TUGAS AKHIR

PERENCANAAN POSISI BELTTRUSS PADA BANGUNAN TOWER AIR TRAFFIC CONTROL (ATC) SETINGGI 80 M (Studi Literatur)

Diajukan Untuk Memenuhi Syarat-Syarat Memperoleh Gelar Sarjana Teknik Sipil Pada Fakultas Teknik Universitas Muhammadiyah Sumatera Utara

Disusun Oleh:

SAPTO PRABOWO 1407210079

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA MEDAN 2018

HALAMAN PENGESAHAN

Tugas Akhir ini diajukan oleh:

Nama : Sapto Prabowo

NPM : 1407210079

Program Studi : Teknik Sipil

Judul Skripsi : Perencanaan Posisi *Belttruss* Pada Bangunan *Tower Air Traffic* Control (ATC) Setinggi 80 M

Bidang ilmu : Struktur

Telah berhasil dipertahankan di hadapan Tim Penguji dan diterima sebagai salah satu syarat yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, September 2018

Mengetahui dan menyetujui: Dosen Pembimbing Penguji Tondi utera, ST., MT

Dosen Pembanding I / Penguji

Dr. Ade Faisal, ST,. MSc

Dosen Pembimbing II / Penguji

Mizanuddin Sitompul, ST,. MT

Dosen Pembanding II / Penguji

Dr. Fahrizal Zulkarnain, ST,. MSc

RADIN Brogram Studi Teknik Sipil Ketua, '

Dr. Fahrizal Zulkarnain, ST,. M.Sc

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Saya yang bertanda tangan di bawah ini:

Nama Lengkap : Sapto Prabowo

Tempat /Tanggal Lahir: Pematang Panjang / 15 September 1996

NPM : 1407210079 Fakultas : Teknik

Program Studi : Teknik Sipil,

menyatakan dengan sesungguhnya dan sejujurnya, bahwa laporan Tugas Akhir saya yang berjudul:

"Perencanaan Posisi *Belttruss* Pada Bangunan *Tower Air Traffic Control* (ATC) Setinggi 80 M"

bukan merupakan plagiarisme, pencurian hasil karya milik orang lain, hasil kerja orang lain untuk kepentingan saya karena hubungan material dan non-material, ataupun segala kemungkinan lain, yang pada hakekatnya bukan merupakan karya tulis Tugas Akhir saya secara orisinil dan otentik.

Bila kemudian hari diduga kuat ada ketidaksesuaian antara fakta dengan kenyataan ini, saya bersedia diproses oleh Tim Fakultas yang dibentuk untuk melakukan verifikasi, dengan sanksi terberat berupa pembatalan kelulusan/ kesarjanaan saya.

Demikian Surat Pernyataan ini saya buat dengan kesadaran sendiri dan tidak atas tekanan ataupun paksaan dari pihak manapun demi menegakkan integritas akademik di Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan,29 September 2018

Saya yang menyatal **METERAI** EMPEL E9107ADF094492503 Sapto Prábowo

ABSTRAK

PERENCANAAN POSISI *BELTTRUSS PADA BANGUNAN TOWER AIR TRAFFIC CONTROL* (ATC) SETINGGI 80 M (STUDI LITERATUR)

Sapto Prabowo 1407210079 Tondi Amirsyah Putera, ST,. MT Mizanuddin Sitompul, ST,. MT

Indonesia adalah sebuah negara dengan aktifitas gempa bumi tektonik yang tinggi. Dari segi geologi lokasi Indonesia terletak pada 4 lempeng tektonik utama yaitu lempeng Eurasia, Indo-Australia, Pasifik, dan Filipina. Saat ini, semakin sempitnya lahan di kota-kota besar mengharuskan pola pembangunan gedung secara vertikal. Pembangunan gedung secara vertikal sangat rentan terhadap bahaya beban lateral seperti gempa bumi. Metode perencanaan yang terus dikembangkan dalam dunia teknik sipil dan dapat digunakan untuk merencanakan bangunan tingkat tinggi, salah satunya adalah penerapan sistem belttruss dan outrigger pada bangunan tingkat tinggi. Penggunaan belttruss dan outrigger dapat mengurangi momen yang terjadi pada desain struktur bangunan. Analisis yang digunakan pada tugas akhir ini adalah analisis respon spektrum berdasarkan peraturan gempa SNI 1726:2012. Dalam tugas akhir ini terdapat 3 Model struktur bangunan gedung, dimana Model 1 didesain menggunakan rangka beton bertulang pemikul momen khusus, Model 2 rangka belttruss diletakkan pada lantai 4, 9 dan 14, Model 3 rangka belttruss di letakkan pada lantai 5, 10 dan 15. Input beban sama pada setiap model. Struktur gedung memiliki 19 lantai dengan tinggi keseluruhan 80 m. Dimensi disamakan dan disesuaikan dengan kebutuhan desain. Bangunan di modelkan dan analisis struktur menggunakan bantuan program ETABS Ver. 16.2, dari analisis yang telah dilakukan diperoleh tebal pelat lantai 12 cm, dimensi kolom utama yang digunakan beton bertulang 1 x 1 m untuk lantai 1-19, sedangkan kolom eksterior bervariasi. Dimensi balok yang digunakan 0,8 x 0,6 m untuk lantai 1-9, 0,8 x 0,5 m untuk lantai 10-17 sedangkan balok lantai 18-19 adalah 0,8 x 0,4 m dan profil belttruss yang digunakan adalah WF 257.204.15.8.

Kata kunci : air traffic control, belttruss, gempa, simpangan, gaya geser.

ABSTRACT

PLANNING BELTTRUSS POSITION OF AIR TRAFFIC CONTROL TOWER (ATC) BUILDING WITH 80 M HEIGHT (LITERATURE STUDY)

Sapto Prabowo 1407210079 Tondi Amirsyah Putera, ST,. MT Mizanuddin Sitompul, ST,. MT

Indonesia is a country with high tectonic earthquake activity. Geological location of Indonesia is located on 4 major tectonic plates, namely Eurasian, Indo-Australian, Pacific, and Philippine plate. Currently, the narrowness of land in large cities requires the pattern of vertical building construction. Vertical building construction is particularly vulnerable to lateral load hazards such as wind and earthquakes. Planning methods are continuously developed in the civil engineering world and can be used to plan high-rise buildings, one of which is the application and use of belttruss and outrigger systems in high-rise buildings. The use of belttruss and outrigger can reduce the moments that occur ot design structure. The analysis used in this final project is spectrum response analysis based on SNI 1726:2012 earthquake regulation. In this final project there are 3 model of building structure, there are 3 Models of the structure of the building, where Model 1 was designed using the framework of reinforced concrete special moment resisting frame, the Model 2 order belttruss laid on floors 4, 9 and 14, Model 3 order belttruss in place on floors 5, 10 and 15. The Input load is the same on every model. The structure of the building has 19 floors with an overall height of 80 m. The dimensions matched and tailored to the needs of the design. Buildings in the modeling and analysis of the structure using the help of the program ETABS Ver. 16.2, from the analysis that has been done to obtain a thick plate floor 12 cm, the dimensions of the main column that used reinforced concrete 1 x 1 m to the floor of 1-19, while the columns of the exterior varies. The dimensions of the beam used 0.8 x 0.6 m for flooring 1-9, 0.8 x 0.5 m for floors 10-17 while the floor joists 18-19 is a 0.8 x 0.4 m and profile belttruss used is WF 257.204.15.8.

Keywords: air traffic control, beltruss, earthquake, displacement, shear force.

KATA PENGANTAR

Dengan nama Allah Yang Maha Pengasih lagi Maha Penyayang. Segala puji dan syukur penulis ucapkan kehadirat Allah SWT yang telah memberikan karunia dan nikmat yang tiada terkira. Salah satu dari nikmat tersebut adalah keberhasilan penulis dalam menyelesaikan laporan Tugas Akhir ini yang berjudul "Perencanaan Posisi *Belttruss* Pada Bangunan *Tower Air Traffic Control* (ATC) Setinggi 80" sebagai syarat untuk meraih gelar akademik Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara (UMSU), Medan.

Banyak pihak telah membantu dalam menyelesaikan laporan Tugas Akhir ini, untuk itu penulis menghaturkan rasa terimakasih yang tulus dan dalam kepada:

- Bapak Tondi Amirsyah Putera Pulungan, ST,. MT selaku Dosen Pembimbing I dan Penguji yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- Bapak Mizanuddin Sitompul, ST,. MT selaku Dosen Pembimbing II dan Penguji yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- Bapak Dr. Ade Faisal selaku Dosen Pembanding I dan Penguji yang telah banyak memberikan koreksi dan masukan kepada penulis dalam menyelesaikan Tugas Akhir ini.
- 4. Bapak Dr. Fahrizal Zulkarnain selaku Dosen Pembanding II dan Penguji sekaligus sebagai Ketua Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara yang telah banyak memberikan koreksi dan masukan kepada penulis dalam menyelesaikan Tugas Akhir ini.
- Ibu Hj. Irma Dewi, ST,. M.Si selaku Sekretaris Program Studi Teknik Sipil Universitas Muhammadiyah Sumatera Utara.
- 6. Bapak Munawar Alfansury, ST,. MT selaku Dekan Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

- Seluruh Bapak/Ibu Dosen di Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara yang telah banyak memberikan ilmu ketekniksipilan kepada penulis.
- 8. Orang tua penulis: Suyono, dan Marinem, yang telah bersusah payah membesarkan dan membiayai studi penulis.
- Bapak/Ibu Staf Administrasi di Biro Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- Terima kasih kepada abangda Effan Ferarri Gultom, S.T, Muhammad Dicky Pratama Putra, ST,. Luthfy Sofyan Lubis, ST,. Muhammad Taruna, ST,. dan kakanda Putri Septia Ananda yang telah membimbing proses tugas akhir ini beserta memberikan doa untuk penulis.
- 11. Sahabat-sahabat penulis: Nizar Fuadi, Jefri Rahmad Fadhil, Fahmi Idris, Aji Persada Agusti Lubis, Indrayanto, Febriadi Avisha, Wihanda, Retno Friana Dewi, Yuwinda Arthika, Hanifah Zahra serta keluarga A1 Pagi dan keluarga besar Teknik Sipil Universitas Muhammadiyah Sumatera Utara dan lainnya yang tidak mungkin namanya disebut satu per satu.

Laporan Tugas Akhir ini tentunya masih jauh dari kesempurnaan, untuk itu penulis berharap kritik dan masukan yang konstruktif untuk menjadi bahan pembelajaran berkesinambungan penulis di masa depan. Semoga laporan Tugas Akhir ini dapat bermanfaat bagi dunia konstruksi teknik sipil.

Medan, September 2018

Sapto Prabowo

DAFTAR ISI

LEMBA	AR PE	ENGESAHAN	ii
LEMBA	AR PE	RNYATAAN KEASLIAN TUGAS AKHIR	iii
ABSTR	AK		iv
ABSTRA	ACT		v
KATA	PENC	JANTAR	vi
DAFTA	R ISI		viii
DAFTA	R TA	BEL	xiii
DAFTA	R GA	MBAR	xvii
DAFTA	R NC	DTASI	XX
DAFTA	R SI	NGKATAN	xxii
BAB 1	PEN	DAHULUAN	
	1.1.	Latar Belakang	1
	1.2.	Rumusan Masalah	2
	1.3.	Ruang Lingkup Pembahasan	2
	1.4.	Tujuan Penelitian	3
	1.5.	Manfaat Penelitian	4
	1.6.	Sistematika Penulisan	4
BAB 2	TINJ	IAUAN PUSTAKA	
	2.1.	Pendahuluan	5
	2.2.	Konsep Perencanaan Bangunan Tahan Gempa	7
		2.2.1. Gempa Rencana	7
		2.2.2. Arah Pembebanan Gempa	8
		2.2.2.1. Distribusi Vertikal Gaya Gempa	8
		2.2.2.2. Distribusi Horizontal Gaya Gempa	9
		2.2.3. Wilayah Gempa	9
	2.3.	Kriteria Desain Perencanaan Struktur Gedung Tahan Gempa	11
		2.3.1. Kategori Desain Seismik	11
		2.3.2. Kriteria Struktur Gedung	13
		2.3.3. Faktor Keutamaan Dan Kategori Resiko Bangunan	16
		2.3.4. Faktor Reduksi Gempa	18

		2.3.5. Klasifikasi Situs	19
		2.3.6. Penentuan Percepatan Tanah Puncak	20
		2.3.7. Penentuan Respon Spektrum	21
	2.4.	Analisis Gaya Laterar Ekivalen	24
		2.4.1. Gaya Dasar Seismik	24
		2.4.2. Perhitungan Koefisien Dasar Seismik	24
	2.5.	Prioda Alami Fundamental	25
	2.6.	Analisis Respon Dinamik	27
	2.7.	Simpangan Antar Lantai	29
	2.8.	Torsi Dan Eksentrisitas	30
	2.9.	Beban Dan Kombinasi Pembebanan	31
	2.10	Distribusi Kekakuan Vertikal	32
		2.10.1. Soft Storey	33
		2.10.2. Kekakuan Struktur	34
	2.11	Konsep Perencanaan Struktur Tahan Gempa	34
		2.11.1. Sistem Rangka Pemikul Momen	34
		2.11.2. Sistem Kerangka Belttruss	35
		2.11.3. Prilaku Dan Cara Kerja Beltruss	38
		2.11.4. Pembebanan Pada Control Cab	38
BAB 3	MET	ODE PENELITIAN	
	3.1.	Umum	41
	3.2.	Tinjauan Umum	42
	3.3.	Faktor Respon Gempa	42
	3.4.	Pemodelan Dan Analisis Struktur	46
		3.4.1. Pemodelan Gedung	46
		3.4.1.1. Data Perencanaan Struktur	47
		3.4.1.2. Faktor Keutamaan Struktur	47
		3.4.1.3. Faktor Reduksi Gempa	47
		3.4.2. Propertis Penampang	48
		3.4.2.1. Tebal Plat Lantai	48
		3.4.3. Pembebanan Struktur	49
		3.4.3.1. Beban Mati	49

			3.4.3.2.	Beban Hidup	52
			3.4.3.3.	Beban Gempa	52
			3.4.3.4.	Kombinasi Pembebanan	53
		3.4.4.	Perhitun	gan Berat Perlantai Gedung	53
	3.5.	Struktu	ur Bangui	nan Model 1	54
		3.5.1.	Dimensi	Kolom Dan Balok	56
		3.5.2.	Analisis	Respon Spektrum	56
	3.6.	Struktu	ur Bangui	nan Model 2	60
		3.6.1.	Dimensi	Kolom Dan Balok	62
		3.6.2.	Analisis	Respon Spektrum	62
	3.7.	Struktu	ur Bangui	nan Model 3	66
		3.7.1.	Dimensi	Kolom Dan Balok	68
		3.7.2.	Analisis	Respon Spektrum	68
BAB 4	HAS	IL DAN	N PEMBA	AHASAN	
	4.1.	Tinjau	an Umun	1	72
	4.2.	Hasil A	Analisis C	Gedung	72
		4.2.1.	Struktur	Model 1	72
			4.2.1.1.	Berat Struktur	72
			4.2.1.2.	Koreksi Gaya Geser	73
			4.2.1.3.	Koreksi Faktor Redundansi	75
			4.2.1.4.	Gaya Geser Lantai	76
			4.2.1.5.	Nilai Simpangan	78
			4.2.1.6.	Ketidakberaturan Kekakuan Tingkat Lunak	79
			4.2.1.7.	Ketidakberaturan Torsi	80
			4.2.1.8.	Ketidakberaturan Massa	82
			4.2.1.9.	Pengaruh P-Delta	83
		4.2.2.	Struktur	Model 2	85
			4.2.2.1.	Berat Struktur	85
			4.2.2.2.	Koreksi Gaya Geser	86
			4.2.2.3.	Koreksi Faktor Redundansi	88
			4.2.2.4.	Gaya Geser Lantai	89
			4.2.2.5.	Nilai Simpangan	91

		4.2.2.6.	Ketidakberaturan Kekakuan Tingkat Lunak	92
		4.2.2.7.	Ketidakberaturan Torsi	93
		4.2.2.8.	Ketidakberaturan Massa	95
		4.2.2.9.	Pengaruh P-Delta	96
	4.2.3.	Struktur	Model 3	98
		4.2.3.1.	Berat Struktur	98
		4.2.3.2.	Koreksi Gaya Geser	99
		4.2.3.3.	Koreksi Faktor Redundansi	101
		4.2.3.4.	Gaya Geser Lantai	102
		4.2.3.5.	Nilai Simpangan	104
		4.2.3.6.	Ketidakberaturan Kekakuan Tingkat Lunak	105
		4.2.3.7.	Ketidakberaturan Torsi	106
		4.2.3.8.	Ketidakberaturan Massa	108
		4.2.3.9.	Pengaruh P-Delta	109
4.3.	Perhitu	ungan Str	uktur Dengan ETABS V16.2	111
	4.3.1.	Peratura	n Yang Digunakan	111
	4.3.2.	Efektifit	as Penampang	112
	4.3.3.	Analisis	Gaya Dalam	113
	4.3.4.	Penulan	gan Balok	116
		4.3.4.1.	Desain Tulangan Utama Balok	119
		4.3.4.2.	Desain Tulangan Geser	119
		4.3.4.3.	Desain Tulangan Torsi	120
		4.3.4.4.	Desain Tulangan Badan	121
		4.3.4.5.	Kontrol Persyaratan SRPMK	121
		4.3.4.6.	Gambar Detail Penulangan Balok	123
	4.3.5.	Penulan	gan Kolom	123
		4.3.5.1.	Desain Tulangan Utama Kolom	125
		4.3.5.2.	Desain Tulangan Geser Kolom	125
		4.3.5.3.	Kontrol Persyaratan SRPMK	126
		4.3.5.4.	Gambar Detail Penulangan Kolom	127
	4.3.6.	Penulan	gan Plat Lantai	128
	4.3.7.	Perenca	naan Belttruss	129

		4.3.8. Perencanaan Outrigger	131
	4.4.	Hasil Perbandingan Pemodelan Struktur	133
		4.4.1. Perbandingan Simpangan Antar Lantai	133
		4.4.2. Perbandingan Gaya Geser Lantai	136
BAB 5	KES	IMPULAN DAN SARAN	
	5.1.	Keimpulan	138
	5.2.	Saran	138
DAFTA	R PU	JSTAKA	140
LAMPI	RAN		
DAFTA	RRI	WAYAT HIDUP	

DAFTAR TABEL

Tabel 2.1	Kategori desain seismik berdasarkan parameter respons	
	percepatan pada perioda pendek	12
Tabel 2.2	Kategori desain seismik berdasarkan parameter respons	
	perceptan perioda 1 detik	12
Tabel 2.3	Ketidakberaturan horizontal pada struktur berdasarkan SNI	
	1726:2012	14
Tabel 2.4	Ketidakberaturan vertikal pada struktur berdasarkan SNI	
	1726:2012	14
Tabel 2.5	Kategori resiko bangunan gedung dan struktur lainnya untuk	
	beban gempa berdasarkan SNI 1726:2012	16
Tabel 2.6	Faktor keutamaan (Ie), berdasarkan SNI 1726:2012	17
Tabel 2.7	Faktor koefisien modifikasi respons, faktor kuat lebih	
	sistem, faktor pembesaran defleksi, dan batasan tinggi	
	sistem struktur berdasarkan SNI 1726:2012	18
Tabel 2.8	Klasifikasi situs berdasarkan SNI 1726:2012	19
Tabel 2.9	Klasifikasi situs PGA berdasarkan SNI 1726:2012	20
Tabel 2.10	Koefisien perioda pendek (F_a) berdasarkan SNI 1726:2012.	21
Tabel 2.11	Koefisien perioda 1,0 detik (F_v) berdasarkan SNI 1726:2012	22
Tabel 2.12	Nilai parameter perioda pendekatan C_t dan x	
	berdasarkan SNI 1726:2012	26
Tabel 2.13	Koefesien untuk batas atas pada perioda yang dihitung	
	berdasarkan SNI 1726:2012	26
Tabel 2.14	Simpangan antar lantai ijin (Δ_a) berdasarkan SNI 1726:2012	29
Tabel 2.15	Kombinasi pembebanan berdasarkan SNI 1726:2012	
	dengan nilai ρ =1,3 dan S_{DS} = 0,9 pada tanah sedang	31
Tabel 3.1	Respon Spektrum SNI 1726:2012 Daerah, Kota Padang	
	dengan jenis tanah sedang	44
Tabel 3.2	Faktor reduksi gempa berdasarkan SNI 1726:2012	47
Tabel 3.3	Berat material konstruksi berdasarkan PPUG 1983	49

Tabel 3.4	Berat tambahan komponen gedung berdasarkan PPUG 1983	50
Tabel 3.5	Berat tambahan komponen Control Cab Air Trafic Contor	
	berdasarkan FAA. 2014	50
Tabel 3.6	Rekapitulasi beban dinding yang diinput dalam pemodelan	50
Tabel 3.7	Beban tangga akibat reaksi perletakkan di balok tangga dan	
	balok bordes	51
Tabel 3.8	Beban hidup pada lantai struktur berdasarkan SNI	
	1727:2013	52
Tabel 3.9	Kombinasi pembebanan berdasarkan SNI 1729-2012 dengan	
	nilai $\rho = 1,3$ dan Sds = 0,900	53
Tabel 3.10	Ukuran Penampang pada Model 1	56
Tabel 3.11	Data perioda output program ETABS Model 1	57
Tabel 3.12	Hasil selisih persentase nilai perioda Model 1	57
Tabel 3.13	Pengecekan perioda berdasarkan pembatasan waktu getar	
	alami fundamental Model 1 berdasarkan SNI 1726:2012	58
Tabel 3.14	Rangkuman nilai Cs dan nilai Cs yang digunakan Model 1	59
Tabel 3.15	Ukuran Penampang pada Model 2	62
Tabel 3.16	Data perioda output program ETABS Model 2	63
Tabel 3.17	Hasil selisih persentase nilai perioda Model 2	63
Tabel 3.18	Pengecekan perioda berdasarkan pembatasan waktu getar	
	alami fundamental Model 2 berdasarkan SNI 1726:2012	64
Tabel 3.19	Rangkuman nilai Cs dan nilai Cs yang digunakan Model 2	65
Tabel 3.20	Ukuran Penampang pada Model 3	68
Tabel 3.21	Data perioda output program ETABS Model 3	69
Tabel 3.22	Hasil selisih persentase nilai perioda Model 3	69
Tabel 3.23	Pengecekan perioda berdasarkan pembatasan waktu getar	
	alami fundamental Model 3 berdasarkan SNI 1726:2012	70
Tabel 3.24	Rangkuman nilai Cs dan nilai Cs yang digunakan Model 3	71
Tabel 4.1	Massa struktur, pusat massa dan pusat kekakuan	73
Tabel 4.2	Nilai gaya geser dasar nominal analisis respons spektrum	74
Tabel 4.3	Rekapitulasi faktor skala hasil respon spektrum dengan	
	statik ekivalen masing–masing arah Model 1	75

Tabel 4.4	Koreksi story shear dengan 35% base shear redundansi (ρ)	
	1,3	76
Tabel 4.5	Nilai gaya geser gabungan maksimum x dan y pada setiap	77
	lantai	
Tabel 4.6	Nilai simpangan antar lantai berdasarkan SNI 1726:2012	78
Tabel 4.7	Ketidakberaturan kekakuan tingkat lunak pada gempa arah x	79
Tabel 4.8	Ketidakberaturan kekakuan tingkat lunak pada gempa arah y	80
Tabel 4.9	Ketidakberaturan torsi biasa dan torsi berlebihan pada	
	gempa arah x	81
Tabel 4.10	Ketidakberaturan torsi biasa dan torsi berlebihan pada	
	gempa arah y	81
Tabel 4.11	Ketidakberaturan berat (massa)	82
Tabel 4.12	Perhittungan P-Delta pada arah x berdasarkan SNI	
	1726:2012	83
Tabel 4.13	Perhittungan P-Delta pada arah y berdasarkan SNI	
	1726:2012	84
Tabel 4.14	Massa struktur, pusat massa dan pusat kekakuan	85
Tabel 4.15	Nilai gaya geser dasar nominal analisis respons spektrum	87
Tabel 4.16	Rekapitulasi faktor skala hasil respon spektrum dengan	
	statik ekivalen masing-masing arah Model 2	88
Tabel 4.17	Koreksi story shear dengan 35% base shear redundansi (ρ)	
	1,3	88
Tabel 4.18	Nilai gaya geser gabungan maksimum x dan y pada setiap	89
	lantai	
Tabel 4.19	Nilai simpangan antar lantai berdasarkan SNI 1726:2012	91
Tabel 4.20	Ketidakberaturan kekakuan tingkat lunak pada gempa arah x	92
Tabel 4.21	Ketidakberaturan kekakuan tingkat lunak pada gempa arah y	93
Tabel 4.22	Ketidakberaturan torsi biasa dan torsi berlebihan pada	
	gempa arah x	94
Tabel 4.23	Ketidakberaturan torsi biasa dan torsi berlebihan pada	
	gempa arah y	94
Tabel 4.24	Ketidakberaturan berat (massa).	95

Tabel 4.25	Perhittungan P-Delta pada arah x berdasarkan SNI	
	1726:2012	96
Tabel 4.26	Perhittungan P-Delta pada arah y berdasarkan SNI	
	1726:2012	97
Tabel 4.27	Massa struktur, pusat massa dan pusat kekakuan	98
Tabel 4.28	Nilai gaya geser dasar nominal analisa respons sprektrum	100
Tabel 4.29	Rekapitulasi faktor skala hasil respon spektrum dengan	
	statik ekivalen masing-masing arah Model 3	101
Tabel 4.30	Koreksi story shear dengan 35% base shear redundansi (ρ)	
	1,3	101
Tabel 4.31	Nilai gaya geser pada setiap lantai	102
Tabel 4.32	Nilai simpangan antar lantai berdasarkan SNI 1726:2012	104
Tabel 4.33	Ketidakberaturan kekakuan tingkat lunak pada gempa arah x	105
Tabel 4.34	Ketidakberaturan kekakuan tingkat lunak pada gempa arah y	106
Tabel 4.35	Ketidakberaturan torsi biasa dan torsi berlebihan pada	
	gempa arah x	107
Tabel 4.36	Ketidakberaturan torsi biasa dan torsi berlebihan pada	
	gempa arah y	107
Tabel 4.40	Ketidakberaturan berat (massa).	108
Tabel 4.41	Perhittungan P-Delta pada arah x berdasarkan SNI	
	1726:2012	109
Tabel 4.42	Perhittungan P-Delta pada arah y berdasarkan SNI	
	1726:2012	110
Tabel 4.43	Nilai output ETABS untuk diagaram interaksi pada kolom	
		128

DAFTAR GAMBAR

Gambar 2.1	Peta percepatan puncak (PGA) di batuan dasar (S_B) untuk	
	probabilitas terlampaui 2% dalam 50 tahun dengan redaman	
	5% (Peta Gempa 2017)	10
Gambar 2.2	Peta respon spektra percepatan 0,2 detik (S_S) di batuan	
	dasar (S_B) untuk probabilitas terlampaui 2% dalam 50 tahun	
	dengan redaman 5% (Peta Gempa 2017)	11
Gambar 2.3	Gambar 2.3: Peta respon spektra percepatan 1,0 detik (S_1) di	
	batuan dasar (S_B) untuk probabilitas terlampaui 2% dalam	
	50 tahun dengan redaman 5% (Peta Gempa 2017)	11
Gambar 2.4	Bentuk tipikal spektrum respon desain di permukaan tanah	
	(SNI 1726:2012)	23
Gambar 2.5	Penentuan simpangan antar lantai berdasarkan SNI	
	1726:2012	29
Gambar 2.6	Jenis penguat Bresing Eksentrik	35
Gambar 2.7	Visualisasi penempatan belttruss pada bangunan tinggi	35
Gambar 2.8	(a) Transfer Overturning Moment dari Core ke Diafragma	
	Lantai (b) Transfer Gaya dari Diafragma Lantai ke Kolom	
	Eksterior	36
Gambar 2.9	Denah struktur penempatan rangka pada struktur belt truss	
	serta analisis model sistem belt truss frame and core	37
Gambar 2.10	Bagian dari sistem strukrur belt truss yaitu braced core, cap	
	truss dan coloum exterior	37
Gambar 2.11	Intraksi antara braced yang di perkuat dan tidak diperkuat.	
	(a) kharakteristik deformasi sayap, (b) variasi gaya geser	
	dari interaksi	38
Gambar 2.12	Tata letak kabin kontrol aktivitas rendah standar (atas) dan	
	standar aktivitas utama (FAA, 2004)	39
Gambar 2.13	Skema Pembebanan pada control cab beton (FAA, 2004)	40
Gambar 3.1	Bagan alir metodelogi penelitian	41

Gambar 3.2	Respon spektrum berdasarkan SNI 1726:2012 daerah Kota	
	Padang dengan klasifikasi tanah sedang.	46
Gambar 3.3	Ukuran terbesar plat lantai	48
Gambar 3.4	(a) Denah Lantai Base - 17 (b) Denah Lantai 18 (c) Denah	
	Lantai 19 (d) (1) Tampak Samping Kiri, (2) Perspektif 3D	
	Struktur Bangunan	54
Gambar 3.5	(a) Denah Lantai Base – 17 (b) Denah Lantai 18 (c) Denah	
	Lantai 19 (d) (1) Tampak Samping Kiri, (2) Perspektif 3D	
	Struktur Bangunan	60
Gambar 3.6	(a) Denah Lantai Base – 17 (b) Denah Lantai 18 (c) Denah	
	Lantai 19 (d) (1) Tampak Samping Kiri, (2) Perspektif 3D	
	Struktur Bangunan	66
Gambar 4.1	Penyesuaian Faktor Reduksi sesuai SNI Beton 03-2847-	
	2013	111
Gambar 4.2	Contoh Input Nilai Persentase Efektifitas Penampang Balok	112
Gambar 4.3	Contoh Input Nilai Persentase Efektifitas Penampang	
	Kolom	112
Gambar 4.4	Contoh Input Nilai Persentase Efektifitas Penampang Plat	
	Lantai	113
Gambar 4.5	Pilihan untuk Menampilkan Diagram Momen dan Gaya	
	Geser	113
Gambar 4.6	Diagram Momen dan Gaya Geser Akibat Beban Mati dan	
	Hidup	114
Gambar 4.7	Diagram Momen dan Gaya Geser Akibat Gempa Respons	
	Spektrum Arah X	115
Gambar 4.8	Diagram Momen dan Gaya Geser Akibat Gempa Respons	
	Spektrum Arah Y	115
Gambar 4.9	Pengecekan Struktur dengan ETABS	116
Gambar 4.10	Tampak Luas Tulangan Utama Balok Arah Memanjang	117
Gambar 4.11	Tampak Luas Tulangan Geser (sengkang) Arah Memanjang	117
Gambar 4.12	Tampak Luas Tulangan Torsi Arah Memanjang	118
Gambar 4.13	Detail Informasi Momen, Luas Tulangan, Gaya Geser, dan	118

Torsi, Balok yang Ditinjau

Gambar 4.14	Detail Penulangan Balok	123
Gambar 4.15	Tampak Luas Tulangan Utama Kolom Arah Memanjang	123
Gambar 4.16	Tampak Luas Tulangan Geser (sengkang) Kolom Arah	
	Memanjang	124
Gambar 4.17	Detail Informasi Luas Tulangan, Momen, Gaya Geser, dan	
	Torsi, Kolom yang Ditinjau	124
Gambar 4.18	Diagram interaksi Kolom yang ditinjau	125
Gambar 4.19	Hasil strong column weak beam dari program analisis	
	struktur	127
Gambar 4.20	Detail Penulangan kolom	127
Gambar 4.21	Tegangan yang terjadi pada plat akibat beban mati dan	
	hidup	128
Gambar 4.22	Rencana <i>belttruss</i>	129
Gambar 4.23	Grafik perbandingan nilai simpangan arah x terhadap	
	ketinggian gedung (Model 1, 2 dan 3)	133
Gambar 4.24	Grafik perbandingan nilai simpangan arah y terhadap	
	ketinggian gedung (Model 1, 2 dan 3).	134
Gambar 4.25	Grafik perbandingan nilai rasio simpangan antar tingkat	
	arah x terhadap ketidnggian gedung (Model 1, 2 dan 3).	135
Gambar 4.26	Grafik perbandingan nilai rasio simpangan antar tingkat	
	arah y terhadap ketidnggian gedung (Model 1, 2 dan 3)	135
Gambar 4.27	Grafik perbandingan nilai gaya geser dasar arah x terhadap	
	ketinggian gedung (Model 1, 2 dan 3)	136
Gambar 4.28	Grafik perbandingan nilai gaya geser dasar arah y terhadap	
	ketinggian gedung (Model 1, 2 dan 3)	137

