dan kemacetan pada lalu lintas di jalur dan berakibat pada tersendat arus kendaraan di jalur lain yang tidak padat, dan masih banyak pelanggaran yang terjadi pada *yellow box junction*. Dan bagaimana kinerja lalu lintas Pada dua persimpangan tersebut yaitu pada jalan Ir. H. Juanda-Sisingamangaraja dan Ir. H. Juanda-Brigjend Katamso.

1.3 Ruang Lingkup Penelitian

Untuk mendapatkan suatu sistem pengaturan pada persimpangan jalan, dengan menggunakan marka *yellow box junction* sehingga bisa mengatasi tersendatnya arus lalu lintas, maka ruang lingkup permasalahan pada penelitian ini dibatasi secara spesifik hanya mencakup kondisi sebagai berikut:

- Analisis yang dilakukan di wilayah Kota Medan khususnya Jalan Ir. H. Juanda Pada Simpang Sisingamaraja dan Brigjen Katamso
- 2. Faktor yang paling pokok dibahas berkaitan dengan permasalahan pada lengan jalan tersebut antara lain:

- ✓ Geometrik Simpang
- ✓ Volume lalu lintas
- ✓ Derajat Kejenuhan
- ✓ Tundaan
- 3. Analisis penggunaan marka *yellow box juction* di badan jalan.

1.4 Tujuan Penelitian

Tujuan dari penulisan tugas akhir ini adalah:

- Untuk mengetahui kinerja lalu lintas pada dua persimpangan tersebut yaitu pada jalan Ir. H. Juanda-Sisingamangaraja dan Ir. H. Juanda-Brigjend Katamso.
- 2. Untuk mengetahui kinerja *yellow box juction* dalam mencegah kepadatan dan kemacetan lalu lintas pada persimpangan Ir. H. Juanda-Sisingamangaraja dan Ir. H. Juanda-Brigjend Katamso.

1.5 Manfaat Penelitian

Manfaat dari penelitian ini adalah:

- Sebagai usulan penanganan masalah diharapkan bermanfaat untuk membantu Pemerintah Kota Medan dalam mengatasi permasalahan arus lalu lintas dan kemacatannya.
- 2. Menyadarkan bagi pengguna jalan yang masih banyak tidak mengetahui dan mematuhi marka jalan tersebut, maka dalam penelitian ini yang dipengaruhi oleh semakin banyaknya angkutan umum baik dalam kota maupun luar kota, dan mengembangkan ilmu pengetahuan di bidang teknik rekayasa lalu lintas.

1.5.1 Manfaat Teoritis

Penelitian ini bermanfaat sebagai bahan bacaan dan menambah wawasan bagi para pembaca umumnya dan bagi penulis sendiri khususnya mengenai rekayasa transportasi tentang marka rambu-rambu lalu lintas

1.5.2 Manfaat Praktis

Secara praktis, penelitian ini bermanfaat bagi penulis, yaitu menambah wawasan di lapangan serta mengetahui kondisi sebenarnya yang terjadi pada lokasi penelitian, yaitu Pada Jalan Ir. H. Juanda-Sisingamaraja dan Ir. H. Juanda-Brigjen Katamso.

1.6. Sistematika Pembahasan

Untuk memberikan gambaran umum, maka penulisan tugas akhir ini dibagi dalam 5 (lima) bab. Pembagian ini dimaksudkan untuk mempermudah pembahasan serta penelaahannya, dimana uraian yang dimuat dalam penulisan dapat dengan mudah dimengerti. Pembagian yang dimaksud dilakukan sebagai berikut:

BAB 1 PENDAHULUAN

Terdiri dari latar belakang masalah, rumusan masalah, tujuan penelitian, ruang lingkup penelitian, manfaat penelitian, dan sistematika pembahasan.

BAB 2 TINJAUAN PUSTAKA

Terdiri dari tinjauan pustaka atau landasan teori yang digunakan untuk memberikan penjelasan mengenai studi ini.

BAB 3 METODE PENELITIAN

Terdiri dari kriteria pemilihan lokasi, pengumpulan data, peralatan yang digunakan, penyajian data, proses perhitungan, metodologi yang digunakan serta rumus-rumus tentang perencanaan transportasi.

BAB 4 ANALISIS DAN PEMBAHASAN

Hasil dari analisis data akan dibahas dan dijelaskan pada bab ini. Semua analisis dari fokus penelitian akan dipaparkan dengan menggunakan Manual Kapasitas Jalan Indonesia (MKJI 1997).

BAB 5 KESIMPULAN DAN SARAN

Bab ini berisi tentang uraian beberapa kesimpulan hasil penelitian dan saran-saran dari peneliti.

BAB 2

TINJAUAN PUSTAKA

2.1 Kotak Kuning di Persimpangan (Yellow Box Junction)

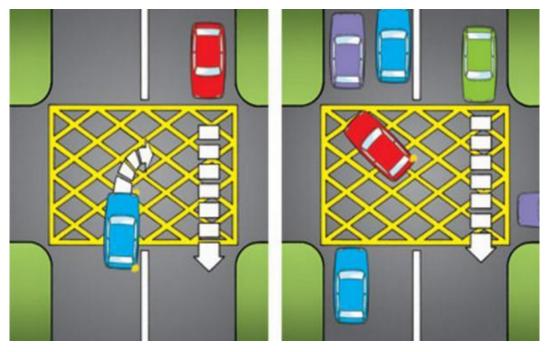
Yellow Box Junction adalah marka jalan warna kuning berbentuk bujur sangkar dengan garis dua silang diagonal, yang ditempatkan di persimpangan jalan. Garis ini dimaksudkan ketika terjadi antrian di perempatan, kendaraan yang harus memperhatikan kondisi simpang apakah dalam keadaan aman atau tidak. Kendaraan tidak diperbolehkan untuk berhenti di garis kuning walaupun lampu hijau masih menyala. Jika ada kendaraan yang berhenti di dalam area Yellow Box Junction maka kendaraan tersebut akan dikenakan sanksi. Penempatan marka jalan ini ditempatkan (atau tepatnya dicat di permukaan jalan) pada persimpangan jalan, atau tempat yang bebas dari antrian kendaraan, seperti di perlintasan kereta, atau jalan masuk kendaraan darurat (pemadam kebakaran, ambulan, Dan lainlain).

2.1.1 Landasan Teori Tentang Marka Yellow Box Junction

Jalan raya sebagai prasarana untuk memperlancar transportasi, dewasa ini sering mengalami hambatan karena pengguna jalan raya menginginkan lebih cepat sampai tujuan. Untuk menanggulangi hal ini merupakan tugas kepolisian untuk mengatur lalu lintas. Melihat kenyataan bahwa masih banyak kemacetan lalu lintas yang terjadi di persimpangan khususnya di daerah perkotaan, dimana belum ada sistem pengaturan dan pengendalian pada persimpangan yang tepat.

Dengan bertambahnya jumlah kendaraan bermotor yang semakin meningkat pesat sistem pengendalian dan pengaturan pada sebagian persimpangan sudah perlu dilakukan. Salah satu alternatif untuk menangulangi kemacetan tersebut adalah dengan menggunakan marka *yellow box* atau lengkapnya *yellow box junction*. Beberapa negara yang menggunakan marka jalan ini antara lain Malaysia, Singapura, Australia, Inggris, Indonesia. dan negara lainnya.

2.1.1.1. Persyaratan Penempatan Yellow Box Junction.


- 1. Memiliki 4 sisi.
- 2. Berada pada persimpangan yang setidaknya memiliki dua arah jalan.
- 3. Diletakkan pada persimpangan yang dikendalikan atau tidak dikendalikan oleh sinyal rambu lalu lintas.
- 4. Terletak pada arus lalu lintas yang padat atau sibuk pada kedua arah lengan jalan.
- 5. Garis kuning internal harus menuju setidaknya dua sudut dari kotak.
- 6. Dua atau empat sudut kotak mengarah ke tepi jalan.
- 7. Kotak kuning harus terlihat jelas dan tidak mudah pudar.
- 8. Pada persimpangan T hanya mencakup setengah dari persimpangan jalan.
- 9. Hanya ada satu marka kuning di persimpangan jalan.

2.1.1.2. Cara Menggunakan Yellow Box Junction.

Yellow box junction sering digunakan pada persimpangan jalan raya yang memiliki arus kemacetan tinggi dikendalikan atau tidak dikendalikan oleh lampu lalu lintas, dan memiliki garis silang menyilang yang dicat pada jalan. Hal yang harus di perhatikan dalam mematuhi marka ini adalah:

- 1. Tidak memasuki kotak persimpangan kecuali jalan keluar sudah terlihat jelas.
- 2. Memperlambat dan menghentikan kendaraan sebelum persimpangan jalan, jika jalan keluar dari simpangan tidak jelas.
- 3. Mengontrol kecepatan pada saat mendekati marka kuning.
- 4. berhati-hati pada saat antrian didalam persimpangan, sebab berada pada jalan keluar saat lampu hijau berakhir.

Yellow box junction memungkinkan untuk menjaga gerak arus lalu lintas dan menjaga kotak bersih dari kemacetan dengan cara mencegah lalu lintas dari berhenti di jalur persimpangan lalu lintas. Gambar 2.1 ini menunjukkan kotak persimpangan di lampu lalu lintas, jika memasuki yellow box junction dan akan belok kanan, sedangkan kaki simpang tidak bebas kendaraan dan maka arus pengendara akan akan terhalang oleh kendaraan di kaki simpang arah kanan.

Gambar 2.1: Cara pemakaian Yellow box junction (Tjahjani dan Niko, 2013).

Dalam penjelasan UU No. 22 Tahun 2009 tentang lalu lintas dan Angkutan Jalan, pasal 287 (2) *juncto* Pasal 106 (4) huruf a, b tentang rambu-rambu lalu lintas dan berhenti di belakang garis stop. Pidananya adalah kurungan dua bulan penjara atau denda Rp 500.000.

- ➤ Bunyi Undang-undang pasal 106 (4) huruf a,b adalah:
- Setiap orang yang mengemudikan Kendaraan Bermotor di Jalan wajib mematuhi ketentuan:
- a. Rambu perintah atau rambu larangan.
- b. Marka Jalan.
- c. Alat Pemberi Isyarat Lalu Lintas.
- d. Gerakan Lalu Lintas.
- e. Berhenti dan Parkir.
- f. Peringatan dengan bunyi dan sinar.
- g. Kecepatan maksimal atau minimal, dan/atau
- h. Tata cara penggandengan dan penempelan dengan Kendaraan lain.
- ➤ Bunyi Pasal 287

Setiap orang yang mengemudikan kendaraan bermotor di Jalan yang melanggar aturan perintah atau larangan yang dinyatakan dengan rambu lalu lintas sebagaimana dimaksud dalam Pasal 106 ayat (4) huruf a atau marka jalan sebagaimana dimaksud dalam Pasal 106 ayat (4) huruf b dipidana dengan pidana kurungan paling lama 2 (dua) bulan atau denda paling banyak Rp 500.000,00 (lima ratus ribu rupiah).

2.2 Marka Jalan (Marka Lalu Lintas)

Marka Jalan adalah suatu tanda yang berada di permukaan jalan atau di atas permukaan jalan yang meliputi peralatan atau tanda yang membentuk garis membujur, garis melintang, garis serong, serta lambang yang berfungsi untuk mengarahkan arus lalu lintas dan membatasi daerah kepentingan lalu lintas.

2.2.1 Jenis-Jenis Marka

Marka jalan berfungsi untuk mengatur lalu lintas, memperingatkan, atau menuntun pengguna jalan dalam berlalu lintas, marka jalan dapat dibedakan yaitu:

- a. Marka melintang adalah marka jalan yang berupa garis putus-putus yang berfungsi untuk menyatakan batas yang tidak dapat dilampaui kendaraan di jalan utama pada persimpangan.
- b. Marka serong adalah marka jalan yang membentuk garis utuh yang dibatasi dengan garis-garis putus yang digunakan untuk menyatakan kenderaan tidak boleh masuk di daerah tertentu.
- c. Marka membujur adalah marka jalan yang sejajar dengan sumbu jalan.
- d. Marka lambang adalah marka jalan berupa panah, gambar, segitiga, atau tulisan yang dipergunakan untuk mengulangi maksud rambu lalu lintas atau untuk memberitahu pengguna jalan yang tidak dapat dinyatakan dengan rambu lalu lintas.
- e. Marka kotak kuning adalah marka jalan berbentuk segi empat berwarna kuning yang berfungsi melarang kendaraan berhenti di suatu area.
- f. Jalur adalah bagian jalan yang dipergunakan untuk lalu lintas kendaraan.

- g. Lajur adalah bagian jalur yang memanjang, dengan atau tanpa marka jalan, yang memiliki lebar cukup untuk dilewati satu kendaraan bermotor, selain sepeda motor.
- h. Pulau lalu lintas adalah bagian jalan yang tidak dapat dilalui oleh kendaraan, dapat berupa marka jalan atau bagian jalan yang ditinggikan. dalam Peraturan Menteri Perhubungan Republik Indonesia No PM 34 Tahun 2014 tentang marka jalan, yang berisi:

Marka jalan sebagaimana dimaksud dalam Pasal 3 dapat berwarna:

- a. Putih
- b. Kuning
- c. Merah dan
- d. Warna lainnya.

Marka jalan berwarna putih sebagaimana dimaksud pada Ayat (1) huruf a menyatakan bahwa pengguna Jalan wajib mengikuti perintah atau larangan sesuai dengan bentuknya.

✓ Garis putih putus-putus

Garis putih putu-putus artinya boleh melintasi marka ini bila hendak pindah jalur ke jalur sebelahnya yang kosong, atau mau menyelinap kendaraan di depan, tapi harus hati-hati juga kalau jalan yang dilalui itu dua arah, bisa-bisa terjadi kecelakaan.

✓ Garis putih penuh

Garis putih penuh biasanya ada di tikungan sebelum *zebra cros*, artinya kebalikan dari garis putus-putus maka tidak boleh dilewati marka ini. Resiko melintasi garis ini teramat bahaya, jadi jika pada garis putih kendaraan tidak boleh melintasi marka tersebut.

✓ Garis putus-putus dan penuh (jejeran) artinya marka yang putus-putus boleh di manyelinap dan marka yang penuh tidak boleh dilewati.

Marka jalan berwarna kuning sebagaimana dimaksud pada ayat (1) huruf b menyatakan bahwa pengguna jalan dilarang berhenti pada area tersebut.

✓ Marka kuning

Selain berupa garis putih penuh di pinggir jalan untuk menandai tepi jalan, dan adanya terdapat garis penuh berwarna kuning, artinya kendaraan tidak boleh berhenti apalagi parkir di area tersebut, dan marka ini tidak selamanya berupa garis tapi bisa juga *zigzag*, bisa pula warna kuninghitam seperti yang ada di sisi trotoar atau median jalan.

Marka jalan berwarna merah sebagaimana dimaksud pada ayat (1) huruf c menyatakan keperluan atau tanda khusus.

Marka jalan warna lainnya sebagaimana dimaksud pada ayat (1) huruf d yaitu marka jalan berwarna hijau dan coklat, yang menyatakan daerah kepentingan khusus yang harus dilengkapi dengan rambu dan/atau petunjuk yang dinyatakan dengan tegas.

2.3 Pengertian Persimpangan

Persimpangan adalah empat pertemuan antara dua buah jalan atau lebih, di mana pertemuan tersebut akan menimbulkan titik konflik akibat arus lalu lintas pada persimpanagan karena arus jalan pada persimpangan di gunakan bersamasama, maka ruas kapasitas persimpangan pada masing-masing ujung nya. Juga problem keselamatan biasa nya timbul pada persimpangan hasilnya adalah bahwa kapasitas jaringan dan keselamatan ditentukan oleh persimpangan, di mana simpangan adalah hal utama yang harus di perhatiakan dalam manajem transportasi perkotaan.

Banyak problem pada persimpangan terjadi karna adanya pergerakan yang berkonflik satu sama lain, terutama kendaraan yang membelok kekanan (kendaraan kiri biasa nya di beri pergerakan bebas). Solusinnya adalah meningkatkan kafasitas persimpangan, dengan beberapa parameter tentu atau mengurangi volume lalulintas.

2.3.1 Jenis Pertemuan Gerakan Persimpangan

Dari berbagai bentuk, sifat dan tujuan geraka kendaraan di daerah persimpangan, ada empat (4) jenis tife dasar pergerakan lalu lintas pada persimpangan yaitu:

2.3.2 Memisah (Diverging)

Memisah adalah peristiwa berpencarnya pergerakan kendaraan yang tersebut sampai pada titik persimpangan, perencanaan yang memungkinkan gerakan memisah arus tampa pengurangan tidak akan menimbulkan titik konflik dan daerah potensial kecelakaan. Dengan menggunakan aturan jalur kiri, gerakan pemisah arah kiri di hubungkan tabrakan bagian belakang, akan tetapi hal ini biasanya lebih aman dari pada gerakan pemisah kearah kanan yang akan menimbulkan tabrakan dari samping maupun bagian belakang kendaraan yang mengikutinya atau sisi dan depan yang diakibatkan kendaraan di depan.

2.3.3 Menggabung (*Marging*)

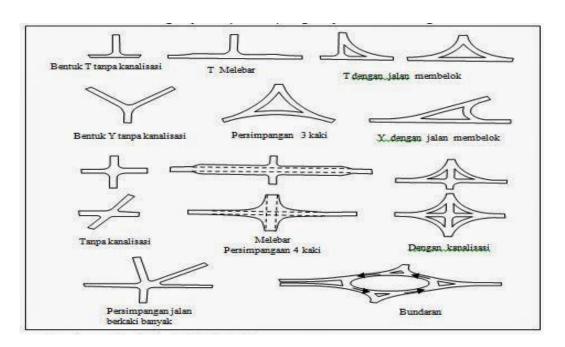
Menggabung adalah bergabungnya kendaraan yang bergerak dari beberapa rual jalan ketika sampai pada titik persimpangan. Persyaratan kritis adalah bahwa interval waktu dan jarak, diantara kedatangan kendaraan pada titik gabung, disesuikan dengan kecepatan sendiri dan kendaraan yang datang berikutnya pada ruas utama. Keputusan dan kondisi yang diperlukan untuk menggabungkan dari tepi jalan akan lebih mudah dibandingkan dengan yang dilakukan dari posisi tengah jalan.

2.3.4 Berpotongan (Crossing)

Berpotongan adalah kendaraan yang ingin melakukan gerakan penyilang (pemotong) pada suatu arus lalu lintas. Gerakan penyilang tampa kontrol (yaitu bila tidak terdapat arus utama) sangat berbahaya sebab kedua pengemudi harus membuat keputusan yang memberikan hak lewat terdahulu.

2.3.5 Menyilang (Weaving)

Menyilang adalah pengemudi atau kendaraan yang ingin melakukan gerakan menyelip atau berpindah jalur. Gerakan menyelip pada pertemuan jalan bersudut kecil (kurang dari 30 derajat).

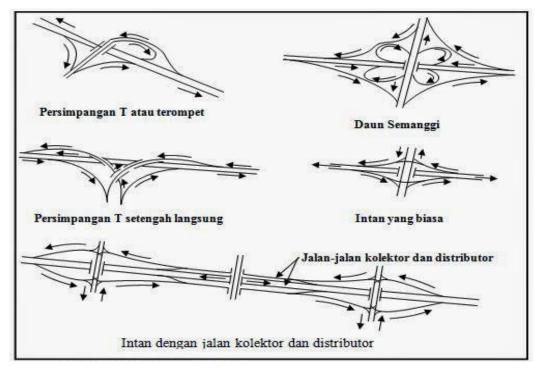

2.4 Jenis-Jenis Persimpangan

2.4.1 Persimpangan Sebidang

Persimpangan sebidang adalah persimpangan dimana berbagai jalan atau ujung jalan masuk persimpangan mengarahkan lalu lintas masuk kejalan yang dapat berlawanan dengan lalu lintas lainnya, pada persimpangan sebidang menurut jenis fasilitas pengaturan lalu lintas dipisahkan menjadi dua bagian yaitu:

- ✓ Persimpangan bersinyal (*signalized intersection*) adalah persimpangan jalan yang pergerakan atau arus lalu lintas dari setiap pendekatnya diatur oleh lampu sinyal untuk melewati persimpangan secara bergilir.
- ✓ Simpang tak bersinyal (*usnignalized intersection*) adalah pertemuan jalan yang tidak menggunakan sinyal pada pengaturan.