DAFTAR NOTASI

A_g	=	Penampang bruto kolom, in ² (mm ²)
A_T	=	Luasan tributari
C_d	=	Faktor amplikasi defleksi
C_{vx}	=	Faktor distribusi vertikal
Cs	=	Koefisien respon gempa, g
d	=	Tinggi efektif komponen struktur, mm
di	=	Simpangan horizontal lantai tingkat ke i dari hasil analisis 3 dimensi struktur gedung akibat beban gempa nominal statik ekivalen yang menangkap pada pusat massa pada taraf lantai tingkat, mm
DL	=	Beban mati, termasuk SIDL
Ε	=	Modulus elastisitas baja 200000 MPa
Ex	=	Beban gempa arah x
Ey	=	Beban gempa arah y
f	=	Frekuensi Struktur
F_a	=	Koefisien perioda pendek 0,2 detik
F'c	=	Kuat tekan beton, MPa
F_v	=	Koefisien perioda 1,0 detik
F_{PGA}	=	Nilai koefisien situs untuk PGA
Fy	=	Kuat leleh tulangan
h_n	=	Ketinggian struktur dalam m di atas dasar sampai tingkat tertinggi struktur (meter)
le	=	Faktor keutamaan gempa
k	=	Kekakuan struktur
K_{LL}	=	Faktor elemen beban hidup
LL	=	Beban hidup
L	=	Beban hidup desain tereduksi
L_0	=	Beban hidup desain tanpa reduksi
Ми	=	Momen lentur terfaktor, kN.mm
Mn	=	Kuat nominal momen lentur, kN.mm
PGA	=	Nilai PGA dibatuan dasar (S_B) mengacu pada peta Gempa SNI

1726:2012

PGA_M	=	Nilai percepatan tanah puncak yang disesuaikan dengan pengaruh klasifikasi situs
R	=	Faktor koefisien modifikasi respon
S_S	=	Nilai parameter respon spektrum percepatan gempa perioda pendek 0,2 detik di batuan dasar (S_B) mengacu pada Peta Gempa SNI 1726:2016
S ₁	=	Nilai parameter respon spektrum percepatan gempa perioda 1,0 detik di batuan dasar (S_B) mengacu pada Peta Gempa SNI 1726:2016
S_{DS}	=	Respon spektrum percepatan respon desain untuk perioda pendek
S_{D1}	=	Respon spektrum percepatan desain untuk perioda 1,0 detik
S_{MS}	=	Parameter percepatan respon spektral MCE pada periode pendek yang sudah disesuaikan terhadap pengaruh kelas situs
S_{M1}	=	Parameter percepatan respon spektral MCE pada periode 1 detik yang sudah disesuaikan terhadap pengaruh kelas situs
Т	=	Perioda getar fundamental struktur
T _{a minimum}	=	Nilai batas bawah perioda bangunan
T _{a maksimum}	=	Nilai batas atas perioda bangunan
Ts	=	Sd1 / Sds, detik
V_t	=	Gaya geser dasar nominal yang didapat dari hasil analisis ragam spektrum respon yang telah dilakukan
V_1	=	Gaya geser dasar prosedur gaya lateral statik ekivalen
Vu	=	Gaya Geser Rencana, kN
Wi	=	Bagian berat seismik efektif total struktur (<i>W</i>) yang dikenakan atau ditempatkan pada tingkat-i
Wt	=	Berat total gedung
δ_x	=	Defleksi pusat massa ditingkat x
δ_{xe}	=	Defleksi pada lokasi yang disyaratkan dan ditentukan sesuai dengan analisis elastis
$arOmega_0$	=	Faktor pembesaran defleksi
Δ	=	Simpangan antar lantai tingkat desain
Δ_a	=	Simpangan antar lantai yang diijinkan
ρ	=	Faktor redudansi

DAFTAR SINGKATAN

CQC	=	Complete Quadratic Combination
ETABS	=	Extended Three dimension Analysis of Building Systems
FAA	=	Federal Aviation Administration
FPGA	=	Field-Programable Gate Away
PGA	=	Peak Ground Acceleration
PPURG	=	Pedoman Perencanaan Pembebanan untuk Rumah dan Gedung
SCBF	=	Special Concentrically Braced Frames
SNI	=	Standar Nasional Indonesia
SRBBPMK	=	Sistem Rangka Beton Bertulang Pemikul Momen Khusus
SRPMK	=	Sistem Rangka Pemikul Momen Khusus
SRPMM	=	Sistem Rangka Pemikul Momen Menengah
SRSS	=	Square Root of the Sum of Square

BAB 1

PENDAHULUAN

1.1 Pendahuluan

Indonesia saat ini mempunyai menara *Air Traffic Control* tertinggi yaitu berada di bandar udara Soekarno Hatta (CKG) dengan tinggi, 61 m. Menara itu bukan termasuk yang tinggi di dunia, masih jauh dibawah banyak beberapa menara bandar udara utama di dunia dengan ketinggian rata-rata mencapai diatas 80 m. Dalam kajian secara khusus ini akan diuraikan tentang perencanaan sebuah *Tower Air Traffic Control*.

Air traffic Control (ATC) merupakan bangunan pelengkap untuk sebuah bandara yang berfungsi untuk mengatur jalannya lalu lintas udara yang dilalui oleh sebuah pesawat atau transportasi udara lainnya. Tujuan dari pengaturan lalu lintas udara adalah untuk menghindarkan tabrakan antar pesawat udara, menghindarkan pesawat udara yang berada di daerah pergerakan pesawat dengan penghalang lainnya dan terciptanya serta keteraturan lalu lintas udara (*Air Traffic Control, 2013 dan FAA, 2012*).

Pada perencanaan Tower ATC ini juga diperhitung terhadap beban/gaya aksial yang bekerja pada struktur tersebut. Perencanaan tahan gempa pada umumnya didasarkan pada analisa elastik yang diberi faktor beban untuk simulasi kondisi ultimit (batas). Dengan merencanakan suatu struktur dengan beban gempa, banyak aspek yang mempengaruhinya diantaranya adalah periode bangunan. Periode bangunan itu sangat dipengaruhi oleh massa struktur serta kekakuan struktur tersebut. Evaluasi untuk memperkirakan kondisi inelastik struktur bangunan pada saat gempa perlu untuk mendapatkan jaminan bahwa kinerjanya memuaskan pada saat terjadinya gempa. Bila terjadi gempa ringan, bangunan tidak boleh mengalami kerusakan baik pada komponen non struktural maupun pada komponen strukturalnya. Bila terjadi gempa sedang, bangunan boleh mengalami kerusakan pada komponen non strukturalnya, akan tetapi komponen strukturalnya tidak boleh mengalami kerusakan pada komponen non

struktural maupun komponen strukturalnya, akan tetapi penghuni bangunan dapat menyelamatkan diri.

Sistem perkuatan dengan menggunakan *belttruss* merupakan suatu hal yang masih jarang dikaji di Indonesia. Untuk itu penulis sangat tertarik pada sistem *belttruss* karena merupakan ilmu dalam dunia konstruksi yang harus dikembangkan dan diterapkan pada bangunan sekarang ini. Di Indonesia sendiri konsep ini masih sangat jarang diterapkan karena masih kurangnya pemahaman pada *belttruss*, padahal sistem ini sangat efektif diterapkan terlebih lagi Indonesia berada di kawasan yang sering terjadi gempa besar.

Dalam Tugas Akhir ini perhitungan untuk bangunan *Tower Air Traffic Control* menggunakan Software ETABS v.16.2 dan perhitungan gaya/beban gempa yang bekerja dengan metode *Analisis Respons Spektrum*.

1.2 Rumusan masalah

Dalam pembahasan tugas akhir ini akan dianalisa desain struktur bangunan dan penampang *belttruss* pada bangunan ATC 80 m berdasarkan SNI 1726-2012 dengan peta gempa 2017 dan SNI 1729-2015:

- 1. Berapakah besar simpangan antar lantai (*story drift*), gaya geser gempa kekakuan antar lantai yang terpasang sistem *belttruss* pada masing-masing pemodelan?
- 2. Dimana penempatan *belttruss* yang paling efektif diantara ketiga pemodelan terhadap struktur bangunan SRPMK?

1.3 Ruang Lingkup Pembahasan

Adapun batasan-batasan masalah pada yang di tetapkan pada Tugas Akhir ini adalah :

 Tower ATC yang direncanakan akan dianalisis menggunakan beton bertulang dengan 3 model yaitu SRPMK, SRPMK dengan posisi *belttruss* di lantai 4,9,14 dan SRPMK dengan posisi *belttruss* di lantai 5,10,15 mengacu pada SNI 1726:2012 dan SNI 1729:2015.

- Penampang dan sambungan *bettruss* yang digunakan adalah dari baja dimana dimensi tiap profil elemen struktur dari perhitungan yang memenuhi *stress check* dan mengacu pada SNI 1729:2015.
- 3. Penelitian tidak memperhitungkan pondasi.
- 4. Pada pembebanan struktur tidak memperhitungkan beban angin.
- 5. Dalam studi perencanaan ini hanya menampilkan sebahagian perhitungan kolom dan balok saja.
- 6. Analisis struktur gedung terhadap beban gempa menggunakan analisis respon spektrum.
- 7. Struktur dianalisa secara linier elastis menggunakan program ETABS v.16.2.

1.4 Tujuan Penelitian

Dari tugas akhir ini penulis ingin mendapatkan beberapa tujuan akhir, diantaranya:

- 1. Untuk mengetahui besar simpangan antar lantai (*story drift*), gaya geser lantai dan kekakuan antar tingkat yang terpasang sistem *SRPMK* dan *Belttruss* pada masing-masing pemodelan.
- 2. Untuk mengetahui posisi atau penempatan *belttruss* yang efektif pada ketiga pemodelan dan membandingkan bangunan tersebut sehingga didapat persentase pengurangan story drift akibat dari beban gempa.

1.5 Manfaat Penelitian

Manfaat dari penelitian ini adalah mengaplikasikan ilmu pengetahuan di bidang Teknik Sipil dan Lingkungan. Selain itu, hasil dari penelitian ini diharapkan dapat menjadi masukan untuk memilih variasi pemodelan penampang yang optimum, kuat dan bisa di aplikasikan di setiap bandar udara.

1.6 Sistematika Penulisan

Proposal penelitian atau skripsi ini terdiri dari dari lima bab yang direncanakan dan diharapkan dapat menjelaskan perihal topik bahasan, yaitu :

BAB 1 PENDAHULUAN

Menguraikan hal-hal umum mengenai tugas akhir seperti latar belakang, rumusan masalah, ruang lingkup penelitian, tujuan penelitian, manfaat penelitian, sistematika pembahasan.

BAB 2 TINJAUAN PUSTAKA

Pada Bab 2 ini berisikan teori-teori, konsep, dan rumus sesuai dengan acuan judul tugas akhir ini.

BAB 3 METODE PENELITIAN

Menjelaskan rencana atau prosedur yang dilakukan penulis untuk memperoleh jawaban yang sesuai dengan kasus permasalahan.

BAB 4 HASIL PEMBAHASAN

Menguraikan hasil pembahasan analisis desain dan kinerja struktur.

BAB 5 KESIMPULAN DAN SARAN

Berisi kesimpulan sesuai dengan analisis terhadap penelitian dan beberapa saran untuk pengembangan lebih lanjut yang lebih baik di masa yang akan datang.

BAB 2

TINJAUAN PUSAKA

2.1 Pendahuluan

Jika melihat pada salah satu prinsip tugas *Air Traffic Control* yaitu menjaga keselamatan pesawat terbang di bandara dan sekitarnya, sekiranya sah-sah saja jika menyebut *Wilbur Wright* sebagai air *traffic controller* pertama dunia. Dan *Orville Wright* menjadi yang kedua. Karena sementara *Orville Wright* melakukan 12 detik penerbangan pertama dalam sejarah manusia pada tanggal 17 Desember 1903 *di Kitty Hawk, California, Wilbur Wright* melakukan apa yang mungkin saat ini kita sebut sebagai '*operational watch*'. Untuk dapat *take off* pada kecepatan 20 mil/jam, Wilbur berlari mengikuti pesawat terbang pertama dunia itu sambil memegang wingtips-nya dan menyeimbangkan pesawat tersebut sampai airborne. Kemudian Wilbur memerhatikan dengan sangat saksama penerbangan tersebut sampai akhirnya *Orville* mendarat kurang lebih 120 kaki di depannya. Selanjutnya saat *Wilbur* bertindak sebagai pilot, dan terbang selama 59 detik, giliran *Orville Wright* yang memerhatikan penerbangan yang dilakukan saudaranya dengan saksama sampai akhirnya mendarat 852 kaki di depannya (J.H. Hartmann, 2014).

Hari ini, perkembangan untuk ketinggian terus berlanjut dengan kecepatan yang semakin tinggi, berkat inovasi dan kemajuan dalam analisis struktural dan disain, dan perbaikan material dengan kekuatan tinggi dan teknologi konstruksi. Perkembangan ini membatasi batas-batas, melahirkan masalah arsitektur dan teknik baru yang perlu dipecahkan. Dengan demikian arsitek memiliki kebebasan desain, namun hanya sampai pada batasan apa yang mungkin dilakukan dalam rekayasa dan teknologi. Untuk memecahkan masalah yang disebabkan oleh meningkatnya ketinggian bangunan, seorang arsitek memiliki perjuangan estetika dengan kebebasan desain yang terbatas, karena kekuatan struktural sebuah bangunan dan beban yang dipengaruhinya mempengaruhi pilihan bentuk sampai tingkat yang tinggi, dan kemampuan teknik lainnya, terutama kemampuan struktural dan aerodinamis, juga berkontribusi pada desain selama kerja sama kolaboratif. Desain bangunan tinggi adalah subjek kompleks yang memerlukan kolaborasi dan kerja sama interdisipliner pada tingkat lanjut, dan arsitek perlu menyadari fakta ini. Dalam desain bangunan tinggi, peningkatan dimensi elemen struktural, perbedaan dalam sistem struktur dan sistem operasi (mekanik), dan bentuk bangunan aerodinamika/struktur berbasis, paling penting dalam pengaruhnya terhadap desain struktur dan struktural. Ketika arsitek mempertimbangkan prinsip- prinsip dasar aerodinamika, pengurangan goyangan bangunan yang disebabkan angin memainkan peran penting. Dengan demikian mengurangi biaya dengan menurunkan tuntutan pada sistem struktural dan sistem redaman tambahan secara substansial, dan pada saat yang sama mengurangi modifikasi minimal yang mungkin. Dalam konteks ini, menurut penulis, "Desain bangunan tinggi tidak dapat dipungkiri merupakan hasil kerja tim interdisipliner, yang dipimpin oleh arsitek, yang mengambil masalah struktural dan aerodinamis dipertimbangkan sambil berjuang untuk tidak mengorbankan desain arsitekturalnya."

Pada bab ini akan dibahas mengenai teori-teori dasar dan syaratsyarat/ketentuan yang berhubungan dalam perencanaan *Air Traffic Control Tower* yang akan dianalisa, seperti konfigurasi bangunan, teori gempa, tata cara perencanaan bangunan tahan gempa berdasarkan SNI 1726:2012 peta gempa 2017 dan SNI 1729:2015 persyaratan baja pada gedung, dan teori-teori terkait lainnya yang berhubungan dengan perhitungan atau analisis data yang diperlukan dalam tugas akhir ini.

Dalam perencanaan struktur bangunan tahan gempa, diperlukan standard dan peraturan perencanaan bangunan untuk menjamin keselamatan penghuni terhadap gempa besar yang mungkin terjadi serta menghindari dan meminimalisasi kerusakan struktur bangunan dan korban jiwa terhadap gempa bumi yang sering terjadi (Budiono dan Supriatna, 2011), Dalam hal ini struktur harus didesain dengan metode kolom kuat balok lemah (*Strong Coloumn Weak Beam*) yang diharapkan hanya balok saja yang dapat mengalami kegagalan akibat gaya yang dipikul struktur berlebih.

Oleh karena itu, struktur bangunan tahan gempa harus memiliki kekuatan, kekakuan, dan stabilitas yang cukup untuk mencegah terjadinya keruntuhan bangunan. Filosofi dan konsep dasar perencanaan bangunan tahan gempa adalah:

- a. Pada saat terjadi gempa ringan, struktur bangunan dan fungsi bangunan harus tetap berjalan (*serviceable*) sehingga struktur harus kuat dan tidak ada kerusakan baik pada elemen struktural dan elemen nonstruktural bangunan.
- b. Pada saat terjadi gempa moderat atau *medium*, struktur diperbolehkan mengalami kerusakan baik pada elemen nonstruktural, tetapi tidak diperbolehkan terjadi kerusakan pada elemen struktural.
- c. Pada saat terjadi gempa besar, diperbolehkan terjadi kerusakan pada elemen struktural dan nonstruktural, namun tidak boleh menyebabkan bangunan runtuh sehingga ada korban jiwa atau meminimalkan korban jiwa.

Dalam hal ini, akan dibahas konsep perencanaan bangunan struktur beton bertulang tahan gempa dengan menggunakan Sistem Rangka *belttruss* Khusus pada beberapa sisi. Beberapa teori yang mendasari tugas akhir ini adalah:

- a. Desain Konsep perencanaan bangunan tahan gempa berdasarkan Studi Komparasi Desain Bangunan Tahan Gempa yang mengacu pada SNI 1726:2012.
- b. Perencanaan Beban Struktur bangunan mengacu pada SNI 1727:2013.
- c. Perencanaan Rangka Belttruss dan Outrigger berdasarkan SNI 7860:2015.

2.2 Konsep Perencanaan Bangunan Tahan Gempa

2.2.1 Gempa Rencana

Menurut Budiono dan Supriatna (2011), akibat pengaruh gempa rencana, struktur gedung secara keseluruhan masih harus berdiri walaupun sudah berada dalam kondisi diambang keruntuhan. Berdasarkan SNI 1726:2012, zona peta gempa menggunakan peta gempa untuk probabilitas 2% terlampaui dalam 50 tahun atau memiliki periode ulang 2500 tahun.

Faktor gempa yang berpengaruh pada respon atau reaksi struktur bangunan adalah lamanya waktu gempa dan rentang frekuensi gempa. Durasi gempa berpengaruh pada besarnya perpindahan energi dan vibrasi tanah ke energi struktur. Gempa dengan percepatan sedang dan durasi yang lama menyebabkan kerusakan lebih besar dibandingkan dengan gempa yeng memiliki percepatan besar tapi durasinya singkat, maka dari itu kita harus sebaiknya merencanakan sebuah struktur bangunan gedung.

2.2.2 Arah Pembebanan Gempa

Gempa menyebabkan guncangan pada tanah. Tingkat keparahan beban gempa tergantung pada lokasi (sesuai dengan peraturan mengenai standar bangunan). Guncangan tanah dapat menambah beban pada unsur-unsur bangunan, guncangan tanah yang lebih kuat atau unsur-unsur bangunan yang lebih besar dapat menambah beban pada gedung itu sendiri.

Struktur bangunan yang bertingkat tinggi harus dapat memikul beban-beban yang bekerja pada struktur tersebut, diantaranya beban gravitasi dan beban lateral. Beban gravitasi adalah beban mati struktur dan beban hidup, sedangkan yang termasuk beban lateral adalah beban angin dan beban gempa.

Dalam perencanaan struktur gedung, arah utama pengaruh gempa rencana harus ditentukan sedemikian rupa sehingga memberi pengaruh terbesar terhadap unsur-unsur subsistem dan sistem struktur gedung secara keseluruhan.

Untuk mensimulasikan pengaruh gempa rencana yang sembarang terhadap struktur gedung, pengaruh pembebanan gempa dalam arah utama yang ditentukan harus dianggap efektif 100% dan harus dianggap terjadi bersamaan dengan pengaruh pembebanan gempa dalam arah tegak lurus pada arah utama pembebanan tersebut, tetapi dengan efektifitas 30%.

2.2.2.1 Distribusi Vertikal Gaya Gempa

Berdasarkan SNI 1726:2012 pasal 7.8.3, gaya gempa lateral (F_i) yang timbul disemua tingkat harus ditentukan dari Pers. 2.1 dan 2.2. dimana:

$$F_i = C_{VX} \quad V \tag{2.1}$$

Dan

$$C_{vx} = \frac{w_x h_x^k}{\sum_{ei}^n w_i h_i^k}$$
(2.2)

dimana:

Cvx = Faktor distribusi vertikal
V = Gaya geser atau laeral desain total (kN)
Wi = Bagian berat seismik efektif total struktur (W) yang dikenakan atau

ditempatkan pada tingkat-i

Hi = Tinggi (meter) dari dasar sampai tingkat ke-i dinyatakan dalam (m)

= Eksponen yang terkait dengan perioda struktur sebagai berikut.

- Untuk struktur yang memiliki $T \le 0.5$ detik; k = 1
- Untuk struktur yang memiliki T \geq 2,5 detik; k = 2
- Untuk struktur yang memiliki 0,5 < T < 2,5; k adalah hasil interpolasi.

2.2.2.2 Distribusi Horizontal Gaya Gempa

Berdasarkan SNI 1726:2012 pasal 7.8.4, geser tingkat desain gempa disemua tingkat (Vx) harus ditentukan dari Pers. 2.3.

$$Vx = \sum_{i=1}^{n} F_i \tag{2.3}$$

keterangan:

Κ

 F_i = Bagian dari geser dasar seismik (V) yang timbul di tingkat ke-i (kN)

2.2.3 Wilayah Gempa

Pada umumnya, desain struktur bangunan tahan gempa merupakan desain yang mengatur hubungan antara respon gaya horizontal yang bekerja pada struktur (faktor kekuatan), kekakuan (*stiffness*), dan deformasi lateral struktur. Kekuatan struktur dirancang agar saat terjadi gempa kekuatannya dapat tercapai (*capacity design*). Karena struktur mempunyai kekakuan, didalam suatu perpindahan yang terjadi pada struktur. Redaman (*damping*) diperlukan oleh struktur sebagai penyerap energi gempa. Elemen yang daktail akan mampu berdeformasi melebihi batas kekuatan elastisnya dan akan terus mampu menahan beban sehingga mampu menyerap energi gempa yang lebih besar.

Berdasarkan SNI 1726:2012 pasal 14 peta gempa 2017, wilayah gempa Indonesia ditetapkan berdasarkan peta percepatan tanah puncak (PGA), parameter Ss (percepatan batuan dasar pada periode pendek 0,2 detik) dan S1 (percepatan batuan tanah dasar pada periode 1 detik) ditunjukkan pada Gambar 2.1 - 2.3.

Gambar 2.1: Peta percepatan puncak (PGA) di batuan dasar (S_B) untuk probabilitas terlampaui 2% dalam 50 tahun dengan redaman 5% (Peta Gempa 2017).

Gambar 2.2: Peta respon spektra percepatan 0,2 detik (S_S) di batuan dasar (S_B) untuk probabilitas terlampaui 2% dalam 50 tahun dengan redaman 5% (Peta Gempa 2017).

Gambar 2.3: Peta respon spektra percepatan 1,0 detik (S_1) di batuan dasar (S_B) untuk probabilitas terlampaui 2% dalam 50 tahun dengan redaman 5% (Peta Gempa 2017).

2.3 Kriteria Desain Perencanaan Struktur Gedung Tahan Gempa

2.3.1 Kategori Desain Seismik

Struktur harus ditetapkan memiliki suatu kategori desain seismik. Struktur resiko I, II, atau III yang berlokasi dimana parameter respons spektral pada perioda detik, S1, lebih besar dari atau sama dengan 0,75 harus ditetapkan sebagai struktur dengan kategori desain seismik E. Struktur yang berkategori IV yang berlokasi di mana parameter respons spektral percepatan terpetakan pada perioda 1 detik. S1, lebih besar dari atau sama dengan 0,75 harus ditetapkan sebagai struktur dengan kategori desain seismik F. Semua struktur lainnya harus ditetapkan kategori desain seismik F. Semua struktur lainnya harus ditetapkan kategori desain seismiknya berdasarkan kategori risikonya dan parameter respon spektral percepatan desainnya, SDS dan SD1. Masingmasing bangunan dan struktur harus ditetapkan ke dalam kategori desain seismik yang lebih parah di tunjukkan pada Tabel 2.1 dan 2.2 untuk menunjukkan hasil perencanaan yang efektif agar apabila sauatu saat gendung mengalamui kegagalan maka gedeng tersebut tidak sampai hancur demi keselamatan pengguna gedung tersebut maka perencanaan awal harus dilakukan dengan baik dan teliti demi mendapatkan hasil yang maksimal dan efektif.

Nilai SDS	Kategori risiko		
	I atau II atau III	IV	
SDS < 0.167	А	А	
0.167 < SDS < 0.33	В	С	
0.33 < SDS < 0.50	С	D	
$0.50 \le \text{SDS}$	D	D	

Tabel 2.1: Kategori desain seismik berdasarkan parameter respons percepatan pada perioda pendek.

Tabel 2.2: Kategori desain seismik berdasarkan parameter respons perceptan perioda 1 detik.

Nilai SDS1	Kategori risiko		
	I atau II atau III	IV	
SD1 < 0.167	А	А	
0.067 < SD1 < 0.133	В	С	
0.133 < SD1 < 0.20	С	D	
$0.20 \le \text{SDS}$	D	D	

2.3.1.1 Kategori Desain Seismik A

Bangunan gedung dan non gedung dengan kategori desain seismik elemen nonstruktural dalam kategori desain seismik A dibebaskan dari ketentuanketentuan seismik.

2.3.1.2 Kategori Desain Seismik B

Untuk bangunan yang dirancang dengan kategori desain seismik B, gaya gempa desain diijinkan untuk diterapkan secara terpisah dalam masing-masing dua arah orthogonal dan pengaruh interaksi orthogonal diijinkan utuk diabaikan.

2.3.1.3 Kategori desain seismik C

Pembebanan yang diterapkan pada struktur bangunan yang dirancang unuk kategori desain seismik C harus minimum sesuai dengan arah masing-masing

orthogonal. Struktur yang mempunyai ketidakberaturan struktur horizontal harus menggunakan salah satu prosedur berikut:

a. Prosedur kombinasi orthogonal

Struktur harus dianalisis menggunakan prosedur analisis gaya lateral ekivalen, prosedur analisis respon spektrum, atau prosedur riwayat respon linear, dengan pembebanan yang diterapkan secara terpisah dalam semua arah orthogonal. Pengaruh beban paling kritis akibat arah penerapan gaya gempa pada struktur dianggap terpenuhi jika komponen dan fondasinya didesain untuk memikul kombinasi beban-beban yang ditetapkan.

b. Penerapan serentak gerak tanah orthogonal Struktur harus dianalisis menggunakan prosedur riwayat respons linear atau prosedur riwayat respons non linear dengan pasangan orthogonal percepatan gerak tanah yang diterapkan secara serentak.

2.3.1.4 Kategori Desain Seismik D Sampai F

Struktur yang dirancang untuk kategori desain seismik D, E, dan F harus minimum sesuai dengan persyaratan ketegori desain seismik C. Sebagai tambahan, semua kolom atau dinding yang berbentuk bagian dari dua atau lebih sistem penahan gaya gempa yang bekerja sepanjang baik sumbu denah utama sama atau melebihi 20 persen kuat desain aksial kolom atau dinding harus didesain untuk pengaruh beban paling kritis akibat penerapan gaya gempa kesemua arah.

2.3.2 Kriteria Struktur Gedung

Berdasarkan SNI 1726:2012 pasal 7.3.2.1 dan pasal 7.3.2.2, ketidakberaturan struktur bangunan dapat dibedakan menjadi ketidak beraturan horizontal dan vertikal dapat dilihat dalam Tabel 2.3 dan 2.4 dimana struktur-struktur yang dirancang sedemikan rupa harus memenuhi persyaratan yang ada pada aturan yang ada, guna struktur bangunan tersebut tidak mengalami kegagalan yang fatal yang meyebabkan korban jiwa bagi banyak orang sehingga struktur tersebut menjadi perencanaan yang gagal yang tidak mampu menahan beban-beban yang membebani struktur bangunan.

No	Tipe dan penjelasan ketidak beraturan	Penerapan kategori desain seismik
1a	Ketidakberaturan torsi di definisikan ada jika simpangan antar lantai tingkat maksimum, torsi yang melintang terhadap sumbu lebih dari 1,2 kali simpangan antar lantai tingkat rata-rata di kedua ujung struktur. Persyaratan ketidakberaturan torsi dalam pasal-pasal refrensi berlaku hanya untuk struktur di mana diafragmanya kaku atau setengah kaku.	D, E, dan F B, C, D, E, dan F C, D, E, dan F C, D, E, dan F D, E, dan F B, C, D, E, dan F
1b	Ketidakberaturan torsi berlebihan di definesikan ada jika simpangan antar lantai tingkat maksimum, torsi yang dihitung termasuk tak terduga, di sebuah ujung struktur melintang terhadap sumbu lebih dari 1,4 kali simpangan antar lantai tingkat rata-rata di kedua ujung struktur. Persyaratan ketidakberaturan torsi berlebihan dalam pasal-pasal referensi berlaku hanya untuk struktur di mana diagfragmanya kaku atau setengah kaku.	E dan F D B, C, dan D C dan D C dan D D B, C, dan D
2	Ketidakberaturan sudut dalam didefinisika ada jika kedua proyeksi denah dari sudut dalam lebih besar dari 15% dimensi denah struktur dalam arah yang ditentukan.	D, E, dan F D, E, dan F
3	Ketidakberaturan diskontinuitas diafragma di definisikan ada jika terdapat diafragma dengan diskontinuitas atau variasi kekakuan mendadak, termasuk yang mempunyai daerah terpotong atau terbuka lebih besar dari 50% daerah diagragma bruto yang melingkupinya, atau perubahan kekakuan diafragma efektif lebih dari 50% dari suatu tingkat ketingkat selanjutnya.	D, E, dan F D, E, dan F

Tabel 2.3: Ketidakberaturan horizontal pada struktur berdasarkan SNI 1726:2012.
Tabel 2.3: Lanjutan.

	-	
No	Tipe dan penjelasan ketidak beraturan	Penerapan kategori
110		desain seismik
4	Ketidakberaturan pergesekan melintang terhadap	B, C, D, E, dan F
	bidang didefinisikan ada jika terdapat	D, E, dan F
	diskontinuitas dalam lintasan tahanan gaya	B, C, D, E, dan F
	lateral, seperti pergeseran melintang terhadap	D, E, dan F
	bidang elemen vertical	B, C, D, E, dan F
5	Ketidak beraturan sistem non peralel	C, D, E, dan F
	didefnisikan ada jika elemen penahan gaya	B, C, D, E, dan F
	leteral vertikal tidak parelel atau simetris	D, E, dan F
	terhadap sumbu-sumbu orthogonal utama sistem	B, C, D, E, dan F
	penahan gaya gempa	
		1

Tabel 2.4: Ketidakberaturan vertikal pada struktur berdasarkan SNI 1726:2012.

No.	Tipe dan penjelasan ketidak beraturan	Penerapan kategori desain seismik
1a	Ketidakberaturan kekakuan tingkat	D, E, dan F
	lunak didefinisikan ada jika terdapat suatu tingkat	
	dimana	
1b	kekakuan lateralnya kurang dari 70%	E dan F
	kekakuan lateral tingkat di atasnya atau	D, E, dan F
	kurang dari 80% persen kekakuan rata-rata tiga	
	tingkat di atasnya. Ketidakberaturan kekakuan	
	tingkat lunak berlebihan di definisikan ada	
	jika terdapa suatu tingkat di mana kekakuan	
	lateralnya kurang dari 60% kekakuan lateral	
	tingkat di atasnya atau kurang dari 70%	
	kekakuan rata-rata tiga tingkat di atasnya	
2	Ketidakberaturan berat (massa) di definisikan	D, E, dan F
	ada jika massa efektif semua tingkat lebih dari	
	150% massa efektif tingkat di dekatnya. Atap	
	yang lebih ringgan dari lantai di bawahnya tidak	
	perlu di tinjau	
3	Ketidakberaturan geometri vertikal di	D, E, dan F
	definisikan ada iika dimensi horizontal sistem	, ,
	penahan gava seismic di semua tingkat lebih dari	
	130% dimensi horizontal sistem penahanan gaya	
	seismic tingkat di dekatnya	
	sersitie angliat at activity a	

Tabel 2.4: Lanjutan.

No.	Tipe dan penjelasan ketidak beraturan	Penerapan kategori
	Diskontinuitas arah bidang dalam ketidak	desain seismik
4	beraturan elemen gaya lateral vertikal di definisikan ada jika pegeseran arah bidang elemen penahan gaya lateral lebih besar dari panjang elemen itu atau terdapat reduksi kekakuan elemen	B, C, D, E, dan F D, E, dan F D, E, dan F
5a	Diskontruksi dalam ketidakberaturan kuat lateral tingkat di definisikan ada jika kuat lateral tingkat kurang dari 80% kuat lateralnya tingkat di atasnya kuat lateral tingkat adalah kuat lateral total semua elemen penahan seismic yang berbagi geser tingkat untuk arah yang di tinjau	E dan F D, E, dan F
5b	Diskontinuitas dalam ketidakberaturan kuat lateral tingkat yang berlebihan di definisikan ada jika kuat lateral tingkat kurang dari 65% kuat lateral tingkat di atasnya. Kuat tingkat adalah kuat total semua elemem penahan seismic yang berbagi geser tingkat untuk arah yang ditinjau	D, E, dan F B dan C D, E, dan F

2.3.3 Faktor Keutamaan (Ie) dan Katagori Risiko Struktur Bangunan

Berdasarkan SNI 1726:2012 Pasal 4.1.2, tentang faktor keutamaan dan ketegori resiko struktur bangunan dimana untuk kategori resiko dijelaskan sesuai Tabel 1 SNI 1726:2012.

Dalam hal ini struktur harus didesain dengan metode kolom kuat balok lemah (*Strong Coloumn Weak Beam*) yang diharapkan hanya balok saja yang dapat mengalami kegagalan akibat gaya yang dipikul struktur berlebih.

Oleh karena itu, struktur bangunan tahan gempa harus memiliki kekuatan, kekakuan, dan stabilitas yang cukup untuk mencegah terjadinya keruntuhan bangunan. Filosofi dan konsep dasar perencanaan bangunan tahan gempa adalah pengaruh gempa rencana terhadapnya harus dikalikan dengan suatu faktor keutamaan Ie sesuai Tabel 2 SNI 1726:2012. Berikut kategori resiko dan faktor keutamaan dengan jenis pemanfaatan gedung yaitu gedung kantor yang ditunjukkan pada Tabel 2.5 dan 2.6.

Jenis	Kategori resiko
 Gedung dan struktur lainnya yang memiliki resiko rendah terhadap jiwa manusia pada saat terjadi kegagalan, termasuk tapi tidak dibatasi untuk : Fasilitas pertanian, perkebunan, peternakan dan Perikanan Fasilitas sementara Gedung penyimpanan Rumah jaga dan struktur kecil lainnya 	Ι
 Semua gedung dan struktur lain, kecuali yang termasuk dalam katagori risiko I, III, IV, termasuk, tapi tidak dibatasi untuk: Perumahan Rumah took dan rumah kantor Pasar Gedung perkantoran Gedung apartemen/rumah susun Pusat perbelanjaan/Mall Bangunan industri Pabrik 	Π
 Gedung dan no gedung yang memiliki resiko tinggi terhadap terjadinya kegagalan, termasuk, tapi tidak dibatasi untuk: Bioskop Gedung pertemuan Stadion Fasilitas kesehatan Penjara Bangunan Untuk Orang Jompo Gedung dan non gedung, tidak termasuk kedalam kategori resiko IV, yang memiliki potensi untuk menyebabkan dampak ekonomi yang besar atau gangguan massa terhadap kehidupan masyarakat termasuk, tapi tidak dibatasi untuk: Pusat pembangkit listrik biasa Fasilitas penanganan limbah Pusat telekomunikasi 	III

Tabel 2.5: Kategori resiko bangunan gedung dan struktur lainnya untuk beban gempa berdasarkan SNI 1726:2012.

Tabel 2.5: Lanjutan.

Jenispemanfaatan	Kategori resiko
Gedung dan gedung yang ditunjukan sebagai fasilitas	
yang penting, termasuk tetapi tidak dibatasi:	
- Bangunan bangunan monumental	
- Gedung sekolah dan fasilitas pendidikan	
- Rumah sakit dan fasilitas kesehatan lainya yang	
memiliki fasilitas bedah.	117
- Fasilitas pemadam kebakaran	ĨV
- Tempat perlindungan terhadap gempa bumi	
- Fasilitas Kesiapn darurat	
- Pusat pembangkit energi	
- Struktur tambahan (termasuk menara	
telekomunikasi, tangki penyimpanan)	

Tabel 2.6: Faktor keutamaan (Ie), berdasarkan SNI 1726:2012.

Kategori resiko	Faktor keutamaan gempa, Ie		
I atau II	1,0		
III	1,25		
IV	1,5		

2.3.4 Faktor Reduksi Gempa (R)

Faktor reduksi merupakan perbandingan antara gaya geser yang terjadi akibat gempa dan gaya geser nominal bangunan. Faktor reduksi gempa adalah faktor yang digunakan untuk mengurangi gaya gempa agar bangunan tidak perlu didesain dalam kondisi elastis. Reduksi tersebut perlu dilakukan karena sangat tidak memungkinkan dari segi ekonomis bahwa struktur tahan gempa dibangun dalam kondisi elatis.

Berdasarkan SNI 1726:2012 Pasal 7.2 Tabel 9, sistem penahan gaya seismik yang berbeda diijinkan untuk digunakan, untuk menahan gaya seismik dimasingmasing arah kedua sumbu ortoganal struktur. Bila sistem yang berbeda digunakan, masing-masing nilai harus dikenakan pada setiap sistem termasuk batasan sistem struktur, ditentukan oleh parameter-parameter Tabel 2.7.

Tabel 2.7: Faktor koefisien modifikasi respons, faktor kuat lebih sistem, faktor pembesaran defleksi, dan batasan tinggi sistem struktur berdasarkan SNI 1726:2012.

						Bata	san	sister	n
		Koefisien	Faktor	Faktor	Str	uktu	r Dai	n Bat	tasan
No	Sistem	Modifikasi	Kuat	Pembesaran	,	Ting	gi St	rukt	ur
110	Penahan	Respons	Lebih	Defleksi			(m)	c	
	Gaya Seismic	R^{a}	Sistem,	C _d ^b	k	Kateg	gori s	seism	nik
			Ω ₀ g		-	~	- d	-d	P
					В	C	Du	E	F
1	Sistem rangka								
	pemikul momen:								
	- Rangka beton								
	bertulang	8	3	5 ½	TB	TB	TB	TB	TB
	pemikul								
	momen khusus								

2.3.5 Klasifikasi Situs

Berdasarkan SNI 1726:2012 menyatakan bahwa dalam perumusan kriteria desain seismik suatu bangunan dipermukaan tanah atau penentuan amplifikasi besaran percepatan gempa puncak dari batuan dasar ke permukaan tanah untuk suatu situs, maka situs tersebut harus diklasifikasikan terlebih dahulu. Profil tanah di situs yang harus diklasifikasikan setebal 30 m paling atas sesuai dengan Tabel 2.8, penetapan kelas situs didasarkan atas hasil penyelidikan tanah di lapangan dan di laboratorium, dengan minimal mengukur secara independen mengukur sedikitnya (dua) jenis penyelidikan parameter tanah yang berbeda dalam klasifikasi situs yang ditunjukkan pada Tabel 2.8.

Tabel 2.8: Klasifikasi situs berdasarkan SNI 1726:20	12	
--	----	--

Kelas situs	\overline{V}_s	\overline{N} atau \overline{N}_{ch}	\overline{S}_u	
	(m/detik)		(kPa)	
SA (batuan keras)	> 1500	N/A	N/A	
SB (batuan)	750 sampai 1500 N/A		N/A	
SC (tanah keras, sangat				
padat dan batuan	350 sampai 750	> 50	≥ 100	
luanak)				

Tabel 2.8: Lanjutan.

\overline{V}_s	\overline{N} atau \overline{N}_{ch}	\overline{S}_{u}		
(m/detik)		(kPa)		
175 sampai	15 sampai	50 sampai		
350< 175	50<15	100< 50		
Atau setiap profil tanah yang mengandung lebih dari 3 m tanah dengan karakteristik sebagai berikut:				
Setiap profil lapisan tanah yang memiliki salah satu atau lebih dari karakteristik berikut:				
 Rawan dan berpotensi gagal atau runtuh akibat beban gempa seperti mudah likuifaksi, lempung sangat sensitif, tanah tersementasi lemah Lempung sangat organik dan/atau gambut (ketebalan H > 3 m) Lempung berplastisitas sangat tinggi (ketebalan H) > 7,5 m dengan Indeks Plastisitas PI > 75) Lapisan lempung lunak/setengah tegu 				
	Vs(m/detik)175 sampai350< 175	\overline{V}_s \overline{N} atau \overline{N}_{ch} (m/detik)175 sampai175 sampai15 sampai350<175		

2.3.6 Penentuan Percepatan Tanah Puncak

Berdasarkan SNI 1726:2012, untuk menentukan besarnya percepatan tanah puncak diperoleh dengan mengalikan koefisien situs F_{PGA} dengan nilai PGA yang diperoleh dari peta percepatan puncak (PGA) di batuan dasar (S_B) untuk probabilitas terlampaui 2% dalam 50 tahun dengan redaman 5%. Besarnya FPGA tergantung dari klasifikasi situs yang didasarkan pada Tabel 2.8 dan nilainya ditentukan sesuai Tabel 2.9.

Tabel 2.9: Koefisien situs untuk PGA (F_{PGA}) berdasarkan SNI 1726:2012.

Klasifikasi situs (sesuai	Р				
Tabel 2.7)	PGA	PGA=0,2	PGA=0,3	PGA=0,4	PGA≥0,5
Batuan Keras (S _A)	0	0,8	0,8	0,8	0,8
Batuan (S _B)	1	1,0	1,0	1,0	1,0
Tanah sangat padat dan batuan lunak (S _C)	1,2	1,2	1,0	1,0	1,0

Tabel 2.9: Lanjutan.

Klasifikasi situs	PGA					
	PGA≤0,1	PGA=0,2	PGA=0,3	PGA=0,4	PGA≥0,5	
Tanah sedang (S _D)	1,6	1,4	1,2	1,1	1,0	
Tanah lunak (S _E)	2,5	1,7	1,2	0,9	0,9	
Tanah khusus (S _F)	SS	SS	SS	SS	SS	

Keterangan:

- PGA = Nilai PGA di batuan dasar (S_B) mengacu pada peta gempa 2017 (Gambar 2.1).
- SS = Lokasi yang memerlukan investigasi geoteknik dan analisis respon spesifik.

Percepatan tanah puncak dapat diperoleh dengan menggunakan Pers. 2.4.

$$PGA_M = F_{PGA} \cdot PGA$$
 (2.4)

dimana:

- PGA_M = Nilai percepatan tanah puncak yang disesuaikan dengan pengaruh klasifikasi situs.
- F_{PGA} = Nilai koefisien situs untuk PGA

2.3.7 Penentuan Respon Spektrum

Berdasarkan SNI 1726:2012 pasal 6.2 untuk menentukan respon spektra percepatan gempa di permukaan tanah, diperlukan faktor amplifikasi seismik pada pendek 0,2 detik (F_a) dan perioda 1,0 detik (F_v). Selanjutnya parameter respons spektra percepatan gempa di permukaan tanah dapat diperoleh dengan cara mengalikan koefisien F_a dan F_v dengan spektra percepatan untuk perioda pendek 0,2 detik (F_s) dan perioda 1,0 detik (F_1) di batuan dasar yang diperoleh dari peta gempa Indonesia 2017 sesuai Pers. 2.5 dan 2.6:

$$\mathbf{S}_{\mathrm{MS}} = \mathbf{F}_{a} \mathbf{x} \mathbf{S}_{s} \tag{2.5}$$

$$\mathbf{S}_{\mathrm{M1}} = \mathbf{F}_{\mathbf{v}} \times \mathbf{S}_{\mathbf{1}} \tag{2.6}$$

dimana:

 S_s = Nilai parameter respon spektra percepatan gempa perioda pendek 0,2

detik di batuan dasar (S_B) mengacu pada Peta Gempa 2017 (Gambar 2.2)

- S_1 = Nilai parameter respon spektra percepatan gempa perioda 1,0 detik di batuan dasar (S_B) mengacu pada Peta Gempa 2017 (Gambar 2.3)
- F_a = Koefisien perioda pendek ditunjukkan pada Tabel 2.10.
- F_{v} = Koefisien perioda 1,0 detik ditunjukkan pada Tabel 2.11.

Klasifikasi situs	S_S					
(sesuai Tabel 2.9)	<i>S_S</i> ≤ 0,25	$S_{S} = 0,5$	$S_{S} = 0,75$	$S_{S} = 0,4$	$S_{S} \ge 1,25$	
Batuan Keras (S _A)	0,8	0,8	0,8	0,8	0,8	
Batuan (S _B)	1,0	1,0	1,0	1,0	1,0	
Tanah sangat padat dan batuan lunak (S _C)	1,2	1,2	1,1	1,0	1,0	
Tanah sedang (S_D)	1,6	1,4	1,2	1,1	1,0	
Tanah lunak (S _E)	2,5	1,7	1,2	0,9	0,9	
Tanah khusus (S _F)	SS	SS	SS	SS	SS	

Tabel 2.10: Koefisien perioda pendek (F_a) berdasarkan SNI 1726:2012.

Tabel 2.11: Koefisien perioda 1,0 detik (F_V) berdasarkan SNI 1726:2012.

Klasifikasi situs			S_{I}		
(sesuai Tabel 2.9)	$S_1 \leq 0, 1$	$S_1 = 0,2$	$S_1 = 0,3$	$S_1 = 0,4$	$S_1 \ge 0,5$
Batuan Keras (S _A)	0,8	0,8	0,8	0,8	0,8
Batuan (S _B)	1,0	1,0	1,0	1,0	1,0
Tanah sangat padat dan batuan lunak (S _C)	1,7	1,6	1,5	1,4	1,3
Tanah sedang (S _D)	2,4	2	1,8	1,6	1,5
Tanah lunak (S _E)	3,5	3,2	2,8	2,4	2,4
Tanah khusus (S _F)	SS	SS	SS	SS	SS

Menurut SNI 1726:2012 untuk mendapatkan parameter percepatan spektra desain, spektra percepatan desain untuk perioda pendek (S_{DS}) dan perioda 1 detik (S_{D1}) dapat diperoleh dari Pers. 2.7 dan 2.8.

$$S_{\rm DS} = \frac{2}{3} S_{\rm MS} \tag{2.7}$$

$$S_{D1} = \frac{2}{3} S_{M1}$$
(2.8)

dimana:

 S_{DS} = Respon spektra percepatan desain untuk perioda pendek S_D = Respon spektra percepatan desain untuk perioda 1,0 detik

Selanjutnya, untuk mendapatkan spektrum respons desain harus dikembangkan dengan mengacu dan mengikuti ketentuan berikut sesuai dengan Gambar 2.4.

Gambar 2.4: Bentuk tipikal spektrum respon desain di permukaan tanah (SNI 1726:2012).

- 1. Untuk perioda yang lebih kecil dari T0, spektrum respons percepatan desain, Sa didapatkan dari Pers. 2.9. $Sa = S_{DS} \left(0.4 + 0.6 \frac{T}{To} \right)$ (2.9)
- Untuk perioda lebih besar dari atau sama dengan T0 dan lebih kecil dari atau sama dengan Ts, spektrum respons percepatan desain, Sa sama dengan S_{DS}.
- 3. Untuk perioda lebih besar dari Ts, spektrum respons percepatan desain Sa diambil berdasarkan Pers. 2.10.

$$Sa = \frac{S_{D_1}}{T}$$
(2.10)

dimana:

T = Perioda getar fundamental struktur

Untuk nilai T0 dan TS dapat ditentukan dengan Pers. 2.11 dan 2.12.

$$T0 = 0.2 \frac{S_{D1}}{T}$$
 (2.11)

$$Ts = \frac{S_{D1}}{S_{DS}}$$
(2.12)

2.4 Analisis Gaya Lateral Ekivalen

2.4.1 Geser Dasar Seismik

Berdasarkan SNI 1726:2012 Pasal 7.8.1, geser dasar seismik (V) dalam arah yang ditetapkan harus ditentukan sesuai dengan Pers. 2.13.

$$V = Cs x Wt$$
(2.13)

dimana :

Cs = Koefisien respon seismik yang ditentukan

Wt = Berat total gedung

2.4.2 Perhitungan Koefesien Dasar Seismik

Menurut SNI 1726:2012 Pasal 7.8.1.1, persamaan-persamaan yang digunakan untuk mendapatkan koefisien Cs adalah:

a. Cs maksimum

Untuk Cs maksimum ditentukan dengan Pers. 2.14.

Cs maksimum =
$$C_{s maksimum} = \frac{S_{D1}}{S_{DS}}$$
 (2.14)

dimana:

 S_{DS} = Parameter percepatan spektrum respon desain dalam rentang perioda pendek

R = Faktor modifikasi respon

I = Faktor keutamaan hunian yang ditentukan berdasarkan Tabel 2.6 Nilai Cs maksimum di atas tidak perlu melebihi Cs hitungan pada Pers. 2.15. b. Cs hasil hitungan

Cs hasil hitungan =
$$C_{s \text{ hasil hitungan}} = \frac{S_{D_1}}{T(\frac{R}{I})}$$
 (2.15)

dimana:

SD1 = Parameter percepatan respon spektrum desain pada perioda 1 detik

R = Faktor modifikasi respon berdasarkan Tabel 2.7

I = Faktor keutamaan hunian yang ditentukan berdasarkan Tabel 2.6

T = Perioda struktur dasar (detik)

Nilai Cs hitungan di atas tidak perlu kurang dari nilai Cs minimum pada Pers. 2.16.

c. Cs minimum

Csminimum =
$$0,044 S_{DS}$$
 I $\ge 0,01$ (2.16)

dimana:

- SDS = Parameter percepatan spektrum respon desain dalam rentang perioda pendek.
- I = Faktor keutamaan hunian yang ditentukan berdasarkan Tabel 2.6.

Sedangkan sebagai tambahan untuk struktur yang berlokasi di daerah dimana S1 jika lebih besar dari 0,6 g maka Cs harus tidak kurang dari Pers. 2.17.

d. Cs minimum tambahan

Cs minimum tambahan = $C_{s minimum tambahan} = \frac{0.5S_1}{\left(\frac{R}{I}\right)}$ (2.17)

dimana:

- S1 = Parameter percepatan respon spektrum desain yang dipetakan
- R = Faktor modifikasi respon berdasarkan Tabel 2.7
- I = Faktor keutamaan hunian yang ditentukan berdasarkan Tabel 2.6

2.5 Periode Alami Fundamental

Periode adalah besarnya waktu yang dibutuhkan untuk mencapai satu getaran. Periode alami struktur perlu diketahui agar resonansi pada struktur tersebut dapat dihindari. Resonansi struktur adalah keadaan dimana frekuensi alami pada struktur sama dengan frekuensi beban luar yang bekerja sehingga dapat menyebabkan keruntuhan pada struktur.

Terdapat pembatasan waktu getar alami fundamental struktur di dalam standard aturan yang ada. Hal ini bertujuan untuk mencegah penggunaaan struktur gedung yang terlalu fleksibel.

Berdasarkan SNI 1726:2012 pasal 7.8.2 perioda fundamental struktur (T) dalam arah yang ditinjau harus diperoleh menggunakan property struktur dan karakteristik deformasi elemen penahan dalam analisis yang teruji.

 Perioda fundamental pendekatan (Ta), dalam detik harus ditentukan dari Pers. 2.18.

Ta minimum	$= C_r x h_x^n$	(2	2.1	8)
------------	-----------------	----	-----	----

dimana :

Ta minimum = Nilai batas bawah perioda bangunan

hn	= Ketinggian struktur dalam m diatas dasar sampai tingkat
	tertinggi struktur (meter)
Cr	= Ditentukan dari Tabel 2.12

x = Ditentukan dari Tabel 2.12

Tabel 2.12: Nilai parameter perioda pendekatan C_t dan x berdasarkan SNI 1726:2012.

Tipe Struktur	Cr	X
Sistem rangka pemikul momen dimana rangka		
memikul 100 persen gaya gempa yang disyaratkan dan idak		
dilingkupi atau dihubungkan dengan komponen yang lebih		
kaku dan akan mencegah rangka dari defleksi jika dikenai		
gaya gempa:		
Rangka baja pemikul momen	0.0724 ^a	0.8
Rangka beton pemikul momen	0.0466 ^a	0.9

Tabel 2.12: Lanjutan.

Tipe Struktur	Cr	x
Rangka baja dengan bracing eksentris	0.0731 ^a	0.75
Rangka baja dengan bracing terkekang terhadap tekuk	0.0731 ^a	0.75
Semua sistem struktur lainnya	0.0488^{a}	0.75

2. Perioda fundamental pendekatan maksimum (Ta maksimum) ditentukan dari Pers. 2.19.

 $Tamaksimum = C_u T_a minimum$ (2.19)

dimana:

Ta maksimum = Nilai batas atas perioda bangunan

Cu = Ditentukan dari Tabel 2.13

Tabel 2.13: Koefesien untuk batas atas pada perioda yang dihitung berdasarkan SNI 1726:2012.

Parameter percepatan respons apektral desain pada 1 detik, <i>S</i> _{D1}	Koefesien Cu
≥0.4	1.4
0.3	1.4
0.2	1.5
0.15	1.6
≥0.1	1.7

2.6 Analisis Respon Dinamik

Berdasarkan Studi Komparasi Desain Bangunan Tahan Gempa, parameter respon terkombinasi respons masing-masing ragam yang ditentukan melalui spektrum respons rencana gempa merupakan respons maksimum. Pada umumnya, respons masing-masing ragam mencapai nilai maksimum pada saat yeng berbeda sehingga respons maksimum ragam-ragam tersebut tidak dapat dijumlahkan begitu saja.

Terdapat dua cara metode superposisi, yaitu metode Akar Kuadrat Jumlah Kuadrad (Square Root of the Sum of Squares/SRSS) dan Kombinasi Kuadratik

Lengkap (Complete Quadratic Combination/CQC). Dalam hal ini, jumlah ragam vibrasi yang ditinjau dalam penjumlahan ragam respons menurut metode ini harus sedemikian rupa sehingga partisipasi massa dalam menghasilkan respons total harus mencapai sekurang-kurangnya 90%. Untuk penjumlahan respons ragam yang memiliki waktu-waktu getar alami yang berdekatan, harus dilakukan dengan. Metode yang telah disebutkan sebelumnya yaitu Kombinasi Kuadratik Lengkap (Complete Quadratic Combination/CQC). Waktu getar alami harus dianggap berdekatan apabila selisihnya kurang dari 15%. Untuk struktur yang memiliki waktu getar alami yang berjauhan, penjumlahan respons ragam tersebut dapat dilakukan dengan metode yang dikenal dengan Akar Kuadrad Jumlah Kuadrat (Square Root of the Sum of Squares/SRSS).

Berdasarkan SNI 1726:2012 Pasal 7.9.4.1, nilai akhir respon dinamik struktur gedung terhadap pembebanan gempa nominal akibat pengaruh gempa rencana dalam suatu arah tertentu, tidak boleh diambil kurang dari 85% nilai respons ragam yang pertama. Bila respons dinamik struktur gedung dinyatakan dalam gaya geser Vt, maka persyaratan tersebut dapat dinyatakan dalam Pers. 2.20.

$$V_t \ge 0.85 V_1$$
 (2.20)

dimana:

V1 = Gaya geser dasar nominal sebagai respons ragam yang pertama atau yang didapat dari prosedur gaya geser statik ekivalen.

Maka, apabila nilai akhir respon dinamik lebih kecil dari nilai respons ragam pertama, gaya geser tingkat nominal akibat pengaruh gempa rencana sepanjang tinggi struktur gedung hasil analisis spektrum respons ragam dalam suatu arah tertentu harus dikalikan nilainya dengan suatu faktor skala yang ditentukan dengan Pers. 2.21.

Faktor Skala =
$$\frac{0.85V_1}{V_t} \ge 1$$
 (2.21)

dimana:

Vt = gaya geser dasar nominal yang didapat dari hasil analisis ragam spektrum respons yang telah dilakukan.

V1 = gaya geser dasar prosedur gaya lateral statik ekivalen.

2.7 Simpangan Antar Lantai

Berdasarkan SNI 1726:2012 penentuan simpang antar lantai tingkat desain harus dihitung sebagai perbedaan defleksi pada pusat massa di tingkat teratasdan terbawah yang ditinjau. Apabila pusat massa tidak terletak segaris dalam arah vertical, diijinkan untuk menghitung defleksi di dasar tingkat berdasarkan proyeksi vertikal dari pusat massa tingkat diatasnya. Jika desain tegangan ijin digunakan, Δ harus dihitung menggunakan gaya gempa tingkat kekuatan yang ditentukan tanpa reduksi untuk desain tegangan ijin. Defleksi pusat massa di tingkat $x(\delta_x)$ (mm) harus ditentukan sesuai Pers.2.22.

$$\delta_x = \frac{C_d \,\delta_{xe}}{I_e} \tag{2.22}$$

Gambar 2.5: Penentuan simpangan antar lantai berdasarkan SNI 1726:2012.

Simpangan antar tingkat desain (Δ) tidak boleh melebihi simpangan antar lantai tingkat izin (Δ_a) dikarenakan jika simpangan terlalu jauh maka struktur mengalami yang sangat tinggi sehingga penguni didalam tidak merakan keamanan yang sesuai dengan persyaratan seperti pada Tabel 2.14.

Struktur	Kategori Resiko			
	I atau II	II	IV	
Struktur, selain dari struktur dindinggeser				
batu bata, 4 tingkat atau kurang dengan				
dinding interior, partisi, langit-langit dan	0.025 H _{sx}	0.020 H _{sx}	0.015 H _{sx}	
sistem dinding eksterior yang telah				
didesain untuk mengakomodasi simpanhan				
Struktur dinding geser kantilever atau bata	0.010 H _{sx}	0.010 H _{sx}	0.010 H _{sx}	
Struktur dinding geser batu bata lainnya	0.007 H _{sx}	0.007 H _{sx}	0.007 H _{sx}	
Semua struktur lainnya	0.020 H _{sx}	0.015 H _{sx}	0.010 H _{sx}	

Tabel 2.14: Simpangan antar lantai ijin (Δ_a) berdasarkan SNI 1726:2012.

2.8 Torsi dan Eksentrisitas

Berdasarkan SNI 1726:2012 pasal 7.8.4.2 dan pasal 7.8.4.3 terdapat dua jenis torsi yang terjadi, yaitu:

a. Torsi bawaan

Untuk diafragma yang fleksibel atau kaku, distribusi gaya lateral di masingmasing tingkat harus memperhitungkan pengaruh momen torsi bawaan (Mt) yang dihasilkan dari eksentrisitas antara lkasi pusat masssa dan pusat kekakuan. Untuk diafragma fleksibel, distribusi gaya ke elemen vertikal harus memperhitungkan posisi dan sitribusi massa yang mendukungnya.

b. Torsi tak terduga

Jika diafragma tidak fleksibel, desain harus menyertakan momen torsi bawaan (Mt) yang dihasilkan dari lokasi massa struktur ditambah momen torsi tak terduga (Mta) yang diakibatkan oleh perpindahan pusat massa dari lokasi aktualnya yang diasumsikan pada masing-masing arah dengan jarak sama dengan 5 persen dimensi struktur tegak lurus terhadap arah gaya yang diterapkan.

Jika gaya gempa diterapkan secara serentak dalam dua arah orthogonal, perpindahan pusat massa 5 persen yang disyaratkan tidak perlu diterapkan dalam kedua arah orthogonal pada saat bersamaan, tetapi harus diterapkan dalam arah yang menghasilkan pengaruh yang lebih besar. Struktur yang dirancang untuk kategori desain seismic C, D, E, atau F, dimana tipe 1a atau 1b ketidakberaturan torsi harus mempunyai pengaruh yang diperhitungkan dengan mengalikan Mta di masing-masing tingkat dengan faktor pembesaran torsi (Ax) ditentukan dari Pers. 2.23.

$$A_x = \left(\frac{\delta_{max}}{1.2\delta_{vg}}\right)^2 \tag{2.23}$$

dimana:

 δ_{max} = perpindahan maksimum di tingkat x (mm) yang dihitung dengan mengasumsikan Ax = 1 (mm)

 δ_{avg} = rata-rata perpindahan torsi (Ax) tidak diisyaratkan melebihi 3.0.

Pembebanan yang lebih parah untuk masing-masing elemen harus ditinjau untuk desain.

2.9 Beban dan Kombinasi Pembebanan

Beban kerja pada struktur atau komponen struktur bisa ditetapkan berdasarkan peraturan pembebanan yang berlaku.

Beban mati adalah beban-beban yang bersifat tetap selama masa layan, antara lain berat struktur, pipa-pipa, saluran-saluran listrik, *AC/heater*, lampu-lampu, penutup lantai/atap, dan plafon.

Beban hidup adalah beban-beban yang berubah besar dan lokasinya selama masa layan, antara lain berat manusia, perabotan, peralatan yang dapat dipindahpindah, kendaraan, dan barang-barang lainnya.

Beban gempa adalah gaya-gaya yang berasal dari gerakan-gerakan tanah dikombinasi dengan sifat-sifat dinamis struktur karena seringkali percepatan horizontal tanah lebih besar daripada percepatan vertikal, dan struktur secara umum lebih sensitif terhadap gerakan horizontal dari pada gerakan vertikal, seluruh beban-beban yang bekerja, yaitu: beban mati, beban hidup dan beban gempa tersebut diperhitungkan dengan faktor pembesaran dan kombinasi (*load combination*) berdasarkan SNI 1727:2013 yang ditunjukkan pada Tabel 2.15.

Kombinasi	Koef	fisien	Koef	isien	Koef	isien	Koe	fisien
Kombinasi 1	1,4	DL	0	LL	0	EX	0	EY
Kombinasi 2	1.2	DL	1.6	LL	0	EX	0	EY
Kombinasi 3	1.43	DL	1	LL	0.39	EX	1.3	EY
Kombinasi 4	0.97	DL	1	LL	-0.39	EX	-1.3	EY
Kombinasi 5	1.07	DL	1	LL	0.39	EX	-1.3	EY
Kombinasi 6	1.33	DL	1	LL	-0.39	EX	1.3	EY
Kombinasi 7	1.43	DL	1	LL	1.3	EX	0.39	EY
Kombinasi 7	1.43	DL	1	LL	1.3	EX	0.39	EY
Kombinasi 8	0.97	DL	1	LL	-1.3	EX	-0.39	EY
Kombinasi 9	1.33	DL	1	LL	1.3	EX	-0.39	EY
Kombinasi 10	1.07	DL	1	LL	-1.3	EX	0.39	EY
Kombinasi 11	1.13	DL	0	LL	0.39	EX	1.3	EY
Kombinasi 12	0.67	DL	0	LL	-0.39	EX	-1.3	EY
Kombinasi 13	0.77	DL	0	LL	0.39	EX	-1.3	EY
Kombinasi 14	1.03	DL	0	LL	-0.39	EX	1.3	EY
Kombinasi 15	1.13	DL	0	LL	1.3	EX	0.39	EY
Kombinasi 16	0.67	DL	0	LL	-1.3	EX	-0.39	EY
Kombinasi 17	1.03	DL	0	LL	1.3	EX	-0.39	EY
Kombinasi 18	0.77	DL	0	LL	-1.3	EX	0.39	EY

Tabel 2.15: Kombinasi pembebanan berdasarkan SNI 1726:2012 dengan nilai ρ =1,3 dan S_{DS} = 0,9 pada tanah sedang.