Beberapa contoh persimpangan sebidang dapat dilihat pada Gambar 2.2.


Gambar 2.2: Beberapa contoh simpang jalan yang bersinyal (Morlok, 1991).

2.4.2 Persimpangan Tidak Sebidang

Persimpangan tidak sebidang disebut juga dengan jalan bebas hambatan dimana tidak terdapat jalur gerak kenderaan yang berpapasan dengan jalur gerak lainnya pada persimpangan tak sebidang (Gambar 2.3). Keuntungan dari persimpangan tak sebidang adalah:

- 1. Dengan adanya jalur gerak yang saling memotong pada persimpangan tak sebidang, maka tingkat kecelakaan akan dapat dikurangi.
- Kecelakaan kendaraan akan dapat bertambah besar dikarenakan arus lalu lintas terganggu.
- 3. Kapasitas akan meningkat oleh karena tiadanya gangguan dalam setiap jalur lalu lintas.

Persimpangan ini bertujuan untuk mengurangi titik konflik atau bahaya belok kanan yang selalu menghambat lalu lintas jalan tersebut, mengurangi kemacetan lalu lintas dan lain-lain. Perencanaan persimpangan ini memerlukan lahan yang cukup luas serta biaya yang cukup besar. Perencanaan ini harus dilakukan dengan teliti untuk mendapatkan hasil yang maksimal.

Gambar 2.3: Beberapa contoh simpang susun jalan bebas hambatan (Morlok, 1991).

2.4.3 Persimpangan Bersinyal

Persimpangan bersinyal adalah persimpangan dengan lampu pengatur lalu lintas diterapkan untuk memisahkan lintasan dari gerakan-gerakan lalu lintas yang bertentangan dalam dimensi waktu. Persimpangan dengan lampu pengatur lalu lintas (berdasarkan fleksibilitas lampu terhadap arus lalu lintas), dibedakan lagi atas:

- ✓ Sinyal waktu tetap (*fixed time signal*).
 - Yaitu cara pengaturan lalu lintas berdasarkan jadwal waktu yang tetap, tanpa memperhatikan naik turunnya (*fluktuasi*) arus lalu lintas, dan diatur secara otomatis dengan jam pengatur atau sakelar biasa.
- ✓ Sinyal waktu tidak tetap (*vehicle actuated signal*).

 Yaitu cara pengaturan lampu lalu lintas berdasarkan kebutuhan arus lalu lintas dengan menggunakan alat deteksi (lampu lalu lintas diatur oleh kenderaan).

2.4.4 Persimpangan Tidak Bersinyal

Bentuk desain persimpangan tanpa lalu lintas merupakan pilihan pertama pada kelas-kelas jalan yang rendah, serta jika pada persimpangan jalan yang tidak melayani lalu lintas yang tinggi, pengalaman kecelakaan sangat rendah atau kecepatan jalan tersebut sangan rendah. Secara rinci pengaturan persimpangan sebidang dapat dibedakan atas aturan prioritas, rambu dan marka, analisa dan bundaran.

Kelebihan dari penerapan persimpangan tanpa arah lintas adalah:

- a. Biaya perawatan lebih sedikit.
- b. Tidak menghalangi ambulan atau mobil kenderaan penting lainnya untuk lewat.

Kelemahan dari penerapan persimpangan tanpa lampu lalu lintas adalah:

 Resiko kecelakaan menjadi lebih besar karena banyak yang melanggar dan mendahului.

- b. Luas lahan yang dibutuhkan maksimal karena memerlukan jarak pandang besar.
- Pengaturan pergerakan lau lintas yang tergantung pada kesadaran pengemudi Kenderaan

2.5 Jalan Perkotaan

Pengertian jalan perkotaan menurut Manual Kapasitas Jalan Indonesia (MKJI) 1997, merupakan ruas jalan yang memiliki pengembangan permanen dan menerus sepanjang seluruh atau hampir seluruh jalan, minimum pada satu sisi jalan. Jalan di atau dekat pusat perkotaan dengan penduduk lebih dari 100.000 (atau kurang dari 100.000 jika mempunyai perkembangan samping jalan yang permanen dan menerus), juga digolongkan sebagai jalan perkotaan. Adanya jam puncak lalu lintas pagi dan sore serta tingginya persentase kendaraan pribadi. Selain itu keberadaan kerb merupakan ciri prasarana jalan perkotaan.

Tipe jalan pada jalan perkotaan adalah sebagai berikut:

- 1. Jalan dua lajur dua arah (2/2 UD).
- 2. Jalan empat lajur dua arah.
 - a. Tak terbagi (tanpa median) (4/2 UD).
 - b. Terbagi (dengan median) (4/2 D).
- 3. Jalan enam lajur dua arah terbagi (6/2 D).
- 4. Jalan satu arah (1-3/1).

2.6 Kondisi dan Karakteristik Lalu Lintas

Ciri lalu lintas menjelaskan ciri arus lalu lintas secara kualitatif maupun kuantitatif dalam kaitannya dengan kecepatan, besarnya arus dan kepadatan lalu lintas serta hubungannya waktu maupun jenis kendaraan yang menggunaan ruang jalan. Karaktristik diperlukan untuk menjadi acuan perencanaan lalu lintas, karaktristik lalu lintas yang erat hubungannya dengan penghasilan dan perhitungan data-data sehingga menjadi jelas dan sistematis, notasi, istilah dan kondisi dan karaktristik yang bersipat umum akan di paparkan sebagai berikut.

.2.6.1 Karaktristik Kendaraan

Dalam berlalulintas terdapat berbagai jenis kendaraan yang masing-masing mempunyai ciri tersendiri, dengan perbedaan seperti dimensi, berat, kapasitas angkut, tenaga penggerak, karaktristik pengendalian yang sangat berpengaruh dalam operasi lalu lintas sehari-hari serta dalam perencanaan dan pengendalian lalu lintas. pada studi ini jenis kendaraan yang diteliti di kelompok kan kedalam empat jenis dengan karaktristik sebagai berikut.

1. Kendaran Ringan (LV)

Kendaraan bermotor ber as dua dengan 4 roda dan dengan jarak as 2,0 – 3,0 m (meliputi : mobil penumpang, oplet, mikrobis, dan truk kecil sesui dengan klasifiasi bina marga).

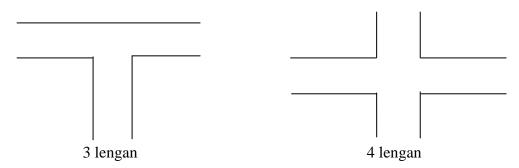
2. Kendaraan berat (HV)

Kendaraan bermotor dengan lenih dari 4 roda (meliputi bis, truk 2 as, truk 3 as,dan truk kombinasi sesui dengan sistem klasifiskasi bina marga)

3. Sepeda motor (MC)

Kendaraan bermotor dengan 2 atau 3 roda (meliputi : sepeda motor dan kendaraan roda 3 sesui sistem klasifikasi bina marga).

4. Kendaran tak bermotor (UM)


Kendaraan dengan roda yang di gerakkan lebih manusia (meliputi: sepeda, becak dan kereta dorong sesui dengan klasifikasi bina marga).

2.6.2 Karakteristik Geometrik

Dalam hal ini karakteristik goemetrik meliputi hal-hal yang erat kaitannya dengan geometrik persimpangan. Hal-hal tersebut berupa tipe persimpangan, penentuan jalan utama dan jalan minor, penetapan pendekatan dengan alfhabet A, B, C, D, tipe median, lebar pendekatan, lebar rata-rata semua pendekatan, dan juga jumlah jalur serta arah jalan. Penjelasan mengenai hal-hal diatas akan di paparkan berikut ini:

1. Tipe simpang

Merupakan kode untuk jumlah lengan simpang dan jumlah jalur pada jalan minor dan jalan utama simpang tersebut. biasanya persimpangan memiliki tiga (3) lengan atau empat (4) lengan.

Gambar 2.4: Tipe simpang 3 Lengan dan 4 lengan (MKJI, 1997).

2. Jalan utama dan jalan minor

Jalan utama adalah jalan yang paling penting pada persimpangan jalan, misalnya dalam hal klasifikasi jalan. Jalan utama biasanya lebih banyak di lalui atau dengan kata lain kepadatan kendaraan yang melalaui jalan ini lebih besar dari pada jalan minor merupakan jalan yang lebih sedikit volume kendaraan yang melaluinya. Pada suatu simpang tiga jalan yang menerus selalu ditentukan sebagai jalan utama.

3. Jalur dan lajur lalu lintas

Jalur lalu lintas (*traveled way*) adalah keseluruhan bagian perkerasan jalan yang diperuntukkan untuk lalu lintas kendaraan. Jalur lalu lintas terdiri dari beberapa lajur (*line*) kendaraan yaitu bagian dari lajur lalu lintas yang khusus diperuntukkan untuk dilalui oleh suatu rangkaian kendaraan berroda empat atau lebih dalam suatu arah. Lebar lalu lintas merupakan bagian yang paling menentukan lebar melintang jalan secara keseluruhan.

4. Bahu jalan

Bahu jalan adalah jalur yang terletak berdampingan dengan lalu lintas yang berfungsi sebagai:

a. Ruangan tempat berhenti sementara kendaraan.

- Ruangan untuk menghindarkan diri dari saat-saat darurat untuk mencegah kecelakaan.
- c. Ruangan pembantu pada saat mengadakan perbaikan atau pemeliharaan jalan.
- d. Memberikan sokongan pada konstruksi perkerasan jalan dari arah samping.

5. Trotoar dan kereb

Trotoar (*side walk*) adalah jalur yang terletak berdampingan dengan jalur lalu lintas yang khusus dipergunakan untuk pejalan kaki atau pedestrian. Kereb (*kerb*) adalah peninggian tepi perkerasan dan bahu jalan yang terutama dimaksudkan untuk keperluan drainase dan mencegah keluarnya kendaraan dari tepi perkerasan.

6. Median jalan.

Fungsi dari median jalan adalah sebagai berikut:

- a. Menyediakan garis netral yang cukup lebar bagi pengemudi dalam mengontrol kendaraan pada saat-saat darurat.
- b. Menyediakan jarak yang cukup untuk mengurangi kesilauan terhadap lampu besar dari kendaraan yang berlawanan arah.
- c. Menambah rasa kelegaan, kenyamanan dan keindahan bagi setiap pengemudi.
- d. Mengamankan kebebasan samping dari masing-masing arah lalu lintas.

2.7 Pengaturan Lalu Lintas di Persimpangan

Semakin besar volume kenderaan yang melewati persimpangan, maka konflik yang terjadi akan semakin banyak. Hal ini akan berbahaya apabila tidak ada pengaturan pada suatu persimpangan. Oleh karena itu pada suatu persimpangan yang sudah memiliki kriteria yang layak untuk dipasang alat pengatur lalu lintas sebaiknya direncanakan suatu sinyal lalu lintas.

Sinyal lalu lintas merupakan cara pengaturan yang paling umum digunakan pada sutu persimpangan. Parameter dasar dalam hitungan pengaturan lampu lalu lintas secara umum meliputi parameter pergerakan, parameter waktu dan parameter ruang (geometrik), perhitungan parameter waktu sinyal lalu lintas juga

termasuk perhitungan kinerja lalu lintas di persimpangan seperti tundaan, antrian dan jumlah terhenti. Parameter pergerakan yang utama adalah untuk mendefenisikan pergerakan baik kenderaan maupun pejalan kaki. Pergerakan tersebut dibedakan berdasarkan lokasi pergerakan dan arah pergerakan seperti lokasi jalur lurus, belok kiri dan belok kanan.

Masalah-masalah yang ada disamping dapat dipecahkan dengan cara meningkatkan kapasitas simpang dan mengurangi volume lalu lintas. Untuk meningkatkan kapasitas simpang dapat di lakukan dengan melakukan perubahan rencangan simpang seperti pelebaran cabang simpang, serta pengurangan arus lalu lintas dengan mengalihkan ke rute-rute lain. Tapi kedua cara tersebut kurang efektif, karna akan mengarah kepada peningkatannya jarak perjalanan.

Pemecahan masalah, terbatasnya kapasitas maupun ruas jalan secara sederhana dapat dilakukan dengan pelebaran jalan. Alternatif pemecahan lain adalah dengan metode sistem pengendalian simpang yang tergantung kepada volume lalu lintas. Faktor-faktor yang harus diperhitungkan dalam memilih suatu sistem simpang yang akan digunakan yaitu:

- ✓ Volume lalu lintas.
- ✓ Tipe kenderaan yang menggunakan simpang.
- ✓ Tipe guna lahan yang ada di sekitar simpang.
- ✓ Hirarki jalan.
- ✓ Lebar jalan yang tersedia.
- ✓ Kecepatan kendaraan.
- ✓ Akses kendaraan pada ruas jalan.
- ✓ Pertumbuhan lalu lintas dan distribusinya.
- ✓ Strategi manajemen lalu lintas.
- ✓ Keselamatan lalu lintas.

2.8 Volume Lalu Lintas

Volume lalu lintas menurut MKJI, 1997 adalah jumlah kendaraan yang lewat pada suatu jalan dalam satuan waktu (hari, jam, menit). Volume lalu lintas yang tinggi membutuhkan lebar perkerasan jalan yang lebih besar. Satuan volume lalu

lintas yang digunakan sehubungan dengan analisis panjang antrian dan volume jam perencanaan (VJP) dan kapasitas.

Volume lalu lintas dalam ruas jalur dapat terbagi menjadi komposisi pemisahan arah lalu lintas dan komposisi jenis kendaraan pada suatu ruas jalan. Komposisi lalu lintas mempengaruhi hubungan kecepatan arus jika arus dan kapasitas di nyatakan dalama kend/jam, yaitu tergantung pada rasio sepeda motor atau kedaraan berat dalam arus lalu lintas. Jika arus dan kapasitas dinyatakan dalam satuan mobil penumpang (SMP), maka kecepatan kendaraan ringan dan kapasitas (smp/jam), jika di pengaruhi oleh kompossisi lalu lintas (MKJI, 1997). Adapun nilai normal untuk komposisi lalu lintas pada jalan perkotaan adalah terlihat pada Tabel 2.1.

Tabel 2.1: Komposisi lalu lintas pada ruas jalan (MKJI, 1997).

NILAI NORMAL UNTUK KOMPOSISI LALU LINTA				
	Prosentase Jenis Kendaraan			
Ukuran Kota				
(Juta Pend.)	Kend. Ringan	Kend. Berat	SepedaMotor	
1	2	3	4	
< 0,1	45	10	45	
0,1 - 0,5	45	10	45	
0,5 - 1,0	53	9	38	
1,0 - 3,0	60	8	32	
> 3,0	69	7	24	

2.8.1 Karakteristik Volume Lalu Lintas

ADT (Average Daily Traffic) yaitu jumlah kendaraan yang lewat secara ratarata sehari (24 jam) pada ruas jalan tertentu, besarnya LHR akan menentukan dimensi penampang jalan yang akan dibangun. Volume lalu lintas ini bervariasi besarnya tidak tetap tergantung waktu fariasi dalam sehari, seminggu, sebulan, maupun setahun. Didalam satu hari biasanya terdapat dua waktu jam sibuk, yaitu pagi dan sore hari. Tetapi ada juga jalan-jalan yang mempunyai fariasi volume

lalu lintas yang merata. Volume lalu lintas selama jam sibuk dapat digunakan untuk merencanakan dimensi jalan untuk menampung lalu lintas.

Semakin tinggi volumenya, semakin besar dimensi yang diperlukan. Perlu pengamatan yang cermat tentang kondisi dilapangan sebelum menetapkan volume lalu lintas untuk kepentingan perencanaan. Suatu ciri lalu lintas pada suatu lokasi belum tentu sama dengan lokasi lain di dalam sebuah kota, apalagi kalau kotanya berlainan. Oleh karena itu untuk merencanakan suatu fasilitas perlalu lintasan pada suatu lokasi, sebaiknya harus diadakan penelitian. Suatu volume yang over estimat akan membuat jaringan jalan cepat mengalami kemacetan, sehingga memerlukan pengembangan pula.

Untuk menghitung volume lalu lintas perjam pada jam-jam puncak arus sibuk, agar dapat menentukan kapasitas jalan maka data volume kendaraan arus lalu lintas (per arah 2 total) harus diubah menjadi satuan mobil penumpang (SMP), dengan menggunakan ekivalen mobil penumpang yang terlihat pada Tabel 2.2 untuk jalan perkotaan terbagi dan Tabel 2.3 untuk jalan perkotaan tak terbagi.

Tabel 2.2: Ekivalen mobil penumpang jalan perkotaan terbagi (MKJI, 1997).

Tipe jalan satu arah dan jalan	Arus lalu lintas	EMP	
terbagi	(kend/jam)	HV	MC
Dua lajur satu arah (2/1)	0	1,3	0,40
Empat lajur terbagi (4/2D)	>1050	1,2	0,25
Tiga lajur satu arah (3/1)	0	1,3	0,40
Enam lajur terbagi (6/2D)	>1100	1,2	0,25

Tabel 2.3: Ekivalen mobil penumpang jalan perkotaan tak terbagi (MKJI, 1997).

	A 1.1	Emp		
	Arus lalu lintas total dua arah (kend/jam)		MC	
Tipe Jalan tak terbagi		HV	Lebar jalur lalu lintas Wc (m)	
			≤6	≥6
Dua lajur tak terbagi	0	1,3	0,5	0,40
(2/2 UD)	≥ 1800	1,2	0,35	0,25
Empat lajur tak terbagi	0	1,3	0,40	
(4/2 UD)	≥ 3700	1,2	0,25	

2.8.2 Tingkat Pelayanan (Level Of Service)

Tingkat pelayanan yaitu ukuran penilaian kualitas pelayanan suatu jalan. Dimana perbandingan antara volume dengan kapasitas dapat digunakan. Tingkat pelayanan gunanya untuk menjelaskan suatu kondisi yang dipengaruhi oleh kecepatan, waktu perjalanan, kebebasan untuk bergerak, gangguan lalu lintas, kenyamanan dan keamanan pengemudi. Tingkat pelayanan umumnya digunakan sebagai ukuran dari pengaruh yang membatasi akibat peningkatan volume lalu lintas.

Hubungan antara kecepatan dan volume jalan perlu diketahui karena kecepatan dan volume merupakan aspek penting dalam menentukan tingkat pelayanan jalan. Apabila volume lalu lintas pada suatu jalan meningkat dan tidak dapat mempertahankan suatu kecepatan konstan, maka pengemudi akan mengalami kelelahan dan tidak dapat memenuhi waktu perjalanan yang direncanakan.

Setiap ruas jalan dapat digolongkan pada tingkat tertentu antara A sampai F yang mencerminkan kondisinya pada kebutuhan atau volume pelayanan tertentu. Penjelasan singkat mengenai kondisi operasi tingkat pelayanan dapat dilihat pada Tabel 2.4.

Tabel 2.4: Karakteristik tingkat pelayanan (MKJI, 1997).

No	Tingkat pelayanan	Karakteristik	V/C ratio
1	A	 ✓ Kondisi arus bebas ✓ Kecepatan tinggi ≥ 100 km/jam ✓ Volume lalu lintas sekitas 30% dari kapasitas(600/smp/jam/jalur) 	0,00 - 0,20
2	В	 ✓ Arus stabil ✓ Kecepatan lalu lintas sekitar 90 km/jam ✓ Volume lalu lintas sekitas 50% dari kapasitas (1000 smp/jam/lajur) 	0,21 – 0,44
3	С	 ✓ Arus stabil ✓ Kecepatan lalu lintas sekitar ≥ 75 km/jam ✓ Volume lalu lintas sekitar 75 % dari kapasitas (1500 smp/jam/lajur) 	0,45 – 0,75
4	D	 ✓ Arus mendekati tidak stabil ✓ Kecepatan lalu lintas sekitar 60 km/jam ✓ Volume lalu lintas sekitar 90% dari kapasitas (1800 smp/jam/lajur) 	0,76 – 0,84
5	E	 ✓ Arus tidak stabil ✓ Kecepatan lalu lintas sekitar 50 km/jam ✓ Volume lalu lintas mendekati kapasitas (2000 smp/jam/lajur) 	0, 85 – 1,00
6	F	✓ Arus tertahan, kondisi terhambat✓ Kecepatan ≤ 50 km/jam	≥1,00

2.9 Kapasitas Simpang Jalan

Dalam penganalisaan kapasitas, ada suatu prinsip dasar yang obyektif yaitu perhitungan jumlah maksimum arus lalu lintas yang dapat ditampung oleh fasilitas yang ada serta sebagaimana kualitas opersional fasilitas itu sendiri yang tentunya akan sangat berguna dikemudian hari. Dalam merencanakan suatu fasilitas jarang dijumpai suatu perencanaan agar fasilitas tersebut dapat mendekati kapasitasnya.