2.10 Distribusi Kekakuan Secara Vertikal

Berdasarkan Seismologi Teknik dan Rekayasa Kegempaan Kekakuan merupakan salah satu unsur penting terhadap kestabilan struktur bangunan. Struktur bangunan harus cukup kaku agar mampu menahan beban baik beban gravitasi maupun beban horisontal dengan nilai simpangan/*displacement* yang masih relatif kecil. Simpangan yang relatif besar walaupun tegangan bahannya masih relatif aman akan menjadi bangunan yang kurang/tidak nyaman untuk ditempati. Struktur atau elemen yang pendek umumnya akan ditentukan oleh keterbatasan tegangan sedangkan struktur/elemen yang besar/panjang umumnya simpangan akan menjadi penentu tingkat layanan.

Sebagaimana pada denah dan potongan, distribusi kekakuan secara vertikal menurut tinggi bangunan dipandang sebagai sesuatu yang sangat penting untuk diperhatikan. Menurut pengamatan kerusakan bangunan akibat gempa distribusi banyak diantaranya bersumber pada distribusi kekakuan secara vertikal yang tidak baik.

2.10.1 Soft Storey

Bangunan gedung dengan kekakuan vertikal yang tidak baik adalah bangunan gedung yang dalam tingkat-tingkatnya terdapat tingkat yang lemah atau soft storey. Pada SNI 1726:2012 telah diatur secara jelas tentang bangunan reguler yang menyangkut tentang distribusi kekakuan yaitu: "Gedung reguler adalah gedung yang sistim strukturnya memiliki kekakuan lateral yang beraturan tanpa adanya tingkat lunak (*soft storey*). Yang dimaksud dengan struktur dengan tingkat lunak adalah suatu tingkat yang mana kekakuan lateralnya < 70 % kekakuan lateral tingkat di atasnya atau < 80 % kekakuan lateral rata-rata 3-tingkat di atasnya".

Soft storey adalah suatu tingkat yang lemah, yang kekakuannya jauh lebih kecil dari pada tingkat-tingkat yang lain. Oleh karena itu dalam merencanakan kekakuan tingkat harus berhati-hati agar tidak terjadi *Soft Storey*. Kekakuan tingkat untuk setiap kolom pada lantai yang sama dapat diperkirakan dengan Pers. 2.24.

$$K = \frac{12EI}{H^{B}}$$
(2.24)

Dimana :

h = Tinggi tingkat (cm)

I = Inersia kolom (m4)

K = Kekakuan tingkat (kg/cm)

Jika dalam struktur bangunan gedung yang telah direncanakan ada terdapat simpangan antar tingkat yang melebihi batas yang telah ditentukan dari ketentuan sesuai Pers. 2.24 maka harus melihat tabel yang telah disesuaikan dari SNI 1726:2012.

Sedangkan untuk kekakuan tingkat struktur bangunan gedung yang lebih akurat dapat dihitung dengan menggunakan program analisa struktur statis.

2.10.2 Kekakuan Struktur

Kekakuan struktur adalah gaya yang diperlukan struktur bila mengalami deformasi sebesar satu satuan. Nilai kekakuan struktur ini tergantung dari material yang digunakan, dimensi elemen sruktur, penulangan, modulus elastisitas, modulus elastisitas geser, dan momen inersia polar. Selain itu, kekakuan struktur juga terkait dengan nilai dari periode struktur tersebut. Dapat dilihat dari pers. 2.25.

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$
(2.25)
Dimana = $\sqrt{\frac{k}{m}}$, dengan demikian $T = \frac{1}{\sqrt{k}}$

Dengan demikian, semakin besar periode struktur maka nilai kekakuan dari struktur tersebut semakin kecil, begitu sebaliknya.

2.11 Konsep Perencanaan Struktur Tahan Gempa

2.11.1 Sistem Rangka Pemikul Momen (Moment Resisting Frames)

Sistem rangka pemikul momen mempunyai kemampuan menyerap energi yang baik, tetapi memerlukan terjadinya simpangan antar lantai yang cukup besar supaya timbul sendi-sendi plastis pada balok yang akan berfungsi sebagai penyerap energi gempa. Simpangan yang terjadi begitu besar akan menyebabkan struktur tidak kaku sehingga mengakibatkan kerusakan nonstruktural yang besar disamping akan menambah pengaruh efek P- Δ terutama pada bangunan tinggi. Berdasarkan daktilitasnya, MRF terbagi dalam dua kategori, yaitu Sistem Rangka Pemikul Momen Khusus (SRPMK) dan Sistem Rangka Pemikul Momen Biasa (SRPMB).

a. Sistem Rangka Pemikul Momen Khusus (SRPMK)

SRBBPMK adalah suatu rangka batang pemikul momen yang dipasang secara horizontal. Pada SRPMK ada suatu segmen khusus yang terdiri dari beberapa panel dengan batang-batangnya direncanakan secara khusus. SRPMK direncanakan mengalami deformasi inelastik yang cukup besar pada segmen khusus saat memikul gaya-gaya akibat beban gempa rencana.

b. Sistem Rangka Pemikul Momen Biasa (SRPMB)

SRPMB diharapkan dapat mengalami deformasi inelastis secara terbatas pada komponen struktur dan sambungan-sambungannya akibat gaya gempa rencana. Pada SRPMB, kekakuan lebih besar dibandingkan dengan SRBPMK sehingga daktilitasnya lebih kecil.

2.11.2 Sistem Kerangka Belttruss

Belt truss adalah struktur rangka batang yang ditempatkan pada kolom-kolom eksterior dan mengelilingi gedung di sebelah luar. Nair memperkenalkan *belttruss* dengan sebutan *virtual outrigger* karena penempatannya yang tidak berada di tengah denah bangunan tetapi tetap mampu ber- fungsi seperti *outrigger*. Penempatan *belttruss* pada bangunan tinggi seperti terlihat pada Gambar 2.6 dam Gambar 2.7.

Gambar 2.6: Jenis penguat Bresing Eksentrik (Gunel dan Ilgin, 2014).

Gambar 2.7: Visualisasi penempatan belttruss pada bangunan tinggi.

Gambar 2.8: (a) Transfer *Overturning Moment* dari *Core* ke Diafragma Lantai (b) Transfer Gaya dari Diafragma Lantai ke Kolom Eksterior.

Sistem *virtual outrigger* mengeliminasi hubungan langsung antara dinding geser dengan kolom kolom luar yang dilakukan oleh balok-balok *outrigger*. Dasar pemikiran utama dari sistem ini yaitu penggunaan lantai diafragma yang mempunyai kekakuan yang besar pada bidangnya (*in-plane stiffness*) untuk mentransfer momen guling (*overturning moment*) yang dialami *core* akibat gaya lateral menjadi gaya kopel horizontal (Gambar 2.8a) dari dinding geser ke struktur rangka batang. Selanjutnya *belttruss* akan mengkonversi gaya kopel horizontal pada diafragma lantai menjadi gaya kopel vertikal pada kolom-kolom eksterior (Gambar 2.8b).

Sistem struktur *belttruss frame* dan *core* merupakan gabungan dari 2 sistem struktur dimana sistem struktur *belttruss* berfungsi mengikat kolom fasade ke inti sehingga meniadakan aksi terpisah rangka dan inti. Pengakuan ini dinamai *cap trussing* apabila berada pada bagian atas bangunan, dan *belttruss* apabila berada di bagian bawahnya seperti pada Gambar 2.9 dan Gambar 2.10.

Gambar 2.9: Denah struktur penempatan rangka pada struktur *belt truss* serta analisis model sistem *belt truss frame and core* (Gunel dan Ilgin, 2014).

Gambar 2.10: Bagian dari sistem strukrur belt truss yaitu *braced core*, *cap truss* dan *coloum exterior* (Gunel dan Ilgin, 2014).

2.11.3 Perilaku Dan Cara Kerja Belttruss

Rangka yang diperkaku menjadi tidak efisien lagi di atas ketinggian 40 lantai karena banyak sekali diperlukan bahan untuk membuat pengaku yang cukup kaku dan kuat. Efisiensi struktur bangunan akan meningkat sebesar 30% dengan menggunakan rangka sabuk atau *belttruss* horisontal untuk mengikat rangka ke inti. Rangka tersebut diikat secara kaku ke inti dan dihubungkan dengan kolom eksterior. Apabila inti geser melentur, maka *belttruss* berlaku sebagai lengan yang menyalurkan tegangan-tegangan aksial langsung ke kolom luar. Selanjutnya kolom-kolom ini berlaku sebagai strut untuk melawan lendutan dari inti seperti pada Gambar 2.11.

Gambar 2.11: Intraksi antara *braced* yang di perkuat dan tidak diperkuat. (a) kharakteristik deformasi sayap, (b) variasi gaya geser dari interaksi.

Perbandingan struktur dengan hanya menggunakan sistem *core truss* dengan diperkuat dengan *belt trussed frame*, sehingga bangunan yang diperkuat dengan *belttruss* frame menjadi lebih kaku dan tahan terhadap goncangan.

2.11.4 Pembebanan Pada Control Cab

Control cab adalah ruang operasi utama tempat pengendali bekerja sama dan harus memberikan pandangan terhalang terbaik pada trotoar aktif. Trotoar aktif adalah permukaan dimana semua aktivitas pesawat berlangsung seperti landasan pacu, *taxiway* dan *platform* gerbang. Perancangan pertimbangan taksi didasarkan pada besarnya aktivitas, konfigurasi dan ukuran bandara. Pada gambar 2.12.

Gambar 2.12: Tata letak kabin kontrol aktivitas rendah standar (atas) dan standar aktivitas utama (FAA, 2004).

Untuk mempertimbangkan bobot *façade*, untuk memudahkan, beban *façade* vertikal pada perimeter bangunan diterjemahkan ke dalam beban vertikal yang tegak lurus di lantai yang terkait. Pada gambar 2.13 sebuah skematisasi beban diberikan untuk varian beton kabin kontrol. Rasio muka permukaan / muka permukaan kabin kontrol adalah 1/ 2.5, menjelaskan kenaikan beban *façade* yang diproyeksikan secara tegak lurus, terlihat pada Gambar 2.13.

Gambar 2.13: Skema Pembebanan pada control cab beton (FAA, 2004).

BAB 3

METODELOGI PENELITAN

3.1 Umum

Langkah-langkah dalam perencanaan dan analisis struktur gedung dilakukan dengan beberapa tahapan dapat dilihat pada Gambar 3.1.

Gambar 3.1 Bagan alir metodelogi penelitian.

3.2 Tinjauan Umum

Pada tugas akhir ini terdapat 3 Pemodelan struktur bangunan gedung, dimana 1 Model struktur gedung yang didesain menggunakan rangka beton pemikul momen khusus, dan 2 Model struktur gedung yang didesain menggunakan rangka beton pemikul momen dengan sistem *belttruss* dan *outrigger*. Bangunan gedung akan difungsikan sebagai gedung telekomunikasi pada bandar udara untuk mengatur lalulintas pesawat dengan kategori resiko II berdasarkan SNI 1726:2012 sesuai jenis pemanfaatan struktur gedung pada Tabel 2.5. Struktur gedung di desain19 lantai. Perbedaan pada setiap Model terdapat pada penempatan letak *belttruss*. Pada Model Struktur 1 menggunakan rangka beton pemikul momen khusus, Model Struktur 2 menggunakan rangka beton pemikul momen khusus dengan sistem *belttruss* dan *outrigger* di lantai 4 lantai 9 dan lantai 14, Model Struktur 3 menggunakan rangka beton pemikul momen khusus dengan sistem *belttruss* dan *outrigger* di lantai 10 dan lantai 15. Penulis meninjau perbandingan simpangan dan gaya geser bangunan dari ketiga Model bangunan gedung tersebut.

Dalam Tugas Akhir ini, pemodelan menggunakan analisis respon spektrum di kota Padang. Pada setiap pemodelan menggunakan sistem struktur yang sama namun dengan penempatan penahan gaya lateral yang berbeda untuk mecari letak atau penempatan *belttruss* dan *outrigger* yang efektif pada masing-masing pemodelan yang telah direncanakan. Gedung ini menggunakan sistem beton pemikul momen khusus ditambah *belttruss* dan *outrigger*. Struktur gedung menggunakan konsep balok lemah kolom kuat (*weak beam strong column*). Struktur dimodelkan tiga dimensi sebagai portal terbuka dengan bantuan program ETABS Ver 16.2.

3.3 Faktor Respon Gempa (C)

Rencananya berdirinya bangunan dalam Pemodelan struktur gedung ini di kota Padang yang dinilai sebagai daerah rawan gempa di Indonesia dengan data PGA (*Peak Ground Acceleration*) Ss = 1,350 g dan S1 = 0,550 g pada tanah sedang berdasarkan peta gempa Hazard 2017.

Berdasarkan SNI 1726:2012, respon spektrum gempa rencana harus dianalisis terlebih dahulu. Pada peta gempa Hazard Indonesia 2017 atau dapat dilihat pada Gambar 2.2 dan 2.3. Adapun tahapan-tahapan yang perlu dilakukan untuk membuat spektrum respon gempa desain dapat dilakukan sebagai berikut.

- a. Penentuan koefisien Fa dan Fv
- Koefisien Fa

Koefisien Fa ditentukan berdasarkan beberapa parameter, yaitu nilai Ss yang terdapat pada Tabel 2.10 dan berdasarkan jenis tanah sedang. Maka diperoleh nilai Fa di bawah ini.

Fa = 1,0

- Koefisien Fv

Koefisien Fv ditentukan berdasarkan beberapa parameter, yaitu nilai S1 yang terdapat pada Tabel 2.11 dan berdasarkan jenis tanah sedang. Maka diperoleh nilai Fv di bawah ini.

Fv = 1,5

b. Penentuan nilai SMS dan SM1

SMS = Fa . Ss SMS = 1,0.1,350SMS = 1,350 SM1 = Fv . S1 SM1 = 1,5 . 0,550 SM1 = 0,825Penentuan nilai SDS dan SD1 c. Nilai $\mu = 2/3$ SDS $= \mu . SMS$ SDS = (2/3) . 1,350SDS = 0,900SD1 $= \mu . SM1$ SD1 = (2/3) . 0,825SD1 =0,550d. Penentuan nilai Ts dan T0 Ts = SDS/SD1

- Ts = 0,900 / 0,550
- Ts = 0,611
- T0 = 0,2 . Ts
- T0 = 0,2 . 0,611

T0 = 0,122

- e. Penentuan nilai Sa
- Untuk periode yang lebih kecil dari T0, spektrum respon percepatan desain (Sa) harus diambil dari persamaan:

Sa = SDS $(0,4 + 0,6 \frac{T}{T0})$

- Untuk periode yang lebih besar dari atau sama dengan T0 dan lebih kecil dari atau sama dengan Ts, spektrum respon desain Sa sama dengan SDS.
- Untuk periode lebih besar dari Ts, spektrum respon percepatan desain Sa diambil berdasarkan persamaan:

 $Sa = \frac{Sds}{T}$

- Spektrum respon percepatan disajikan dalam Tabel 3.1 dan grafik spektrum respon pada Gambar 3.2:

Re	espons Spektrum Tanah Sedar	ng
Т	Т	S o
(Detik)	(Detik)	Sa
0	0	0,360
TO	0,122	0,900
	0,222	0,900
	0,322	0,900
	0,422	0,900
Ts	0,611	0,900
T + 0,1	0,711	1,550
T + 0,2	0,811	1,359
T + 0,3	0,911	1,210
T + 0,4	1,011	1,090
T + 0,5	1,111	0,992
T + 0,6	1,211	0,910
T + 0,7	1,311	0,841

Tabel 3.1: Respon Spektrum SNI 1726:2012 Daerah, Kota Padang dengan jenis tanah sedang.

Tabel 3.1: Lanjutan.

Respons Spektrum Tanah Sedang					
Т	T	Sa			
(Detik)	(Detik)				
T + 0,8	1,411	0,781			
T + 0,9	1,511	0,729			
T + 1,0	1,611	0,684			
T + 1,1	1,711	0,644			
T + 1,2	1,811	0,608			
T + 1,3	1,911	0,577			
T + 1,4	2,011	0,548			
T + 1,5	2,111	0,522			
T + 1,6	2,211	0,498			
T + 1,7	2,311	0,477			
T + 1,8	2,411	0,457			
T + 1,9	2,511	0,439			
T + 2,0	2,611	0,422			
T + 2,1	2,711	0,406			
T + 2,2	2,811	0,392			
T + 2,3	2,911	0,379			
T + 2,4	3,011	0,366			
T + 2,5	3,111	0,354			
T + 2,6	3,211	0,343			
T + 2,7	3,311	0,333			
T + 2,8	3,411	0,323			
T + 2,9	3,511	0,314			
T + 3,0	3,611	0,305			
T + 3,1	3,711	0,297			
T + 3,2	3,811	0,289			
T + 3,3	3,911	0,282			
T + 3,4	4,011	0,275			
T + 3.5	4,111	0,268			
T + 3.6	4,211	0,262			
T + 3.7	4,311	0,256			
T + 3.8	4.411	0.250			
T + 3.9	4,511	0.244			
T + 4,0	4,611	0,239			

Gambar 3.2: Respon spektrum berdasarkan SNI 1726:2012 daerah Kota Padang dengan klasifikasi tanah sedang.

Dapat dilihat pada Tabel 3.2, bahwa respons spektrum gempa rencana yang dihasilkan berdasarkan standar kegempaan SNI 1726:2012 mempunyai nilai 0,122 untuk percepatan respons spektrum desain pada periode pendek (SDS), dan 0,900 untuk parameter percepatan desain pada perioda 1 detik (SD1).

3.4 Pemodelan Dan Analisis Struktur

Pada tugas akhir ini, penelitian dilakukan dengan mengambil studi literatur pada 1 bangunan gedung pusat telekomunikasi 15 tingkat. Tugas akhir ini terdapat 3 pemodelan gedung yang memiliki spesifikasi sama namun dengan pemasangan dan penempatan sistem *belttruss* beserta *outrigger* yang berbeda. Struktur gedung adalah portal beton yang dimodelkan sebagai element frame 3 dimensi (3D) pada ETABS Ver. 16.2 dengan mengacu pada Perencanaan Bangunan Gedung Tahan Gempa SNI 1726:2012 dan Perencanaan Struktur Baja dan Berdasarkan SNI 1729:2015.

3.4.1 Pemodelan Gedung

Semua model merupakan bangunan regular 20 lantai dengan tinggi tingkat semua lantai pada gedung 4 m. Dimensi struktur adalah persegi yang masing-

masing memiliki 3 as dengan jarak 4,5 m arah x, dan 3 as dengan jarak 4,5 m arah y, Luas bangunan rencana adalah (9 x 9) m2.

3.4.1.1 Data perencanaan Struktur

Adapun data perencanaan struktur yang digunakan pada kedua pemodelan tersebut yaitu:

- 1. Gedung difungsikan sebagai pusat telekomunikasi kategori resiko II
- 2. Gedung berlokasi di wilayah kota padang
- 3. Klasifikasi situs tanah sedang (SD)
- 4. Gedung dikategorikan desain seismik (KDS) D
- 5. Struktur utama bangunan adalah struktur beton bertulang Fc 40 MPa
- Sistem struktur yang digunakan adalah Sistem Rangka Pemikul Momen (SRPMK) dan Belttruss + Outrigger.

3.4.1.2 Faktor Keutamaan Struktur (I)

Menurut SNI 1726:2012, sesuai Tabel 2.6 pemilihan nilai faktor keutamaan berdasarkan kategori resiko dengan fungsi bangunan perkantoran adalah kategori resiko II, dengan hal itu maka didapat melalui Tabel 2.6 nilai faktor keutamaan (Ie) = 1.

3.4.1.3 Faktor Reduksi Gempa

Desain bangunan direncanakan sebagai Sistem Rangka Beton Bertulang Pemikul Momen Khusus (SRBBPMK), dimana untuk nilai faktor reduksi gempa yang berdasarkan SNI 1726:2012 sesuai Tabel 2.7 dapat dilihat pada Tabel 3.2.

Tabel 3.2: Faktor reduksi gempa berdasarkan SNI 1726:2012.

Arah	Sistem Penahan Gaya Siesmik	R
Arah X	Rangka Beton Bertulang Pemikul Momen Khusus	8
Arah Y	Rangka Beton Bertulang Pemikul Momen Khusus	8

3.4.2 Properties Penampang

Komponen struktur yang terdapat pada bangunan ini meliputi balok, kolom, pelat dan baja. Berikut akan direncanakan dimensi awal dari komponenkomponen struktur bangunan. Untuk semua struktur gedung direncanakan dengan dimensi penampang yang sama.

3.4.2.1 Tebal Plat Lantai

Penentuan tebal pelat lantai menggunakan rumus dari SNI 2847:2013 pasal 11 butir 5 sub butir 3 adalah Pers. 3.1 dan 3.2 dan ukuran perencanaan tebal pelat lantai ditunjukkan pada Gambar 3.3.

$$h_{maks} = \frac{Ln.(0.8 + \frac{Fy}{1500})}{36}$$
(3.1)

$$h_{min} = \frac{Ln . (0.8 + \frac{Fy}{1500})}{36 + 9\beta}$$
(3.2)

dimana:

h = ketebalan pelat lantai (mm)

$$fy = mutu baja (MPa)$$

$$ln = \frac{3}{lx}$$
 (mm)

ly = Panjang arah sumbu y

lx = Panjang arah sumbu y

Gambar 3.3. Ukuran terbesar plat lantai

$$h_{maks} = \frac{4500.(0.8 + \frac{180}{1500})}{36} = 115 \, mm$$

$$h_{min} = \frac{4500.(0.8 + \frac{180}{1500})}{36 + 9 x 1} = 92 mm$$

Tebal pelat yang digunakan yaitu 120 mm = 0,12 m (untuk semua tipe pelat lantai).

Dalam pemodelan, pelat lantai menggunakan slab dan dianggap mampu menahan gaya-gaya horizontal/gempa maupun arah vertikal. Dalam ETABS Ver.16.2, pada menu *Define, Section Properties*, lalu pilih *Slab Section*.

3.4.3 Pembebanan Struktur

Di dalam struktur bangunan Teknik Sipil terdapat dua jenis beban luar yang bekerja yaitu beban statis dan beban dinamis. Beban yang bekerja terus-menerus pada suatu struktur adalah beban statis. Jenis dari beban statis adalah sebagai berikut:

3.4.3.1 Beban Mati (Dead Load)

Beban mati adalah beban-beban yang bekerja secara vertikal yang mengikuti arah gravitasi pada struktur bangunan. Adapun berat komponen material bangunan dapat ditentukan dari peraturan yang berlaku di Indonesia yaitu SNI 1727:2013 Beban Minimum Untuk Perencanaan Bangunan Gedung menggunakan PPUG 1983 dan struktur *control cab* mengacu pada FAA.2004 untuk berat satuan material disajikan pada Tabel 3.3, 3.4 dan Tabel 3.5.

Tabel 3.3: Berat material konstruksi berdasarkan PPUG 1983.

Beban Mati	Berat Jenis
Beton Bertulang	2200-2400 Kg/m3
Baja	7850 Kg/m3

Beban Mati	Besarnya Beban
Plafond dan penggantung	18 Kg/m2
Adukan 2 cm dari semen	42 Kg/m2
Pasangan bata setengah batu	250 Kg/m2
Pasangan bata setengah batu	250 Kg/m2
Penutup lantai dari keramik	24 Kg/m2
Mekanikal Elektrikal	60 Kg/m2

Tabel 3.4: Berat tambahan komponen gedung berdasarkan PPUG 1983.

Tabel 3.5: Berat tambahan komponen *Control Cab Air Trafic Control* berdasarkan FAA. 2014.

Beban Mati	Besarnya Beban
Struktur Atap Baja + Kolom	50 Kg/m2
Antena Sinyal ATC	25 Kg/m2
Penutup Atap	100 Kg/m2
Fasad Angin Pesawat	120 Kg/m2
Fasad Tegak Lurus	300 Kg/m2

1. Pembebanan Penutup Bangunan Dinding Bata Dan Kaca

Beban dinding bata dan kaca yang di input ke balok induk, dinding dan kaca diinput ke balok dengan beban terbagi merata (*assingn- frame load- distributed*) dalam program ETABS Ver. 16.2 dapat dilihat pada Tabel 3.6.

Tabel 3.6: Rekapitulasi beban dinding yang diinput dalam pemodelan.

Penerimaan Beban	Tinggi (m)	Beban Mati (kg/m)
Lantai 1 – Lantai 17	4	1200
Lantai 18	4	65,84

2. Pembebanan Pada Tangga

Untuk beban tangga sendiri dilakukan analisis struktur dengan bantuan program software SAP 2000 v.19 dan hasil reaksi perletakkan dari hasil analisis struktur
tersebut akan dijadikan beban terpusat yang diletakkan di balok lintel dan balok induk, maka nilai beban tangga disajikan dalam Tabel 3.7.

Beban Mati					
1. Untuk Lt Base - Lt 17	X	У	Satuan		
Reaksi Balok Tangga	43,59	82,18	kN		
Reaksi Balok Bordes	2,94	1,90	kN		
2. Untuk Lt 18 ke Lt 19	Х	У	Satuan		
Reaksi Balok Tangga	71,01	75,23	kN		
Reaksi Balok Bordes	0,32	1,19	kN		
Beban H	Iidup				
3. Untuk Lt Base - Lt 17	X	У	Satuan		
Reaksi Balok Tangga	43,59	41,24	kN		
Reaksi Balok Bordes	0,89	1,38	kN		
4. Untuk Lt 18 ke Lt 19	х	У	Satuan		
Reaksi Balok Tangga	43,59	36,35	kN		
Reaksi Balok Bordes	2,08	1,66	kN		

Tabel 3.7: Beban tangga akibat reaksi perletakkan di balok tangga dan balok bordes.

3. Pembebanan Pada Lift

Pada perencanaan balok lift ini meliputi balok-balok yang berkaitan dengan ruang mesin lift yang terdiri dari balok penumpu dan balok penggantung. Pada bangunan ini menggunakan lift penumpang dengan data-data sesuai brosur sebagai berikut: :

Data perencanaan Lift :

-	Type Lift	: Passenger Elevators
-	Merek	: Hyundai
-	Kapasitas	: 6 Orang/ 450 kg
-	Lebar pintu (Opening width)	: 800 mm
-	Dimensi ruang luncur	
	(Hoistway inside) 2 Car	$: 1800 \text{ x} 1800 \text{ mm}^2$

-	Dimensi sangkar (Car size)				
	Internal	$: 1400 \text{ x } 850 \text{ mm}^2$			
	External	: 1460 x 1005 mm ²			
-	Dimensi ruang mesin (1 Car)	$: 2000 \text{ x } 2000 \text{ mm}^2$			
-	Beban reaksi ruang mesin	:			
	$R_1 = 3600 \text{ kg}$				
	$R_2 = 2000 \text{ kg}$				

3.4.3.2 Beban Hidup (Live Load)

Beban hidup adalah beban yang disebabkan oleh penggunaan maupun hunian dan beban ini bisa ada atau tidak ada pada struktur pada waktu tertantu. Secara umum beban ini bekerja degan arah vertikal ke bawah, tetapi terkadang dapat juga berarah horizontal. Semua beban hidup mempunyai karakteristik dapat bergerak atau berpindah. Berat beban hidup berdasarkan disajikan dalam Tabel 3.8.

Tabel 3.8: Beban hidup pada lantai struktur berdasarkan SNI 1727:2013.

Beban Hidup	Besarnya Beban
Pusat Telekomunikasi Lt 19	479 Kg/m2
Ruang Kantor Lt 18	240 Kg/m2
Akses Pemeliharaan Lt 1- Lt 17	192 Kg/m2
Atap Control Cab	96 Kg/m2

3.4.3.3 Beban Gempa (Eartquake Load)

Beban gempa adalah beban yang timbul akibat pergerakkan tanah dimana struktur tersebut berdiri. Pembebanan struktur beban gempa berdasarkan SNI 1726:2012. Analisis beban gempa terdapat 3 analisis, yaitu analisis gaya lateral ekivalen, analisis spektrum respons ragam dan prosedur riwayat respon seismik. Namun pada pembahasan dari perencanaan ini adalah menggunakan analisis respons ragam, adapun untuk menentukan beban gempa dapat dilihat pada sub Bab 2.2.

3.4.3.4 Kombinasi Pembebanan

Seluruh beban mati, beban hidup dan beban gempa tersebut diperhitungkan dengan faktor pembesaran dan kombinasi *(loads combinations)* yang diinput ke dalam program ETABS Ver.16.2 berdasarkan SNI 1726:2012. Untuk Pemodelan ini dengan menggunakan nilai $\rho = 1,3$ yang diperoleh dari desain seismik D dan nilai SDS = 0.900 diperoleh dari sub Bab 3.3, maka kombinasi pembebanannya dapat dilihat pada Tabel 3.9.

Kombinasi	Koef	fisien	Koef	isien	Koef	isien	Koe	fisien
Kombinasi 1	1,4	DL	0	LL	0	EX	0	EY
Kombinasi 2	1.2	DL	1.6	LL	0	EX	0	EY
Kombinasi 3	1.43	DL	1	LL	0.39	EX	1.3	EY
Kombinasi 4	0.97	DL	1	LL	-0.39	EX	-1.3	EY
Kombinasi 5	1.07	DL	1	LL	0.39	EX	-1.3	EY
Kombinasi 6	1.33	DL	1	LL	-0.39	EX	1.3	EY
Kombinasi 7	1.43	DL	1	LL	1.3	EX	0.39	EY
Kombinasi 8	0.97	DL	1	LL	-1.3	EX	-0.39	EY
Kombinasi 9	1.33	DL	1	LL	1.3	EX	-0.39	EY
Kombinasi 10	1.07	DL	1	LL	-1.3	EX	0.39	EY
Kombinasi 11	1.13	DL	0	LL	0.39	EX	1.3	EY
Kombinasi 12	0.67	DL	0	LL	-0.39	EX	-1.3	EY
Kombinasi 13	0.77	DL	0	LL	0.39	EX	-1.3	EY
Kombinasi 14	1.03	DL	0	LL	-0.39	EX	1.3	EY
Kombinasi 15	1.13	DL	0	LL	1.3	EX	0.39	EY
Kombinasi 16	0.67	DL	0	LL	-1.3	EX	-0.39	EY
Kombinasi 17	1.03	DL	0	LL	1.3	EX	-0.39	EY
Kombinasi 18	0.77	DL	0	LL	-1.3	EX	0.39	EY

Tabel 3.9: Kombinasi pembebanan berdasarkan SNI 1729-2012 dengan nilai $\rho = 1,3$ dan Sds = 0,900.

3.4.4 Perhitungan Berat Per Lantai Gedung

Untuk berat sendiri struktur dalam bangunan Air Traffic Control ini diperoleh menggunakan bantuan program ETABS Ver. 16.2. yang di dapat dari menu display – show table – analysis – result – structure result – center of mass and rigidity.

3.5 Struktur Bangunan Model 1

Model gedung yang pertama adalah bentuk struktur menggunakan rangka beton bertulang pemikul momen. Untuk pemodelan dari struktur gedung tersebut dapat dilihat pada Gambar 3.4.

Gambar 3.4b: Denah Lantai 18.

Gambar 3.4d: (a) Tampak Samping Kiri, (b) Perspektif 3D Struktur Bangunan.