2.9.1 Kapasitas dari Persimpangan Bersinyal

Kapasitas secara menyeluruh dari suatu persimpangan adalah merupakan akomodasi dari gerakan-gerakan yang utama dan membandingkan terhadap tiaptiap bagian dari kaki lajur yang ada. Kapasitas dari persimpangan didefenisikan untuk setiap bagian kakinya, kapasitas ini merupakan tingkat arus maksimum (maximum rate of flow) yang dapat melalui suatu persimpangan pada keadaan lalu lintas awal dan keadaan jalan serta tanda-tanda lalu lintasnya. Tingkat arus (rate of flow) umunya dihitung untuk priode waktu 15 menit dan dinyatakan dalam kenderaan perjam (vehicle/hour).

Kapasitas pada persimpangan untuk persimpangan bersinyal didasarkan pada konsep arus jenuh (*saturation flow*) dan tingkat arus jenuh (*saturation flow rate*). Didefenisikan sebagai tingkat arus maksimum (*rate of flow maksimum*) yang dapat melalui setiap kaki persimpangan batas grup lajur yang di asumsikan mempunyai 100 waktu hijau efektif (*effective green time*).

$$C = S \times \frac{g}{c} \tag{2.1}$$

Dimana:

C = Kapasitas untuk lengan atau kelompok lajur.

S = Arus jenuh dasar atau kelompok lajur.

g = Lama waktu hijau(detik).

c = Lama waktu siklus (detik)

Derajat Kejenuhan (*degree of saturation*) adalah perbandingan arus kedatangan dengan kapasitas dan dinyatakan dalam persamaan berikut (MKJI, 1997):

$$DS = \frac{Q}{c}$$
 (2.2)

Dimana:

Q =Arus lalu lintas.

c = waktu siklus.

DS = Derajat kejenuhan.

2.10 Perilaku Lalu Lintas

2.10.1 Arus Jenuh

Metode perhitungan arus jenuh yang diberikan Manual Kapasitas Jalan Indonesia (MKJI, 1997) ditentukan bahwa arus lalu lintas yang mengalir pada saat waktu hijau dapat di salurkan oleh suatu pendekatan. Penentuan arus jenuh dasar (So) untuk setiap pendekatan yang diuraikan di bawah ini:

Untuk pendekatan tipe p (*Protected*), yaitu arus terlindung:

$$S_0 = 600 \text{ x W}_e$$
 (2.3)

Dimana:

 S_O = arus jenuh dasar (smp/jam).

 W_e = Lebar jalan efektif (m).

Berdasarkan pada nilai jenuh dasar $S_{\rm O}$ yang menggunakan lebar pendekatan, maka besar jenuh dipengaruhi oleh komposisi kenderaan yakni dengan membagi kenderaan yang lewat atas jenis kenderaan penumpang. Kenderaan berat dan sepeda motor yang merupakan bagian dari arus lalu lintas.

Faktor-faktor yang mempengaruhi besar arus jenuh adalah lajur dalam kelompok lajur yang bersangkutan, lebar lajur, presentase kenderaan yang lewat, kemiringan memanjang jalan, adanya lajur parkir dan jumlah manufer parkir perjam, pengaruh penyesuaian kota dan penduduk, hambatan samping sebagai dari jenis lingkungan jalan dan pengaruh membelok ke kanan dan kekiri.

Persamaan sisematis untuk menyatakan hal diatas digunakan dalam perhitungan arus jenuh pada Pers. 2.4 dan Tabel 2.5.

$$S = S_O x F_{CS} x F_{SF} x F_G x F_P smp/jam.$$
 (2.4)

Dimana:

S =Arus jenuh untuk kelompok lajur yang dianalisis, dalam kenderaan waktu hijau (smp/jam)

S_O =Arus jenuh dasar untuk setiap pendekatan (smp/jam)

 F_{CS} =Faktor penyesuaian hambatan samping sebagai fungsi dari jenis lingkungan.

F_{SF} =Faktor penyasuaian ukuran kota dengan jumlah penduduk.

F_G =Faktor penyesuaian kelandaian jalan.

F_P =Faktor penyesuaian terhadap parkir.

Tabel 2.5: Faktor penyesuian ukuran kota.

Ukuran kota (juta penduduk)	Faktor penyesuaian untuk ukuran kota
< 0,1	0,82
0,1-0,5	0,83
0,5-0,1	0,94
1,0-3,0	1,00
>3,0	1,05

2.10.2 Panjang Antrian

Menurut (MKJI, 1997), jumlah rata-rata antrian pada awal sinyal hijau (NQ) dihitung sebagai jumlah smp yang tersisa dari fase hijau sebelumnya (NQ1) ditambah jumlah smp yang datang selama fase merah (NQ2).

$$NQ = NQ1 + NQ2 \tag{2.5}$$

Dengan,

$$NQ_1 = 0.25 \text{ .C.} \left[(DS - 1) + \sqrt{(DS - 1)^2 + \frac{8.(DS - 0.5)}{c}} \right]$$

untuk DS < 0.5 : NQ1 = 0

Dimana:

NQ1 = Jumlah smp yang tersedia dari fase hijau sebelumnya.

DS = Derajat kejenuhan.

$$NQ_2 = c x \frac{1-GR}{1-GR \times DS} \times \frac{Q}{3600}$$
 (2.6)

Dimana:

 NQ_2 = Jumlah smp yang datang selama fase merah.

GR = Rasiop hijau.

DS =Derajat kejenuhan

c = Waktu siklus.

C = Kapasitas smp/jam = arus jenuh kali rasio hijau (S x GR).

Q = Arus lalu lintas pada pendekat tersebut (smp/jam).

Panjang antrian (QL) kenderaan adalah dengan mengalikan NQmax dengan luas rata-rata yang dipergunakan per smp (20 m²) kemudian dibagi dengan lebar masuknya.

$$QL = (NQmaks \times 20) / Wmasuk.$$
 (2.7)

Dimana:

QL = panjang antrian

NQ = Jumlah rata-rata antrian pada awal sinyal hijau.

2.10.3 Kecepatan Arus Bebas

Kecepatan arus bebas (FV) didefinisikan sebagai kecepatan pada tingkat arus nol yaitu kecepatan yang akan dipilih pengemudi jika mengendarai kendaraan bermotor tanpa dipengaruhi oleh kendaraan bermotor lain di jalan dapat dilihat pada Tabel 2.6.

Berdasarkan MKJI (1997) untuk kecepatan arus bebas biasanya dipakai.

$$FV = (Fvo + FVw) \times FFVsf \times FFVcs$$
 (2.8)

Dimana:

FV = Kecepatan arus bebas sesungguhnya (LV) (Km/jam).

Fvo = Kecepatan arus bebas dasar (LV) (Km/jam).

FVw = Penyesuaian lebar jalan lalu lintas efektif (Km/jam).

FFVcs = Faktor penyesuaian kota.

FFVsf = Faktor penyesuaian hambatan samping.

Tabel 2.6: Kecepatan arus bebas dasar FVo untuk jalan perkotaan (MKJI, 1997).

	Kecepatan arus bebas dasar FVo (km/jam)			
Tipe jalan	Kendaran ringan (LV)	Kendaraan berat (HV)	Sepeda motor (MC)	Semua kendaraan (rata-rata)
Enam lajur terbagi (6/2 D) atau tiga lajur satu arah (3/1)	61	52	48	57

Tabel 2.6: Lanjutan.

	Kecepatan Arus Bebas Dasar FVo (km/jam)			
Tipe Jalan	Kendaraan ringan (LV)	Kendaraan berat (HV)	Sepeda Motor (MC)	Semua Kendaraan (Rata-rata)
Empat lajur terbagi	57	50	47	53
(4/2D) atau dua				
lajur satu arah (2/1)				
Empat lajur tak	53	46	53	51
terbagi (4/2 UD)				
Dua lajur tak	44	40	40	42
terbagi (2/2 UD)				

Penyesuaian kecepatan arus bebas untuk lebar jalur lalu lintas berdasarkan lebar jalur lalu lintas efektif dan kelas Hambatan samping dapat dilihat pada Tabel 2.4. Lebar lalu lintas efektif diartikan sebagai lebar jalur tempat gerakan lalu lintas setelah dikurangi oleh lebar jalur akibat hambatan samping. Faktor penyesuaian kecepatan arus bebas akibat lebar jalan (FV_W) dipengaruhi oleh kelas jarak pandang dan lebar jalur efektif dapat dilihat pada Tabel 2.7.

Tabel 2.7: Penyesuaian FVw untuk pengaruh lebar jalur lalu lintas pada kecepatan arus bebas kendaraan ringan (MKJI, 1997).

Tipe Jalan	Lebar lajur lalu lintas efektif (Wc) (M)	(Fvw Km/jam)
	Per lajur	
	3,00	-4
Empat lajur terbagi	3,25	-2
atau jalan satu arah	3,50	0
	3,75	2
	4,00	4
	Lebar lajur lalu lintas efektif	
Tipe jalan	(Wc)	(Fvw Km/jam)
	(M)	
	Per lajur	
	3,00	-4
Tipo iolon	3,25	-2
Tipe jalan	3,50	0
	3,75	2
	4,00	4

Tabel 2.7: Lanjutan.

Tipe Jalan	Lebar lajur lalu lintas efektif (Wc) (M)	(Fvw Km/jam)
	Per lajur	
	5	-9,5
	6	-3
Time islam	7	0
Tipe jalan	8	3
	9	4
	10	6
	11	7

Faktor penyesuaian kecepatan untuk ukuran kota merupakan faktor penyesuaian arus bebas dasar yang merupakan akibat dari banyaknya populasi penduduk suatu kota (MKJI 1997). Faktor penyesuaian kecepatan berdasarkan ukuran kota diperoleh dari Tabel 2.5. dan dapat dilihat pada Tabel 2.8.

Tabel 2.8: Faktor penyesuaian FFVCS untuk pengaruh ukuran kota pada kecepatan arus bebas kendaraan ringan (MKJI,1997).

Ukuran kota (jumlah penduduk)	Faktor penyesuaian untuk ukuran kota
< 0,1	0,90
0,1-0,5	0,93
0,5-1,0	0,95
1,0-1,3	1,00
>3,0	1,03

2.10.4 Kenderaan Terhenti (NS)

Angka henti (NS) masing-masing pendekat yang didefenisikan sebagai jumlah rata-rata berhenti per smp (termasuk berhenti berulang dalam antrian) dengan rumus dibawah NS adalah fungsi dari NQ dibagi dengan waktu siklus.

$$N_{s} = 0.9 \text{ x} \frac{NQ}{Q \times c} \text{ X 3600}$$
 (2.9)

Dimana:

c = Waktu siklus.

Q = Arus lalu lintas (smp/jam).

Hitung jumlah kenderaan henti (Nvs) masing-masing pendekatan dengan rumus:

$$Nvs = Q \times NS (smp/jam)$$
 (2.10)

Hitungan angka henti seluruh simpangan dengan cara membagi jumlah kenderaan terhenti pada seluruh pendekat dengan arus simpang total Q dalam kend/jam.

$$NS_{TOT} = \frac{\sum N_{SV}}{o \ TOT}$$
 (2.11)

2.10.5 Tundaan (Deelay)

Tundaan merupakan waktu yang hilang akibat di pengaruhi oleh susatu unsur yang tidak dapat di kendalikan oleh pengendara baik di dalam lalu-lintas itu sendiri maupun dari arus lalu-lintas itu sendiri maupun dari arus lalu-lintas lain.

Hitunga tundaan lalu lintas rata-rata setiap pendekatan (DT) akibat pengaruh timbal balik dengan gerakan-gerakan lainnya pada simpang sebagai berikut:

$$DT = c \times A + \frac{NQ1 \times 3600}{C}$$
 (2.12)

Dimana:

DT = Tundaan lalu lintas rata-rata (det/smp)

c = Waktu siklus yang disesuaikan (det)

A =
$$\frac{0.5 x (1-GR)^2}{(1-GR \ x DS)}$$

GR = Rasio Hijau $(\frac{g}{c})$.

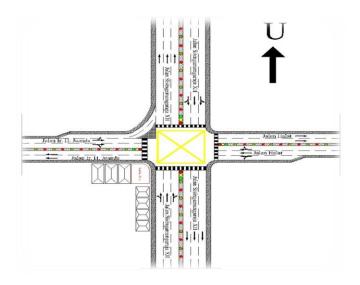
Ds = Derajat kejenuhan

NQ1 = Jumlah smp yang tersisa dari fase hijau sebelumnya.

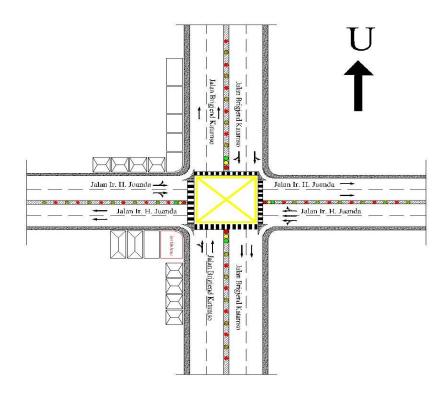
C = Kapasitas (smp/jam)

2.10.6 Pelanggaran

Pelanggaran yang terjadi di dalam ruas jalan dapat diketahui dari rumus yaitu: Presentase pelanggaran = (Total Pelanggar / Volume kendaraan) x 100 (2.13)


BAB 3

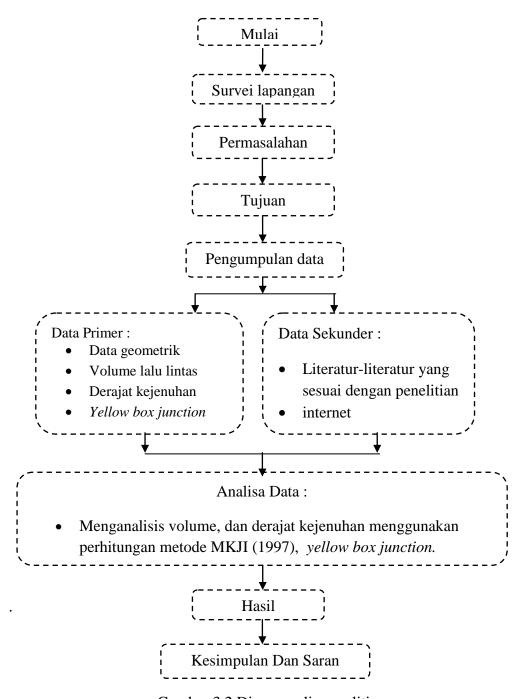
METODE PENELITIAN


3.1 Lokasi dan Waktu Penelitian

Sesuai dengan tujuan dari tugas akhir ini, yaitu mengevaluasi kondisi lengan jalan dengan operasional sinyal lampu lalu lintas, maka untuk pemeliharaan lokasi lengan jalan dipilih adalah lengan yang mengalami kendala antrian panjang pada saat jam sibuk. Jam sibuk dimaksudkan adalah pada periode dimana arus lalu lintas tersendat (*congestio*).

Pengamatan arus lalu lintas didasarkan pada pengamatan arus rata-rata suatu periode jam puncak (*peak hour*). Berdasarkan pengamatan pendahuluan yang dilakukan secara visual selama dua minggu, di karenakan dua titik persimpangan, pada tanggal 09 Januari sampai dengan 22 Januari 2017, yaitu pada jam puncak selama priode pagi (jam 07.00-09.00), siang (jam 11.00-13.00), sore (jam 16.00-18.00), pada Jalan Ir. H. Juanda-jalan Sisingamaraja (Simpang Satu), dan Jalan Ir. H. Juanda-Jalan Brigjend Katamso (Simpang Dua), dalam, periode pengamatan adalah 2 jam Sibuk dengan interval waktu selama 15 menit (Gambar 3.1 dan 3.2).

Gambar 3.1: Lokasi penelitian Jalan Ir. H. Juanda-Sisingamaraja.


Gambar 3.2: Lokasi penelitian Jalan Ir. H. Juanda-Brigjend Katamso.

3.2 Metode Penelitian

Penelitian terhadap lengan Jalan pada Jalan Ir. H. Juanda-Sisingamara dan Jalan Ir. H. Juanda-Brigjend Katamso Medan kota, adalah untuk menganalisis marka *yellow box junction* di lengan Jalan bersinyal. yaitu pada Hari Senin, Selasa, Rabu, Kamis, Jumat, Sabtu dan Minggu. Sedangkan interval waktu pengamatan akan dilakukan selama 15 menit. Dan penelitian ini di lakukan selama 12 jam yaitu pada jam 06.00-18.00.

3.3 Diagram Alir Penelitian

Adapun tahapan penyusunan Tugas Akhir ini seperti yang terllihat dalam bagan alir (Gambar 3.2).

Gambar 3.2 Diagram alir penelitian.

3.4 Metode Analisis Data

Metode yang digunakan dalam penelitian ini menggunakan kajian deskriptif untuk mencari besarnya volume lalu lintas pada suatu ruas jalan terhadap kelancaran lalu lintas dengan menggunakan metode Manual Kapasitas Jalan Indonesia (MKJI) 1997. Teknik pengumpulan data menggunakan teknik observasi dan menggunakan data geometrik jalan.

3.5 Instrumen Penelitian

Untuk memudahkan perhitungan dengan tingkat penelitian presisi maka analisis data dilakukan menggunakan perangkat lunak Microsoft Excel, sedangkan perhitungan arus kendaraan dan sebagainya menggunakan metode MKJI 1997.

3.6 Teknik Pengumpulan Data

Pengumpulan data di lapangan harus dilakukan dengan cara seteliti mungkin agar diperoleh data akurat dan memenuhi. Data yang diukur adalah data geometrik jalan dari lengan jalan yang digunakan sebagai lokasi penelitian. Survei yang dilakukan adalah survei jumlah kendaraan dan survei volume lalu lintas.

Survei dilakukan dengan cara menghitung langsung jumlah kendaraan dan yang melewati titik pengamatan dengan menggunakan cara manual. Survei dilakukan oleh empat surveyor pada titik pengamatan untuk setiap arah lalu lintas, dimana setiap surveyor akan menghitung tiap jenis kendaraan berdasarkan klasifikasi kendaraan. Jenis kendaraan yang diamati adalah:

- 1. Kelompok kenderaan sepeda motor (MC), Semua jenis kenderaan bermotor roda 2 atau 3.
- 2. Kelompok kendaraan ringan (LV) kenderaan bermotor ber-as 2 dengan 4 roda dan dengan jarak as 2-3 (meliputi mobil penumpang, mobil pribadi, pick up dan truk kecil).

- 3. Dan kelompok kendaraan berat (HV), kenderaan bermotor dengan lebih dari 4 roda (meliputi bus besar, truk 2 as, truk 3 as dan truk kombinasi).
- 4. Kelompok kendaraan Umum (UM), kendraan tidak bermotor.

3.7 Pengambilan Data Geometrik

Geometrik adalah dimensi yang nyata dari suatu jalan beserta bagian-bagian yang disesuikan dengan tuntunan serta sifat-siafat lalu lintasnya. Informasi tentang kondisi geometrik jalan dalam menganaisa kinerja lalu lintas sangatlah penting data goemetrik yang di dapat akan mempengaruhi penentuan faktor penyesuaian untuk perhitungan dan penentuan kinerja lalu lintas, adapun data. yang di ambil adalah terlihat pada Tabel 3.1 dan 3.2.

Tabel 3.1: Geometrik persimpangan Jalan Ir. H. Juanda-Sisingamangaraja.

Pendekat	Utara	Selatan	Timur	Barat
Lebar Jalur (m)	8,0 m	8,7 m	6,0 m	6,0 m
Lebar Lajur (m)	2,6 m	2,9 m	3,0 m	3,0 m
Lebar LT/Ltor	2,6 m	2,9 m	3,0 m	3,0 m
Lebar Median (m)	1,0 m	1,0 m	80 cm	60 cm
Lebar Bahu Jalan(m)	30 cm	30 cm	30 cm	30 cm
Jumah Lajur	3	3	2	2
Lebar YJB (P x L)	23,90 x 40 m			

Tabel 3.2: Geometrik persimpangan Jalan Ir. H. Juanda-Jalan Brigjend Katamso.

Pendekat	Utara	Selatan	Timur	Barat
Lebar Jalur (m)	8,0 m	6,70 m	6,0 m	8,0 m
Lebar Lajur (m)	4,0 m	3,35 m	3,0 m	4,0 m
Lebar LT/Ltor	4,40 m	4,4 cm	2,60 m	6,40 m
Lebar Median (m)	1,60 m	1,80 m	1,0 m	1,0 m
Lebar Bahu Jalan(m)	30 cm	30 cm	30 cm	30 cm
Jumah Lajur	2	2	2	2
Lebar YJB (P x L)	26 x 21,30 m			

3.8 Alat Yang Digunakan

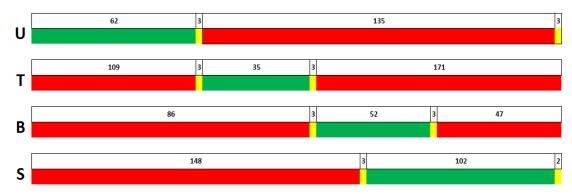
Adapun Alat yang di gunakan adalah:

- 1. Satu buah meteran yang digunakan untuk mengukur jarak serta lebar dari ruas jalan yang akan diamati.
- 2. *Stop watch* atau Jam, di gunakan untuk mengetahui waktu serta priode pengamatan.
- 3. Kamera sebagai alat bantu untuk mengambil dokumentasi pada saat pelakasaan Survei
- 4. Alat Tulis digunakan untuk membantu saat survei berlangsung.
- 5. *Multi Counter* sebagai alat bantu untuk perhitungan jumlah kendaraan yang lewat.

BAB 4

ANALISIS DATA

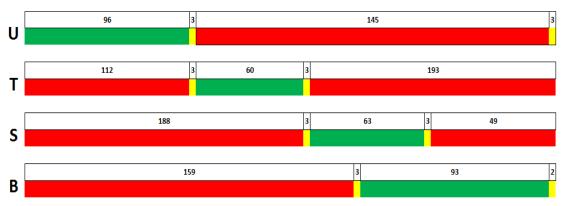
4.1 Tinjauan Umum


Jalan Ir. H. Juanda-Sisingamangraja dan Jalan Ir. H. Juanda-Brigjend Katamso merupakan jalan yang sering mengalami kemacetan pada saat jam-jam sibuk karena berada pada daerah pertokoan, perkantoran, yang berada di sepanjang ruas jalan tersebut.

4.2 Data Traffic light Simpang

Data *traffic light* persimpangan setiap lengan pendekat diperoleh dari hasil survei langsung di lapangan. Berikut ini data dari setiap lengan pendekat persimpangan Jl. Ir. H. Juanda-Sisingamaraja. dapat di lihat pada Tabel 4.1 dan Gambar 4.1 dan Jl. Ir. H. Juanda-Brigjend Katamso pada Tabel 4.2 dan Gambar 4.2.

Tabel 4.1: Fase sinyal persimpangan Jalan Ir. H. Juanda-Jalan Sisingamangaraja.


FASE SINYAL YANG ADA				
U	S	В	T	Waktu
g = 62	g = 102	g = 52	g = 35	Siklus
		ا بــ		C = 263
· A	$\sim \Lambda$	→ ₩	~ V	
4T7 A	NTZ -	177 A	17 5	
	Y ⊱	\(\(\) \>=		Waktu
	•••			hilang total
IC 2	IC 2	IC 2	IC 2	LTI =
IG = 3	IG = 3	IG = 3	IG = 3	Σ IG =12

Gambar 4.1: Siklus *traffic light* simpang Jalan Ir. H. Juanda - Jalan Sisingamangaraja.

Tabel 4.2: Fase sinyal persimpangan Jalan Ir. H. Juanda-Jalan Brigjend Katamso.

FASE SINYAL YANG ADA				
U	S	В	T	Waktu
g = 96	g = 63	g = 93	g = 60	Siklus
₹ 1	₩	₩		C = 324
				Waktu hilang total
				$LTI = $ $\Sigma IG = 12$
IG = 3	IG = 3	IG = 3	IG = 3	<u> 2</u> 10 –12

Gambar 4.2: Siklus *traffic light* simpang Jalan Ir. H. Juanda - Jalan Brigjend Katamso.

4.3 Data Lalu Lintas

Data lalu lintas yang diperoleh dari survey lapangan dapat di lihat pada Tabel 4.3.

Tabel 4.3: Data lalu lintas yang diperoleh dari survei lapangan (Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

	JUMLAH KENDARAAN PER JAM PUNCAK			
HARI SURVEI				TOTAL
	07.00-019.00	11.00-13.00	16.00-18.00	
SENIN 09 JANUARI 2017	14309	10875	18962	44146
SELASA 10 JANUARI2017	9144	9717	14698	33559
RABU 11 JANUARI 2017	8936	9448	14510	32894
KAMIS 12 JANUARI 2017	10409	8931	13562	32902
JUMAT 13 JANUARI2017	8869	9115	13070	31054
SABTU 14 JANUARI 2017	8755	9897	14705	33357
MINGGU 15 JANUARI 2017	7283	7096	13869	28248
			Max=	44146

Untuk perhitungan data lalu lintas di ambil yang paling tertinggi pada hari Senin, 09 Januari 2017 dengan total 44146 kendaraan/hari pada persimpangan Jalan Ir. H. Juanda-Jalan Sisingamangaraja.

4.4 Perhitungan Volume Dan Kapasitas

Volume lalu lintas dihitung menurut jenis kendaraan:

LV: Mobil pribadi, pick up, bus kecil.

HV: Bus besar, truk 2 as.

MC: Sepeda motor, becak mesin.

Jadi untuk Q dalam smp/jam didapat:

Qst =
$$(LV \times EMP LV) + (HV \times EMP HV) + (MC \times EMP MC)$$

= $(497 \times 1) + (5 \times 1,3) + (1023 \times 0,2)$
= $708,1 \text{ smp/jam}.$
Qrt = $(LV \times EMP LV) + (HV \times EMP HV) + (MC \times EMP MC)$
= $(95 \times 1) + (2 \times 1,3) + (247 \times 0,2)$

= 147 smp/jam.

Qtotal = 855,1 smp/jam.

Kapasitas lengan persimpangan berlampu lalu lintas dipengaruhi oleh beberapa faktor, yaitu nilai arus jenuh (S), waktu hijau efektif (g), dan waktu siklus (c). Adapun nilai arus jenuh pada persimpangan dapat dihitung dengan persamaan:

S = So x Fcs x Fsf x Fg x Fp x Fltx Frt (smp/waktu hijau efektif)

Dimana:

SO, adalah arus jenuh dasar. Untuk suatu ruas jalan (pendekat) terlindung yaitu tidak terjadi konflik antara kendaraan yang berbelok dengan lalu lintas yang berlawanan maka penentuan arus jenuh dasar (SO) ditentukan sebagai fungsi dari lebar efektif (We) yaitu:

 \gt S_O = 600 x We

 $= 600 \times 8,7$

= 5220 smp/jam (pendakat selatan, simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

 F_{CS} = Faktor penyesuai ukuran kota, berdasarkan jumlah penduduk Kota Medan yakni sebesar 2,2 juta jiwa (berada pada range 1 – 3 juta jiwa), maka nilai F_{CS} = 1.00 (untuk nilai semua pendekat)

 F_{SF} = Faktor penyesuaian hambatan samping, berdasarkan kelas hambatan samping, dari lingkungan jalan tersebut, maka dinyatakan lingkungan jalan adalah termasuk kawasan komersial (COM). Jalan yang ditinjau merupakan jalan dua arah dipisahkan oleh median dengan tipe fase terlindung, sehingga dengan rasio kendaraan tak bermotor dan nilai F_{SF} adalah sebagai berikut :

➤ Pendekat Selatan (simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja):

UM = Data survei tidak bermotor.

MV = Kendaraan total bermotor (MC+LV+HV).

ST, UM = 1, MV,MC = 1023, MV,LV = 497, MV,HV = 5 = UM/MV = 1/1525 = 0,001

Maka UM/MV bagian Selatan:

ST,
$$UM/MV = 0,001 + RT$$
, $UM/MV = 0,000 + LTOR$, $UM/MV = 0,003$
 $UM/MV = 0,004$

Untuk mendapatkan nilai F_{SF} maka dilakukan interpolasi:

$$\frac{0,05 - 0,00}{0,93 - 0,95} = \frac{0,05 - 0,004}{0,93 - x}$$

$$\frac{0,05}{-0,02} = \frac{0,046}{0,93 - x}$$

$$-2,5 (0,93 - x) = 0,046$$

$$-2,325 + 2,5x = 0,046$$

$$x = \frac{2,325 + 0,046}{2,5}$$

$$= 0,948$$

 $F_{SF} = 0.948$ (hasil interpolasi Tabel C-4:4 Hal: 2-53 MKJI 1997)

 F_G = Faktor penyesuaian terhadap kelandaian (G), berdasarkan naik (+) atau turun (-) permukaan jalan, FG = 1,00 (mendatar)

 F_P = Faktor penyesuaian parkir (P), berdasarkan jarak henti kendaraan parkir, FP = 1,00

F_{RT} = Faktor penyesuaian belok kanan, ditentukan sebagai fungsi rasio belok kanan PRT. Untuk jalan yang dilengkapi dengan median, nilai FRT tidak diperhitungkan.

F_{LT} = Faktor penyesuaian belok kiri, ditentukan sebagai fungsi dari rasio belok kiri PLT. Untuk jalan yang dilengkapi dengan lajur belok kiri jalan terus (LTOR) maka nilai FLT tidak diperhitungkan, FLT = 1.00 maka:

$$\triangleright$$
 S = S₀ x F_{CS} x F_{SF} x F_G x F_P x F_{LT}x F_{RT}

$$= 5220 \times 1.0 \times 0.948 \times 1.0 \times 1.0 \times 1.0 \times 1.0$$

= 4949 smp/jam hijau (Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja). Dapat di lihat pada Tabel 4.4.

Tabel 4.4: Arus jenuh (simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

No	Pendekat	Q (smp/jam)	S (smp/jam)
1	Selatan	855	4949

Setelah diperoleh nilai arus jenuh, kemudian dihitung nilai Rasio arus (FR) masing-masing pendekat dengan persamaan:

$$ightharpoonup$$
 FR = Q/S

= 855/4949

= 0,173 (Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

Nilai FR untuk tiap pendekat merupakan nilai tertinggi pada masing-masing fase (FRcrit), kemudian dijumlahkan sehingga diperoleh IFR. Adapun nilai IFR untuk persimpangan ini adalah:

IFR =
$$\Sigma$$
 FRcrit

= 0,853 (simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

Setelah diperoleh IFRnya, selanjutnya dihitung nilai fase masing-masing pendekat dengan persamaan:

=0.173/0.853

= 0,203 (Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

Setelah parameter di atas diperoleh, maka selanjutnya akan dihitung kapasitas (C), dan derajat kejenuhan (DS) masing-masing pendekat, yaitu:

> C =
$$S \frac{g}{c}$$

= 4949 x $\frac{102}{263}$

=1919 smp/jam. (Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

Kemudian untuk derajat kejenuhan (DS) masing-masing pendekat menggunakan rumus di bawah ini:

$$P$$
 DS = Q/C = 855/1919

= 0,446 (Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

4.5 Perilaku Lalu Lintas

4.5.1 Panjang Antrian

Jumlah rata-rata antrian (smp) pada awal sinyal hijau yaitu NQ dihitung sebagai jumlah kendaraan (smp) yang tersisa dari fase hijau sebelumnya (NQ1) ditambah jumlah kendaraan (smp) yang akan datang selama fase merah (NQ2).

$$NQ = NQ1 + NQ2$$

Dimana:

NQ1 Untuk DS > 0.5:

$$NQ1 = 0.25 \ x \ C \ x \ [(DS - 1) + \sqrt{(DS - 1)^2 + \frac{8 \ x \ (DS - 0.5)}{C}}]$$

Untuk DS < 0.5 maka nilai NQ1 = 0

$$NQ2 = C x \frac{1 - GR}{1 - GR \times DS} \times \frac{Q}{3600}$$

Dimana nilai:

$$GR = \frac{g}{c}$$

Maka Nilai NQ1 diperoleh:

$$NQ1 = 0.25 \times 1919 \times \left[(0.446 - 1) + \sqrt{(0.446 - 1)^2 + \frac{8 \times (-0.5)}{1919}} \right]$$

= -0,1 (Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

Nilai GR diperoleh:

$$\Rightarrow$$
 $GR = \frac{102}{263} = 0.388$

(Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

Maka nilai NQ2 diperoleh:

$$NQ2 = 263 x \frac{1-0.388}{1-0.388 \times 0.446} x \frac{855}{3600} = 46.2$$

(Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

Sehingga, untuk nilai NQ total diperoleh:

$$\triangleright$$
 Untuk nilai NQ1 + NQ2 = -0,1 + 46,2

$$= 46,1 smp$$

(Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

Panjang antrian
$$QL = \frac{NQ \max x \ 20}{W \max uk}$$

$$P QL = \frac{46,1 \times 20}{8.7} = 106,1 m$$

(Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

4.5.2 Jumlah Kendaraan Terhenti

Angka henti (NS) masing-masing pendekat didefenisikan sebagai jumlah rata-rata berhenti per smp (termasuk berhenti berulang dalam antrian).

NS = 0.9
$$x \frac{NQ}{Qxc} x$$
 3600
= 0.9 $x \frac{-0.1}{855 \times 263} x$ 3600

= 0,7(Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

Setelah diperoleh nilai angka henti (NS), selanjutnya dihitung jumlah kendaraan terhenti (N_{SV}) masing-masing pendekat, yaitu:

$$N_{SV} = Q \times N_{S}$$

= 855 x 0,7

= 568 smp/jam (Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

Selanjutnya dihitung angka henti seluruh simpang dengan cara membagi jumlah kendaraan terhenti pada seluruh pendekat dengan arus simpang total Q dalam smp/jam.

$$NS_{TOT} = \frac{\sum N_{SV}}{Q_{tot}} = \frac{7146}{4005} = 1,852$$

(Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

4.5.3 Tundaan

Langkah-langkah perhitungan tundaan adalah:

1. Hitung tundaan lalu lintas rata-rata tiap pendekat (DT) akibat pengaruh timbal balik dengan gerakan-gerakan lainnya pada simpang, yaitu:

$$DT = C x A + \frac{NQ1 x 3600}{C}$$

Dimana A:

$$A = \frac{0.5 x (1-GR)2}{(1-GR x DS)}$$
$$= \frac{0.5 x (1-0.388)}{(1-0.388 x 0.446)}$$

= 0,7 (Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

Sehingga:

$$ightharpoonup$$
 DT = 263 x 0,7 + $\frac{-0.1 \times 3600}{1919}$

- = 180,5 det/smp (Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).
- 2. Tentukan tundaan geometri rata-rata masing-masing pendekat (DG) akibat perlambatan atau percepatan ketika menunggu giliran pada suatu simpang dan atau ketika dihentikan oleh lampu merah:

$$DG = (1 - Psv) \times Pt \times 6 + (Psv \times 4)$$

Dimana, P_{SV}= rasio kendaraan terhenti pada pendekat atau (NS) dari Formulir SIG-V, PT= rasio kendaraan berbelok pada pendekat dari Formulir SIG-IV.

Sehingga:

- \triangleright DG = $(1 0.09) \times 0.7 \times 6 + (0.09 \times 4)$
 - = 2,8 det/smp (Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).
- 3. Kemudian dihitung tundaan rata-rata (det/smp) sebagai jumlah dari tundaan lalu lintas rata-rata dengan tundaan geometrik rata-rata, yaitu:

$$\rightarrow$$
 D = DT + DG
= 180,5+2,8

- = 183,3 det/smp (Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).
- 4. Selanjutnya dihitung tundaan total dengan mengalikan tundaan rata-rata dengan arus lalu lintas, yaitu:
- ➤ Tundaan total = D x Q = 183,3 x 855 = 156767 smp/det (Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).
- 5. Hitung tundaan rata-rata untuk seluruh simpang (DI) dengan membagi jumlah nilai tundaan dengan arus total (Qtot) dalam smp/jam, yaitu:

$$DI \frac{\sum (Q \times D)}{Qtot} = \frac{2556974}{4005} = 638,51 \text{ smp/det}$$

(Pendekat Selatan simpang Jalan Ir. H. Juanda-Jalan Sisingamangaraja).

Tabel 4.5: Pelanggaran *Yellow Box Junction*.

		1	UTARA									
***	Jumla	h kndr										
WAKTU	Kndr Rin Kend/jam	Smp/jam	Kend/jam	Smp/jam	Kend/jam	Smp/jam						
07.00 - 08.00	2	2	9	1,8	11	3,8						
08.00 - 09.00	3	3	7	1,4	10	4,4						
11.00 - 12.00	4	4	12	2,4	16	6,4						
12.00 - 13.00	2	2	14	2,8	16	4,8						
16.00 - 17.00	3	3	21	4,2	24	7,2						
17.00 - 18.00	4	4	18	3,6	22	7,6						
					99	34,2						
TIMUR												
WARTI	Kndr Ri	ngan LV	Spd Mo	otor MC	Jumla	h kndr						
WAKTU	Kend/jam	Smp/jam	Kend/jam	Smp/jam	Kend/jam	Smp/jam						
07.00 - 08.00	2	2	4	0,8	6	2,8						
08.00 - 09.00	2	2	4	0,8	6	2,8						
11.00 - 12.00	3	3	5	1	8	4						
12.00 - 13.00	4	4	9	1,8	13	5,8						
16.00 - 17.00	2	2	6	1,2	8	3,2						
17.00 - 18.00	4	4	13	2,6	17	6,6						
		58	25,2									
]	BARAT									
WAKTU	Kndr Ri	ngan LV	Spd Mo	otor MC	tor MC Jumlah knd							
WARIU	Kend/jam	Smp/jam	Kend/jam	Smp/jam	Kend/jam	Smp/jam						
07.00 - 08.00	0	0	6	1,2	0	1,2						
08.00 - 09.00	3	3	3	0,6	6	3,6						
11.00 - 12.00	3	3	6	1,2	9	4,2						
12.00 - 13.00	5	5	9	1,8	14	6,8						
16.00 - 17.00	3	3	7	1,4	10	4,4						
17.00 - 18.00	2	2	10	2	12	4						
					51	24,2						
		Sl	ELATAN									
WAKTU	Kndr Ri	ngan LV	Spd Mo	otor MC	Jumla	h kndr						
WAKIU	Kend/jam	Smp/jam	Kend/jam	Smp/jam	Kend/jam	Smp/jam						
07.00 - 08.00	5	5	9	1,8	14	6,8						
08.00 - 09.00	5	5	6	1,2	11	6,2						
11.00 - 12.00	6	6	8	1,6	14	7,6						
12.00 - 13.00	4	4	12	2,4	16	6,4						
16.00 - 17.00	6	6	13	2,6	19	8,6						
17.00 - 18.00	3	3	8	1,6	11	4,6						
					85	40,2						
	TOTAL Pel	anggaran Ha	ri Senin		293	123,8						

Pelanggaran di *yellow Box Junction*

Survei pelanggaran yellow box junction pada persimpangan jalan Ir. H.

Juanda-Brigjend katamso dapat di lihat pada Tabel 4.5.

Presentase pelanggaran = (Total Pelanggar / Volume kendaraan) x 100

$$= \frac{124}{4005} \times 100$$
$$= 3.09\%$$

Analisis *Yellow Box Juction* pada daerah Medan.

Berdasarkan persyaratan penempatan *Yellow Box* yang telah banyak dipakai di Indonesia khususnya Kota Medan, maka kondisi marka di lengan jalan Ir. H. Juanda-Sisingamangaraja, berdasarkan hasil survei dan kecocokan persyaratan *yellow box junction* maka dapat di simpulkan bahwa penempatan *yellow box junction* pada daerah Medan telah memenuhi persyaratan, tetapi pelanggaran masih banyak terjadi di *yellow box* terutama para pengendara sepeda motor. Dapat di lihat pada Tabel 4.6.