3.5.1 Dimensi Kolom Dan Balok

Berikut adalah dimensi kolom dan balok yang disajikan dalam Tabel 3.10 pada Model 1 rangka beton bertulang pemikul momen khusus.

Uraian	Dimensi <i>l x t</i>	Mutu
Ofaiali	(mm)	(Mpa)
Kolom Utama Lt Base – Lt 19	1000 x 1000	40
Kolom Eksterior Llt Base – Lt 9	900 x 900	40
Kolom Eksterior Lt 10 – Lt 17	800 x 800	40
Kolom Eksterior Lt 18 – Lt 9	700 x 700	40
Balok Utama Lt 1 – Lt 9	600 x 800	40
Balok Utama Lt 10 – Lt 17	500 x 800	40
Balok Utama Lt 18 – Lt 19	400 x 800	40
Balok Bordes Lt 1 – Lt 18	200 x 400	20
Balok Anak Lt 1 – Lt 19	200 x 400	20
Balok Lift Lt 18	200 x 400	20

Tabel 3.10: Ukuran Penampang pada Model 1.

3.5.2 Analisis Respon Spektrum

Prosedur analisis respon spektrum dilakukan dengan menggunakan program ETABS. Analisis respon spektrum ini dilakukan dengan metode kombinasi akar jumlah kuadrat (*Square Root of the Sum of Squares/SRSS*) dengan input gaya gempa seperti pada Gambar 3.5 yang dijelaskan pada sub bab 2.6. Metode kombinasi akar jumlah kuadrat (*Square Root of the Sum of Squares/SRSS*) diperoleh dari hasil selisih nilai perioda yang lebih dari 15%.

Selain itu, penjumlahan ragam respons menurut metode CQC (complete quadratic combination) atau SRSS (square roof of the sum squares) harus sedemikian rupa sehingga hasi dari partisipasi massa yang telah dihitung dalam menghasilkan respon total harus mencapai sekurang-kurangnya 90% agar nilai prioda yang di dapat bisa memenuhi syarat yang telah ditentukan oleh syarat diatas. Untuk memperoleh nilai perioda dan partisipasi massa (Sum UX dan Sum UY) menggunakan program ETABS Ver. 16.2 yaitu pada Structure Output (Modal Participating Mass Ratio). Nilai Perioda untuk Model 1 terdapat pada Tabel 3.11.

Modal Participacing Ratio						
Case	Modal	Prioda	Sum X	Sum Y		
Modal	1	3,139	0,0135	0,7226		
Modal	2	3,124	0,7223	0,0135		
Modal	3	2,046	0,0001	0,0002		
Modal	4	0,989	0,0035	0,1434		
Modal	5	0,983	0,1438	0,0035		
Modal	6	0,702	0,0001	9,07E-06		
Modal	7	0,527	0,0011	0,0373		
Modal	8	0,524	0,0373	0,0011		
Modal	9	0,398	4,73E-05	0		
Modal	10	0,355	0,0006	0,0218		
Modal	11	0,353	0,0218	0,0006		
Modal	12	0,271	0,0001	2,27E-06		

Tabel 3.11: Data perioda output program ETABS Model 2.

Persentase nilai perioda yang menentukan jenis perhitungan menggunakan CQC ataukah SRSS dapat dilihat pada Tabel 3.12.

Mode	Persentase %	CQC<15%	SRSS>15%
T1 - T2	0,48%	Ok	Not Ok
T2 - T3	34,51%	Not Ok	Ok
T3 - T4	51,66%	Not Ok	Ok
T4 - T5	0,61%	Ok	Not Ok
T5 - T6	28,59%	Not Ok	Ok
T6 - T7	24,93%	Not Ok	Ok
T7 - T8	0,57%	Ok	NOT OK
T8 - T9	24,05%	Not Ok	Ok
T9 - T10	10,80%	Ok	Not Ok
T10 - T11	0,56%	Ok	Not Ok
T11 - T12	23,23%	Not Ok	Ok

Tabel 3.12: Hasil selisih persentase nilai perioda Model 2.

Penjumlahan ragam respon menurut metode CQC atau metode Akar Kuadrat Jumlah Kuadrat (*Square Root of the Sum of Squares/SRSS* harus sedemikian rupa sehingga partisipasi massa dalam menghasilkan respon total harus mencapai sekurang-kurangnya 90%, dari Tabel 3.12, diperoleh nilai partisipasi massa (Sum UX dan Sum UY) sudah hampir mencapai 100%. Maka, pada Model 1 ini partisipasi massa sudah memenuhi syarat dengan mengunakan metode SRSS.

a. Nilai waktu getar alami fundamental

Berdasarkan analisis 3 dimensi yang diperoleh dari ETABS nilai waktu getar alami fundamental atau perioda (T) dari Model 1 adalah:

T arah X = 3,139 detik

T arah Y = 3,124 detik

Maka, menurut sub bab 2.5 peraturan SNI 1726:2012, perioda fundamental (T) yang digunakan memiliki nilai batas maksimum dan batas minimum seperti yang dijelaskan pada Pers. 2.18 pada Bab 2.

Ct = 0,0466 (Tabel 2.12 dengan tipe struktur rangka baja pemikul momen)

Hn = 76 m (tinggi gedung dari dasar)

X = 0.9 (Tabel 2.12 dengan tipe struktur rangka baja pemikul momen)

Cu = 1,4 (Tabel 2.13 dengan nilai SD1 \ge 0,4).

Tabel 3.13: Pengecekan perioda berdasarkan pembatasan waktu getar alami fundamental Model 2 berdasarkan SNI 1726:2012.

Arah	T _{a min} (Ct*Hn)	T _{a maks} (Cu x Ta min)	T (Prioda)	Cek min	Cek maks
Arah x	2,297	3,215	3,124	Ok	Ok
Arah y	2,297	3,215	3,139	Ok	Ok

b. Penentuan faktor respon gempa (C)

Berdasarkan sub bab 2.4.2 untuk peraturan SNI 1726:2012, penentuan nilai koefisien respon seismik (CS) berdasarkan Pers. 2.14-2.17 pada Bab 2, yang dijelaskan di bawah ini:

-
$$C_{s maksimum} = \frac{Sds}{\left(\frac{R}{I}\right)}$$

	$C_{s \text{ maksimum arah } X} = \frac{0,900}{(8/1)} = 0,1125$
	$C_{s \text{ maksimum arah } Y} = \frac{0,900}{(8/1)} = 0,1125$
-	$C_{s hasilhitungan} = \frac{Sd1}{T(\frac{R}{I})}$
	$C_{s \text{ hasilhitungan arah } X} = \frac{0.550}{3.124(8/1)} = 0.0219$
	$C_{s hasilhitungan arah Y} = \frac{0.550}{3.015(8/1)} = 0.0220$
-	$C_{sminimum}$ = 0,044 S_{DS} Ie \geq 0,01
	$C_{s\ minimum} = 0.044.0.900.1 = 0.0396 \ge 0.01$
	$C_{smintamb} = 0.5 \ge 0.55 (8/1) = 0.0344$

Nilai Cs di atas dan nilai Cs yang digunakan dirangkum ke dalam Tabel 3.14.

Tabel 3.14: Rangkuman nilai Cs dan nilai Cs yang digunakan Model 2.

Arah	C _{s max}	Cs hitungan	C _{s min}	Cs yang dipakai
Arah X	0,1125	0,0219	0,0396	0,0219
Arah Y	0,1125	0,0220	0,0396	0,0220

Dalam menentukan nilai Cs haruslah sesuai dengan persyaratan yang ada dikarenakan nilai Cs ini akan berpengaruh pada perhitungan struktur selanjutnya, jika kita tidak mengikuti persyaratan yang ada maka kemungkinan besar struktur yang direncanakan akan mengalami kegagalan seperti pada kasus-kasus yang pada pada gempa beberapa tahun terakhir di indonesia. Pemilihan nilai Cs diatas di dapat karena nilai Cs hitungan berada di interval Cs minimum dan Cs maksimum. Maka yang digunakan Cs hitungan sesuai Peraturan SNI 1726:2012.

3.6 Struktur Bangunan Model 2

Model gedung yang kedua adalah bentuk struktur yang sama dengan Model 1 namun ditambah dengan belttruss dan outtriger di Lt 4, Lt 9 dan Lt 14. Untuk pemodelan dari struktur gedung tersebut dapat dilihat pada Gambar 3.5.

Gambar 3.5a: Denah Lantai Base – 17 (lihat Gambar 3.5d).

Gambar 3.5b: Denah Lantai 18.

Gambar 3.5d: (a) Tampak Samping Kiri, (b) Perspektif 3D Struktur Bangunan.

(b)

Story 1

卤卤

(a)

3.6.1 Dimensi Kolom Dan Balok

Berikut adalah dimensi kolom dan balok yang disajikan dalam Tabel 3.15 pada Model 2 rangka beton bertulang pemikul momen khusus.

Uraian	Dimensi <i>l x t</i>	Mutu
Oraian	(mm)	(Mpa)
Kolom Utama Lt Base – Lt 19	1000 x 1000	40
Kolom Eksterior Lt Base – Lt 9	900 x 900	40
Kolom Eksterior Lt 10 – Lt 17	800 x 800	40
Kolom Eksterior Lt 18 – Lt 9	700 x 700	40
Balok Utama Lt 1 – Lt 9	600 x 800	40
Balok Utama Lt 10 – Lt 17	500 x 800	40
Balok Utama Lt 18 – Lt 19	400 x 800	40
Balok Bordes Lt 1 – Lt 18	200 x 400	20
Balok Anak Lt 1 – Lt 19	200 x 400	20
Belt-Truss Lt 4, 9 dan 14	WF 257. 204. 15. 8	BJ 41
Outrigger Lt 4, 9 dan 14	WF 310. 254. 16. 9	BJ 41

Tabel 3.15: Ukuran Penampang pada Model 2.

3.6.2 Analisis Respon Spektrum

Prosedur analisis respon spektrum dilakukan dengan menggunakan program ETABS. Analisis respon spektrum ini dilakukan dengan metode kombinasi akar jumlah kuadrat (*Square Root of the Sum of Squares/SRSS*) dengan input gaya gempa seperti pada Gambar 2.5 yang dijelaskan pada sub bab 2.7. Metode kombinasi akar jumlah kuadrat (*Square Root of the Sum of Squares/SRSS*) diperoleh dari hasil selisih nilai perioda yang lebih dari 15%.

Selain itu, penjumlahan ragam respons menurut metode *CQC* (complete quadratic combination) atau SRSS (square roof of the sum squares) harus sedemikian rupa sehingga hasil dari partisipasi massa yang telah dihitung menghasilkan respons total mencapai sekurang-kurangnya 90% agar nilai prioda yang di dapat bisa memenuhi syarat yang telah ditentukan oleh syarat diatas. Untuk memperoleh nilai perioda dan partisipasi massa (Sum UX dan Sum UY) menggunakan program ETABS Ver. 16.2 yaitu pada *Structure Output* (Modal Participating Mass Ratio). Nilai Perioda untuk Model 2 terdapat pada Tabel 3.16.

Modal Participacing Ratio				
Case	Modal	Prioda	Sum X	Sum Y
Modal	1	2,79	0,013	0,7254
Modal	2	2,78	0,7251	0,0129
Modal	3	1,796	0,0001	0,0002
Modal	4	0,878	0,0036	0,1601
Modal	5	0,874	0,1605	0,0036
Modal	6	0,63	0,0001	1,90E-05
Modal	7	0,477	0,0009	0,0343
Modal	8	0,474	0,0343	0,0009
Modal	9	0,367	0,0001	0
Modal	10	0,348	0,0003	0,0151
Modal	11	0,346	0,0151	0,0003
Modal	12	0,266	1,71E-05	0

Tabel 3.16: Data perioda output program ETABS Model 2.

Persentase nilai perioda yang menentukan jenis perhitungan menggunakan CQC ataukah SRSS dapat dilihat pada Tabel 3.17.

Mode	Persentase %	CQC<15%	SRSS>15%
T1 - T2	0,36%	Ok	Not Ok
T2 - T3	35,40%	Not Ok	Ok
T3 - T4	51,11%	Not Ok	Ok
T4 - T5	0,46%	Ok	Not Ok
T5 - T6	27,92%	Not Ok	Ok
T6 - T7	24,29%	Not Ok	Ok
T7 - T8	0,63%	Ok	NOT OK
T8 - T9	22,57%	Not Ok	Ok
T9 - T10	5,18%	Ok	Not Ok
T10 - T11	0,57%	Ok	Not Ok
T11 - T12	23,12%	Not Ok	Ok

Tabel 3.17: Hasil selisih persentase nilai perioda Model 2.

Penjumlahan ragam respon menurut metode CQC atau metode Akar Kuadrat Jumlah Kuadrat (*Square Root of the Sum of Squares*/SRSS harus sedemikian rupa sehingga partisipasi massa dalam menghasilkan respon total harus mencapai sekurang-kurangnya 90%, dari Tabel 3.17, diperoleh nilai partisipasi massa (Sum UX dan Sum UY) sudah hampir mencapai 100%. Maka, pada Model 2 ini partisipasi massa sudah memenuhi syarat dengan mengunakan metode SRSS.

c. Nilai waktu getar alami fundamental

Berdasarkan analisis 3 dimensi yang diperoleh dari ETABS nilai waktu getar alami fundamental atau perioda (T) dari Model 1 adalah:

T arah X = 2,780 detik

T arah Y = 2,790 detik

Maka, menurut sub bab 2.4.2 peraturan SNI 1726:2012, perioda fundamental (T) yang digunakan memiliki nilai batas maksimum dan batas minimum seperti yang dijelaskan pada Pers. 2.18 pada Bab 2.

Ct = 0,0446 (Tabel 2.12 dengan tipe struktur rangka baja pemikul momen)

Hn = 76 m (tinggi gedung dari dasar)

X = 0.9 (Tabel 2.12 dengan tipe struktur rangka baja pemikul momen)

Cu = 1,4 (Tabel 2.13 dengan nilai SD1 \ge 0,4).

Tabel 3.18: Pengecekan perioda berdasarkan pembatasan waktu getar alami fundamental Model 1 berdasarkan SNI 1726:2012.

Arah	T _{a min}	Ta maks	Т	Cek min	Cek maks
	(Ct*Hn)	(Cu x Ta min)	(Prioda)		
Arah x	2,297	3,215	2,780	Ok	Ok
Arah y	2,297	3,215	2,790	Ok	Ok

d. Penentuan faktor respon gempa (C)

Berdasarkan sub bab 2.4.2 untuk peraturan SNI 1726:2012, penentuan nilai koefisien respon seismik (CS) berdasarkan Pers. 2.14-2.17 pada Bab 2, yang dijelaskan di bawah ini:

-
$$C_{s \text{ maksimum}} = \frac{Sds}{\binom{R}{I}}$$

 $C_{s \text{ maksimum arah } X} = \frac{0,900}{(8/1)} = 0,1125$
 $C_{s \text{ maksimum arah } Y} = \frac{0,900}{(8/1,25)} = 0,1125$
- $C_{s \text{ maksimum arah } Y} = \frac{Sd1}{T(\frac{R}{I})}$
 $C_{s \text{ maksimum arah } X} = \frac{0,550}{2,780(8/1)} = 0,0246$
 $C_{s \text{ maksimum arah } Y} = \frac{0,550}{2,790(8/1)} = 0,0247$
- $C_{s \text{ minimum}} = 0,044 S_{DS}$ Ie $\ge 0,01$
 $C_{s \text{ minimum}} = 0,044 . 0,900 . 1 = 0,0396 \ge 0,011$
 $C_{s \text{ minimum}} = 0,5 . 0,55 . (8/1) = 0,344$

Nilai Cs di atas dan nilai Cs yang digunakan dirangkum ke dalam Tabel 3.19.

Tabel 3.19: Rangkuman nilai Cs dan nilai Cs yang digunakan Model 2.

Arah	C _{s max}	C _s hitungan	C _{s min}	Cs yang dipakai
Arah X	0,1125	0,0247	0,0396	0,0247
Arah Y	0,1125	0,0246	0,0396	0,0246

Dalam menentukan nilai Cs haruslah sesuai dengan persyaratan yang ada dikarenakan nilai Cs ini akan berpengaruh pada perhitungan struktur selanjutnya, jika kita tidak mengikuti persyaratan yang ada maka kemungkinan besar struktur yang direncanakan akan mengalami kegagalan seperti pada kasus-kasus yang pada pada gempa beberapa tahun terakhir di indonesia. Pemilihan nilai Cs diatas di dapat karena nilai Cs hitungan berada di interval Cs minimum dan Cs maksimum. Maka yang digunakan Cs hitungan sesuai Peraturan SNI 1726:2012.

3.7 Struktur Bangunan Model 3

Model gedung yang ketiga adalah bentuk struktur menggunakan rangka beton bertulang pemikul momen dengan posisi *belt truss* Lt 5, Lt 10 dan Lt 15. Untuk pemodelan dari struktur gedung tersebut dapat dilihat pada Gambar 3.6.

Gambar 3.6b: Denah Lantai 18.

Gambar 3.6c: Denah Lantai 19.

Gambar 3.6d: (1) Tampak Samping Kiri, (1) Perspektif 3D Struktur Bangunan.

3.7.1 Dimensi Kolom Dan Balok

Berikut adalah dimensi kolom dan balok yang disajikan dalam Tabel 3.20 pada Model 3 rangka beton bertulang pemikul momen khusus.

Uroion	Dimensi <i>l x t</i>	Mutu
Oraian	(mm)	(Mpa)
Kolom Utama Lt Base – Lt 19	1000 x 1000	40
Kolom Eksterior Lt Base – Lt 9	900 x 900	40
Kolom Eksterior Lt 10 – Lt 17	800 x 800	40
Kolom Eksterior Lt 18 – Lt 9	700 x 700	40
Balok Utama Lt 1 – Lt 9	600 x 800	40
Balok Utama Lt 10 – Lt 17	500 x 800	40
Balok Utama Lt 18 – Lt 19	400 x 800	40
Balok Bordes Lt 1 – Lt 18	200 x 400	20
Balok Anak Lt 1 – Lt 19	200 x 400	20
Belt-Truss Lt 4, 9 dan 14	WF 257. 204. 15. 8	BJ 41
Outrigger Lt 4, 9 dan 14	WF 310. 254. 16. 9	BJ 41

Tabel 3.20: Ukuran Penampang pada Model 3.

3.7.2 Analisis Respon Spektrum

Prosedur analisis respon spektrum dilakukan dengan menggunakan program ETABS. Analisis respon spektrum ini dilakukan dengan metode kombinasi akar jumlah kuadrat (*Square Root of the Sum of Squares/SRSS*) dengan input gaya gempa seperti pada Gambar 2.5 yang dijelaskan pada sub Bab 2.6. Metode kombinasi akar jumlah kuadrat (*Square Root of the Sum of Squares/SRSS*) diperoleh dari hasil selisih nilai perioda yang lebih dari 15%.

Selain itu, penjumlahan ragam respons menurut metode CQC (*complete quadratic combination*) atau SRSS (*square roof of the sum squares*) harus sedemikian rupa sehingga hasil dari partisipasi massa yang telah dihitung menghasilkan respons total mencapai sekurang-kurangnya 90% agar nilai prioda yang di dapat bisa memenuhi syarat yang telah ditentukan oleh syarat diatas. Untuk memperoleh nilai perioda dan partisipasi massa (Sum UX dan Sum UY) menggunakan program ETABS Ver. 16.2 yaitu pada *Structure Output* (*Modal Participating Mass Ratio*). Nilai Perioda untuk Model 3 terdapat pada Tabel 3.21.

	Modal Participacing Ratio					
Case	Modal	Prioda	Sum X	Sum Y		
Modal	1	2,806	0,0129	0,7373		
Modal	2	2,796	0,7368	0,0129		
Modal	3	1,802	0,0001	0,0002		
Modal	4	0,887	0,0034	0,1538		
Modal	5	0,882	0,1543	0,0034		
Modal	6	0,626	4,80E-05	1,26E-05		
Modal	7	0,462	0,0007	0,0282		
Modal	8	0,459	0,0283	0,0007		
Modal	9	0,355	4,87E-05	0		
Modal	10	0,334	0,0002	0,0064		
Modal	11	0,332	0,0065	0,0002		
Modal	12	0,259	1,76E-05	0		

Tabel 3.21: Data perioda output program ETABS Model 3.

Persentase nilai perioda yang menentukan jenis perhitungan menggunakan CQC ataukah SRSS dapat dilihat pada Tabel 3.22.

Mode	Persentase %	CQC<15%	SRSS>15%
T1 - T2	0,36%	Ok	Not Ok
T2 - T3	35,55%	Not Ok	Ok
T3 - T4	50,78%	Not Ok	Ok
T4 - T5	0,56%	Ok	Not Ok
T5 - T6	29,02%	Not Ok	Ok
T6 - T7	26,20%	Not Ok	Ok
T7 - T8	0,65%	Ok	NOT OK
T8 - T9	22,66%	Not Ok	Ok
T9 - T10	5,92%	Ok	Not Ok
T10 - T11	0,60%	Ok	Not Ok
T11 - T12	21,99%	Not Ok	Ok

Tabel 3.22: Hasil selisih persentase nilai perioda Model 3.

Penjumlahan ragam respon menurut metode CQC atau metode Akar Kuadrat Jumlah Kuadrat (*Square Root of the Sum of Squares/SRSS* harus sedemikian rupa sehingga partisipasi massa dalam menghasilkan respon total harus mencapai sekurang-kurangnya 90%, dari Tabel 3.22, diperoleh nilai partisipasi massa (Sum UX dan Sum UY) sudah hampir mencapai 100%. Maka, pada Model ini partisipasi massa sudah memenuhi syarat dengan mengunakan metode SRSS.

e. Nilai waktu getar alami fundamental

Berdasarkan analisis 3 dimensi yang diperoleh dari ETABS nilai waktu getar alami fundamental atau perioda (T) dari Model 3 adalah:

T arah X = 2,806 detik

T arah Y = 2,796 detik

Maka, menurut sub bab 2.4.1 peraturan SNI 1726:2012, perioda fundamental (T) yang digunakan memiliki nilai batas maksimum dan batas minimum seperti yang dijelaskan pada Pers. 2.18 pada Bab 2.

Ct = 0,0446 (Tabel 2.12 dengan tipe struktur rangka baja pemikul momen)

Hn = 76 m (tinggi gedung dari dasar)

X = 0.9 (Tabel 2.12 dengan tipe struktur rangka baja pemikul momen)

Cu = 1,4 (Tabel 2.13 dengan nilai SD1 \ge 0,4).

Tabel 3.23: Pengecekan perioda berdasarkan pembatasan waktu getar alami fundamental Model 1 berdasarkan SNI 1726:2012.

Arah	T _{a min}	Ta maks	Т	Cek min	Cek maks
	(Ct*Hn)	(Cu x Ta min)	(Prioda)		
Arah x	2,297	3,215	2,796	Ok	Ok
Arah y	2,297	3,215	2,806	Ok	Ok

f. Penentuan faktor respon gempa (C)

Berdasarkan sub bab 2.4.2 untuk peraturan SNI 1726:2012, penentuan nilai koefisien respon seismik (CS) berdasarkan Pers. 2.14-2.17 pada Bab 2, yang dijelaskan di bawah ini:

-
$$C_{s \text{ maksimum}} = \frac{Sds}{\left(\frac{R}{I}\right)}$$

	$C_{s \text{ maksimum arah } X} = \frac{0,900}{(8/1)} = 0,1125$
	$C_{s \text{ maksimum arah } Y} = \frac{0,900}{(8/1,25)} = 0,1125$
-	$C_{s hasilhitungan} = \frac{Sd1}{T(\frac{R}{I})}$
	C_{s} has ilhitung an arah $X = \frac{0.550}{2.597(8/1)} = 0.0245$
	$C_{s hasilhitungan arah Y} = \frac{0.550}{2.599(8/1)} = 0.0245$
-	$C_{s\ minimum} = 0.044\ S_{DS}$ Ie ≥ 0.01
	$C_{s\ minimum} = 0.044 \cdot 0.900 \cdot 1 = 0.0396 \ge 0.01$
	$C_{s \min tamb} = 0.5 \cdot 0.55 \cdot (8/1) = 0.344$

Nilai Cs di atas dan nilai Cs yang digunakan dirangkum ke dalam Tabel 3.24.

Tabel 3.24: Rangkuman nilai Cs dan nilai Cs yang digunakan Model 3.

Arah	C _{s max}	Cs hitungan	C _{s min}	Cs yang dipakai
Arah X	0,1125	0,0245	0,0396	0,0245
Arah Y	0,1125	0,0245	0,0396	0,0245

Pemilihan nilai Cs diatas di dapat karena nilai Cs hitungan berada di interval Cs minimum dan Cs maksimum. Maka yang digunakan Cs hitungan sesuai Peraturan SNI 1726:2012.

BAB 4

HASIL DAN PEMBAHASAN

4.1. Tinjauan Umum

Pada bab ini akan membahas beberapa nilai perbedaan hasil analisis oleh ETABS (*Extended Analysis Building Software*) Versi 16.2 pada tiap model. Diantaranya adalah nilai simpangan, gaya-gaya dalam struktur gedung, kekakuan gedung dan tahanan gempa. Berdasarkan tiga jenis pemodelan struktur, yaitu struktur gedung yang dimodelkan dengan SRPMK dan perbedaan letak *belttruss* dan *outrigger*. Model Struktur 1 menggunakan rangka beton bertulang pemikul momen khusus, Model Struktur 2 menggunakan rangka beton bertulang pemikul momen khusus dengan posisi *belttruss* dan *outrigger* pada lantai 4, 9 dan 14, Model Struktur 3 menggunakan rangka beton bertulang pemikul momen khusus dengan posisi *belttruss* dan *outrigger* pada lantai 5, 10 dan 15. Semua bentuk input beban, klasifikasi zona gempa dan jumlah tingkat adalah sama.

4.2. Hasil Analisis Gedung

4.2.1. Struktur Model 1

Pada Model 1 analisis respon spektrum ini dilakukan dengan metode kombinasi akar jumlah kuadrat (*Square Root of the Sum of Squares/SRSS*).

4.2.1.1. Berat Struktur

Besarnya beban gempa sangat dipengaruhi oleh berat struktur dari suatu bangunan, maka perlu diketahui berat total bangunan untuk menahan gaya geser statik. Berat dari bangunan berasal dari beban mati yang terdiri dari berat sendiri material bangunan dan elemen-elemen struktur seperti kolom, balok dan plat lantai, serta beban hidup yang diakibatkan oleh hunian atau penggunaan bangunan seperti manusia dan. Pada tugas akhir ini, perhitungan berat struktur *Air Traffic Control* bangunan diambil dari analisis menggunakan program analisis struktur ETABS v16.2, *Run - Show Table – Structure Result – Center Of Mass Rigidity.*

Peneliti tidak melakukan analisis perhitungan manual, sebab program analisis struktur telah menghitung berat struktur secara otomatis. Adapun massa struktur gedung dari output hasil program analisis struktur yang disajikan dalam Tabel 4.1.

Lantai	Mass X	Mass Y	XCM	YCM
Duntui	Kgf	Kgf	m	m
19	380202,54	380202,54	8,4917	8,4411
18	460104,93	460104,93	8,9607	8,5993
17	210058,42	210058,42	8,8847	8,1660
16	215098,42	215098,42	8,8908	8,1588
15	215098,42	215098,42	8,8908	8,1588
14	215098,42	215098,42	8,8908	8,1588
13	215098,42	215098,42	8,8908	8,1588
12	215098,42	215098,42	8,8908	8,1588
11	215098,42	215098,42	8,8908	8,1588
10	215098,42	215098,42	8,8908	8,1588
9	226049,48	226049,48	8,8950	8,1621
8	231761,48	231761,48	8,9011	8,1545
7	231761,48	231761,48	8,9011	8,1545
6	231761,48	231761,48	8,9011	8,1545
5	231761,48	231761,48	8,9011	8,1545
4	231761,48	231761,48	8,9011	8,1545
3	231761,48	231761,48	8,9011	8,1545
2	231761,48	231761,48	8,9011	8,1545
1	231761,48	231761,48	8,9011	8,1545
TOTAL	4636196,15	4636196,15		

Tabel 4.1: Massa struktur, pusat massa dan pusat kekakuan.

Pada Tabel 4.1, menunjukkan hasil massa struktur bangunan per lantai, dimana nilai absis pusat massa adalah sama dengan nilai absis pusat kekakuan adalah 8 m. Oleh karena itu, struktur bangunan pada Model 1 tidak memiliki eksentrisitas sebab nilai pusat massa dan pusat kekakuan saling berimpit satu sama lain, maka struktur tidak diperiksa terhadap ketidakberaturan torsi berdasarkan SNI 1726:2012.

4.2.1.2. Koreksi Gaya Geser

Pada dasarnya nilai gaya geser pada gedung yang simetris akibat arah X maupun arah Y tetap sama. Tetapi, nilai gaya geser yang dihasilkan oleh respon spektrum program analisia struktur sangat teliti sehingga arah X dan arah Y tidak sama walaupun bangunannya simetris. Adapun bangunan yang direncanakan menggunakan struktur rangka pemikul momen khusus *beltruss* dan *outrigger* ini memiliki Inersia arah X dan arah Y yang berlainan. Oleh karena itu, hasil perioda yang diperoleh terhadap arah X dan arah Y tidak sama. Ketentuan ini berlaku pada gedung setiap model.

Dari hasil analisis respon spektrum yang menggunakan program Analisis Struktur diperoleh nilai gaya geser dasar (V) berdasarkan SNI 1726-2012 yang disajikan pada Tabel 4.2.

		Base Reaction		1
Output Case	Case Type	Step Type	Global FX	Global FY
Text	Text	Text	(kN)	(kN)
Gempa X	LinRespSpec	Max	940,2491	192,0277
Gempa Y	LinRespSpec	Max	192,0356	934,9901

Tabel 4.2: Gaya geser dasar nominal hasil analisis ragam respon spektrum.

Berikut perhitungan koreksi nilai akhir respon spektrum terhadap respon ragam pertama.

- Gempa Arah X

 $VIx = Cs \cdot Wt$

VIx = 0,0228 (46361,9615 (Tabel 4.1)

= 1059,988 kN (Gaya geser statik ekivalen arah X)

- Gempa Arah Y

 $VIy = Cs \cdot Wt$

VIy = 0,0219 x 46361,9615 (Tabel 4.1)

= 1015,414 kN (Gaya geser statik ekivalen arah Y)

Berdasarkan SNI 1726-2012 kontrol faktor skala:

- Arah X

Vx = 940,2491 kN

VIx = 1059,988 kN

Faktor Skala = $\frac{0.85 \times V1x}{Vx} \le 1$ = $\frac{0.85 \times 1059,988}{940,2491} = 0.958 \le 1$ Arah Y

Arall I

$$Vx = 934,9901 \text{kN}$$

$$VIx = 1059,988 \text{ kN}$$
Faktor Skala = $\frac{0,85 \times V1x}{Vx} \le 1$
= $\frac{0,85 \times 1059,988}{934,990} = 0,923 \le 1$

Tabel 4.3: Rekapitulasi faktor skala hasil respon spektrum dengan statik ekivalen masing-masing arah Model 1.

V	/1	V	/t	Faktor Skala		
Arah X	Arah Y	Arah X Arah Y		Arah X	Arah Y	
1059,988	1059,988	940,2491	934,9901	0,958	0,923	

Karena faktor skala yang didapat untuk masing-masing arah kurang dari 1, maka gaya geser dasar nominal yang didapat dari hasil analisa ragam respon spektrum yang telah dilakukan dapat digunakan tanpa dikalikan dengan faktor

skala $\frac{0.85 \ x \ Cs \ W}{Vt}$.

4.2.1.3. Koreksi Faktor Redundansi

Untuk struktur yang dirancang kategori desain seismik D, redundansi (ρ) harus sama dengan 1,3 kecuali jika satu dari dua kondisi berikut dipenuhi, dimana redundansi (ρ) diijinkan diambil 1,0. Salah satu kondisi untuk menentukan yaitu masing-masing tingkat yang menahan lebih dari 35 persen geser dasar dalam arah yang ditinjau, maka redudansi (ρ) diijinkan diambil 1,0. Apabila kondisi tersebut tidak terpenuhi, maka redundansi (ρ) 1,0 harus diganti dengan redundansi (ρ) 1,3. Sebagaimana tertera pada Tabel 4.4.