Tabel 4.6: Data lalu lintas yang diperoleh dari survei lapangan (Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

	JUMLAH KEI									
HARI SURVEI										
	07.00-09.00	11.00-13.00	16.00-18.00							
SENIN 16 JANUARI 2017	7775	6831	9431	24037						
SELASA 17 JANUARI2017	7453	6632	9029	23114						
RABU 18 JANUARI 2017	7491	6388	8514	22393						
KAMIS 19 JANUARI 2017	7090	6272	8855	22217						
JUMAT 20 JANUARI 2017	6984	6177	8565	21726						
SABTU 21 JANUARI 2017	6806	6560	8575	21941						
MINGGU 22 JANUARI 2017	6214	5458	7731	19403						
			Max=	24037						

Untuk perhitungan datalalu lintas di ambil yang paling tertinggi pada hari Senin, 16 Januari 2017 dengan total 2437 kendaraan/hari pada persimpangan Jalan Ir. H. Juanda-Jalan Brigjend Katamso.

4.6 Perhitungan Volume Dan Kapasitas

Volume lalu lintas dihitung menurut jenis kendaraan:

LV: Mobil pribadi, pick up, bus kecil.

HV: Bus besar, truk 2 as.

MC: Sepeda motor, becak mesin.

Jadi untuk Q dalam smp/jam didapat:

Qst =
$$(LV \times EMP LV) + (HV \times EMP HV) + (MC \times EMP MC)$$

= $(234 \times 1) + (5 \times 1,3) + (470 \times 0,2)$
= $334,5 \text{ smp/jam}$.
Qrt = $(LV \times EMP LV) + (HV \times EMP HV) + (MC \times EMP MC)$
= $(58 \times 1) + (3,9 \times 1,3) + (23 \times 0,2)$
= $84,9 \text{ smp/jam}$.
Qtotal = $419,4 \text{ smp/jam}$.

Kapasitas lengan persimpangan berlampu lalu lintas dipengaruhi oleh beberapa faktor, yaitu nilai arusjenuh (S), waktu hijau efektif (g), dan waktu siklus (c). Adapun nilai arus jenuh pada persimpangan dapat dihitung dengan

S = So x Fcs x Fsf x Fgx Fp x Flt x Frt (smp/waktu hijau efektif).

Dimana:

persamaan:

SO, adalah arus jenuh dasar. Untuk suatu ruas jalan (pendekat) terlindung yaitu tidak terjadi konflik antara kendaraan yang berbelok dengan lalu lintas yang berlawanan maka penentuan arus jenuh dasar (S0) ditentukan sebagai fungsi dari lebarefektif (We) yaitu:

 F_{CS} =Faktor penyesuai ukuran kota, berdasarkan jumlah penduduk Kota Medan yakni sebesar 2,2 juta jiwa (berada pada range 1-3 juta jiwa), maka nilai $F_{CS} = 1.00$ (untuk nilai semua pendekat).

 F_{SF} =Faktor penyesuaian hambatan samping, berdasarkan kelas hambatan samping, dari lingkungan jalan tersebut, maka dinyatakan lingkungan jalan adalah termasuk kawasan komersial (COM). Jalan yang ditinjau merupakan jalan dua arah dipisahkan oleh median dengan tipe fase terlindung, sehingga dengan rasio kendaraan tak bermotor dan nilai F_{SF} adalah sebagai berikut:

Pendekat Utara (simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso):

UM = Data survei tidak bermotor.

MV = Kendaraan total bermotor (MC+LV+HV).

ST,
$$UM = 1$$
, MV , $MC = 470$, MV , $LV = 234$, MV , $HV = 5$

$$= UM/MV = 1/709 = 0,001$$

RT,
$$UM = 3,MV,MC = 115, MV,LV = 58, MV,HV = 3$$

= $UM/MV = 3/176 = 0.017$

LTOR, UM = 1, MV,MC = 104, MV,LV = 58, MV,HV = 2
=
$$UM/MV = 1/164 = 0,006$$

Maka UM/MV bagian Utara:

ST,
$$UM/MV = 0.001 + RT$$
, $UM/MV = 0.017 + LTOR$, $UM/MV = 0.006$
 $UM/MV = 0.024$

Untuk mendapatkan nilai F_{SF}, maka dilakukan interpolasi:

$$\frac{0,05 - 0,00}{0,93 - 0,95} = \frac{0,05 - 0,024}{0,93 - x}$$

$$\frac{0,05}{-0,02} = \frac{0,026}{0,93 - x}$$

$$-2,5 (0,93 - x) = 0,026$$

$$-2,325 + 2,5x = 0,026$$

$$x = \frac{2,325 + 0,026}{2,5}$$

$$= 0,940$$

 $F_{SF} = 0.940$ (hasil interpolasi Tabel C-4:4, MKJI, 1997).

- F_G =Faktor penyesuaian terhadap kelandaian (G), berdasarkan naik (+) atau turun (-) permukaan jalan, FG = 1,00 (mendatar)
- F_P =Faktor penyesuaian parkir (P), berdasarkan jarak henti kendaraan parkir,FP = 1,00
- F_{RT} =Faktor penyesuaian belok kanan, ditentukan sebagai fungsi rasio belok kanan PRT. Untuk jalan yang dilengkapi dengan median, nilai FRT tidak diperhitungkan.
- F_{LT} =Faktor penyesuaian belok kiri, ditentukan sebagai fungsi dari rasio belok kiri PLT. Untuk jalan yang dilengkapi dengan lajur belok kiri jalan terus (LTOR) maka nilai FLT tidak diperhitungkan, FLT = 1.00 maka:

$$ightharpoonup S = S_0 \ x \ F_{CS} \ x \ F_{SF} \ x \ F_G \ x \ F_P \ x \ F_{LT} x \ F_{RT}$$

$$= 4800 x \ 1,0 \ x \ 0,940 \ x \ 1,0 \ x \ 1,0 \ x \ 1,0 \ x \ 1,0$$

$$= 4512 \ smp/jam \ hijau \ Pendekat \ Utara \ simpang \ Jalan \ Ir. \ H. \ Juanda-$$

Tabel 4.7: Arus jenuh (simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

Jalan Brigjend Katamso (Tabel 4.7).

No	Pendekat	Q (smp/jam)	S (smp/jam)			
1	Utara	419	4512			

Setelah diperoleh nilai arus jenuh, kemudian dihitung nilai Rasio arus (FR) masing-masing pendekat dengan persamaan:

FR =
$$Q/S$$

= $419/4512$

= 0,093 (Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

Nilai FR untuk tiap pendekat merupakan nilai tertinggi pada masing-masing fase (FRcrit), kemudian dijumlahkan sehingga diperoleh IFR. Adapun nilai IFR untuk persimpangan ini adalah:

IFR = Σ FRcrit

= 0,473 (simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

Setelah diperoleh IFRnya, selanjutnya dihitung nilai fase masing-masing pendekat dengan persamaan:

- \triangleright PR = FRcrit/IFR
 - = 0.093/0.473
 - = 0,196 (Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

Setelah parameter di atas diperoleh, maka selanjutnya akan dihitung kapasitas (C), dan derajat kejenuhan (DS) masing-masing pendekat, yaitu:

$$ightharpoonup C = S \frac{g}{c}$$

$$=4512x \frac{96}{324}$$

= 1337 smp/jam. (Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

Kemudian untuk derajat kejenuhan (DS) masing-masing pendekat menggunakan rumus dibawah ini:

$$ightharpoonup$$
 DS = Q/C

=419/1337

= 0,314 (Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

4.7 Perilaku Lalu Lintas

4.7.1 Panjang Antrian

Jumlah rata-rata antrian (smp) pada awal sinyal hijau yaitu NQ dihitung sebagai jumlah kendaraan (smp) yang tersisa dari fase hijau sebelumnya (NQ1) ditambah jumlah kendaraan (smp) yang akan datang selama fase merah (NQ2).

$$NQ = NQ1 + NQ2$$

Dimana:

NQ1 Untuk DS > 0.5:

$$NQ1 = 0.25 \ x \ C \ x \ [(DS - 1) + \sqrt{(DS - 1)^2 + \frac{8 \ x \ (DS - 0.5)}{C}}]$$

Untuk DS < 0.5 maka nilai NQ1 = 0

$$NQ2 = C x \frac{1 - GR}{1 - GR \times DS} \times \frac{Q}{3600}$$

Dimana nilai:

$$GR = \frac{g}{c}$$

Maka Nilai NQ1 diperoleh:

$$NQ1 = 0.25 \times 1050 \times \left[(1.028 - 1) + \sqrt{(1.028 - 1)^2 + \frac{8 \times (1.028 - 0.5)}{1050}} \right]$$

= -0,3(Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

Nilai GR diperoleh:

$$R = \frac{96}{324} = 0.296$$

(Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

Maka nilai NQ2 diperoleh:

$$NQ2 = 324 x \frac{1 - 0.296}{1 - 0.296 \times 0.314} x \frac{419}{3600} = 29.3$$

(Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

Sehingga, untuk nilai NQtotaldiperoleh:

ightharpoonup Untuk nilai NQ1 + NQ2 = -0,3 + 29,3

$$= 29 \text{ smp}$$

(Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

Panjang antrian $QL = \frac{NQ \max x}{W \max k}$

$$P QL = \frac{29 \times 20}{8} = 72,5 m$$

(Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

4.7.2 Jumlah Kendaraan Terhenti

Angka henti (NS) masing-masing pendekat didefenisikan sebagai jumlah rata-rata berhenti per smp (termasuk berhenti berulang dalam antrian).

NS = 0.9
$$x \frac{NQ}{Qxc} x 3600$$

= 0.9 $x \frac{-0.3}{419 \times 324} x 3600$

= 0,7(Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

Setelah diperoleh nilai angka henti (NS), selanjutnya dihitung jumlah kendaraan terhenti (N_{SV}) masing-masing pendekat, yaitu:

$$N_{SV} = Q \times N_{S}$$

= 419 x 0,7

= 331 smp/jam(Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

Selanjutnya dihitung angka henti seluruh simpang dengan cara membagi jumlah kendaraan terhenti pada seluruh pendekat dengan arus simpang total Q dalam smp/jam.

$$NS_{TOT} = \frac{\sum N_{SV}}{Q_{tot}} = \frac{1483}{2136} = 0,694$$

(Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

4.7.3 Tundaan

Langkah-langkah perhitungan tundaan adalah:

1. Hitung tundaan lalu lintas rata-rata tiap pendekat (DT) akibat pengaruh timbal balik dengan gerakan-gerakan lainnya pada simpang, yaitu:

$$DT = C x A + \frac{NQ1 x 3600}{C}$$

Dimana A:

$$A = \frac{0.5 x (1-GR)2}{(1-GR x DS)}$$

$$= \frac{0.5 x (1-0.296)}{(1-0.296x 0.314)}$$

= 0,7 (Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

Sehingga:

$$Arr$$
 DT = 324 x 0,7 + $\frac{-0.3 \times 3600}{1337}$

- = 362,7 det/smp (Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).
- 2. Tentukan tundaan geometri rata-rata masing-masing pendekat (DG) akibat perlambatan atau percepatan ketika menunggu giliran pada suatu simpang dan atau ketika dihentikan oleh lampu merah:

$$DG = (1 - Psv) \times Pt \times 6 + (Psv \times 4)$$

Dimana, P_{SV} = rasio kendaraan terhenti pada pendekat atau (NS) dari Formulir SIG-V, PT= rasio kendaraan berbelok pada pendekat dari Formulir SIG-IV.

Sehingga:

$$Arr$$
 DG = $(1 - 0.17) \times 0.7 \times 6 + (0.17 \times 4)$

- = 3,1 det/smp (Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).
- 3. Kemudian dihitung tundaan rata-rata (det/smp) sebagai jumlah dari tundaan lalu lintas rata-rata dengan tundaan geometrik rata-rata, yaitu:

$$\triangleright$$
 D = DT + DG

$$= 362,7 + 3,1$$

- = 365,8 det/smp (Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).
- 4. Selanjutnya dihitung tundaan total dengan mengalikan tundaan rata-rata dengan arus lalu lintas, yaitu:
- ightharpoonup Tundaan total = D x Q = 365,8 x 419 = 153417 smp/det

(Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

5. Hitung tundaan rata-rata untuk seluruh simpang (DI) dengan membagi jumlah nilai tundaan dengan arus total (Qtot) dalam smp/jam, yaitu:

$$DI \frac{\sum (Q \times D)}{Qtot} = \frac{491742}{2136} = 230,17 \text{ det/smp}$$

(Pendekat Utara simpang Jalan Ir. H. Juanda-Jalan Brigjend Katamso).

Tabel 4.8: Data Jumlah pelanggaran yello box junction.

UTARA												
WAKTU	Kndr Rir	ngan LV	Spd M	otor MC	Jumlah kndr							
	Kend/jam	Smp/jam	Kend/jam Smp/jam		Kend/jam	Smp/jam						
07.00 - 08.00	2	2	6	1,2	8	3,2						
08.00 - 09.00	3	3	7	1,4	10	4,4						
11.00 - 12.00	2	2	9	1,8	11	3,8						
12.00 - 13.00	2	2	10	2	12	4						
16.00 - 17.00	1	1	17	3,4	18	4,4						
17.00 - 18.00	3	3	14	2,8	17	5,8						
					76	25,6						

TIMUR

WAKTU	Kndr Rir	ngan LV	Spd Mo	tor MC	Jumlah kndr							
WAKIU	Kend/jam	Smp/jam	Kend/jam	Smp/jam	Kend/jam	Smp/jam						
07.00 - 08.00	2	2	4	0,8	6	2,8						
08.00 - 09.00	2	2	4	0,8	6	2,8						
11.00 - 12.00	3	3	5	1	8	4						
12.00 - 13.00	4	4	9	1,8	13	5,8						
16.00 - 17.00	2	2	6	1,2	8	3,2						
17.00 - 18.00	4	4	13	2,6	17	6,6						
					58	25,2						

BARAT

WAKTU	Kndr Rir	ngan LV	Spd Mo	tor MC	Jumlah kndr			
	Kend/jam	Smp/jam	Kend/jam	Smp/jam	Kend/jam	Smp/jam		
07.00 - 08.00	1	1	4	0,8	5	1,8		
08.00 - 09.00	3	3	3	0,6	6	3,6		
11.00 - 12.00	5	5	5	0,2	10	5,2		
12.00 - 13.00	2	2	7	1,4	9	3,4		
16.00 - 17.00	2	2	11	2,2	13	4,2		
17.00 - 18.00	3	3	8	1,6	11	4,6		
					54	22.8		

SELATAN

WAKTU	Kndr Rir	ngan LV	Spd Mo	tor MC	Jumlah kndr			
WARIU	Kend/jam	Smp/jam	Kend/jam	Smp/jam	Kend/jam	Smp/jam		
07.00 - 08.00	1	1	13	13 2,6		3,6		
08.00 - 09.00	5	5	6	1,2	11	6,2		
11.00 - 12.00	5	5	3	0,6	8	5,6		
12.00 - 13.00	3	3	12	2,4	15	5,4		
16.00 - 17.00	4	4	5	1	9	5		
17.00 - 18.00	2	2	8	1,6	10	3,6		
					67	29,4		
	Total Pelan	255	103					

Pelanggaran di *yellow Box junction*.

Survei pelanggaran *yellow box junction* pada simpang Ir. H. Juanda-Brigjend Katamso dapat di lihat pada Tabel 4.8.

Presentase pelanggaran = (Total Pelanggar / Volume kendaraan) x 100
$$= \frac{103}{2136} \times 100$$
$$= 8,82\%$$

Tabel 4.9: Volume lalu lintas perjam Jalan Ir. H. Juanda-Jalan Sisingamangaraja.

		UM	1	1	2	2		3	2	3	-		UM	0	0		0	0		0	1	-
	RT	MC	53	70	47	74		134	216	216		RT	MC	111	120		128	208	v	304	286	304
	R	HV	0	0	0	0	0	0	0	0			ΛH	0	1		0	2		1	3	3
		LV	114	111	45	<i>L</i> 9		70	87	114			ΓΛ	93	96		133	94		72	127	127
		NM	0	0	0	0		1	0	1			NM	0	1		0	1		0	0	1
	ل	MC	305	310	158	280		450	655	655		ال	MC	405	393		220	511		463	653	653
U	ST	HV	5	7	5	9		7	9	7	T	TS	HV	3	2		0	1		4	1	4
		LV	186	200	119	175		289	352	352			LV	274	309		244	214		230	195	309
		NM	0	0	0	0		0	1	1			NM	2	1		2	1		0	4	4
	~	MC	171	157	71	116		344	532	532		~	MC	221	294		171	323		472	629	629
	LTOR	HV	2	2	1	1		3	3	3		LTOR	HV	3	4		3	5		8	5	∞
		LV	103	107	82	113		71	103	113			LV	569	276	·	299	205		249	244	299
Waktu		07.00-08.00	08.00-09.00	 11.00:12.00	12.00:13.00		16.00:17.00	17.00:18.00	MAX≈		Waktu		07.00-08.00	08.00-09.00		11.00:12.00	12.00:13.00		16.00:17.00	17.00:18.00	MAX=	

Tabel 4.9: Lanjutan.

	,		,		 ,	,		,					,	,				 		
		MN	0	0	0	0	a,	0	0	0			MN	0	0	0	0	0	0	0
	RT	MC	190	247	121	133		227	203	247		RT	MC	638	790	248	402	525	1204	1204
		ΛH	0	1	1	1		. 7	1	7			ΛH	4	5	4	3	4	4	5
		LV	40	42	38	78		58	95	95			LV	292	284	274	327	323	283	327
	-	NM	1	0	0	0		0	0	-			NM	0	0	0	0	0	1	1
S	<u></u>	MC	822	1166	599	649		1023	856	1023	В	L	MC	785	761	373	498	802	1577	1577
	ST	HV	4	1	2	2		5	3	5		ST	HV	1	1	0	0	3	5	5
		ΓΛ	390	433	321	439		419	497	497			LV	275	277	262	299	255	298	299
		NM	4	0	2	0		0	0	4			NM	1	3	2	2	0	0	3
	JR	MC	460	682	351	372		208	951	951		OR	MC .	<i>L</i> 9	64	88	80	91	184	184
	LTOR	HV	3	9	5	5		8	8	8		LTC	HΛ	0	0	0	0	0	0	0
		LV	339	355	323	421		330	579	579			LV	52	54	274	327	323	283	327
	Waktu		07.00-08.00	08.00-09.00	11.00:12.00	12.00:13.00		16.00:17.00	17.00:18.00	MAX=	77	Waktu		07.00-08.00	00.60-00.80	11.00:12.00	12.00:13.00	16.00:17.00	17.00:18.00	MAX=

Tabel 4.10: Geometrik persimpangan jalan Ir. H. Juanda-Sisingamangaraja.