Lontoi	Vx	Vy	35% Vx	35% Vy	Vontrol	Vontrol
Lantai	(kN)	(kN)	Base Shear	Base Shear	Kontrol	Kontrol
LT 19	31231,2	31461,4	49729,0	49967,8	Not Ok	Not Ok
LT 18	64584,7	65047,2	49729,0	49967,8	Ok	Ok
LT 17	77927,1	78476,7	49729,0	49967,8	Ok	Ok
LT 16	89802,8	90424,5	49729,0	49967,8	Ok	Ok
LT 15	100032,3	100711,2	49729,0	49967,8	Ok	Ok
LT 14	108753,6	109476,7	49729,0	49967,8	Ok	Ok
LT 13	116101,6	116857,8	49729,0	49967,8	Ok	Ok
LT 12	122208,2	122988,2	49729,0	49967,8	Ok	Ok
LT 11	127202,0	127998,3	49729,0	49967,8	Ok	Ok
LT 10	131208,2	132014,6	49729,0	49967,8	Ok	Ok
LT 9	134508,2	135320,3	49729,0	49967,8	Ok	Ok
LT 8	137085,0	137899,3	49729,0	49967,8	Ok	Ok
LT 7	138977,3	139791,4	49729,0	49967,8	Ok	Ok
LT 6	140302,3	141114,7	49729,0	49967,8	Ok	Ok
LT 5	141171,6	141981,7	49729,0	49967,8	Ok	Ok
LT 4	141690,5	142498,4	49729,0	49967,8	Ok	Ok
LT 3	141957,4	142763,5	49729,0	49967,8	Ok	Ok
LT 2	142061,9	142764,3	49729,0	49967,8	Ok	Ok
LT 1	142082,9	142765,1	49729,0	49967,8	Ok	Ok

Tabel 4.4: Koreksi *story shear* dengan 35% *base shear* redundansi (ρ) 1,3.

Dari Tabel 4.4, gaya geser pada lantai 19 dengan redundansi 1,0 tidak memenuhi syarat lebih besar dari 35 persen gaya geser dasar, maka nilai redundansi (ρ) pada pemodelan struktur menggunakan dengan nilai redundansi 1,3.

4.2.1.4. Gaya Geser Lantai

Gaya geser lantai merupakan distribusi dari gaya geser dasar yang dibagi pada setiap lantai untuk masing-masing arah arah gempa yaitu arah x dan arah y. Nilai gaya geser setiap lantai didapat dari hasil pemodelan struktur dengan menggunakan program analisis struktur ETABS v16.2 dengan cara *Run – Display – Story Respon Plot – Display Type – Story Shers –* Gempa X atau Gempa Y yang dapat disajikan pada Tabel 4.5 sebagai nila gaya geser yang terjadi pada struktur *Air Traffic Control.*

Tingkat	Tinggi	Lokasi	Vx	Vy
Піідка	(m)	LOKASI	(kN)	(kN)
19	76	Тор	206,7058	45,8665
		Bottom	206,7058	45,8665
18	72	Тор	396,6665	86,1724
		Bottom	396,6665	86,1724
17	68	Тор	459,0366	98,1544
		Bottom	459,0366	98,1544
16	64	Тор	501,3909	105,1010
		Bottom	501,3909	105,1010
15	60	Тор	532,9939	109,6987
		Bottom	532,9939	109,6987
14	56	Тор	561,0190	113,9660
		Bottom	561,0190	113,9660
13	52	Тор	587,0785	118,2699
		Bottom	587,0785	118,2699
12	48	Тор	610,5379	122,2332
		Bottom	610,5379	122,2332
11	44	Тор	632,3304	125,9056
		Bottom	632,3304	125,9056
10	40	Тор	655,0341	129,8544
		Bottom	655,0341	129,8544
9	36	Тор	682,2327	134,8460
		Bottom	682,2327	134,8460
8	32	Тор	713,9225	140,8895
		Bottom	713,9225	140,8895
7	28	Тор	747,7679	147,4702
		Bottom	747,7679	147,4702
6	24	Тор	783,8032	154,7905
		Bottom	783,8032	154,7905
5	20	Тор	823,2299	163,4312
		Bottom	823,2299	163,4312
4	16	Тор	864,9548	173,2511
		Bottom	864,9548	173,2511
3	12	Тор	903,2908	182,6929
		Bottom	903,2908	182,6929
2	8	Тор	930,0204	189,4311
		Bottom	930,0204	189,4311
1	4	Тор	940,2491	192,0356
		Bottom	940,2491	192,0356

Tabel 4.5: Nilai gaya geser gabungan maksimum x dan y pada setiap lantai.

Pada Tabel 4.5, menunjukkan gaya geser maksimum dari masing-masing arah saja. Untuk gaya geser dasar lantai untuk setiap arah gempa dapat dilihat pada Lampiran B3.1.

4.2.1.5. Nilai Simpangan

Simpangan antar lantai merupakan selisih nilai defleksi pada pusat massa gedung antara lantai teratas dan lantai dibawahnya. Berdasarkan SNI 1726:2012 pasal 7.8.6, simpangan antar lantai hanya terdapat satu kinerja batas, yaitu kinerja batas ultimit. Simpangan antar lantai desain (Δ) tidak boleh melebihi simpangan antar lantai tingkat izin (Δ_a) seperti yang diperlihatkan pada Tabel 2.13. Pada Tabel 4.6 menunjukkan hasil nilai perpindahan dan simpangan antar lantai pada setiap lantai.

Tingkat	H	Perpin Elasti	idahan s (δe)	Perpine Total (δe	dahan *Cd)/Ie	Simp Antar I	bangan Lantai (Δ)	Syarat	Cek	Cek
	(m)	Х	Y	Х	Y	Х	Y	$\Delta a/\rho$	v	V
		(m)	(m)	(m)	(m)	(m)	(m)	(m)	Λ	r
19	4	0,0716	0,0719	0,394	0,395	0,016	0,0154	0,062	Ok	Ok
18	4	0,0687	0,0691	0,378	0,380	0,018	0,0185	0,062	Ok	Ok
17	4	0,0654	0,0657	0,360	0,361	0,019	0,0193	0,062	Ok	Ok
16	4	0,0619	0,0622	0,341	0,342	0,020	0,0204	0,062	Ok	Ok
15	4	0,0582	0,0585	0,320	0,322	0,021	0,0213	0,062	Ok	Ok
14	4	0,0544	0,0546	0,299	0,300	0,022	0,0220	0,062	Ok	Ok
13	4	0,0504	0,0506	0,277	0,278	0,023	0,0227	0,062	Ok	Ok
12	4	0,0463	0,0465	0,254	0,256	0,023	0,0231	0,062	Ok	Ok
11	4	0,0421	0,0423	0,231	0,233	0,023	0,0234	0,062	Ok	Ok
10	4	0,0378	0,0380	0,208	0,209	0,023	0,0230	0,062	Ok	Ok
9	4	0,0337	0,0339	0,185	0,186	0,022	0,0218	0,062	Ok	Ok
8	4	0,0297	0,0299	0,163	0,164	0,022	0,0220	0,062	Ok	Ok
7	4	0,0257	0,0259	0,142	0,142	0,022	0,0224	0,062	Ok	Ok
6	4	0,0217	0,0218	0,119	0,120	0,023	0,0227	0,062	Ok	Ok
5	4	0,0176	0,0177	0,097	0,097	0,023	0,0230	0,062	Ok	Ok
4	4	0,0134	0,0135	0,074	0,074	0,023	0,0230	0,062	Ok	Ok
3	4	0,0093	0,0093	0,051	0,051	0,022	0,0222	0,062	Ok	Ok
2	4	0,0053	0,0053	0,029	0,029	0,019	0,0192	0,062	Ok	Ok
1	4	0,0018	0,0018	0,010	0,010	0,010	0,0099	0,062	Ok	Ok

Tabel 4.6: Nilai simpangan berdasarkan SNI 1726:2012.

Pada Tabel 4.6 menunjukkan, perpindahan dan simpangan antar lantai maksimum dari setiap arah saja. Untuk perpindahan dan simpangan antar lantai dari setiap arah dapat dilihat pada Lampiran B3.2.

4.2.1.6. Ketidakberaturan Tingkat Lunak (Soft Story)

Berdasarkan SNI 1726:2012 Tabel 11, kekakuan tingkat lunak (*soft* story) didefinisikan ada jika terdapat suatu tingkat di mana kekakuan lateralnya kurang dari 70 persen kekakuan lateral tingkat di atasnya atau kurang dari 80 persen kekakuan rata-rata tiga tingkat di atasnya. Pemeriksaan ketidakberaturan tingkat lunak dilakukan dengan cara menghitung kekakuan lateral tiap lantai. Perhitungan ketidakberaturan kekakuan tingkat lunak pada arah x dan y untuk Model 1 dapat dilihat pada Tabel 4.7 dan 4.8.

Lantai	Σk_{ix}	Σk_{iy}	$2 \sum k_{ix + 1}$	$\infty \Sigma k_{iy+1}$	$2 \sum k_{ix+3}$	$\infty \Sigma k_{iy+3}$
Lantai	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)
19	64413,1	69950,4	-	-	-	-
18	101665,1	107652,6	157,83	153,90	157,83	153,90
17	111849,7	117304,0	110,02	108,97	134,70	132,10
16	115961,1	119769,6	103,68	102,10	125,17	121,84
15	118614,1	121220,6	102,29	101,21	108,00	105,49
14	121542,8	123443,6	102,47	101,83	105,25	103,36
13	124963,8	126559,6	102,81	102,52	105,27	104,18
12	128880,9	130474,1	103,13	103,09	105,89	105,44
11	134793,7	136148,3	104,59	104,35	107,72	107,35
10	146309,9	147460,9	108,54	108,31	112,94	112,51
9	160573,0	161918,2	109,75	109,80	117,50	117,31
8	169046,4	170251,2	105,28	105,15	114,82	114,64
7	177279,4	178303,0	104,87	104,73	111,75	111,53
6	185957,0	186723,7	104,89	104,72	110,06	109,74
5	195904,7	196378,1	105,35	105,17	110,41	110,06
4	208920,1	209255,1	106,64	106,56	112,09	111,82
3	231026,0	231058,1	110,58	110,42	117,32	117,02
2	294494,2	292196,6	127,47	126,46	138,94	137,68
1	525986,9	526109,2	178,61	180,05	214,85	215,47

Tabel 4.7: Ketidakberaturan kekakuan tingkat lunak pada gempa arah x.

Lontai	Σk_{ix}	Σk_{iy}	$2 \sum k_{ix + 1}$	$\infty \Sigma k_{iy+1}$	$2 \sum k_{ix+3}$	$2 \sum k_{iy+3}$
Lantai	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)
19	69982,4	64190,3	-	-	-	-
18	105983,9	99868,6	151,44	155,58	151,44	155,58
17	115472,2	109913,1	108,95	110,06	131,24	133,99
16	118597,8	114121,4	102,71	103,83	122,08	124,96
15	120367,4	117018,0	101,49	102,54	106,19	108,38
14	122813,9	120156,6	102,03	102,68	103,95	105,69
13	126146,3	123797,3	102,71	103,03	104,60	105,72
12	130045,0	127667,2	103,09	103,13	105,63	106,10
11	135001,4	133436,1	103,81	104,52	106,86	107,72
10	145593,0	144884,7	107,85	108,58	111,65	112,93
9	161442,4	159036,4	110,89	109,77	117,94	117,52
8	170154,6	167273,4	105,40	105,18	115,48	114,74
7	178315,6	175330,1	104,80	104,82	112,10	111,63
6	186716,6	183779,9	104,71	104,82	109,85	109,91
5	196499,1	193500,6	105,24	105,29	110,15	110,28
4	208575,9	206299,5	106,15	106,61	111,43	112,00
3	228439,6	228214,5	109,52	110,62	115,80	117,32
2	290287,7	290663,7	127,07	127,36	137,47	138,85
1	526773,6	521491,7	181,47	179,41	217,28	215,74

Tabel 4.8: Ketidakberaturan kekakuan tingkat lunak pada gempa arah y.

Berdasarkan Tabel 4.7 dan 4.8 nilai $\%\Sigma k_{ix +1}$, $\%\Sigma k_{iy +1}$, $\%\Sigma k_{ix +3}$, $\%\Sigma k_{ix +3}$ menunjukkan bahwa kekakuan lateral tiap lantai lebih besar dari 70% kekakuan lateral tingkat di atasnya atau 80% kekakuan rata-rata tiga tingkat di atasnya artinya gedung tidak memiliki ketidakberaturan kekakuan tingkat lunak (*soft story*) terhadap masing-masing arah.

4.2.1.7. Ketidakberaturan Torsi

Pada sub bab 4.2.1.1 dapat diketahui bahwa struktur gedung pada Model 1 tidak memiliki ketidakberaturan torsi. Sebab, nilai absis pusat massa adalah sama dengan nilai absis pusat kekakuan yaitu 8 m. Oleh karena itu, struktur tidak memiliki eksentrisitas sehingga tidak dikategorikan sebagai ketidakberaturan torsi. Walaupun pada Model 1 ini tidak memiliki ketidakberaturan torsi biasa dan berlebihan untuk membuktikannya dapat dilihat pada Tabel 4.9 dan 4.10.

	Rigid				Arah X		
Lantai	diafragma	δx_{min}	δx_{max}	Δx_{min}	Δx_{max}	Δx_{avg}	Δ
	(y/t)	m	m	m	m	m	Ах
19	rigid	0,069	0,072	0,001	0,003	0,070	0,719
18	rigid	0,068	0,069	0,003	0,003	0,068	0,704
17	rigid	0,064	0,065	0,003	0,003	0,065	0,704
16	rigid	0,061	0,062	0,004	0,004	0,061	0,705
15	rigid	0,057	0,058	0,004	0,004	0,058	0,705
14	rigid	0,054	0,054	0,004	0,004	0,054	0,705
13	rigid	0,050	0,050	0,004	0,004	0,050	0,705
12	rigid	0,046	0,046	0,004	0,004	0,046	0,705
11	rigid	0,041	0,042	0,004	0,004	0,042	0,705
10	rigid	0,037	0,038	0,004	0,004	0,037	0,706
9	rigid	0,033	0,034	0,004	0,004	0,033	0,706
8	rigid	0,029	0,030	0,004	0,004	0,029	0,706
7	rigid	0,025	0,026	0,004	0,004	0,025	0,706
6	rigid	0,021	0,022	0,004	0,004	0,021	0,707
5	rigid	0,017	0,018	0,004	0,004	0,017	0,707
4	rigid	0,013	0,013	0,004	0,004	0,013	0,707
3	rigid	0,009	0,009	0,004	0,004	0,009	0,707
2	rigid	0,005	0,005	0,003	0,003	0,005	0,707
1	rigid	0,002	0,002	0,002	0,002	0,002	0,707

Tabel 4.9: Ketidakberaturan torsi biasa dan torsi berlebihan pada gempa arah x.

Tabel 4.10: Ketidakberaturan torsi biasa dan torsi berlebihan pada gempa arah y.

	Rigid	Arah Y							
Lantai	diafragma	δx_{min}	δx_{max}	Δx_{min}	Δx_{max}	Δx_{avg}	Δ		
	(y/t)	m	m	m	m	m	Ах		
19	rigid	0,014	0,014	0,001	0,000	0,014	0,696		
18	rigid	0,013	0,014	0,001	0,001	0,013	0,708		
17	rigid	0,013	0,013	0,001	0,001	0,013	0,708		
16	rigid	0,012	0,012	0,001	0,001	0,012	0,708		
15	rigid	0,011	0,012	0,001	0,001	0,011	0,708		
14	rigid	0,011	0,011	0,001	0,001	0,011	0,708		
13	rigid	0,010	0,010	0,001	0,001	0,010	0,708		
12	rigid	0,009	0,009	0,001	0,001	0,009	0,708		
11	rigid	0,008	0,008	0,001	0,001	0,008	0,730		
10	rigid	0,007	0,008	0,001	0,001	0,007	0,729		
9	rigid	0,007	0,007	0,001	0,001	0,007	0,728		
8	rigid	0,006	0,006	0,001	0,001	0,006	0,728		
7	rigid	0,005	0,005	0,001	0,001	0,005	0,728		

	Rigid		Arah Y							
Lantai	diafragma	δx_{min}	δx_{max}	Δx_{min}	Δx_{max}	Δx_{avg}	Δ			
	(y/t)	m	m	m	m	m	Ах			
6	rigid	0,021	0,022	0,004	0,004	0,021	0,707			
5	rigid	0,017	0,018	0,004	0,004	0,017	0,707			
4	rigid	0,013	0,013	0,004	0,004	0,013	0,707			
3	rigid	0,009	0,009	0,004	0,004	0,009	0,707			
2	rigid	0,005	0,005	0,003	0,003	0,005	0,707			
1	rigid	0,002	0,002	0,002	0,002	0,002	0,707			

Tabel 4.10: Lanjutan.

4.2.1.8. Ketidakberaturan Berat (Massa)

Berdasarkan SNI 1726:2012 Tabel 11, ketidakberaturan berat (massa) didefinisikan ada jika massa efektif semua tigkat lebih dari 150 persen massa efektif tingkat didekatnya. Pemeriksaan ketidakberaturan berat (massa) dilakukan dengan cara menghitung berat gedung per lantai. Pemeriksaan gedung dengan ketidakberaturan massa dapat dilihat pada Tabel 4.11.

Story	Mass X	Mass Y	Massa Lantai n/ Lantai n+1 -X	Massa Lantai n/ Lantai n+1 -Y	Ketidakbe raturan massa (X) > 150%	Ketidakbe raturan massa (Y) > 150%
	kg	kg	$\%W_{x\pm1}$	$\%W_{y\pm 1}$	${}^{\%}W_{x\pm1} > 150\%$	${}^{\%}W_{y\pm1} > 150\%$
19	380202,5	380202,5	82,6%	82,6%	Tidak	Tidak
18	460104,9	460104,9	219,0%	219,0%	Ada	Ada
17	210058,4	210058,4	97,7%	97,7%	Tidak	Tidak
16	215098,4	215098,4	102,4%	102,4%	Tidak	Tidak
15	215098,4	215098,4	100,0%	100,0%	Tidak	Tidak
14	215098,4	215098,4	100,0%	100,0%	Tidak	Tidak
13	215098,4	215098,4	100,0%	100,0%	Tidak	Tidak
12	215098,4	215098,4	100,0%	100,0%	Tidak	Tidak
11	215098,4	215098,4	100,0%	100,0%	Tidak	Tidak
10	215098,4	215098,4	100,0%	100,0%	Tidak	Tidak
9	226049,5	226049,5	105,1%	105,1%	Tidak	Tidak
8	231761,5	231761,5	102,5%	102,5%	Tidak	Tidak
7	231761,5	231761,5	100,0%	100,0%	Tidak	Tidak
6	231761,5	231761,5	100,0%	100,0%	Tidak	Tidak

Tabel 4.11: Ketidakberaturan berat (massa).

			Massa	Massa	Ketidakbe	Ketidakbe
	Maga V	Maaa V	Lantai n/	Lantai n/	raturan	raturan
Story	IVIASS A	111111111111111111111111111111111111111	Lantai	Lantai	massa (X)	massa (Y)
			n+1 -X	n+1 -Y	> 150%	> 150%
	kα	kα	0% W/	% W /	$W_{x \pm 1} >$	$W_{y \pm 1} >$
	кg	кg	/0 vv _{x ±1}	70 vv _{y±1}	150%	150%
5	231761,5	231761,5	100,0%	100,0%	Tidak	Tidak
4	231761,5	231761,5	100,0%	100,0%	Tidak	Tidak
3	231761,5	231761,5	100,0%	100,0%	Tidak	Tidak
2	231761,5	231761,5	100,0%	100,0%	Tidak	Tidak
1	231761,5	231761,5	100,0%	100,0%	Tidak	Tidak

Tabel 4.11: Lanjutan.

Pada Tabel 4.11 didapat nilai $W_{\pm 1}$ lantai 18 lebih besar dari 150% maka ada ketidakberaturan massa. Namun jika meninjau pasal refrensi sesuai SNI 1726:2012 Tabel 13 dengan kategori desain seismik D semua struktur lainnya dengan analisis spektrum respon ragam maka diijinkan.

4.2.1.9. Pengaruh P-Delta

Berdasarkan SNI 1726:2012 Pasal 7.8.7, pengaruh P-Delta ditentukan berdasarkan nilai koefisen stabilitas (θ). Jika nilai koefisien stabilitas lebih kecil dari 0,1 maka pengaruh P-Delta dapat diabaikan. Berikut ini hasil perhitungan P-Delta masing-masing arah baik arah x dan y yang disajikan pada Tabel 4.12 dan 4.13.

Lantai	Tinggi (m)	Story Drift (m)	Gaya Geser Seismik,	Beban Vertikal Total	Beban Vertikal Kumulatif	Stability Ratio (θ _x)	Cek
		(/	$V_{\rm x}$ (kN)	(kN)	(kN)		
19	0,0159	203,6	3729,8	3729,8	0,00070	0,0159	P-Delta No
18	0,0179	407,8	4513,6	8243,4	0,00091	0,0179	P-Delta No
17	0,0192	475,8	2060,7	10304,1	0,00111	0,0192	P-Delta No
16	0,0203	520,6	2110,1	12414,2	0,00138	0,0203	P-Delta No
15	0,0212	553,9	2110,1	14524,3	0,00169	0,0212	P-Delta No
14	0,0220	583,6	2110,1	16634,4	0,00203	0,0220	P-Delta No
13	0,0226	611,0	2110,1	18744,6	0,00242	0,0226	P-Delta No
12	0,0231	635,2	2110,1	20854,7	0,00287	0,0231	P-Delta No

Tabel 4.12: Perhittungan P-Delta pada arah x berdasarkan SNI 1726:2012.

Tabel 4.12: Lanjutan.

Lantai	Tinggi (m)	Story Drift (m)	Gaya	Beban	Beban		
			Geser	Vertical	Vertical	Stability	Cek
			Seismik	Total	Komulatif	Ratio (θ_x)	CCK
			V_{x} (kN)	(kN)	(kN)		
11	44	0,0233	657,5	2110,1	22964,8	0,00336	P-Delta No
10	40	0,0229	680,6	2110,1	25074,9	0,00384	P-Delta No
9	36	0,0217	709,0	2217,5	27292,4	0,00423	P-Delta No
8	32	0,0219	743,6	2273,6	29566,0	0,00496	P-Delta No
7	28	0,0223	780,9	2273,6	31839,6	0,00589	P-Delta No
6	24	0,0226	820,7	2273,6	34113,2	0,00712	P-Delta No
5	20	0,0228	864,0	2273,6	36386,8	0,00875	P-Delta No
4	16	0,0228	909,1	2273,6	38660,3	0,01103	P-Delta No
3	12	0,0220	949,5	2273,6	40933,9	0,01440	P-Delta No
2	8	0,0191	976,7	2273,6	43207,5	0,01923	P-Delta No
1	4	0,0098	986,7	2273,6	45481,1	0,02063	P-Delta No

Tabel 4.13: Perhittungan P-Delta pada arah y berdasarkan SNI 1726:2012.

Lantai	Tinggi (m)	Story Drift	Gaya	Beban	Beban		
			Geser	Vertikal	Vertikal	Stability	Cek
			Seismik,	Total	Kumulatif	Ratio (θ_y)	CCK
		(111)	$V_{y}(kN)$	(kN)	(kN)	-	
19	76	0,0154	60,9	3729,8	3729,8	0,0023	P-Delta No
18	72	0,0185	122,0	4513,6	8243,4	0,0032	P-Delta No
17	68	0,0193	142,3	2060,7	10304,1	0,0037	P-Delta No
16	64	0,0204	155,6	2110,1	12414,2	0,0046	P-Delta No
15	60	0,0213	165,5	2110,1	14524,3	0,0057	P-Delta No
14	56	0,0220	174,4	2110,1	16634,4	0,0068	P-Delta No
13	52	0,0227	182,6	2110,1	18744,6	0,0081	P-Delta No
12	48	0,0231	189,9	2110,1	20854,7	0,0096	P-Delta No
11	44	0,0234	196,6	2110,1	22964,8	0,0113	P-Delta No
10	40	0,0230	203,5	2110,1	25074,9	0,0129	P-Delta No
9	36	0,0218	212,0	2217,5	27292,4	0,0142	P-Delta No
8	32	0,0220	222,3	2273,6	29566,0	0,0167	P-Delta No
7	28	0,0224	233,4	2273,6	31839,6	0,0198	P-Delta No
6	24	0,0227	245,2	2273,6	34113,2	0,0239	P-Delta No
5	20	0,0230	258,2	2273,6	36386,8	0,0294	P-Delta No
4	16	0,0230	271,6	2273,6	38660,3	0,0371	P-Delta No
3	12	0,0222	283,7	2273,6	40933,9	0,0485	P-Delta No
2	8	0,0192	291,8	2273,6	43207,5	0,0647	P-Delta No
1	4	0,0099	294,8	2273,6	45481,1	0,0693	P-Delta No

Pada Tabel 4.13 dan 4.14 menunjukkan nilai stabilitas rasio (θ) untuk masingmasing arah baik arah x dan y. Sesuai SNI 1726:2012 pada semua lantai kurang dari 0,1 sehingga pengaruh P-Delta dapat diabaikan.

4.2.2. Struktur Model 2

Pada Model 2 analisis respon spektrum ini dilakukan dengan metode kombinasi akar jumlah kuadrat (*Square Root of the Sum of Squares/SRSS*).

4.2.2.1. Berat Struktur

Besarnya beban gempa sangat dipengaruhi oleh berat struktur dari suatu bangunan, maka perlu diketahui berat total bangunan untuk menahan gaya geser statik. Berat dari bangunan berasal dari beban mati yang terdiri dari berat sendiri material bangunan dan elemen-elemen struktur seperti kolom, balok dan plat lantai, serta beban hidup yang diakibatkan oleh hunian atau penggunaan bangunan seperti manusia dan. Pada tugas akhir ini, perhitungan berat struktur *Air Traffic Control* bangunan diambil dari analisis menggunakan program analisis struktur ETABS v16.2, *Run - Show Table – Structure Result – Center Of Mass Rigidity.*

Peneliti tidak melakukan analisis perhitungan manual, sebab program analisis struktur telah menghitung berat struktur secara otomatis. Adapun massa struktur gedung dari output hasil program analisis struktur yang disajikan pada Tabel 4.14.

Lontoi	Mass X	Mass Y	XCM	YCM
Laittai	Kgf	Kgf	m	m
19	380202,54	380202,54	8,4917	8,4411
18	460104,93	460104,93	8,9607	8,5993
17	210058,42	210058,42	8,8847	8,166
16	215098,42	215098,42	8,8908	8,1588
15	219938,77	219938,77	8,8902	8,1582
14	219938,77	219938,77	8,8902	8,1582
13	215098,42	215098,42	8,8908	8,1588
12	215098,42	215098,42	8,8908	8,1588
11	215098,42	215098,42	8,8908	8,1588
10	219938,77	219938,77	8,8902	8,1582
9	230889,83	230889,83	8,8944	8,1615
8	231761,48	231761,48	8,9011	8,1545

Tabel 4.14: Massa struktur, pusat massa dan pusat kekakuan.

Lontoi	Mass X	Mass Y	XCM	YCM
Lantai	Kgf	Kgf	m	m
7	231761,48	231761,48	8,9011	8,1545
6	231761,48	231761,48	8,9011	8,1545
5	236601,83	236601,83	8,9004	8,1541
4	236601,83	236601,83	8,9004	8,1541
3	231761,48	231761,48	8,9011	8,1545
2	231761,48	231761,48	8,9011	8,1545
1	231761,48	231761,48	8,9011	8,1545
Total	4665238,25	4665238,25		

Tabel 4.14: Lanjutan.

Pada Tabel 4.14, menunjukkan hasil massa struktur bangunan per lantai, dimana nilai absis pusat massa adalah sama dengan nilai absis pusat kekakuan adalah 8 m. Oleh karena itu, struktur bangunan pada Model 1 tidak memiliki eksentrisitas sebab nilai pusat massa dan pusat kekakuan saling berimpit satu sama lain, maka struktur tidak diperiksa terhadap ketidakberaturan torsi berdasarkan SNI 1726:2012.

4.2.2.2. Koreksi Gaya Geser

Pada dasarnya nilai gaya geser pada gedung yang simetris akibat arah X maupun arah Y tetap sama. Tetapi, nilai gaya geser yang dihasilkan oleh respon spektrum program analisia struktur sangat teliti sehingga arah X dan arah Y tidak sama walaupun bangunannya simetris. Oleh karena itu, hasil perioda yang diperoleh terhadap arah X dan arah Y tidak sama. Berdasarkan SNI 1726:2012 pasal 7.9.4.1, kombinasi respon dinamik untuk geser dasar ragam (V_t) lebih kecil 85 persen dari geser dasar yang dihitung (V_t) menggunakan prosedur gaya lateral ekivalen, maka gaya geser dan simpangan antar lantai harus dikalikan dengan faktor skala yaitu:

$$0,85\frac{V_1}{Vt} \ge 1$$

Dimana:

- V_t = Gaya geser dasar nominal yang didapat dari hasil analisis ragam spektrum respons yang telah dilakukan
- V_1 = Gaya geser dasar prosedur gaya lateral statik ekivalen
Dari hasil analisis respon spektrum yang menggunakan program Analisis Struktur diperoleh nilai gaya geser dasar (V) berdasarkan SNI 1726-2012 yang disajikan pada Tabel 4.15.

Base Reaction										
Output Case	Case Type	Step Type	Global FX	Global FY						
Text	Text	Text	kN	kN						
Gempa X	LinRespSpec	Max	1088,70	215,08						
Gempa Y	LinRespSpec	Max	215,09	1084,03						

Tabel 4.15: Gaya geser dasar nominal hasil analisis ragam respon spektrum.

Berikut perhitungan koreksi nilai akhir respon spektrum terhadap respon ragam pertama.

- Gempa Arah X

 $VIx = Cs \cdot Wt$

VIx = 0,0247 (x 46652,3825 (Tabel 4.14)

= 1153,723 kN (Gaya geser statik ekivalen arah X)

- Gempa Arah Y

 $VIy = Cs \cdot Wt$

VIy = 0,0246 x 47095,083 (Tabel 4.14)

= 1149,588 kN (Gaya geser statik ekivalen arah Y)

Berdasarkan SNI 1726-2012 kontrol faktor skala:

- Arah X

Vx = 1088,70 kN

VIx = 1153,723 kN

Faktor Skala = $\frac{0.85 x V1x}{Vx} \le 1$

$$= \frac{0,85 \ x \ 1153,723}{1088,70} = 0,900 \le 1$$

- Arah Y

Vy = 1084,03 kNVIy = 1149,588 kN

Faktor Skala =
$$\frac{0.85 \times V1x}{Vx} \le 1$$

= $\frac{0.85 \times 1084.03}{1149.588} = 0.902 \le 1$

Tabel 4.16: Rekapitulasi faktor skala hasil respon spektrum dengan statik ekivalen masing-masing arah Model 2.

V	V1	V	/t	Faktor Skala		
Arah X	Arah Y	Arah X Arah Y		Arah X	Arah Y	
1153,723	1149,588	1088,70	1084,03	0,902	0,900	

Karena faktor skala yang didapat untuk masing-masing arah kurang dari 1, maka gaya geser dasar nominal yang didapat dari hasil analisa ragam respon spektrum yang telah dilakukan dapat digunakan tanpa dikalikan dengan faktor

skala $\frac{0,85 \ x \ Cs \ W}{Vt}$.