				For	mulir SIG I					
SIMPANG	BERSINY.	AL		Tanggal	: 09 januari 2	2017		Ditangani o	leh :	
ormulir SI				Kota	: Medan			<u> </u>		
	GEOMETI	RIK		Simpang	: Jalan Ir. H.	Juanda-Jalai	n Sisingaman	paraia XII		
		JRAN LALU I	PATIN	Ukuran Kota			. O. J. Garian	garaja 7111	1	
	TENOMIC	KAN LALO	MIND							*
				Perihal	:4 Fase					
				Periode	: Jam puncal					
	(2)		102		YAL YANG		25	т		
g=	02	g	102	g=	32	g=	33	Waktu siki	18:	
	11		1	=		=]]		C=	263
7	41	7	A	1	V	7	A)	4 3		203
₹T ≯		NT>	_	179	_	417		W.14.13.		
Y	\rightarrow	Y	>	Y	\Rightarrow	l Y	\Rightarrow	Waktu hilar		
H	-	- 11				- 11	-		LTI=∑IG=	12
IG=	3	IG=	3	IG=	3	IG=	3			
								<u> </u>		
					T T					
					U					
		2								
					* In					
				1	an Sisingamangaraja XII					
				2	e gran					
				nama 1999-yan han gara ya	* in					
				· ·	-411					
				- Samuel	-115					
					•••••	•	Jalan Ha	iat —		
		Jalan Ir. H. Jus	mda 🛨			•		7	***	
		- Jala	in Tr. EE, Juanda	Ē		= =	Jalan Halat			

					· Islan					
				4	I P					
					and the same					
					in the state of					
				en de la constanta de la const	alan Sisingamangaraja XII —					
				5						
				i i	1 m					
ONDICE	LAPANGA	N					Sec. 100			
ON IDIOI	AND ANTO					_				_
	Tipe	Hambatan			Belok-kiri	Jarak ke		Lebar per	dekat (m)	
**	lingkungan	samping	Median	Kelandaian	ļ				I B	
Kode	jalan	Tinggi/Renda	Ya/Tidak	+/- %	langsung	kendaraan	pendekat	Masuk	Belok kiri	keluar W
	Jami	h			Ya/Tidak	parkir (m)	WA	Wmasuk	langsung W	kelar
	Jami			,	Į.	1		1	LTOR	ı
pendekat		(2)	(A)	(5)	(6)	m	(0)	(0)	(10)	(11)
(1)	(2)	(3)	(4) V	(5)	(6) V	(7)	(8)	(9)	(10)	(11)
(1)	(2) COM	R	Y	-	Y	-	9,8	8	1,8	8
pendekat (1)	(2)			1		1				

Tabel 4.11: Arus lalu lintas persimpangan Jalan Ir. H. Juanda-Sisingamangaraja.

				kP-S	RMOTOR	Rasio	UM/MV			Rms (15)	0,002	0,001	600'0	0,012	0,004	0,001	0,002	0,007	900'0	0,001	0,000	0,007	0,003	0,001	0,000	0,004
			: 4 - Fase	Jam Puncak P - S	KEND. T. BERMOTOR	Arus	∑		kend/jam	(17)	1	н	3	5	4	1	1	9	3	1	0	4	4	1	0	5
	ieh :		••	•			rbelok			Rms (14)			0,18	0,18			0,18	0,18			0,37	0,37			60'0	60'0
	Ditangani oleh		Perihal	Periode			Rasio berbelok		PLT	Rms (13)	0,26			0,26	0,41			0,41	0,23			0,23	0,48			0,48
						otal			am	terlawan (14)	329,7	623,1	200,4	1153	581	575,4	252,5	1409	400,6	936,3	815,1	2152	8'696	912,7	196,4	2079
						Kendaraan tota	≧	permotor	smp/jam	terlindung terlawan	223,3	492,1	157,2	873	445,2	444,8	191,7	1082	363,8	67079	574,3	1559	9'6/	708,1	147	1635
			aja XII			Ϋ́			eg	Jam (12)	648	1014	330	1992	986	996	434	2386	511	1881	1536	3928	1538	1525	344	3407
			gamangara		OTOR	(MC)	0,2	0,4	am	terlawan (11)	212,8	262	86,4	561	271,6	261,2	121,6	654	73,6	630,8	481,6	1186	380,4	409,2	8'86	888
Formulir SIG II			: Jalan Ir. H. Juanda-Jalan Sisingamangaraja XII		ARUS LALU LINTAS BERMOTOR	Sepeda Motor (MC)	emp terlindung =	emp terlawan =	smp/jam	terlindung terlawan	106,4	131	43,2	281	135,8	130,6	8'09	327	36,8	315,4	240,8	593	190,2	204,6	49,4	444
Form	i 2017		I. Juanda		S LALU LI	Sep	emp ter	emp te	$\overline{}$	ma (6)	532	655	216	1403	629	653	304	1636	184	1577	1204	2962	951	1023	247	2221
	: 09 Januari 2017	: Medan	: Jalan Ir. F		ARU	t (HV)	1,3	1,3	am	terlawan (8)	3,9	9,1	0	13	10,4	5,2	3,9	20	0	6,5	6,5	13	10,4	6,5	2,6	20
						Kendaraan berat (HV)	emp terlindung =	emp terlawan =	smp/jam	terlindung terlawan	3,9	9,1	0	13	10,4	5,2	3,9	20	0	6,5	6,5	13	10,4	6,5	2,6	20
	Tanggal	Kota	Simpang			Ken	emp te	empt	\leq	Jam (9)	æ	7	0	10	8	4	3	15	0	2	2	10	8	2	7	15
						ın (LV)	1,0	1,0	am	terlawan (5)	113	352	114	579	299	309	127	735	327	299	327	953	579	497	95	1171
						Kendaraan ringan (LV)	emp terlindung =	emp terlawan =	smp/jam	terlindung terlawan	113	352	114	579	299	309	127	735	327	299	327	953	579	497	95	1171
	ڀ					Ken	emp te	empt	$\overline{}$	E (E)	113	352	114	579	536	309	127	735	327	536	327	953	579	497	95	1171
	SIMPANG BERSINYAL	11 916	ARUS LALU LINTAS				Arah			(2)	LT/LTOR	ST	RT	Total	LT/LTOR	ST	RT	Total	LT/LTOR	ST	RT	Total	LT/LTOR	ST	RT	Total
	SIMPANG	Formulir SIG	ARUS LAI	1			Kode	pendekat		(1)		=)			-	-		*	a	<u> </u>			U	n	

Tabel 4.12: perhitungan kapasitas persimpangan Jalan Ir. H. Juanda-Sisingamangaraja.

Formulir SIG IV	Tanggal : 09 Januari 2017 Ditangani oleh :	Kota : Medan	PASITAS : Jalan Ir. H. Juanda-Jalan Sisingamangaraja XII Periode : Jam Puncak P - S	lintas (smp/jam) Fase 1 Fase 2 Fase 3 Fase 4	223,3		\$T\$		okendaraan Arus RT smp/jam Lebar Arus jenuh smp/jam hijau Arus Rasio Kapa-	Arah efektif Nijai Faktor-faktor penyesuaian Nijai lalu Rasio Fase Waktu sitas	Aran kin lawan (m) dasar Semua tipe pendekat Hanya tipe P disesuai lintas arus PR= hijau smp/ kej	n Ukuran Hambatan Kelan- parkir Belok belok	bit ber Opr Ave Co Ge Est Co	Eq. (20) Eq. (18) Gb. C-3:3 Th C-4:1 Th C-4:2 Gb C-4:1 En (22) En (23) En (24) En (23) En (20) En (30) En (30	10 11 12 13 14 15 16 17 18 19 20 21 22	0,18 8 4800 1,0 0,945 1,0 1,0 1,0 1,0 4536 649 0,143 0	1 0,18 6 3600 1,0 0,947 1,0 1,0 1,0 3409 637 0,187 0,219 35 454 1,403	0,37 6 3600 1,0 0,947 1,0 1,0 1,0 1,0	0,09 857 8720 1,0 0,948 1,0 1,0 1,0 1,0 4949 855 0,173 0,203 102 1919	Waktu siklus prapenyesuaian cua (det) Eq. (29)	Waktu siklus disesuaikan c (det) Eq. (31) 263
	AL	: - PENENTUAN WAKTU SINYAL	:-KAPASITAS	Distribusi arus lalu lintas (smp/jam)	492,1	7 7 7 191,7		4	io kendaraan				TO 0 TIO OCTIO		2	0,26	0,41	0,23	0,48	1,	
	SIMPANG BERSINYAL	Formulir SIG IV		Distribusi	157,2	363,8	6'029	574,3			Kode Hijau Tine	dalam	No.		1 2 3	U 1 P	T 2 P	В 3 Р	S 4 P	Waktu hilang total	LTI (det)

Tabel 4.13: Perhitungan panjang antrian persimpangan Jalan Ir. H. Juanda-Sisingamangaraja.

														12 E		10000	4/60557	638,51	
			: Jam puncak pagi-sore			Tundaan total smp.det	DxQ	(2)x(15)	16	110296	530259	1755641	156767		4011			:dws/d	
		: 4 - fase	: Jam punca		Tundaan	Tundaan rata-rata det/smp	DT+DG	Rms(43) (13)+(14)	15	6,691	833,1	1468,9	183,3		9		101211	Tundaan simpang rata-rata stop/smp:	
	oleh					Tundaan geo- metrik rata-rata	DQ	Rms(43)	14	3,4	9,2	0,6	2,8		9	Ē	ō	n simpang 1	
	Ditangani oleh	Perihal	Periode			Tundaan lalu lintas rata-rata det/smp	DT	Rms (42)	13	166,4	823,9	1459,9	180,5		0			Tumdaa	
			: Jalan Ir. H. Juanda-Jalan Sisingamangaraja XII		Juniah kendaraan terhenti smp/jam		•	ť		9,0	0,3	0,2	0,7			7111	/416	1,852	
			lalan Sising	,	Rasio kendaraa n stop/smp	Jumlah kendaraa n terhenti		Rms (40)	12	525	1764	4559	268					.dus/	
SIG-V	ri 2017		H. Juanda-J		Panjang antrian (m)	Rasio Jumlah kendaraa kendaraa n nerhenti stop/smp sum/iam		Rms (38) Rms (39) Rms (40)	=======================================	8,0	2,8	3,8	0,7					Kendaraan terhenti rata-rata stop/smp:	
Formulir SIG-V	: 09 Januari 2017	: Medan	: Jalan Ir.	263	(d	Panjang antrian (m)		Rms (38)	10	106,5	477,2	1233,6	106,1			F	Total	ı terhenti ra	
	Tanggal	Kota	Simpang	Waktu Siklus	Jumlah kendaraan antri (smp)	Total NQ1+NQ2= NQ		(/c) gin	&	42,6	143,2	370,1	46,1					Kendaraa	
					umlah kend	N2	D. 25	NIIB (33)	7	42,3	49,6	107,9	46,2						
	TDIAN	INIMI	JUMLAH KENDARAAN TERHENTI	N	-F	ï	Dame (24.1)	(cc) gin (1.+c) gin	9	6,0	93'6	262,2	-0,1						
	DAN IANG ANTDIAN	ANGAIN	ENDARA	TUNDAAN	Rasio	hujau	GR=	GR = g/c	5	0,236	0,133	0,198	0,388						
	DAN	LAIN	ALAH KI			Nejenuna 1 n), C = 9C	200	4	0,607	1,403	1,773	0,446						si
	21		In		Kapasit	as smp/jam	۲	ر	3	1069	454	674	1919	_					g dikorek
	SIMPANG BERSINY	SIG-V			Arus latu	imtas smp/jam		>	2	649	637	1195	855		699	N		4005	Arus kor. = Arus yang dikoreksi
	SIMPAN	Formulir SIG-V			7 4	pendek at				n	Т	В	S	1	LTOR (semua)	Arus	okor.	Arus total	Arus kor.

Tabel 4.14: Volume Ialu lintas perjam Jalan Ir. H. Juanda-Jalan Brigjend Katamso.

			_		 													 		
		NM	1	1	2	1		3	2	3			MO	2	1	2	2	3	2	3
	RT	MC	57	63	110	115	0	100	06	115		RT	MC	0	0	0	0	0	0	0
	R	HV	0	1	2	1		3	2	3		8	HV	0	0	0	0	0	0	0
		ΓΛ	35	40	99	28		51	52	58			LV	0	0	0	0	0	0	0
		NM	1	1	1	1		0	1	1			NM	0	1	2	1	1	0	2
J		MC	283	240	375	375		443	470	470		r .	MC	533	579	321	291	323	320	579
n	ST	HV	3	1	0	1		5	4	5	S	ST	HV	3	1	2	3	2	1	3
		ΓΛ	180	168	188	186		222	234	234			LV	266	287	160	145	207	211	287
		UM	0	1	-	1		0	0	-	- 1		UM	0	1	2	3	0	0	3
	FOR	MC	99	93	96	104		59	99	104		FOR	MC	267	311	102	88	323	320	323
	LT/LTOR	HV	1	1	1	1		2	1	2		LT/LTOR	HV	1	2	3	2	1	2	3
8		ΓΛ	47	58	51	52		32	34	58			ΓΛ	133	155	20	44	162	158	162
	Waktu		00.80-00.70	08.00-09.00	11.00:12.00	12.00:13.00		16.00:17.00	17.00:18.00	=XVW		Waktu		00.80-00.70	08.00-09.00	11.00:12.00	12.00:13.00	16.00:17.00	17.00:18.00	MAX=

Tabel 4.14: Lanjutan.

					 r				r		Γ		r							
		NM	2	1	1	2		1	2	2		2	MU	2	2	3	2	4	2	4
	RT	MC	51	59	99	80		97	126	126		RT	MC	180	198	190	201	358	282	358
	R	HV	4	9	4	4	14	4	4	9		R	HV	0	0	0	0	0	0	0
		ΓΛ	72	77	80	73		73	91	91			LV	26	95	96	100	180	184	184
		NN	2	3	2	1		2	1	3			UM	1	2	3	-	1	0	3
T	٦	MC	459	474	388	388		396	396	474	В	J	MC	294	304	203	205	514	514	514
	ST	HV	5	5	1	-		2	2	5		ST	HV	1	1	2	4	3	_	4
		LV	229	237	194	193		196	191	237			LV	146	151	100	95	256	256	256
		UM	1	1	2	2		0	0	0			NM	2	2	2	3	1	1	2
	/LTOR	MC	52	65	150	155		167	185	185		/LTOR	MC	94	104	212	201	153	168	212
	LT/	HV	0	0	0	0		0	0	0		LT/	HV	0	0	0	1	2	1	2
		LV	96	103	92	104		84	110	110			LV	69	86	105	104	81	84	105
	Waktu		07.00-08.00	08.00-09.00	11.00:12.00	12.00:13.00		16.00:17.00	17.00:18.00	MAX=		Waktu		07.00-08.00	08.00-09.00	11.00:12.00	12.00:13.00	16.00:17.00	17.00:18.00	MAX=

Tabel 4.15: Geometrik persimpangan jalan Ir. H. Juanda-Brigjend Katamso.

SIMPANG				Fo				r		
	BERSINY	AL		Tanggal	: 16 Januari	2017		Ditangani o	leh :	
ormulir SI	GI:			Kota	: Medan					
	GEOMETT	RIK		Simpang	: Jalan Ir. H	Juanda-Jak	ın Brigjend I	Catamso		1
	PENGATU	RAN LALU	LINTAS	Ukuran Kota	: 2.2 juta			3		1
				Perihal	: 4 Fase					
				Periode		k pagi - sore	·	h		
		·			YAL YANG	ADA				
g=	96	g=	63	g=		g=	60	Waktu sikh	В.	
_			-	_	11		11	W takto saka		
\prec	\mathcal{A}		\mathcal{A}	=	\mathcal{K}	-	从		C=	324
•	84.7	,	AT#		114		₹ T4			
V	5	\V		W	—	17	_	Waktu hilar	ng total:	
II		N		- 11		_]	LTI=∑IG=	12
IG=	= 3	IG=	3	IG=	3	IG=	3			
		10-				<u> </u>		<u> </u>		
					U					
					$\overline{}$					
					40					
					455					
					Julan					
				1	Julan Briggerd K					
				•	M Kata					
					8 8					
					<u>*</u> 1					
		Ja	lan Ir. H. Juand		< /	Jalan Ir. H	Jumda			
		0 × 0 × 0	→ ∞ ≠ ∞ ×	to a second	\times	kacana a a a 	m + s + s	v * v * v		
		-		5		: = "	m m. m. yaanka			
				4	1 11					
				•	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
					Jalan Brigjerd Katar					
					nd Kat					
					F * F					
					Z					
					** 3					
					** Z					
					# 86 #					
					# # # # # # # # # # # # # # # # # # #					
					# # # # # # # # # # # # # # # # # # #					
					# # # # # # # # # # # # # # # # # # #					
CONDISI	LAPANGA	N			# # # # # # # # # # # # # # # # # # #		,			
CONDISI	LAPANGA	N			# # # # # # # # # # # # # # # # # # #	10.20 (1.00)				
ONDISI		N Hambatan		200 (200 (200 (200 (200 (200 (200 (200	# # # # # # # # # # # # # # # # # # #	Jarak ke		Lebar pen	ndekat (m)	
CONDISI	Tipe		Median	Kelandaian	150 4 4 5 4	Jarak ke		Lebar pen	dekat (m)	
Kode	Tipe lingkungan	Hambatan samping Tinggi/Renda		Kelandaian +/- %	Belok-kiri		nandalast		Belok kiri	lkalar W
Kode	Tipe	Hambatan samping			Belok-kiri langsung	kendaraan	pendekat WA	Masuk	Belok kiri langsung W	3
Kode pendekat	Tipe lingkungan jalan	Hambatan samping Tinggi/Renda h	Ya/Tidak	+/- %	Belok-kiri langsung Ya/Tidak	kendaraan parkir (m)	WA	Masuk Wmasuk	Belok kiri langsung W- LTOR	keluar
Kode pendekat	Tipe lingkungan jalan (2)	Hambatan samping Tinggi/Renda h	Ya/Tidak (4)	+/- %	Belok-kiri langsung Ya/Tidak	kendaraan parkir (m)	WA (8)	Masuk Wmasuk	Belok kiri langsung W- LTOR (10)	keluar (11)
Kode pendekat (1) U	Tipe lingkungan jalan (2) COM	Hambatan samping Tinggi/Renda h (3)	Ya/Tidak (4) Y	+/- %	Belok-kiri langsung Ya/Tidak (6)	kendaraan parkir (m) (7)	(8) 9,8	Masuk Wmasuk (9)	Belok kiri langsung W- LTOR (10) 1,8	8
Kode pendekat	Tipe lingkungan jalan (2)	Hambatan samping Tinggi/Renda h	Ya/Tidak (4)	+/- %	Belok-kiri langsung Ya/Tidak	kendaraan parkir (m)	WA (8)	Masuk Wmasuk	Belok kiri langsung W- LTOR (10)	keluar (11)

Tabel 4.16: Arus lalu lintas Jalan Ir. H. Juanda-Brigjend-Katamso.