4.2.2.3. Koreksi Faktor Redundansi

Untuk struktur yang dirancang kategori desain seismik D, redundansi (ρ) harus sama dengan 1,3 kecuali jika satu dari dua kondisi berikut dipenuhi, dimana redundansi (ρ) diijinkan diambil 1,0. Salah satu kondisi untuk menentukan yaitu masing-masing tingkat yang menahan lebih dari 35 persen geser dasar dalam arah yang ditinjau, maka redudansi (ρ) diijinkan diambil 1,0. Apabila kondisi tersebut tidak terpenuhi, maka redundansi (ρ) 1,0 harus diganti dengan redundansi (ρ) 1,3. Sebagaimana tertera pada Tabel 4.17.

Lontoi	Vx	Vy	35% Vx	35% Vy	Kontrol	Kontrol	
Laittai	(kN)	(kN)	Base Shear Base Shear		Kontrol	KOIIUOI	
19	26742,7	26904,7	44530,3	44690,5	Not Ok	Not Ok	
18	55569,6	55898,3	44530,3	44690,5	Ok	Ok	
17	67215,1	67607,8	44530,3	44690,5	Ok	Ok	
16	77689,1	78136,2	44530,3	44690,5	Ok	Ok	
15	87017,2	87509,7	44530,3	44690,5	Ok	Ok	

Tabel 4.17: Koreksi *story shear* dengan 35% *base shear* redundansi (ρ) 1,3.

Lontoi	Vx	Vy	35% Vx	35% Vy	Kontrol	Kontrol
Lantai	(kN)	(kN)	(kN) Base Shear		Kontrol	KOIIIIOI
14	95064,9	95593,8	44530,3	44690,5	Ok	Ok
13	101781,3	102338,1	44530,3	44690,5	Ok	Ok
12	107440,3	108018,3	44530,3	44690,5	Ok	Ok
11	112137,9	112731,5	44530,3	44690,5	Ok	Ok
10	116055,0	116659,6	44530,3	44690,5	Ok	Ok
9	119337,0	119949,2	44530,3	44690,5	Ok	Ok
8	121897,4	122514,0	44530,3	44690,5	Ok	Ok
7	123821,4	124440,0	44530,3	44690,5	Ok	Ok
6	125204,8	125823,8	44530,3	44690,5	Ok	Ok
5	126160,8	126779,2	44530,3	44690,5	Ok	Ok
4	126753,9	127371,2	44530,3	44690,5	Ok	Ok
3	127067,7	127684,1	44530,3	44690,5	Ok	Ok
2	127199,5	127685,6	44530,3	44690,5	Ok	Ok
1	127229,4	127687,1	44530,3	44690,5	Ok	Ok

Tabel 4.17: Lanjutan.

Dari Tabel 4.17 gaya geser pada lantai 19 dengan redundansi 1,0 tidak memenuhi syarat lebih besar dari 35 persen gaya geser dasar, maka nilai redundansi (ρ) pada pemodelan struktur menggunakan dengan nilai redundansi 1,3.

4.2.2.4. Gaya Geser Lantai

Gaya geser lantai merupakan distribusi dari gaya geser dasar yang dibagi pada setiap lantai untuk masing-masing arah arah gempa yaitu arah x dan arah y. Nilai gaya geser setiap lantai didapat dari hasil pemodelan struktur dengan menggunakan program analisis struktur ETABS v16.2 dengan cara *Run – Display – Story Respon Plot – Display Type – Story Shers –* Gempa X atau Gempa Y yang dapat disajikan pada Tabel 4.18 sebagai nila gaya geser yang terjadi pada struktur *Air Traffic Control.*

Tabel 4.18: Nilai gaya geser gabungan maksimum x dan y pada setiap lantai.

Tingkat	Tinggi	Lokasi	Vx	Vy
	(m)	LUKASI	(kN)	(kN)

Tabel 4.18: Lanjutan.

Tingkat	Tinggi	Lokasi	Vx	Vy
Піідка	(m)	LOKASI	(kN)	(kN)
		Bottom	234,9066	49,2081
18	72	Тор	451,5561	93,3552
		Bottom	451,5561	93,3552
17	68	Тор	521,3688	106,6111
		Bottom	521,3688	106,6111
16	64	Тор	565,8196	113,9431
		Bottom	565,8196	113,9431
15	60	Тор	599,4878	118,8445
		Bottom	599,4878	118,8445
14	56	Тор	636,6760	124,8643
		Bottom	636,6760	124,8643
13	52	Тор	668,1545	130,1101
		Bottom	668,1545	130,1101
12	48	Тор	690,5611	133,6992
		Bottom	690,5611	133,6992
11	44	Тор	707,0418	136,1070
		Bottom	707,0418	136,1070
10	40	Тор	727,1004	139,2807
		Bottom	727,1004	139,2807
9	36	Тор	761,8929	145,7588
		Bottom	761,8929	145,7588
8	32	Тор	803,6907	153,8122
		Bottom	803,6907	153,8122
7	28	Тор	846,1918	162,1356
		Bottom	846,1918	162,1356
6	24	Тор	888,5669	170,7400
		Bottom	888,5669	170,7400
5	20	Тор	935,7890	180,8358
		Bottom	935,7890	180,8358
4	16	Тор	991,5411	193,1753
		Bottom	991,5411	193,1753
3	12	Тор	1041,9460	204,5050
		Bottom	1041,9460	204,5050
2	8	Тор	1075,9752	212,2029
		Bottom	1075,9752	212,2029
1	4	Тор	1088,7020	215,0882
		Bottom	1088,7020	215,0882

Pada Tabel 4.18, menunjukkan gaya geser maksimum dari masing-masing arah saja. Untuk gaya geser dasar lantai untuk setiap arah gempa dapat dilihat pada Lampiran B3.2.

4.2.2.5. Nilai Simpangan

Simpangan antar lantai merupakan selisih nilai defleksi pada pusat massa gedung antara lantai teratas dan lantai dibawahnya. Berdasarkan SNI 1726:2012 pasal 7.8.6, simpangan antar lantai hanya terdapat satu kinerja batas, yaitu kinerja batas ultimit. Simpangan antar lantai desain (Δ) tidak boleh melebihi simpangan antar lantai tingkat izin (Δ_a) seperti yang diperlihatkan pada Tabel 2.13. Pada Tabel 4.19 menunjukkan hasil nilai perpindahan dan simpangan antar lantai pada setiap lantai.

Tingkat	H	Perpir Elasti	idahan s (δe)	Perpindahan Total (δe*Cd)/Ie		al Simpangan Anta Lantai (Δ)		Syarat	Cek	Cek
U	(m)	Х	Y	Х	Y	Х	Y	$\Delta a/\rho$	V	V
		(m)	(m)	(m)	(m)	(m)	(m)	(m)	Χ	Y
19	4	0,0602	0,0609	0,331	0,335	0,012	0,0113	0,062	Ok	Ok
18	4	0,0580	0,0589	0,319	0,324	0,020	0,0252	0,062	Ok	Ok
17	4	0,0543	0,0543	0,299	0,299	0,020	0,0205	0,062	Ok	Ok
16	4	0,0506	0,0506	0,278	0,278	0,018	0,0184	0,062	Ok	Ok
15	4	0,0472	0,0472	0,260	0,260	0,014	0,0138	0,062	Ok	Ok
14	4	0,0447	0,0447	0,246	0,246	0,021	0,0207	0,062	Ok	Ok
13	4	0,0409	0,0409	0,225	0,225	0,013	0,0131	0,062	Ok	Ok
12	4	0,0385	0,0385	0,212	0,212	0,019	0,0185	0,062	Ok	Ok
11	4	0,0352	0,0352	0,193	0,193	0,020	0,0199	0,062	Ok	Ok
10	4	0,0316	0,0316	0,174	0,174	0,018	0,0176	0,062	Ok	Ok
9	4	0,0284	0,0284	0,156	0,156	0,020	0,0203	0,062	Ok	Ok
8	4	0,0247	0,0247	0,136	0,136	0,016	0,0161	0,062	Ok	Ok
7	4	0,0217	0,0217	0,120	0,120	0,017	0,0171	0,062	Ok	Ok
6	4	0,0186	0,0186	0,102	0,102	0,018	0,0181	0,062	Ok	Ok
5	4	0,0153	0,0153	0,084	0,084	0,010	0,0099	0,062	Ok	Ok
4	4	0,0135	0,0135	0,074	0,074	0,019	0,0184	0,062	Ok	Ok
3	4	0,0101	0,0102	0,056	0,056	0,023	0,0232	0,062	Ok	Ok
2	4	0,0059	0,0060	0,033	0,033	0,021	0,0215	0,062	Ok	Ok
1	4	0,0020	0,0021	0,011	0,011	0,011	0,0113	0,062	Ok	Ok

Tabel 4.19: Nilai simpangan berdasarkan SNI 1726:2012.

Pada Tabel 4.19 menunjukkan, perpindahan dan simpangan antar lantai maksimum dari setiap arah saja. Untuk perpindahan dan simpangan antar lantai dari setiap arah dapat dilihat pada Lampiran B3.2.

4.2.2.6. Ketidakberaturan Tingkat Lunak (Soft Story)

Berdasarkan SNI 1726:2012 Tabel 11, kekakuan tingkat lunak (*soft* story) didefinisikan ada jika terdapat suatu tingkat di mana kekakuan lateralnya kurang dari 70 persen kekakuan lateral tingkat di atasnya atau kurang dari 80 persen kekakuan rata-rata tiga tingkat di atasnya. Pemeriksaan ketidakberaturan tingkat lunak dilakukan dengan cara menghitung kekakuan lateral tiap lantai. Perhitungan ketidakberaturan kekakuan tingkat lunak pada arah x dan y untuk Model 2 dapat dilihat pada Tabel 4.20 dan 4.21.

Lontoi	Σk_{ix}	Σk_{iy}	$2 \sum k_{ix + 1}$	$\infty \Sigma k_{iy+1}$	Σk_{ix+3}	Σk_{iy+3}
Lantai	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)
19	64746,9	68712,3	-	-	-	_
18	103748,0	108196,5	160,24	157,46	160,24	157,46
17	121072,5	125247,9	116,70	115,76	143,71	141,60
16	159834,9	164339,8	132,02	131,21	165,59	163,17
15	198086,2	205096,9	123,93	124,80	154,49	154,68
14	143838,0	147267,4	72,61	71,80	90,09	89,31
13	133837,9	134880,4	93,05	91,59	80,02	78,31
12	142486,0	142694,7	106,46	105,79	89,85	87,86
11	193797,2	193667,0	136,01	135,72	138,37	136,76
10	272558,9	276238,5	140,64	142,64	173,93	175,86
9	196971,3	200098,5	72,27	72,44	97,06	97,99
8	185161,7	185862,3	94,00	92,89	83,74	83,22
7	204062,7	204005,5	110,21	109,76	93,51	92,42
6	296857,1	297644,5	145,47	145,90	151,92	151,35
5	431840,5	441210,0	145,47	148,23	188,83	192,52
4	372446,1	376374,2	86,25	85,30	119,79	119,76
3	349295,1	349172,8	93,78	92,77	95,16	93,93
2	303092,6	300396,2	86,77	86,03	78,82	77,24
1	534008,7	533669,5	176,19	177,66	156,32	156,05

Tabel 4.20: Ketidakberaturan kekakuan tingkat lunak pada gempa arah x.

Lontoi	Σk_{ix}	Σk_{iy}	$\infty \Sigma k_{ix + 1}$	$1 \sum k_{iy+1}$	1 Σk_{ix+3}	$1/\sqrt{2}k_{iy+3}$
Lailtai	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)
19	68694,7	64470,0	-	-	-	-
18	107239,2	102751,4	156,11	159,38	156,11	159,38
17	123243,1	120253,2	114,92	117,03	140,10	143,83
16	161704,2	159620,6	131,21	132,74	162,15	166,58
15	201772,9	196800,5	124,78	123,29	154,34	154,30
14	143798,2	141673,3	71,27	71,99	88,63	89,16
13	133714,7	132326,4	92,99	93,40	79,08	79,70
12	140255,8	141231,3	104,89	106,73	87,79	89,99
11	190721,5	193411,6	135,98	136,95	136,96	139,74
10	271575,3	270393,5	142,39	139,80	175,33	173,71
9	194914,5	194004,0	71,77	71,75	97,04	96,19
8	184617,1	183414,1	94,72	94,54	84,27	83,65
7	199762,7	202224,9	108,20	110,26	92,04	93,65
6	291672,8	295821,4	146,01	146,28	151,05	153,11
5	429062,3	427474,8	147,10	144,50	190,40	188,19
4	367966,8	366851,6	85,76	85,82	119,92	118,91
3	348418,3	346332,0	94,69	94,41	96,01	95,31
2	295095,1	299087,9	84,70	86,36	77,29	78,66
1	533034,4	529572,4	180,63	177,06	158,10	156,95

Tabel 4.21: Ketidakberaturan kekakuan tingkat lunak pada gempa arah y.

Berdasarkan Tabel 4.20 dan 4.21 nilai $\%\Sigma k_{ix +1}$, $\%\Sigma k_{iy +1}$, $\%\Sigma k_{ix +3}$, $\%\Sigma k_{ix +3}$ menunjukkan bahwa kekakuan lateral tiap lantai lebih besar dari 70% kekakuan lateral tingkat di atasnya atau 80% kekakuan rata-rata tiga tingkat di atasnya artinya gedung tidak memiliki ketidakberaturan kekakuan tingkat lunak (*soft story*) terhadap masing-masing arah.

4.2.2.7. Ketidakberaturan Torsi

Pada sub bab 4.2.1.1 dapat diketahui bahwa struktur gedung pada Model 1 tidak memiliki ketidakberaturan torsi. Oleh karena itu, struktur tidak memiliki eksentrisitas sehingga tidak dikategorikan sebagai ketidakberaturan torsi. Walaupun pada Model 1 ini tidak memiliki ketidakberaturan torsi biasa dan berlebihan untuk membuktikannya dapat dilihat pada Tabel 4.22 dan 4.23.

	Rigid				Arah X		
Lantai	diafragma	δx_{min}	δx_{max}	Δx_{min}	Δx_{max}	Δx_{avg}	Δ
	(y/t)	m	m	m	m	m	Ах
19	rigid	0,065	0,065	0,003	0,003	0,065	0,702
18	rigid	0,061	0,062	0,004	0,004	0,062	0,702
17	rigid	0,058	0,058	0,004	0,004	0,058	0,702
16	rigid	0,054	0,055	0,003	0,003	0,054	0,702
15	rigid	0,051	0,051	0,003	0,003	0,051	0,702
14	rigid	0,048	0,049	0,004	0,004	0,048	0,702
13	rigid	0,044	0,045	0,004	0,004	0,045	0,703
12	rigid	0,040	0,041	0,004	0,004	0,040	0,703
11	rigid	0,036	0,036	0,004	0,004	0,036	0,703
10	rigid	0,032	0,033	0,002	0,002	0,032	0,703
9	rigid	0,030	0,030	0,003	0,003	0,030	0,704
8	rigid	0,026	0,027	0,004	0,004	0,027	0,704
7	rigid	0,022	0,023	0,004	0,004	0,023	0,704
6	rigid	0,018	0,019	0,003	0,003	0,018	0,704
5	rigid	0,015	0,015	0,002	0,002	0,015	0,705
4	rigid	0,013	0,014	0,003	0,003	0,013	0,705
3	rigid	0,010	0,010	0,004	0,004	0,010	0,706
2	rigid	0,006	0,006	0,004	0,004	0,006	0,706
1	rigid	0,002	0,002	0,002	0,002	0,002	0,705

Tabel 4.22: Ketidakberaturan torsi biasa dan torsi berlebihan pada gempa arah x.

Tabel 4.23: Ketidakberaturan torsi biasa dan torsi berlebihan pada gempa arah y.

	Rigid		Arah Y						
Lantai	diafragma	δx_{min}	δx_{max}	Δx_{min}	Δx_{max}	Δx_{avg}	Δ		
	(y/t)	m	m	m	m	m	Ах		
19	rigid	0,012	0,013	0,001	0,001	0,013	0,714		
18	rigid	0,012	0,012	0,001	0,001	0,012	0,715		
17	rigid	0,011	0,011	0,001	0,001	0,011	0,715		
16	rigid	0,010	0,011	0,001	0,001	0,010	0,715		
15	rigid	0,010	0,010	0,000	0,000	0,010	0,715		
14	rigid	0,009	0,009	0,001	0,001	0,009	0,716		
13	rigid	0,009	0,009	0,001	0,001	0,009	0,716		
12	rigid	0,008	0,008	0,001	0,001	0,008	0,716		
11	rigid	0,007	0,007	0,001	0,001	0,007	0,716		
10	rigid	0,006	0,006	0,000	0,000	0,006	0,716		
9	rigid	0,006	0,006	0,001	0,001	0,006	0,716		
8	rigid	0,005	0,005	0,001	0,001	0,005	0,717		
7	rigid	0,004	0,005	0,001	0,001	0,004	0,717		

	Rigid	Arah Y						
Lantai	diafragma	δx_{min}	δx_{max}	Δx_{min}	Δx_{max}	Δx_{avg}	^	
	(y/t)	m	m	m	m	m	Ay	
6	rigid	0,004	0,004	0,001	0,001	0,004	0,717	
5	rigid	0,003	0,003	0,000	0,000	0,003	0,717	
4	rigid	0,003	0,003	0,001	0,001	0,003	0,716	
3	rigid	0,002	0,002	0,001	0,001	0,002	0,716	
2	rigid	0,001	0,001	0,001	0,001	0,001	0,718	
1	rigid	0,000	0,000	0,000	0,000	0,000	0,722	

Tabel 4.23: Lanjutan.

4.2.2.8. Ketidakberaturan Berat (Massa)

Berdasarkan SNI 1726:2012 Tabel 11, ketidakberaturan berat (massa) didefinisikan ada jika massa efektif semua tigkat lebih dari 150 persen massa efektif tingkat didekatnya. Pemeriksaan gedung dengan ketidakberaturan massa dapat dilihat pada Tabel 4.24.

			Massa	Massa	Ketidakbe	Ketidakbe
			Lantai n/	Lantai n/	raturan	raturan
Charmy	Mass X	Mass Y	Lantai	Lantai	massa (X)	massa (Y)
Story			n+1 -X	n+1 -Y	> 150%	> 150%
	ka	ka	%W/ .	%W.	$\%W_{x\pm1}>$	$W_{y \pm 1} >$
	кg	кg	70 vv _{x ±1}	70 vv _{y ±1}	150%	150%
19	380202,5	380202,5	82,6%	82,6%	Tidak	Tidak
18	460104,9	460104,9	219,0%	219,0%	Ada	Ada
17	210058,4	210058,4	97,7%	97,7%	Tidak	Tidak
16	215098,4	215098,4	102,4%	102,4%	Tidak	Tidak
15	219938,8	219938,8	102,3%	102,3%	Tidak	Tidak
14	219938,8	219938,8	100,0%	100,0%	Tidak	Tidak
13	215098,4	215098,4	97,8%	97,8%	Tidak	Tidak
12	215098,4	215098,4	100,0%	100,0%	Tidak	Tidak
11	215098,4	215098,4	100,0%	100,0%	Tidak	Tidak
10	219938,8	219938,8	102,3%	102,3%	Tidak	Tidak
9	230889,8	230889,8	105,0%	105,0%	Tidak	Tidak
8	231761,5	231761,5	100,4%	100,4%	Tidak	Tidak
7	231761,5	231761,5	100,0%	100,0%	Tidak	Tidak
6	231761,5	231761,5	100,0%	100,0%	Tidak	Tidak
5	236601,8	236601,8	102,1%	102,1%	Tidak	Tidak

Tabel 4.24: Ketidakberaturan berat (massa).

			Massa	Massa	Ketidakbe	Ketidakbe
	Maaa V	Maga V	Lantai n/	Lantai n/	raturan	raturan
Story	IVIASS A	Iviass 1	Lantai	Lantai	massa (X)	massa (Y)
Story			n+1 -X	n+1 -Y	> 150%	> 150%
	ka	ka	06 W/	0/ W/	$\%W_{x\pm1}>$	$W_{y \pm 1} >$
	кg	ĸg	70 vv _{x ±1}	70 vv _{y ±1}	150%	150%
4	236601,8	236601,8	100,0%	100,0%	Tidak	Tidak
3	231761,5	231761,5	98,0%	98,0%	Tidak	Tidak
2	231761,5	231761,5	100,0%	100,0%	Tidak	Tidak
1	231761,5	231761,5	100,0%	100,0%	Tidak	Tidak

Tabel 4.24: Lanjutan.

Pada Tabel 4.24 didapat nilai $W_{\pm 1}$ lantai 18 lebih besar dari 150% maka ada ketidakberaturan massa. Namun jika meninjau pasal refrensi sesuai SNI 1726:2012 Tabel 13 dengan kategori desain seismik D semua struktur lainnya dengan analisis spektrum respon ragam maka diijinkan.

4.2.2.9. Pengaruh P-Delta

Berdasarkan SNI 1726:2012 Pasal 7.8.7, pengaruh P-Delta ditentukan berdasarkan nilai koefisen stabilitas (θ). Jika nilai koefisien stabilitas lebih kecil dari 0,1 maka pengaruh P-Delta dapat diabaikan. Berikut ini hasil perhitungan P-Delta masing-masing arah baik arah x dan y pada Tabel 4.25 dan 4.26.

	Tinggi	Story	Gaya Gasar	Beban Vortikal	Beban Vortikal	Stability	
Lantai	(m)	Drift (m)	Seismik,	Total	Kumulatif	Ratio (θ_x)	Cek
	. ,		$V_{\rm X}$ (KIN)	(KIN)	(KIN)		
19	0,0179	203,6	3729,8	3729,8	0,00079	0,0179	P-Delta No
18	0,0202	407,8	4513,6	8243,4	0,00103	0,0202	P-Delta No
17	0,0205	475,8	2060,7	10304,1	0,00119	0,0205	P-Delta No
16	0,0184	520,6	2110,1	12414,2	0,00125	0,0184	P-Delta No
15	0,0138	553,9	2157,6	14571,8	0,00110	0,0138	P-Delta No
14	0,0207	583,6	2157,6	16729,4	0,00193	0,0207	P-Delta No
13	0,0241	611,0	2110,1	18839,5	0,00260	0,0241	P-Delta No
12	0,0240	635,2	2110,1	20949,6	0,00300	0,0240	P-Delta No
11	0,0199	657,5	2110,1	23059,8	0,00289	0,0199	P-Delta No
10	0,0121	680,6	2157,6	25217,3	0,00204	0,0121	P-Delta No

Tabel 4.25: Perhittungan P-Delta pada arah x berdasarkan SNI 1726:2012.

Tabel 4.25: Lanjutan.

Lantai	Tinggi (m)	Story Drift (m)	Gaya Geser Seismik V _x (kN)	Beban Vertical Total (kN)	Beban Vertical Komulatif (kN)	Stability Ratio (θ _x)	Cek
9	36	0,0192	709,0	2265,0	27482,4	0,00376	P-Delta No
8	32	0,0227	743,6	2273,6	29756,0	0,00516	P-Delta No
7	28	0,0226	780,9	2273,6	32029,5	0,00601	P-Delta No
6	24	0,0181	820,7	2273,6	34303,1	0,00574	P-Delta No
5	20	0,0099	864,0	2321,1	36624,2	0,00381	P-Delta No
4	16	0,0188	909,1	2321,1	38945,2	0,00913	P-Delta No
3	12	0,0231	949,5	2273,6	41218,8	0,01520	P-Delta No
2	8	0,0214	976,7	2273,6	43492,4	0,02165	P-Delta No
1	4	0,0112	986,7	2273,6	45766,0	0,02367	P-Delta No

Tabel 4.26: Perhittungan P-Delta pada arah y berdasarkan SNI 1726:2012.

Lantai	Tinggi (m)	Story Drift (m)	Gaya Geser Seismik, V _v (kN)	Beban Vertikal Total (kN)	Beban Vertikal Kumulatif (kN)	Stability Ratio (θ _y)	Cek
19	76	0,0175	60,9	3729,8	3729,8	0,0026	P-Delta No
18	72	0,0206	122,0	4513,6	8243,4	0,0035	P-Delta No
17	68	0,0205	142,3	2060,7	10304,1	0,0040	P-Delta No
16	64	0,0184	155,6	2110,1	12414,2	0,0042	P-Delta No
15	60	0,0138	165,5	2157,6	14571,8	0,0037	P-Delta No
14	56	0,0208	174,4	2157,6	16729,4	0,0065	P-Delta No
13	52	0,0242	182,6	2110,1	18839,5	0,0087	P-Delta No
12	48	0,0241	189,9	2110,1	20949,6	0,0101	P-Delta No
11	44	0,0200	196,6	2110,1	23059,8	0,0097	P-Delta No
10	40	0,0121	203,5	2157,6	25217,3	0,0068	P-Delta No
9	36	0,0193	212,0	2265,0	27482,4	0,0126	P-Delta No
8	32	0,0228	222,3	2273,6	29756,0	0,0173	P-Delta No
7	28	0,0227	233,4	2273,6	32029,5	0,0202	P-Delta No
6	24	0,0182	245,2	2273,6	34303,1	0,0193	P-Delta No
5	20	0,0099	258,2	2321,1	36624,2	0,0128	P-Delta No
4	16	0,0189	271,6	2321,1	38945,2	0,0307	P-Delta No
3	12	0,0232	283,7	2273,6	41218,8	0,0512	P-Delta No
2	8	0,0215	291,8	2273,6	43492,4	0,0729	P-Delta No
1	4	0,0113	294,8	2273,6	45766,0	0,0796	P-Delta No

Pada Tabel 4.25 dan 4.26 menunjukkan nilai stabilitas rasio (θ) untuk masingmasing arah baik arah x dan y. Sesuai SNI 1726:2012 pada semua lantai kurang dari 0,1 sehingga pengaruh P-Delta dapat diabaikan.

4.2.3. Struktur Model 3

Pada Model 3 analisis respon spektrum ini dilakukan dengan metode kombinasi akar jumlah kuadrat (*Square Root of the Sum of Squares/SRSS*).

4.2.3.1. Berat Struktur

Besarnya beban gempa sangat dipengaruhi oleh berat struktur dari suatu bangunan, maka perlu diketahui berat total bangunan untuk menahan gaya geser statik. Berat dari bangunan berasal dari beban mati yang terdiri dari berat sendiri material bangunan dan elemen-elemen struktur seperti kolom, balok dan plat lantai, serta beban hidup yang diakibatkan oleh hunian atau penggunaan bangunan seperti manusia dan. Pada tugas akhir ini, perhitungan berat struktur *Air Traffic Control* bangunan diambil dari analisis menggunakan program analisis struktur ETABS v16.2, *Run - Show Table – Structure Result – Center Of Mass Rigidity.*

Peneliti tidak melakukan analisis perhitungan manual, sebab program analisis struktur telah menghitung berat struktur secara otomatis. Adapun massa struktur gedung dari output hasil program analisis struktur yang disajikan pada Tabel 4.27.

Lontoi	Mass X	Mass Y	XCM	YCM
Laittai	Kgf	Kgf	m	m
19	380202,54	380202,54	8,4917	8,4411
18	460104,93	460104,93	8,9607	8,5993
17	210058,42	210058,42	8,8847	8,166
16	219938,77	219938,77	8,8902	8,1582
15	219938,77	219938,77	8,8902	8,1582
14	215098,42	215098,42	8,8908	8,1588
13	215098,42	215098,42	8,8908	8,1588
12	215098,42	215098,42	8,8908	8,1588
11	219938,77	219938,77	8,8902	8,1582
10	219938,77	219938,77	8,8902	8,1582
9	226049,48	226049,48	8,895	8,1621
8	231761,48	231761,48	8,9011	8,1545

Tabel 4.27: Massa struktur, pusat massa dan pusat kekakuan.

Lontoi	Mass X	Mass Y	XCM	YCM
Lantai	Kgf	Kgf	m	m
7	231761,48	231761,48	8,9011	8,1545
6	236601,83	236601,83	8,9004	8,1541
5	236601,83	236601,83	8,9004	8,1541
4	231761,48	231761,48	8,9011	8,1545
3	231761,48	231761,48	8,9011	8,1545
2	231761,48	231761,48	8,9011	8,1545
1	231761,48	231761,48	8,9011	8,1545
Total	4665238,25	4665238,25		

Tabel 4.27: Lanjutan.

Pada Tabel 4.27, menunjukkan hasil massa struktur bangunan per lantai, dimana nilai absis pusat massa adalah sama dengan nilai absis pusat kekakuan adalah 8 m. Oleh karena itu, struktur bangunan pada Model 1 tidak memiliki eksentrisitas sebab nilai pusat massa dan pusat kekakuan saling berimpit satu sama lain, maka struktur tidak diperiksa terhadap ketidakberaturan torsi berdasarkan SNI 1726:2012.

4.2.3.2. Koreksi Gaya Geser

Pada dasarnya nilai gaya geser pada gedung yang simetris akibat arah X maupun arah Y tetap sama. Tetapi, nilai gaya geser yang dihasilkan oleh respon spektrum program analisia struktur sangat teliti sehingga arah X dan arah Y tidak sama walaupun bangunannya simetris. Oleh karena itu, hasil perioda yang diperoleh terhadap arah X dan arah Y tidak sama. Berdasarkan SNI 1726:2012 pasal 7.9.4.1, kombinasi respon dinamik untuk geser dasar ragam (V_t) lebih kecil 85 persen dari geser dasar yang dihitung (V_t) menggunakan prosedur gaya lateral ekivalen, maka gaya geser dan simpangan antar lantai harus dikalikan dengan faktor skala yaitu:

$$0,85\frac{V_1}{Vt} \ge 1$$

Dimana:

- V_t = Gaya geser dasar nominal yang didapat dari hasil analisis ragam spektrum respons yang telah dilakukan
- V_1 = Gaya geser dasar prosedur gaya lateral statik ekivalen

Dari hasil analisis respon spektrum yang menggunakan program Analisis Struktur diperoleh nilai gaya geser dasar (V) berdasarkan SNI 1726-2012 yang disajikan pada Tabel 4.13.

		Base Reaction		
Output Case	Case Type	Step Type	Global FX	Global FY
Text	Text	Text	kN	kN
Gempa X	LinRespSpec	Max	1072,00	208,14
Gempa Y	LinRespSpec	Max	208,15	1067,10

Tabel 4.28: Gaya geser dasar nominal hasil analisis ragam respon spektrum.

Berikut perhitungan koreksi nilai akhir respon spektrum terhadap respon ragam pertama.

- Gempa Arah X

 $VIx = Cs \cdot Wt$

VIx = 0,0246 (x 46652,3825 (Tabel 4.27)

= 1147,121 kN (Gaya geser statik ekivalen arah X)

- Gempa Arah Y

 $VIy = Cs \cdot Wt$

VIy = 0,0245 x 46652,3825 (Tabel 4.27)

= 1143,033 kN (Gaya geser statik ekivalen arah Y)

Berdasarkan SNI 1726-2012 kontrol faktor skala:

- Arah X

Vx = 1072,00 kN

VIx = 1147,121 kN

Faktor Skala = $\frac{0.85 x V1x}{Vx} \le 1$

$$= \frac{0,85 \times 1147,121}{1172,00} = 0,910 \le 1$$

- Arah Y

Vy = 1067,10 kNVIy = 1143,033 kN

Faktor Skala =
$$\frac{0.85 \times V1x}{Vx} \le 1$$

= $\frac{0.85 \times 1143,033}{1067.10} = 0.909 \le 1$

Tabel 4.29: Rekapitulasi faktor skala hasil respon spektrum dengan statik ekivalen masing-masing arah Model 3.

V1		V	7t	Faktor Skala	
Arah X	Arah Y	Arah X Arah Y		Arah X	Arah Y
1147,121	1143,033	1072,00	1067,10	0,910	0,909

Karena faktor skala yang didapat untuk masing-masing arah kurang dari 1, maka gaya geser dasar nominal yang didapat dari hasil analisa ragam respon spektrum yang telah dilakukan dapat digunakan tanpa dikalikan dengan faktor

skala $\frac{0,85 \ x \ Cs \ W}{Vt}$.