								Ē	Formulir SIG II	E II							
Kota : Medan : Mendi : Mendi	YAL				Tangga		: 16 Januar	ri 2017						Ditangani	oleh		Contract of the Contract of th
Simpang Simpang Simpang Simpang Simpang Simpang Simpang Simpang Septendan Derivative Septendang Sept					Kota		: Medan										
Color Colo	TAS				Simpar	9	: Jalan Ir. I	 Juand 	la-Jalan Brig	gjend Kata	mso			Perihal		: 4 - Fase	
ARUS LALU LINTAS BERMOTOR Kendaraan berat (HY) Sepecia Motor (MC) Kendaraan total Rendaraan tot														Periode		: Jam Puncak P - S	ık P - S
daraan ringan (LV) Kendaraan berat (HV) Sepeda Motor (MC) Kendaraan total terlindung = 1,3 emp terlindung = 0,2 emp terlindung = 1,0 emp terlindung erlawan = 1,0 emp terlindung terlawan am terlindung t							ARUS L	ALU LI	INTAS BEF	SMOTOR						KEND. 1	KEND. T. BERMOTOR
terlindung = 1,0 emp terlindung = 1,3 emp terlindung = 1,3 emp terlindung = 0,4 bermotor sterlawan = 1,0 emp terlawan = 1,3 emp terlawan = 1,3 emp terlawan = 1,3 emp terlawan = 1,3 emp/am terlindung terlawan = mp/fam terlindung terlawan =		Ke	ndaraan ringa	n (LV)	Ker		at (HV)	Sep	eda Motor	(MC)	I	Kendaraan 1	total			Arus	Rasio
smp/am kend/j kend/j<		dua	terlindung =	1,0		erlindung =	1,3	emp t	erlindung =	0,2	A CONTRACTOR OF THE CONTRACTOR	MV		Rasio b	erbelok	M	UM/MV
smp/jam kend/j kend/j <t< td=""><td></td><td>em</td><td>p terlawan =</td><td>1,0</td><td></td><td>terlawan =</td><td>1,3</td><td>dwa</td><td>terlawan =</td><td>0,4</td><td></td><td>bermoto</td><td></td><td></td><td></td><td></td><td></td></t<>		em	p terlawan =	1,0		terlawan =	1,3	dwa	terlawan =	0,4		bermoto					
terlindung terlingung terlingung terlingung terlingung terlingung terlingung terlingung terlingung terling	Ϋ́Z	end/j			kend/j	/dws		kend/j	[/dws	am	kend/j	/dus	jam	PLT	PRT	Charles and the Control of the Contr	
(4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 58 58 2 2,6 2,6 104 20,8 41,6 164 81,4 102,2 0,16 234 58 3 2,6 6,5 470 94 188 709 334,5 428,5 0,16 58 58 3 3,9 115 23 46 176 84,9 107,9 0,16 110 110 0 0 0 185 37 74 295 147 184 0,24 110 110 0 0 0 185 37 74 295 147 184 0,24 110 110 0 0 185 37 74 295 147 184 0,24 237 237 237 234 234 433,1 149,2 149,2 149,2<		am		terlawan		terlindung	terlawan			terlawan	am	terlindung	terlawan	Rms (13)	Rms (14)	kend/jam	Rms (15)
58 58 2 2,6 2,6 104 20,8 41,6 164 81,4 102,2 0,16 234 234 5 6,5 6,5 470 94 188 709 334,5 428,5 0,16 58 58 3 3,9 1,15 23 46 176 84,9 107,9 107,9 110 110 0 0 0 185 37 74 295 147 184 0,16 237 237 5 6,5 6,5 474 94,8 189,6 716 338,3 433,1 0,16 237 237 5 6,5 6,5 474 94,8 189,6 716 184 0,24 91 91 6 7,8 7,8 126 25,2 50,4 223 124 149,2 438 116 14 785 157 314 184 160 76 <		(3)	(4)	(5)	(9)	(7)	(8)		(10)	(11)	(12)	(13)	(14)	(15)	(16)	(11)	(18)
234 234 5 6,5 6,7 94 188 709 334,5 428,5 6 7 58 58 3 3,9 115 23 46 176 84,9 107,9 10 350 350 10 13 13 689 138 276 1049 501 639 0,16 110 110 0 0 0 185 37 74 295 147 184 0,16 639 0,16 0,16 0,16 0,16 0,16 0,14 0,14 184 189,6 716 338,3 433,1 184 184 189,6 76 0,24 0,19 0,19 0,19 0,19 0,19 0,19 0,19 0,19 0,19 0,19 0,19 0,19 0,19 0,19 0,19 0,19 0,19 0,19 0,19 0 0 0 0 0 0 0 0 0 0		58	58	58	2	2,6	2,6	104	20,8	41,6	164	81,4	102,2	0,16		- 1	900'0
58 58 3 3,9 3,9 115 23 46 176 84,9 107,9 — 350 350 10 13 13 689 138 276 1049 501 639 0,16 110 110 0 0 0 185 37 74 295 147 184 0,16 237 237 5 6,5 6,5 474 94,8 189,6 716 338,3 433,1 0,24 91 91 6 7,8 7,8 126 25,2 50,4 223 124 149,2 766 0,24 438 438 11 14 14 785 157 314 150 149,2 </td <td></td> <td>234</td> <td>234</td> <td>234</td> <td>5</td> <td>6,5</td> <td>6,5</td> <td>470</td> <td>94</td> <td>188</td> <td>602</td> <td>334,5</td> <td>428,5</td> <td></td> <td></td> <td>1</td> <td>0,001</td>		234	234	234	5	6,5	6,5	470	94	188	602	334,5	428,5			1	0,001
350 350 10 13 689 138 276 1049 501 639 0,16 110 110 0 0 0 185 37 74 295 147 184 0,16 237 237 5 6,5 474 94,8 189,6 716 138,3 433,1 0,24 91 91 6 7,8 7,8 126 25,2 50,4 223 124 149,2 76 0,24 438 438 11 14 14 785 157 314 609 766 0,24 105 25 2,6 2,12 42,4 84,8 319 150 192,4 0,19 256 25 2,6 212 42,4 84,8 319 150 0,19 256 25 51 102,8 205,6 774 466,8 0,19 162 8 8 1084		58	58	58	3	3,9	3,9	115	23	46	176	84,9	107,9		0,17	3	0,017
110 110 0 0 185 37 74 295 147 184 0,24 237 237 5 6,5 6,5 474 94,8 189,6 716 338,3 433,1 0,24 91 91 6 7,8 7,8 126 25,2 50,4 223 124 149,2 0,24 438 438 11 14 14 785 157 314 609 766 0,24 105 25 2,6 2,12 42,4 84,8 319 150 192,4 0,19 256 25 2,6 212 42,4 84,8 319 150,4 0,19 184 184 0 0 358 71,6 143,2 545 255,6 327,2 327,2 162 162 3 3,9 3,9 323 64,6 129,2 488 230,5 295,1 0,19 10<		350	350	350	10	13	13	689	138	276	1049	501	639	0,16	0,17	5	0,024
237 237 5 6,5 474 94,8 189,6 716 338,3 433,1 A33,1 91 91 6 7,8 7,8 126 25,2 50,4 223 124 149,2 766 0,24 438 11 14 14 785 157 314 1234 609 766 0,24 105 105 2,6 212 42,4 84,8 319 150 192,4 0,19 256 256 2,6 212 42,4 84,8 319 466,8 0,19 184 184 0 0 0 358 71,6 143,2 542 255,6 327,2 17 162 162 8 8 1084 217 434 1635 769,6 986 0,19 162 162 3 3,9 3,9 379 115,8 231,6 406,7 525,5 295,1 0,19 </td <td></td> <td>110</td> <td>110</td> <td>110</td> <td>0</td> <td>0</td> <td>0</td> <td>185</td> <td>37</td> <td>74</td> <td>295</td> <td>147</td> <td>184</td> <td>0,24</td> <td></td> <td>2</td> <td>0,007</td>		110	110	110	0	0	0	185	37	74	295	147	184	0,24		2	0,007
91 91 6 7,8 7,8 126 25,2 50,4 223 124 149,2 8 438 438 11 14 14 785 157 314 1234 609 766 0,24 105 105 2 2,6 212 42,4 84,8 319 150 192,4 0,19 256 256 2 5,2 514 102,8 205,6 774 364 466,8 0,19 184 184 0 0 0 358 71,6 143,2 542 255,6 327,2 0,19 545 545 6 8 8 1084 217 434 1635 769,6 986 0,19 162 162 3 3,9 3,9 379 115,8 231,6 406,7 525,5 295,1 0,36 0 0 0 0 0 0 0 0 0		237	237	237	5	6,5	5'9	474	94,8	9,681	912	338,3	433,1			3	0,004
438 438 11 14 785 157 314 1234 609 766 0,24 105 105 2,6 2,6 212 42,4 84,8 319 150 192,4 0,19 256 256 2,6 2,6 212 42,4 84,8 319 150,4 0,19 184 184 0 0 0 358 71,6 143,2 542 255,6 327,2 7 545 545 6 8 8 1084 217 434 1635 769,6 986 0,19 162 162 3 3,9 3,9 323 64,6 129,2 488 230,5 295,1 0,36 287 287 3 3,9 3,9 115,8 231,6 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		91	91	91	9	7,8	7,8	126	25,2	50,4	223	124	149,2		0,20	2	600,0
105 105 2,6 2,6 212 42,4 84,8 319 150 192,4 0,19 256 256 2,2 5,2 514 102,8 205,6 774 364 466,8 0,19 184 184 0 0 358 71,6 143,2 542 255,6 327,2 7 162 162 3 3,9 3,9 323 64,6 129,2 488 230,5 295,1 0,36 162 162 3 3,9 3,9 379 115,8 231,6 869 406,7 522,5 0 0 0 0 0 0 0 0 0 0 0 449 489 6 8 8 902 180 361 137 818 036		438	438	438	11	14	14	785	157	314	1234	609	766	0,24	0,20	7	0,020
256 256 4 5,2 5,2 514 102,8 205,6 774 364 466,8 — 184 184 0 0 0 358 71,6 143,2 542 255,6 327,2 — 545 545 545 546 163,6 769,6 986 0,19 — 162 162 3 3,9 3,9 323 64,6 129,2 488 230,5 295,1 0,36 287 287 3 3,9 3,9 579 115,8 231,6 869 406,7 522,5 9 0		105	105	105	2	2,6	2,6	212	42,4	84,8	319	150	192,4	0,19		2	900'0
184 184 0 0 358 71,6 143,2 542 255,6 327,2 A 545 545 6 8 8 1084 217 434 1635 769,6 986 0,19 162 162 3 3,9 3,9 323 64,6 129,2 488 230,5 295,1 0,36 287 287 3 3,9 579 115,8 231,6 869 406,7 522,5 9 0 0 0 0 0 0 0 0 0 0 0 0 449 6 8 8 902 180 361 137 637 818 0,36		256	256	256	4	5,2	5,2	514	102,8	205,6	774	364	466,8			3	0,004
545 545 6 8 8 1084 217 434 1635 769,6 986 0,19 162 162 3 3,9 3,9 323 64,6 129,2 488 230,5 295,1 0,36 287 287 3,9 3,9 579 115,8 231,6 869 406,7 522,5 0		184	184	184	0	0	0	358	71,6	143,2	542	255,6	327,2		0,33	4	0,007
162 162 162 162 162 163 64,6 129,2 488 230,5 295,1 0,36 287 287 3 3,9 3,9 579 115,8 231,6 869 406,7 522,5 7 0 0 0 0 0 0 0 0 0 0 449 6 8 8 902 180 361 1357 637 818 0,36		545	545	545	9	8	8	1084	217	434	1635	9,697	986	0,19	0,33	6	0,017
287 287 3 3,9 3,9 579 115,8 231,6 869 406,7 522,5 8 0		162	162	162	3	3,9	3,9	323	64,6	129,2	488	230,5	295,1	0,36		3	900'0
0 0		287	287	287	3	3,9	3,9	819	115,8	231,6	698	406,7	522,5			2	0,002
449 6 8 8 902 180 361 1357 637 818 0,36		0	0	0	0	0	0	0	0	0	0	0	0		0,00	3	0,000
		449	449	449	9	8	8	905	180	361	1357	637	818	0,36	00,0	8	0,008

Tabel 4.17: Perhitungan kapasitas persimpangan Jalan Ir. H. Juanda-Brigjen Katamso.

		: 4 - fase	: Jam Puncak P - S	Fase 4	=	— ₹	.		Кара-	sitas kej	t smp/ Jam an) 0 0	30) Eq.(32) E	22 23	1337 0,314	628	1299 0,477	739		
	Ditangani oleh	Soal	Periode			Y					Front det	:	IFR	q.(28) Eq.(20 21	0,196 96	0,288 60	0,289 93	0,226 63		
	ā	Š	Pe						Rasio			:	So	Eq.(26) E	19	0,093	-	0,137 0		0.473	0,47,0
			,	e 3	=	\prec	Λ		Arus lalu	limtas	smp/ jam		0		18	419	462	620	407	IFR =	2 FRcrit
			: Jalan Ir. H. Juanda-Jalan Brigjend Katamso	Fase 3	,1	Y	\rightleftharpoons		Niki	,4	æ	smp/jam	S	Eq.(24)	11	4512	3391	4526	3803		
			lan Brigjer			••				Hanya tipe P	belok	kiri	FLT) Eq.(23)	16	1,0	1,0	1,0	1,0		
	17		anda-Ja				11	jan	aian	Ham	Belok	kanan	FRT	Eq.(22	15	1,0	1,0	1,0	1,0		
	: 16 Januari 2017	_	r. H. Ju	7	=	\	1	Arus jenuh smp/jam hijau	Faktor-faktor penyesuaian		Darki		F	:IEq.(2)	14	1,0	1,0	1,0	1,0		
GIV	: 16 Jan	: Medan	: Jalan I	Fase 2	1	V	<u>~</u>	enuh sm	-faktor 1	endeka	Kelan	dain	Ę	G.C.4	13	1,0	1,0	1,0	1,0		
Formulir SIG IV						II		Arus je	Faktor	Semua tipe pendekat	Ukuran Hambatan Kelan-	samping	FSF	Eq.(18) Gb.C-3:32 Eq.(19) Gb.C-3:3 [Tb.C-4:1] Tb.C-42 Gb.C-4:1Eq.(21) Eq.(22) Eq.(23) Eq.(24)	12	0,940	0,942	0,943	0,946		324
Ā	Tanggal	Kota	Simpang			***************************************				S		kota	Fcs	Tb.C-4:1	11	1,0	1,0	1,0	1,0	Eq. (29)	Eq. (31)
				% I	=	\preccurlyeq	\mathbb{A}		Nisi	dasar	smp/jam	hijan	S o	Eq. (20) Ge.C-32 Ge.C-33	10	4800	3600	4800	4020	(det)	(det)
				Fase	٩	V		L	efektif	Œ			We		6	8	9	∞	6,7	cun	၁
		IXAL				#		Arus RT smp/jam	Arah				QRTO		8	×				esuaian	aikan
		: PENENTUAN WAKTU SINYAL				124	338,3 150	Arus RT		Arah kiri			PLTOR PLT PRT QRT		7					Waktu siklus prapenyesuaian	Waktu siklus disesuaikan
		N WA		(jam)		J	L	aan					PRT		9	0,17	0,20	0,33	0,00	tu sikh	aktu sik
		NTUA	: KAPASITAS	as (smp	81,4	7	00	Rasio kendaraan	berbelok				PLT		5					Wak	≫
	1	: PEN	: KAP/	s latu lind	334,5	<i>></i>	₹	Rasic					PLTOF		4	0,16	0,24	0,19	96,0	5	1
	SINYA			Distribusi arus lalu lintas (smp/jam)	84,9	4	230,5			į.					3	Ь	Ь	Ь	P	total	
	AG BER	SIG IV		Distri)				Hijau	dalam	fase	Š		2	1	2	3	4	Waktu hilang total	LTI (det)
	SIMPANG BERSINYAL	Formulir SIG IV				150,0	364,0			Vode	Den-	dekat			1	n	T	В	S	Wakt	7

Tabel 4.18: Perhitungan panjang antrian Jalan Ir. H. Juanda-Brigjen Katamso.

							Formulir SIG-V	SIG-V								
SIMPANG	SIMPANG BERSINYAI		DANIA	TAY SAVI NAG	FDIAN		Tanggal	: 16 Januari 2017	ari 2017			Ditangani oleh	oleh			
Formulir SIG-V	J-V		LANO	TING WINT	KIAIN		Kota	: Medan				Perihal		: 4 - fase		2
		n	JUMLAH KENDARAAN TERHENTI	NDARAA	N TERHI	ENTI	Simpang	: Jalan Ir.	H. Juand	a-Jalan F	: Jalan Ir. H. Juanda-Jalan Brigjend K Periode	Periode		Jam punc	: Jam puncak pagi-sore	je j
			L	TUNDAAN			Waktu Siklus 324	324								
									Panjang	Rasio	Jumlah					
					Ju	nlah kend	Jumlah kendaraan antri (smp)	(d	antrian	kendar	kendaraa			Tundaan		
	Ams Jahr	Kapasi							(m)	aan	n terhenti					
Kode	Finds #ma	tas smo/ia	tas Derajat smo/ja Keienuhan	Rasio					_	Jumlah			Tundaan geo-	Tundaan Tundaan	Tundaan	
pendekat	smp/jam	E	3				Total	Panjang kendara		Kendar		latu imtas		rata-rata	total	
					Z	NZ NZ	NQ1+NQ2= NO	antrian (m)		terhenti		det/smp	rata-rata det/smp	det/smp	smp.det	
	0	ပ	DS = Q/C	GR = g/c GR = g/c			,			smp/ja m	A	DT	DG	DT+DG	DхО	
-	2	3	4	5	9	7	8	10	=	12		13	14	15	16	
Û	419	1337	0,314	0,296	-0,3	29,3	29,0	72,5	0,7	290	1,1	362,7	3,1	365,8	153417	
T	462	628	0,736	0,185	6,0	39,3	40,1	133,8	6,0	401	9,0	184,4	3,6	188,0	86923	
В	620	1299	0,477	0,287	0,0	46,1	46,0	115,0	0,7	460	0,7	242,1	3,5	245,6	152145	
S	407	739	0,550	0,194	0,1	33,0	33,1	6'86	8,0	331	0,7	237,8	3,3	241,1	98044	PART STATE OF THE
LTOR	378											U	9	9	1370 4	
(semna)												>	>	,	13/0,1	
Arus kor.								Total			1402		Ę	Total .		401600
Okor.								. Iouai			1462		2			471077
Arus total Otot.	2136						Kendaraan terhenti rata-rata stop/smp:	rhenti ratz	t-rata stoj	: dus/d	0,694	Tundaan	simpang r	Tundaan simpang rata-rata stop/smp:	: dws/do	230,25
Arus kor. =	Arus kor. = Arus yang dikoreksi	oreksi														

BAB 5

KESIMPULAN DAN SARAN

1.1 Kesimpulan

Dari hasil perhitungan yang berdasarkan survei yang telah dilakukan, dapat diambil kesimpulan yaitu:

- Puncak kepadatan lalu lintas pada hari senin jam 17.50-18.00 dengan menggunakan Manual Kapasitas Jalan Indonesia 1997, pada simpang Ir. H. Juanda-Sisingamangaraja diperoleh arus lalu lintas (Q) 855 smp/jam, nilai derajat kejenuhan (DS) sebesar 0,446 smp/jam, dan panjang antrian 106,1 m. Sedangkan untuk arus lalu lintas pada persimpangan jalan Ir. H. Juanda-Brigjend Katamso diperoleh arus lalu lintas (Q) 419 smp/jam, derajat kejenuhan (DS) 0,314 dan panjang antrian 72,5 m.
- 2. Persentase pelanggaran *yellow box* pada jam sibuk (hari Senin) yang terbesar adalah pada simpang Ir. H. Juanda-Brigjend Katamso sebesar 8,82%, terutama oleh pengendara sepeda motor. Berdasarkan hasil tersebut dapat di perkirakan bahwa pelanggaran pada *yellow box junction* terjadi karena kurangnya kedisiplinan dan pengetahuan pengendara terhadap *yellow box junction*.

5.2 Saran

Berdasarkan kesimpulan diatas, maka ada beberapa saran yang dapat diberikan berdasarkan hasil penelitian ini, antara lain:

- Dengan kedisiplinan menjaga aturan lalu lintas diharapkan dapat menurunkan angka kemacetan di Jalan . H. Juanda-Sisingamangaraja dan Ir. H. Juanda-Brigjend Katamso terutama di jam sibuk dan di hari kerja yaitu hari Senin dan hari libur dihari Sabtu dan Minggu.
- 2. Sebaiknya masyarakat harus memperhatikan dan mematuhi aturan-aturan lalu lintas, meningkatkan disiplin dan tindakan tegas terhadap pengguna jalan dengan tertib berlalu lintas terutama saat melewati *yellow box juction*, sehingga pada saat simpang lain lampu hijau tidak terjadi kemacetan.

3. Di harapkan kepada pemerintah Provensi Sumatra Utara ataupun Inststansi yang terkait agar mensosialisasikan dan menjalankan aturan tentang marka *Yellow box junction* ini kepada masyarakat agar berkurangnya jumlah pelanggaran pada persimpanga tersebut.

DAFTAR PUSTAKA

- Direktorat Jenderal Bina Marga (1997) Manual Kapasitas Jalan Indonesia (MKJI), Jakarta.
- Morlok, E. K, (1991) Pengantar Teknik dan Perencanaan Transportasi, Jakarta: Erlangga.
- Alamsyah, A. A. (2008) *Rekayasa Lalu Lintas Edisi Revisi*. Malang: Penerbit UMM Press.
- Nur, M. (2016) analisi kinerja marka yellow box juctiont (YBJ) sebagai antisipasi mencegah kemacetan di jalan kapten maulana lubis, Kota Medan. Bidang Studi Transportasi Fakultas Teknik Sipil UMSU.
- Widiandana, J. (2016) perencanaan ruang henti khusus (RHK) untuk sepeda motor pada simpang 4 bersinyal, persimpangan jln. Setia budi dan jln. Ringroad, Kota Medan. Bidang Studi Teknik Perencanaan Jalan dan Jembatan Fakultas Teknik Sipil POLMED.

LAMPIRAN

Gambar L.1: Pelaksanaan pengukuran geometrik simpang I.

Gamabar L.2: Pelaksanaan pengukuran geometrik simpang II.

Gambar L.3: Perhitungan volume lalu lintas.

Gambar L.4: Pelaksanaan perhitungan volume lalu lintas.

Gambar L.5: Pelanggaran pada yellow box junction pada simpang I.

Gambar L.6: Pelanggaran pada yellow box junction pada simpang II.

Tabel L.7: Data volume Ialu lintas perjam hari senin dan selasa.

			RT LTOR VOL/JAM	2114	2236	1310	1659	202	3619	
		BARAT	LTOR	119	118	149	130	140	233	
		æ	RT	934	1039 1079	526	732	852	1506	
			ST	1061	1039	635	197	1060	1880	
			RT LTOR VOL/JAM	1380	1494	1142	1563	1803	2193	
		TIMUR	LTOR	493	574	417	533	729	928	
				205	216	261	304	377	416	
	IIX		ST	682	704	464	726	269	849	
	IUANDA-JALAN SISINGAMANGARAJA XII	7	RT LTOR VOL/JAM	2248	2933	1761	2075	2780	3193	
	GAMA	SELATAN	LTOR	802	1043	629	773	1046	1538	
	SISIN	SI	RT	230	290	160	212	287	1356 299	
7	ALAN		ST	1216 230	1600	922	1090 212	1447	1356	
NUARI 2017	JUANDA-J		VOL/JAM	626	596	528	837	1368	1954	
1, 09 J	: JALAN Ir. H.	UTARA	RT LTOR	276	566	154	235	418	638	
ENIN	ALA	1		167	182	92	141	204	303	
3AL:	.:		ST	496	517	282	461	746	1013	
SENIN/TANGGAL: SENIN, 09 JAN	SIMPANG	WAVTI	MANIO	07.00 - 08.00 496 167 276	08.00 - 09.00 517 182	11.00 - 12.00 282	12.00 - 13.00 461	16.00 - 17.00 746 204	17.00 - 18.00 1013 303	

SENIN/TANGGAL: SELASA, 10 JANUARI 2017	3AL:	ELAS	3A, 10.	JANUARI 20	117											
SIMPANG	.:	IALAI	Z F. H.	: JALAN Ir. H. JUANDA-JALANSISINGAMANGARAJA XII	ALAN	SISIN	GAMA	NGARAJA N								
WALTH			UTARA			SE	SELATAN		-	I	TIMUR			B	BARAT	
WANTO	ST	RT	LTOR	ST RT LTOR VOL/JAM	\mathbf{ST}	RT	LTOR	RT LTOR VOL/JAM ST	ST	RT	LTOR	RT LTOR VOLJAM ST		RT L	LTOR	LTOR VOLJAM
07.00 - 08.00 587 183 305	287	183	305	1075	563	204	298	1065	572	191	317	1080	549	312	207	1068
08.00 - 09.00	586 217	217	388	1191	618	247	381	1246	625	232	319	1248	582	345	244	1171
							u.									
11.00 - 12.00 420 216 377	420	216	377	1013	414	220	374	1008	433	233	395	1001	550	368	181	1099
12.00 - 13.00 565 279 447	595	279	447	1291	684	275	475	1434	702	282	505	1489	681	443	198	1322
16.00 - 17.00 663 337 704	663	337	704	1704	999	353	999	1685	9/9	368	999	1709	<i>L</i> 99	208	132	1507
17.00 - 18.00	793 415	415	771	1979	722	441	783	1946	760	407	932	5060	688	196	219	5069

Tabel L.8: Data volume lalu lintas perjam hari rabu dan kamis.

Г			7								
			RT LTOR VOL/JAM	1044	1156	953	1277		1490	2036	
		BARAT	LTOR	204	240	176	189	7	127	208	
				296	340	358	429		701	056	
			ST	544	576	419	629		662	878	
			RT LTOR VOLJAM ST	1040	1219	1041	1474		1668	0507	
		TIMUR	LTOR	304	388	389	504		648	928	
		T	RT	186	224	227	276		364	369	
			ST	550	607	425	694		656	753	
	: JALAN Ir. H. JUANDA-JALAN SISINGAMANGARAJA XII		RT LTOR VOL/JAM	1070	1141	1009	1404		1583	1922	
	AMAN	SELATAN	LTOR	303	324	337	473		675	773	
	ISING	S	RT	190	222	217	217		263	428	
	LAN S		ST	577	565	455	714		645	721	
UARI 2017	JANDA-JA		VOL/JAM ST	1075	1191	973	1317		1612	2149	
11 JAN	Ir. H. JI	UTARA	ST RT LTOR V	305	388	337	473		704	773	
ABU,	ALAN		RT	183	217	216	279		263	655	
AL:F	.J.		ST	587	286	420	565		645		
SENIN/TANGGAL: RABU, 11 JANU	SIMPANG	WAVTII	WANIO	07.00 - 08.00 587 183	08.00 - 09.00	11.00 - 12.00 420 216	12.00 - 13.00 565 279		16.00 - 17.00 645 263	17.00 - 18.00 721	

			IAM	9	4	0	6	3	5	
		_	RT LTOR VOL/JAM	1016	1054	920	1339	1383	1765	
		BARAT	LTOR	134	145	86	123	125	195	
			RT	316	295	409	546	888	759	
			\mathbf{ST}	995	614	463	929	029	811	
			RT LTOR VOL/JAM ST	<i>LL</i> 91	2002	064	1187	1389	1675	
		TIMUR	LTOR	099	839	258	398	492	700	-
		C		353	443	217	308	244	364	
			ST	664	723	315	481	653	611	
	:JALAN Ir. H. JUANDA-JALAN SISINGAMANGARAJA XII	7	LTOR VOL/JAM ST	1178	1238	890	1389	1516	1835	
	BAMAN	SELATAN	LTOR	332	397	280	462	550	727	
	SISIN	S	RT	305	337	257	400	313	504	
7	LAN		\mathbf{ST}	541	504	353	527	653	604	
NUARI 201	UANDA-JA		VOL/JAM ST	1006	1235	1070	1296	1715	2284	
s, 12 JA	I Ir. H. J	UTARA	ST RT LTOR	202	375	401	475	719	895	
KAMIS	ALAN	1	RT	204	238	226	290	303	447	
JAL: F	.:		ST	009	622	443	531	693	942	
SENIN/TANGGAL: KAMIS, 12 JANUARI 2017	SIMPANG	WAVTI	WANTO	07.00 - 08.00 600 204	08.00 - 09.00	11.00 - 12.00 443	12.00 - 13.00 531 290	16.00 - 17.00 693 303	17.00 - 18.00	

Tabel L.9: Data volume lalu lintas perjam hari jumat dan sabtu.

			RT LTOR VOL/JAM	1048	1073		874	1251	-	790	1343	
		BARAT	LTOR	223	228		127	191	4	127	197	
		H	RT	273	322		333	456		329	995	
			ST	552	523		414	634		334	586	
			LTOR VOLJAM ST	1032	1195		1007	1429		1640	1948	
		TIMUR	LTOR	310	380		387	493		655	191	
		L	RT	183	205		210	271		351	404	
	ΙX		ST	539	610		410	999		634	LLL	
	ANDA-JALAN SISINGAMANGARAJA XII	7	RT LTOR VOL/JAM	1150	1259		1039	1266		1712	2009	
	GAMA	SELATAN	LTOR	353	409		369	439		671	846	
	SISIN	SE	RT	207	251		207	273		353	394	
17	ALAN		ST	590	665		463	554		889	691	
ANUARI 20	JUANDA-J		OL/JAM	960	1152		983	1266		1679	1949	
r, 13 J	: JALAN Ir. H. JU	UTARA	RT LTOR V	269	408		369	439		695	760	
UMA	ALAN	٦	RT	190	211		207	273		328	400	
GAL:	l:		ST	501	533		407	554		656	789	
SENIN/TANGGAL: JUMAT, 13 JANUARI 2017	SIMPANG	WAV THE	WANTO	07.00 - 08.00 501 190	08.00 - 09.00 533 211	,	11.00 - 12.00 407 207	12.00 - 13.00 554 273		16.00 - 17.00 656 328	17.00 - 18.00	

SENIN/TANGGAL:SABTU, 14 JANUARI 2017	3AL:S	ABT	J, 14 J	NUARI 201	7											
SIMPANG	Ţ:	ALAN	JALAN Ir. H. JU	IUANDA-14	LAN	SISIN	GAMAI	IANDA-JALAN SISINGAMANGARAJA XII	 							
11/11/W		٦	UTARA			SE	SELATAN	7		L	TIMUR			B	BARAT	
MANIO	ST	RT	RT LTOR V	OL/JAM	ST	RT	LTOR	RT LTOR VOL/JAM	ST	RT	LTOR	LTOR VOL/JAM	ST	RT	LTOR	RT LTOR VOL/JAM
07.00 - 08.00 540 214	540	214	301	1055	559	195	300	1054	562	205	302	1069	480	178	250	806
08.00 - 09.00 587 236	587	236	380	1203	579	231	376	1186	286	245	382	1213	538	208	321	1067
11.00 - 12.00 442	442	245	391	1078	555	250	369	1174	429	249	386	1064	388	228	324	940
12.00 - 13.00	704 287	287	200	1491	711	288	484	1483	631	284	466	1414	218	255	420	1253
						i.										
16.00 - 17.00 678 346	829	346	269	1721	649	344	290	1583	209	351	613	1571	209	367	529	1533
17.00 - 18.00 948 462	948	462	1097	2507	910	467	875	2252	702	394	712	1808	707	404	619	1730

Tabel L.10: Data volume lalu lintas perjam hari minggu.

	Π	Γ	1	Γ		Γ	Γ	Γ	Γ	Γ	Γ
			VOL/JAM	612	845	747	968		1482	1872	
		BARAT	RT LTOR	167	231	255	309		363	316	
				165	202	182	193		548	761	
			ST	280	412	310	394		571	795	
			RT LTOR VOL/JAM	872	1208	190	1099		1486	2077	
	,	TIMUR	LTOR	237	287	188	245		263	208	
			RT	153	443	192	223		338	523	
			ST	482	478	410	631		555	747	
	: JALAN Ir. H. JUANDA-JALAN SISINGAMANGARAJA XII		LTOR VOL/JAM	808	1042	728	872		1487	1908	
	AMAN	SELATAN	LTOR	213	333	251	304		554	784	
	ISING	S	RT	162	184	173	181		350	336	
117	LAN S		_	433	525	304	387		583	788	
ANUARI 20	JANDA-JA		VOL/JAM ST	904	266	812	1152		1603	1954	
3U, 15 J	Ir. H. J	UTARA	RT LTOR	244	296	193	256		809	608	
MING	ALAN		RT	151	173	190	231		338	343	
JAL: N	.J.		ST	509	523	429	665		657	802	
SENIN/TANGGAL: MINGGU, 15 JANUARI 2017	SIMPANG	WAVTI	WANIO	07.00 - 08.00 509	08.00 - 09.00	11.00 - 12.00	12.00 - 13.00		16.00 - 17.00 657	17.00 - 18.00 802	

Tabel L.14: Data volume lalu lintas perjam hari minggu.

R BARAT VOL/JAM ST RT LT 841 322 209 91 921 362 235 132 907 210 198 235 833 222 229 242 795 653 416 175
MM 7 8 8 8 8 8 8 8 8 9 8
ST RT S86 107 116 116 1
ST 586 637
SELATAN ST RT LT VOLJIAM ST 534 655 0 297 952 586 517 751 0 357 1103 637
SELATAN F LT V 297
SE O
ST 655
UTARA LT
ST RT
ST 370
WAKTU

Tabel L.11: Data volume lalu lintasperjam hari senin dan selasa.

	,					·				
		L	VOL/JAM	885	957	916	917	1553	1579	
		BARAT	LT	165	204	319	309	237	254	
			RT	278	295	289	303	542	554	
			ST	442	458	308	305	774	771	
		4	LT VOLJAM ST	296	1084	1013	1002	1022	1180	
		TIMUR	LT	143	169	244	261	251	295	
		[RT	129	196 169	184 244	159	175 251	590 223	
	USO		ST	695	719	585	582	969	590	
	JUANDA-JALAN BRIGJEND KATAMSO	Z	LT VOL/JAM ST	1203	1337	642	292	1109	1116	
	RIGJE	SELATAN	LT	401	469	157	125	486	480	
	AN B	SE	RT	0	0	0	0	0	0	
2017	1-JAL		ST	802	898	485	440	623	989	
JANUARI 2017	H. JUANDA	A	LT VOL/JAM	674	899	881	895	918	954	
N, 16	JALAN Ir. H.	JTARA	LT	114	153	149	158	93	102	
SENI	JAL	1	RT	93	105	168 149	174	154 93	144	
GAL:			ST	467	410	564	563	671	208	
SENIN/TANGGAL: SENIN, 16 JAN	SIMPANG	WAVIII	WANTO	07.00 - 08.00 467	08.00 - 09.00 410 105 153	11.00 - 12.00 564	12.00 - 13.00 563 174 158	16.00 - 17.00 671	17.00 - 18.00 708	

SENIN/TANGGAL: SELASA, 17 JANUARI 2017	JAL:	SELA	ISA,	17 JANUAR	12017					1						
SIMPANG		: JALAN Ir. H. J	N Ir.	H. JUAND	A-JAL	AN B	RIGJE	IUANDA-JALAN BRIGJEND KATAMSO	MSO							
WAYTT			UTARA			SE	SELATAN	z			TIMUR	~			BARAT	
OING	ST	ST RT LT	$\Gamma\Gamma$	VOL/JAM ST	ST	RT	LT	LT VOL/JAM ST	ST	RT	LT	LT VOL/JAM	ST	ST RT	LT	VOL/JAM
07.00 - 08.00 457	457	87	107	651	783	0	378	1161	899	125	134	927	430	261	152	843
08.00 - 09.00 402	402	101	143	949	828	0	451	1309	602	131	156	966	447	282	191	920
11.00 - 12.00 554	554	159	142	855	468	0	144	612	570	171	232	973	292	277	307	928
12.00 - 13.00 609		156 150	150	915	423	0	127	920	577	142	244	696	297	293	298	888
16.00 - 17.00 648	648	113	87	848	615	0	470	1085	583	161	234	816	754	527	224	1505
17.00 - 18.00 680	089	132	89	901	630	0	469	1099	573	209	279	1001	761	541	250	1552

Tabel L.12: Data volume lalu lintas perjam hari rabu dan kamis.

			Į							
			VOL/JAM	799	868	822	698	1457	1523	
		BARAT	LT	139	184	286	288	205	247	
			RT	254	272	257	284	519	525	
			ST	406	442	279	297	733	751	
	120	8	LT VOLJAM	1274	996	944	<i>1</i> 76	646	1037	
	3	TIMUR	LT	122	149	222	225	225	273	
			RT	502	121	164	136 225	566 158	200	
			ST	650	969	558	999	566	564	
	TAMSO	Z	RT LT VOLJAM ST	1114	1288	599	995	744	1085	
	DKA	SELATAN	LT	362	437	140	125	140	458	
	GJEN	SE	RT	0	0	0	0	0	0	
017	A-BRI			752	851	459	441	604	627	
SENIN/TANGGAL: RABU, 18 JANUARI 2017	: JALAN Ir. H. JUANDA-BRIGJEND KATAMSO	A	ST RT LT VOLJAM ST	630	522	827	834	844	875	
U, 18	AN Ir	UTARA	TT	66	133	136	145	81	82	
RAB	:JAL	1	RT	84	98	149	143	138	128	
GAL:			ST	447	291	542	546	625	999	
TANG	NG	WAVTH	010	07.00 - 08.00 447	08.00 - 09.00 291	11.00 - 12.00 542 149	12.00 - 13.00 546 143 145	16.00 - 17.00 625 138	17.00 - 18.00 665 128	
SENIN,	SIMPANG	14/11	N.	00.70	08.00	11.00	12.00 -	16.00 -	17.00 -	

SENIN/TANGGAL: KAMIS, 19 JANUARI 2017 SIMPANG : JALAN Ir. H. JUANDA-JAI WAKTU ST RT LT VOL/JAM ST 07.00 - 08.00 435 84 99 618 739 08.00 - 09.00 378 96 120 594 843 11.00 - 12.00 535 144 132 811 448	ST S	: JAL : JAL ST RT 435 84 378 96 535 144	. JALAN Ir. J UTARA RT LT N 84 99 96 120 144 132	A VOL/JAM ST 618 739 843 811 448	A-JAL ST 739 843 448	AN B SE O O O O	SELATAN T LT V 355 418 136	DKATAN OL/JAM 1094 1261 584	MSO MSO 821 ST 828 828 828 828 828 828 828 828 828 82	O TI RT 0 116 6 121 6 8 164 2	MU 123 149 222	889 966 944		RT RT 247		VOL/JAN 784 884 806
12.00 - 13.00 541 137	0 541	137	146	824	402	0	125	527	266	. 8	225	927	787	277	285	849
16.00 - 17.00 618 131	0 618	131	11	826	595	0	446	1041	557	155	222	934	721	<i>L</i> 99	202	1590
17.00 - 18.00 659 127	0 659	127	83	698	623	0	451	1074	558	193	269	1020	742	517	242	1501

Tabel L.13: Data lalu lintas perjam hari jumat dan sabtu.

		BARAT	RT LT VOLJAM	244 138 772	266 180 878	230 277 770	264 281 834	498 209 1416	513 217 1464	
			ST	390	432	263	289	7 602	734 :	
		8	VOL/JAM	881	096	676	886	816	. 1003	
		TIMUR	LT	123	148	219	240	219	261	
			RT	115	120	159	138	153	550 192	
	USO		ST	643	692	551	260	546	550	
	JUANDA-JALAN BRIGJEND KATAMSO	N	VOL/JAM ST	1065	1235	574	538	1031	1057	
	RIGJE	SELATAN	LT	346	404	134	144	442	443	
	AN BI	SE	RT	0	0	0	0	0	0	
2017	-JAI		ST	719	831	440	394	689	614	
) JANUARI	H. JUANDA		ST RT LT VOLJAM	604	589	804	190	817	829	
AT, 2(N F	UTARA	LT	66	123	136	125	78	83	
JUM	: JALAN Ir. H.	1	RT	82		142	135	132	126	
GAL:	-	=	ST	423	371	526	530	209	650	
SENIN/TANGGAL: JUMAT, 20 JANUARI 2017	SIMPANG	WAKTU	And the state of t	07.00 - 08.00 423	08.00 - 09.00 371 92	11.00 - 12.00 526 142 136	12.00 - 13.00 530 135 125	16.00 - 17.00 607 132	17.00 - 18.00 650 126	

SENIN/TANGGAL: SABTU, 21 JAN	GAL	SAB	TU, 2	1 JANUARI 2017	2017											
SIMPANG		: JAL	AN Ir.	: JALAN Ir. H. JUANDA-JALAN BRIGJEND KATAMSO	N-JAL	AN B	RIGJE	ND KATAN	USO							
WAUTH			UTARA	Y.		SE	SELATAN	N			TIMUR	8			BARAT	I
WANIO	ST	ST RT LT VOI	LT	L/JAM	\mathbf{ST}	RT	LT	RT LT VOL/JAM ST RT	ST	RT	LT	LT VOLJAM ST	ST	RT	RT LT	VOL/JAM
07.00 - 08.00 413	413	83	92	288	902	0	337	1043	626	114 123	123	863	374	236	136	746
08.00 - 09.00 358	358	90	120	268	814	0	392	1206	<i>LL</i> 9	119	147	943	416	258	175	849
11.00 - 12.00 516 136	516	136	28	730	434	0	171	1176	533	159 206	206	868	255	222	269	746
12.00 - 13.00 522 120	522	120	82	724	387	0	184	571	545	138 232	232	915	271	255 274	274	800
16.00 - 17.00 587 124	587	124	135	846	280	0	536	1116	530	153	212	895	693	486	201	1380
17.00 - 18.00 636 125 140	636	125	140	901	601	0	432	1033	534	190	253	226	719	499	209	1427

DAFTAR RIWAYAT HIDUP

DATA DIRI PESERTA

Nama Lengkap : Aminsyah Panggilan : Amin

Tempat, Tanggal Lahir : PINING, 04 JULI 1992

Jenis Kelamin : Laki-Laki

Alamat Sekarang : Jl. Pancing II Kelurahan Indra Kasih, Kec. Medan

Tembung

Nomor KTP : 1113050407920001

Alamat KTP : Dusun Berawang Pungkih

No. HP/Telp Seluler : 0823-6981-7765

E-mail : <u>aminaryen@gmail.com</u>

RIWAYAT PENDIDIKAN

Nomor Induk Mahasiswa : 1207210092 Fakultas : Teknik Jurusan : Teknik Sipil Program Studi : Teknik Sipil

Perguruan Tinggi : Universitas Muhammadiyah Sumatera Utara

Alamat Perguruan Tinggi : Jl. Kapten Muchtar Basri BA. No. 3 Medan 20238

No	Tingkat	Nama dan Tempat	Tahun
	Pendidikan		Kelulusan
1	Sekolah Dasar	SD Negeri 2 Pintu Rime	<mark>2006</mark>
2	SMP	SMP Negeri 1 Pining	<mark>2009</mark>
3	SMA	SMA Negeri 1 Pining	<mark>2012</mark>
4	Melanjutkan Kuliah D sampai selesai.	i Universitas Muhammadiyah Sumatera Ut	ara Tahun 2012