4.2.3.3. Koreksi Faktor Redundansi

Untuk struktur yang dirancang kategori desain seismik D, redundansi (ρ) harus sama dengan 1,3 kecuali jika satu dari dua kondisi berikut dipenuhi, dimana redundansi (ρ) diijinkan diambil 1,0. Salah satu kondisi untuk menentukan yaitu masing-masing tingkat yang menahan lebih dari 35 persen geser dasar dalam arah yang ditinjau, maka redudansi (ρ) diijinkan diambil 1,0. Apabila kondisi tersebut tidak terpenuhi, maka redundansi (ρ) 1,0 harus diganti dengan redundansi (ρ) 1,3. Sebagaimana tertera pada Tabel 4.30.

Lontoi	Vx	Vy	35% Vx	35% Vy	Kontrol	Kontrol
Lantai	(kN)	(kN)	Base Shear	Base Shear	Kontrol	Kontrol
19	26925,1	27086,9	44786,6	44946,8	Not Ok	Not Ok
18	55935,9	56264,2	44786,6	44946,8	Ok	Ok
17	67650,4	68042,5	44786,6	44946,8	Ok	Ok
16	78418,3	78865,8	44786,6	44946,8	Ok	Ok
15	87792,3	88285,0	44786,6	44946,8	Ok	Ok

Tabel 4.30: Koreksi *story shear* dengan 35% *base shear* redundansi (ρ) 1,3.

Lontoi	Vx	Vy	35% Vx	35% Vy	Kontrol	Kontrol
Lailtai	(kN)	(kN)	Base Shear	Base Shear	Konuoi	Konuoi
14	95697,2	96225,3	44786,6	44946,8	Ok	Ok
13	102438,9	102994,6	44786,6	44946,8	Ok	Ok
12	108115,6	108692,3	44786,6	44946,8	Ok	Ok
11	112930,6	113523,0	44786,6	44946,8	Ok	Ok
10	116854,1	117457,5	44786,6	44946,8	Ok	Ok
9	120070,0	120680,6	44786,6	44946,8	Ok	Ok
8	122630,1	123245,0	44786,6	44946,8	Ok	Ok
7	124551,8	125168,6	44786,6	44946,8	Ok	Ok
6	125960,7	126577,8	44786,6	44946,8	Ok	Ok
5	126913,0	127529,5	44786,6	44946,8	Ok	Ok
4	127490,6	128106,0	44786,6	44946,8	Ok	Ok
3	127802,0	128416,4	44786,6	44946,8	Ok	Ok
2	127932,3	128417,9	44786,6	44946,8	Ok	Ok
1	127961,7	128419,4	44786,6	44946,8	Ok	Ok

Tabel 4.30: Lanjutan.

Dari Tabel 4.30, gaya geser pada lantai 19 dengan redundansi 1,0 tidak memenuhi syarat lebih besar dari 35 persen gaya geser dasar, maka nilai redundansi (ρ) pada pemodelan struktur menggunakan dengan nilai redundansi 1,3.

4.2.3.4. Gaya Geser Lantai

Gaya geser lantai merupakan distribusi dari gaya geser dasar yang dibagi pada setiap lantai untuk masing-masing arah arah gempa yaitu arah x dan arah y. Nilai gaya geser setiap lantai didapat dari hasil pemodelan struktur dengan menggunakan program analisis struktur ETABS v16.2 dengan cara *Run – Display – Story Respon Plot – Display Type – Story Shers –* Gempa X atau Gempa Y yang dapat disajikan pada Tabel 4.31 sebagai nila gaya geser yang terjadi pada struktur *Air Traffic Control.*

Tabel 4.31: Nilai gaya geser pada setiap lantai.

Tingkot	Tinggi	Lokosi	Vx	Vy
Thigkat	(m)	LUKASI	(kN)	(kN)

Tabel 4.31: Lanjutan.

Tingkat	Tinggi	Lokosi	Vx	Vy	
Піідка	(m)	LOKASI	(kN)	(kN)	
		Bottom	222,7103	45,7742	
18	72	Тор	428,8835	86,8218	
		Bottom	428,8835	86,8218	
17	68	Тор	498,3208	99,7921	
		Bottom	498,3208	99,7921	
16	64	Тор	552,0452	109,1957	
		Bottom	552,0452	109,1957	
15	60	Тор	602,1973	118,0211	
		Bottom	602,1973	118,0211	
14	56	Тор	640,1151	124,4161	
		Bottom	640,1151	124,4161	
13	52	Тор	665,7399	128,2800	
		Bottom	665,7399	128,2800	
12	48	Тор	683,7114	130,6170	
		Bottom	683,7114	130,6170	
11	44	Тор	702,9068	133,3913	
		Bottom	702,9068	133,3913	
10	40	Тор	731,7992	138,5615	
		Bottom	731,7992	138,5615	
9	36	Тор	764,9872	144,7418	
		Bottom	764,9872	144,7418	
8	32	Тор	799,3605	151,1297	
		Bottom	799,3605	151,1297	
7	28	Тор	835,0829	157,8588	
		Bottom	835,0829	157,8588	
6	24	Тор	877,8550	166,3605	
		Bottom	877,8550	166,3605	
5	20	Тор	931,7044	177,6335	
		Bottom	931,7044	177,6335	
4	16	Тор	985,9962	189,3029	
		Bottom	985,9962	189,3029	
3	12	Тор	1031,6693	199,2680	
		Bottom	1031,6693	199,2680	
2	8	Тор	1061,1880	205,7634	
		Bottom	1061,1880	205,7634	
1	4	Тор	1071,9979	208,1518	
		Bottom	1071,9979	208,1518	

Pada Tabel 4.31, menunjukkan gaya geser maksimum dari masing-masing arah saja. Untuk gaya geser dasar lantai untuk setiap arah gempa dapat dilihat pada Lampiran B3.3.

4.2.3.5. Nilai Simpangan

Simpangan antar lantai merupakan selisih nilai defleksi pada pusat massa gedung antara lantai teratas dan lantai dibawahnya. Berdasarkan SNI 1726:2012 pasal 7.8.6, simpangan antar lantai hanya terdapat satu kinerja batas, yaitu kinerja batas ultimit. Simpangan antar lantai desain (Δ) tidak boleh melebihi simpangan antar lantai tingkat izin (Δ_a) seperti yang diperlihatkan pada Tabel 2.13. Pada Tabel 4.32 menunjukkan hasil nilai perpindahan dan simpangan antar lantai pada setiap lantai.

Tingkat H		Perpin Elasti	idahan s (δe)	Perpinda (δe*C	han Total Cd)/Ie	Simpang Lant	gan Antar tai (Δ)	Syarat	Cek	Cek
8	(m)	X	Y	X	Y	X	Y	Δa/ρ	V	V
		(m)	(m)	(m)	(m)	(m)	(m)	(m)	Х	Ŷ
19	4	0,0652	0,0654	0,359	0,360	0,018	0,0175	0,062	Ok	Ok
18	4	0,0620	0,0622	0,341	0,342	0,020	0,0206	0,062	Ok	Ok
17	4	0,0583	0,0585	0,321	0,322	0,020	0,0205	0,062	Ok	Ok
16	4	0,0546	0,0547	0,300	0,301	0,018	0,0184	0,062	Ok	Ok
15	4	0,0512	0,0514	0,282	0,283	0,014	0,0138	0,062	Ok	Ok
14	4	0,0487	0,0489	0,268	0,269	0,021	0,0208	0,062	Ok	Ok
13	4	0,0449	0,0451	0,247	0,248	0,019	0,0242	0,062	Ok	Ok
12	4	0,0415	0,0407	0,228	0,224	0,019	0,0241	0,062	Ok	Ok
11	4	0,0382	0,0363	0,210	0,200	0,020	0,0200	0,062	Ok	Ok
10	4	0,0346	0,0327	0,190	0,180	0,023	0,0121	0,062	Ok	Ok
9	4	0,0304	0,0305	0,167	0,168	0,019	0,0193	0,062	Ok	Ok
8	4	0,0269	0,0270	0,148	0,148	0,023	0,0228	0,062	Ok	Ok
7	4	0,0227	0,0228	0,125	0,126	0,023	0,0227	0,062	Ok	Ok
6	4	0,0186	0,0187	0,102	0,103	0,018	0,0182	0,062	Ok	Ok
5	4	0,0153	0,0154	0,084	0,085	0,010	0,0099	0,062	Ok	Ok
4	4	0,0135	0,0136	0,074	0,075	0,019	0,0189	0,062	Ok	Ok
3	4	0,0101	0,0102	0,056	0,056	0,023	0,0232	0,062	Ok	Ok
2	4	0,0059	0,0060	0,033	0,033	0,021	0,0215	0,062	Ok	Ok
1	4	0,0020	0,0021	0,011	0,011	0,011	0,0113	0,062	Ok	Ok

Tabel 4.32: Nilai simpangan berdasarkan SNI 1726:2012.

Pada Tabel 4.32 menunjukkan, perpindahan dan simpangan antar lantai maksimum dari setiap arah saja. Untuk perpindahan dan simpangan antar lantai dari setiap arah dapat dilihat pada Lampiran B3.3.

4.2.3.6. Ketidakberaturan Tingkat Lunak (Soft Story)

Berdasarkan SNI 1726:2012 Tabel 11, kekakuan tingkat lunak (*soft* story) didefinisikan ada jika terdapat suatu tingkat di mana kekakuan lateralnya kurang dari 70 persen kekakuan lateral tingkat di atasnya atau kurang dari 80 persen kekakuan rata-rata tiga tingkat di atasnya. Pemeriksaan ketidakberaturan tingkat lunak dilakukan dengan cara menghitung kekakuan lateral tiap lantai. Perhitungan ketidakberaturan kekakuan tingkat lunak pada arah x dan y untuk Model 3 dapat dilihat pada Tabel 4.33 dan 4.34.

Lantai	Σk_{ix}	Σk_{iy}	$2 \sum k_{ix + 1}$	$\infty \Sigma k_{iy+1}$	$2 \sum k_{ix+3}$	$\infty \Sigma k_{iy+3}$
Lantai	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)
19	64746,9	68712,3	-	-	-	-
18	103748,0	108196,5	160,24	157,46	160,24	157,46
17	121072,5	125247,9	116,70	115,76	143,71	141,60
16	159834,9	164339,8	132,02	131,21	165,59	163,17
15	198086,2	205096,9	123,93	124,80	154,49	154,68
14	143838,0	147267,4	72,61	71,80	90,09	89,31
13	133837,9	134880,4	93,05	91,59	80,02	78,31
12	142486,0	142694,7	106,46	105,79	89,85	87,86
11	193797,2	193667,0	136,01	135,72	138,37	136,76
10	272558,9	276238,5	140,64	142,64	173,93	175,86
9	196971,3	200098,5	72,27	72,44	97,06	97,99
8	185161,7	185862,3	94,00	92,89	83,74	83,22
7	204062,7	204005,5	110,21	109,76	93,51	92,42
6	296857,1	297644,5	145,47	145,90	151,92	151,35
5	431840,5	441210,0	145,47	148,23	188,83	192,52
4	372446,1	376374,2	86,25	85,30	119,79	119,76
3	349295,1	349172,8	93,78	92,77	95,16	93,93
2	303092,6	300396,2	86,77	86,03	78,82	77,24
1	534008,7	533669,5	176,19	177,66	156,32	156,05

Tabel 4.33: Ketidakberaturan kekakuan tingkat lunak pada gempa arah x.

Lontai	Σk_{ix}	Σk_{iy}	$2 \sum k_{ix + 1}$	$\infty \Sigma k_{iy+1}$	$2 \sum k_{ix+3}$	$2 \sum k_{iy+3}$
Lantai	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)
19	68694,7	64470,0	-	-	-	-
18	107239,2	102751,4	156,11	159,38	156,11	159,38
17	123243,1	120253,2	114,92	117,03	140,10	143,83
16	161704,2	159620,6	131,21	132,74	162,15	166,58
15	201772,9	196800,5	124,78	123,29	154,34	154,30
14	143798,2	141673,3	71,27	71,99	88,63	89,16
13	133714,7	132326,4	92,99	93,40	79,08	79,70
12	140255,8	141231,3	104,89	106,73	87,79	89,99
11	190721,5	193411,6	135,98	136,95	136,96	139,74
10	271575,3	270393,5	142,39	139,80	175,33	173,71
9	194914,5	194004,0	71,77	71,75	97,04	96,19
8	184617,1	183414,1	94,72	94,54	84,27	83,65
7	199762,7	202224,9	108,20	110,26	92,04	93,65
6	291672,8	295821,4	146,01	146,28	151,05	153,11
5	429062,3	427474,8	147,10	144,50	190,40	188,19
4	367966,8	366851,6	85,76	85,82	119,92	118,91
3	348418,3	346332,0	94,69	94,41	96,01	95,31
2	295095,1	299087,9	84,70	86,36	77,29	78,66
1	533034,4	529572,4	180,63	177,06	158,10	156,95

Tabel 4.34. Ketidakberaturan kekakuan tingkat lunak pada gempa arah y.

Berdasarkan Tabel 4.33 dan 4.34 nilai $\%\Sigma k_{ix +1}$, $\%\Sigma k_{iy +1}$, $\%\Sigma k_{ix +3}$, $\%\Sigma k_{ix +3}$ menunjukkan bahwa kekakuan lateral tiap lantai lebih besar dari 70% kekakuan lateral tingkat di atasnya atau 80% kekakuan rata-rata tiga tingkat di atasnya artinya gedung tidak memiliki ketidakberaturan kekakuan tingkat lunak (*soft story*) terhadap masing-masing arah.

4.2.3.7. Ketidakberaturan Torsi

Pada sub bab 4.3.1.1 dapat diketahui bahwa struktur gedung pada Model 1 tidak memiliki ketidakberaturan torsi. Oleh karena itu, struktur tidak memiliki eksentrisitas sehingga tidak dikategorikan sebagai ketidakberaturan torsi. Walaupun pada Model 1 ini tidak memiliki ketidakberaturan torsi biasa dan berlebihan untuk membuktikannya dapat dilihat pada Tabel 4.35 dan 4.36.

	Rigid				Arah X		
Lantai	diafragma	δx_{min}	δx_{max}	Δx_{min}	Δx_{max}	Δx_{avg}	Δ
	(y/t)	m	m	m	m	m	Ах
19	rigid	0,065	0,065	0,003	0,003	0,065	0,702
18	rigid	0,061	0,062	0,004	0,004	0,062	0,702
17	rigid	0,058	0,058	0,004	0,004	0,058	0,702
16	rigid	0,054	0,055	0,003	0,003	0,054	0,702
15	rigid	0,051	0,051	0,003	0,003	0,051	0,702
14	rigid	0,048	0,049	0,004	0,004	0,048	0,702
13	rigid	0,044	0,045	0,004	0,004	0,045	0,703
12	rigid	0,040	0,041	0,004	0,004	0,040	0,703
11	rigid	0,036	0,036	0,004	0,004	0,036	0,703
10	rigid	0,032	0,033	0,002	0,002	0,032	0,703
9	rigid	0,030	0,030	0,003	0,003	0,030	0,704
8	rigid	0,026	0,027	0,004	0,004	0,027	0,704
7	rigid	0,022	0,023	0,004	0,004	0,023	0,704
6	rigid	0,018	0,019	0,003	0,003	0,018	0,704
5	rigid	0,015	0,015	0,002	0,002	0,015	0,705
4	rigid	0,013	0,014	0,003	0,003	0,013	0,705
3	rigid	0,010	0,010	0,004	0,004	0,010	0,706
2	rigid	0,006	0,006	0,004	0,004	0,006	0,706
1	rigid	0,002	0,002	0,002	0,002	0,002	0,705

Tabel 4.35: Ketidakberaturan torsi biasa dan torsi berlebihan pada gempa arah x.

Tabel 4.36: Ketidakberaturan torsi biasa dan torsi berlebihan pada gempa arah y.

	Rigid		Arah Y						
Lantai	diafragma	δx_{min}	δx_{max}	Δx_{min}	Δx_{max}	Δx_{avg}	Δ		
	(y/t)	m	m	m	m	m	Аχ		
19	rigid	0,012	0,013	0,001	0,001	0,013	0,714		
18	rigid	0,012	0,012	0,001	0,001	0,012	0,715		
17	rigid	0,011	0,011	0,001	0,001	0,011	0,715		
16	rigid	0,010	0,011	0,001	0,001	0,010	0,715		
15	rigid	0,010	0,010	0,000	0,000	0,010	0,715		
14	rigid	0,009	0,009	0,001	0,001	0,009	0,716		
13	rigid	0,009	0,009	0,001	0,001	0,009	0,716		
12	rigid	0,008	0,008	0,001	0,001	0,008	0,716		
11	rigid	0,007	0,007	0,001	0,001	0,007	0,716		
10	rigid	0,006	0,006	0,000	0,000	0,006	0,716		
9	rigid	0,006	0,006	0,001	0,001	0,006	0,716		
8	rigid	0,005	0,005	0,001	0,001	0,005	0,717		
7	rigid	0,004	0,005	0,001	0,001	0,004	0,717		

	Rigid						
Lantai	diafragma	δx_{min}	δx_{max}	Δx_{min}	Δx_{max}	Δx_{avg}	Δ
	(y/t)	m	m	m	m	m	Ах
6	rigid	0,004	0,004	0,001	0,001	0,004	0,717
5	rigid	0,003	0,003	0,000	0,000	0,003	0,717
4	rigid	0,003	0,003	0,001	0,001	0,003	0,716
3	rigid	0,002	0,002	0,001	0,001	0,002	0,716
2	rigid	0,001	0,001	0,001	0,001	0,001	0,718
1	rigid	0,000	0,000	0,000	0,000	0,000	0,722

Tabel 4.36: Lanjutan.

4.2.3.8. Ketidakberaturan Berat (Massa)

Berdasarkan SNI 1726:2012 Tabel 11, ketidakberaturan berat (massa) didefinisikan ada jika massa efektif semua tigkat lebih dari 150 persen massa efektif tingkat didekatnya. Pemeriksaan gedung dengan ketidakberaturan massa dapat dilihat pada Tabel 4.37.

			Massa	Massa	Ketidakbe	Ketidakbe
	Magg V	Mass V	Lantai n/	Lantai n/	raturan	raturan
Story	WIASS A	Iviass 1	Lantai	Lantai	massa (X)	massa (Y)
Story			n+1 -X	n+1 -Y	> 150%	> 150%
	ka	ka	06 W/	0/ W/	$\%W_{x\pm1}>$	$W_{y \pm 1} >$
	кg	ĸg	70 VV X ±1	70 vv y ±1	150%	150%
19	380202,5	380202,5	82,6%	82,6%	Tidak	Tidak
18	460104,9	460104,9	219,0%	219,0%	Ada	Ada
17	210058,4	210058,4	95,5%	95,5%	Tidak	Tidak
16	219938,8	219938,8	104,7%	104,7%	Tidak	Tidak
15	219938,8	219938,8	102,3%	102,3%	Tidak	Tidak
14	215098,4	215098,4	97,8%	97,8%	Tidak	Tidak
13	215098,4	215098,4	100,0%	100,0%	Tidak	Tidak
12	215098,4	215098,4	100,0%	100,0%	Tidak	Tidak
11	219938,8	219938,8	102,3%	102,3%	Tidak	Tidak
10	219938,8	219938,8	100,0%	100,0%	Tidak	Tidak
9	226049,5	226049,5	102,8%	102,8%	Tidak	Tidak
8	231761,5	231761,5	102,5%	102,5%	Tidak	Tidak
7	231761,5	231761,5	100,0%	100,0%	Tidak	Tidak
6	236601,8	236601,8	102,1%	102,1%	Tidak	Tidak
5	236601,8	236601,8	100,0%	100,0%	Tidak	Tidak

Tabel 4.37: Ketidakberaturan berat (massa).

			Massa	Massa	Ketidakbe	Ketidakbe
	Mass V	Mass V	Lantai n/	Lantai n/	raturan	raturan
Story	IVIASS A	Iviass 1	Lantai	Lantai	massa (X)	massa (Y)
			n+1 -X	n+1 -Y	> 150%	> 150%
	ka	ka	%W.	% W	$\%W_{x\pm1}>$	$W_{y \pm 1} >$
	кg	ĸg	∕0 vv _X ±1	70 vv y ±1	150%	150%
4	231761,5	231761,5	98,0%	98,0%	Tidak	Tidak
3	231761,5	231761,5	100,0%	100,0%	Tidak	Tidak
2	231761,5	231761,5	100,0%	100,0%	Tidak	Tidak
1	231761,5	231761,5	100,0%	100,0%	Tidak	Tidak

Tabel 4.37: Lanjutan.

Pada Tabel 4.37 didapat nilai $W_{\pm 1}$ lantai 18 lebih besar dari 150% maka ada ketidakberaturan massa. Namun jika meninjau pasal refrensi sesuai SNI 1726:2012 Tabel 13 dengan kategori desain seismik D semua struktur lainnya dengan analisis spektrum respon ragam maka diijinkan.

4.2.3.9. Pengaruh P-Delta

Berdasarkan SNI 1726:2012 Pasal 7.8.7, pengaruh P-Delta ditentukan berdasarkan nilai koefisen stabilitas (θ). Jika nilai koefisien stabilitas lebih kecil dari 0,1 maka P-Delta dapat diabaikan. Berikut ini hasil perhitungan P-Delta masing-masing arah baik arah x dan y yang disajikan pada Tabel 4.38 dan 4.39.

		Stowy	Gaya	Beban	Beban		
Lontoi	Tinggi	Story Drift	Geser	Vertikal	Vertikal	Stability	Calz
Lainai	(m)	DIIIt (m)	Seismik,	Total	Kumulatif	Ratio (θ_x)	Сек
		(111)	V_{x} (kN)	(kN)	(kN)		
19	76	0,0179	203,6	3729,8	3729,8	0,00079	P-Delta No
18	72	0,0202	407,8	4513,6	8243,4	0,00103	P-Delta No
17	68	0,0205	475,8	2060,7	10304,1	0,00119	P-Delta No
16	64	0,0184	520,6	2157,6	12461,7	0,00125	P-Delta No
15	60	0,0138	553,9	2157,6	14619,3	0,00111	P-Delta No
14	56	0,0207	583,6	2110,1	16729,4	0,00193	P-Delta No
13	52	0,0241	611,0	2110,1	18839,5	0,00260	P-Delta No
12	48	0,0240	635,2	2110,1	20949,6	0,00300	P-Delta No
11	44	0,0199	657,5	2157,6	23107,2	0,00290	P-Delta No
10	40	0,0121	680,6	2157,6	25264,8	0,00205	P-Delta No

Tabel 4.38: Perhittungan P-Delta pada arah x berdasarkan SNI 1726:2012.

Tabel 4.38: Lanjutan.

Lantai	Tinggi (m)	Story Drift (m)	Gaya Geser Seismik	Beban Vertical Total	Beban Vertical Komulatif	Stability Ratio (θ_x)	Cek
_	_	< /	$V_{\rm x}$ (kN)	(kN)	(kN)		
9	36	0,0192	709,0	2217,5	27482,4	0,00376	P-Delta No
8	32	0,0227	743,6	2273,6	29756,0	0,00516	P-Delta No
7	28	0,0226	780,9	2273,6	32029,5	0,00601	P-Delta No
6	24	0,0181	820,7	2321,1	34350,6	0,00574	P-Delta No
5	20	0,0099	864,0	2321,1	36671,7	0,00382	P-Delta No
4	16	0,0188	909,1	2273,6	38945,2	0,00913	P-Delta No
3	12	0,0231	949,5	2273,6	41218,8	0,01520	P-Delta No
2	8	0,0214	976,7	2273,6	43492,4	0,02165	P-Delta No
1	4	0,0112	986,7	2273,6	45766,0	0,02367	P-Delta No

Tabel 4.39: Perhittungan P-Delta pada arah y berdasarkan SNI 1726:2012.

Lantai	Tinggi (m)	Story Drift (m)	Gaya Geser Seismik, V _v (kN)	Beban Vertikal Total (kN)	Beban Vertikal Kumulatif (kN)	Stability Ratio (θ _y)	Cek
19	76	0,0175	60,9	3729,8	3729,8	0,0026	P-Delta No
18	72	0,0206	122,0	4513,6	8243,4	0,0035	P-Delta No
17	68	0,0205	142,3	2060,7	10304,1	0,0040	P-Delta No
16	64	0,0184	155,6	2157,6	12461,7	0,0042	P-Delta No
15	60	0,0138	165,5	2157,6	14619,3	0,0037	P-Delta No
14	56	0,0208	174,4	2110,1	16729,4	0,0065	P-Delta No
13	52	0,0242	182,6	2110,1	18839,5	0,0087	P-Delta No
12	48	0,0241	189,9	2110,1	20949,6	0,0101	P-Delta No
11	44	0,0200	196,6	2157,6	23107,2	0,0097	P-Delta No
10	40	0,0121	203,5	2157,6	25264,8	0,0068	P-Delta No
9	36	0,0193	212,0	2217,5	27482,4	0,0126	P-Delta No
8	32	0,0228	222,3	2273,6	29756,0	0,0173	P-Delta No
7	28	0,0227	233,4	2273,6	32029,5	0,0202	P-Delta No
6	24	0,0182	245,2	2321,1	34350,6	0,0193	P-Delta No
5	20	0,0099	258,2	2321,1	36671,7	0,0128	P-Delta No
4	16	0,0189	271,6	2273,6	38945,2	0,0307	P-Delta No
3	12	0,0232	283,7	2273,6	41218,8	0,0512	P-Delta No
2	8	0,0215	291,8	2273,6	43492,4	0,0729	P-Delta No
1	4	0,0113	294,8	2273,6	45766,0	0,0796	P-Delta No

Pada Tabel 4.38 dan 4.39 menunjukkan nilai stabilitas rasio (θ) untuk masing-masing arah baik arah x dan y. Sesuai SNI 1726:2012 pada semua lantai kurang dari 0,1 sehingga pengaruh P-Delta dapat diabaikan.

4.3. Perhitungan Struktur Dengan ETABS V16.2

4.3.1 Peraturan yang Digunakan

Peraturan yang digunakan adalah SNI Struktur Beton untuk Gedung 03-2847-2013 yang mengadopsi peraturan ACI 318-11. Perbedaan yang harus disesuaikan adalah faktor reduksi untuk SNI Beton Indonesia. Perbedaan faktor reduksi tersebut karena masih lemahnya tingkat pengawasan kerja dan mutu untuk proyek konstruksi di Indonesia. Faktor reduksi berdasarkan SNI Beton 03-2847-2013 Pasal 9.3 adalah sebagai berikut.

- Reduksi lentur (bending) = 0.9

Nilai reduksi tersebut dapat diganti pada ETABS dengan cara *Options* – *Preferences* – *Concrete Frame Design* dapat dilihat pada Gambar 4.1.

			Item Description
	ltem	Value	The selected design code.
01	Design Code	ACI 318-11	selected code.
02	Multi-Response Case Design	Step-by-Step - All	
03	Number of Interaction Curves	24	
04	Number of Interaction Points	11	
05	Consider Minimum Eccentricity?	Yes	
06	Seismic Design Category	D	
07	Design System Omega0	2	
08	Design System Rho	1	
09	Design System Sds	0,5	
10	Phi (Tension Controlled)	0,9	
11	Phi (Compression Controlled Tied)	0,65	
12	Phi (Compression Controlled Spiral)	0,75	
13	Phi (Shear and/or Torsion)	0,75	
14	Phi (Shear Seismic)	0,6	
15	Phi (Joint Shear)	0,85	
16	Pattern Live Load Factor	0,75	
17	Utilization Factor Limit	1	Explanation of Color Coding for Values
			Blue: Default Value
To De All	efault Values Reset To P Items Selected Items All Ite	ems Selected Items	Black: Not a Default Value Red: Value that has changed durin the current session

Gambar 4.1: Penyesuaian faktor reduksi sesuai SNI beton 03-2847-2013.

4.3.2 Efektifitas Penampang

Pada struktur beton pengaruh keretakan beton harus diperhitungkan terhadap kekakuannya. Maka, momen inersia penampang unsur struktur dapat ditentukan sebesar momen inersia penampang utuh dikalikan dengan persentase efektifitas penampang berdasarkan SNI Beton 03-2847-2013 Pasal 10.10.4.1 sebagai berikut. Balok = 0,35 Ig , Kolom = 0,70 Ig, Plat Lantai = 0,25 Ig

Nilai persentase efektifitas penampang tersebut diinput ke ETABS dengan cara *Define – Frame Sections – Modify/ Show Property – Set Modifiers* dapat dilihat pada Gambar 4.2 sampai Gambar 4.4.

frame Section Property Data		×	Property/Stiffness Modification Factors	>
General Data Property Name Metrial Metrial Site Data Dealar Color Notes Stage Sector Shape Sector Shape	Statistical State FC 40 V Modity/Shew Netteral State Modity/Shew Netteral	2	Property/Stiffness Modifiers for Analysis Cross-section (axial) Area 1 Shear Area in 2 direction 1 Shear Area in 3 direction 1 Torsional Constant 1 Moment of Inertia about 2 axis 0.35 Moment of Inertia about 3 axis 0.35	
Source, User Defined Saction Dimensione Depth Width	000 mm	Propony Modifien Nodry/Show Modifien Currently User Specified Reinforcement Modify/Show Reber	Mass 1 Weight 1	
	Show Sector Properties	OK Cancel	0K Cancel	

Gambar 4.2: Input nilai persentase efektifitas penampang balok.

General Data			- Property/Stiffness Modifiers for Analysis
Property Name Material Notional Sao Data Display Color Notes Shape Section Shape	FC 40 v FC 40 v Modfy/Show National Sce. v Change. Modfy/Show National Sce.		Cross section (axial) Area 1 Shear Area in 2 direction 1 Shear Area in 3 direction 1 Toreional Constant 0 Moment of Inetia about 2 axis 0,7 Mess 1
Section Property Source Source: User Defined Section Dimensions Depth Width	1000 mm	Proof V Molfen Modify/Show Modfers. Currently User Specified Rel/accement Modify/Show Peter.	Weylk 1
	Drow Getter Director	OK	

Gambar 4.3: Input nilai persentase efektifitas penampang kolom.

neral Data		Property/Stiffness Modifiers for Analy	sis
Property Name	LANTAI 12CM	Membrane f11 Direction	1
Slab Material	FC 20 ~	Membrane f22 Direction	1
Notional Size Data	Modify/Show Notional Size	Membrane f12 Direction	1
Modeling Type	Shell-Thin V	Bending m11 Direction	0,25
Modifiers (Currently User Specified)	Modify/Show	Bending m22 Direction	0,25
Display Color	Change	Bending m12 Direction	0,25
Property Notes	Modify/Show	Shear v13 Direction	1
	Houry or on	Shear v23 Direction	1
		Mass	1
pperty Data		Weight	1
Туре	Slab		
Thickness	120 mm		
		ОК	Cancel

Gambar 4.4: Input nilai persentase efektifitas penampang plat lantai.

4.3.3 Analisi Gaya Dalam

Analisis untuk mengetahui besarnya gaya dalam berupa momen dan gaya geser dapat dilakukan dengan cara Analyze – Run Analyze. Kemudian Display – Show Member Forces/ Stress Diagram – Frame/ Pier/ Spandrel Forces dapat dilihat pada Gambar 4.5.

Case	O Combo	O Mode
BEBAN MATI	~	
omponent		
Axial Force	O Torsion	O Inplane Shear
O Shear 2-2	O Moment 2-2	O Inplane Moment
O Shear 3-3	Moment 3-3	
 Automatic User Defined splay Options Fill Diagram Show Values at 	Scale Fact Controlling Stations on I	or
clude Frames Links	Piers	Spandrels

Gambar 4.5: Pilihan untuk menampilkan diagram momen dan gaya geser.

Keterangan :

- *Axial Force* : untuk menampilkan gaya aksial.
- *Shear 2-2* : untuk menampilkan gaya geser pada sumbu 2-2.
- *Shear 3-3* : untuk menampilkan gaya geser pada sumbu 3-3.
- *Torsi* : untuk menampilkan besarnya torsi.
- *Moment 2-2* : untuk menampilkan momen pada sumbu 2-2.
- *Moment 3-3* : untuk menampilkan momen pada sumbu 3-3.
- *Fill Diagram* : untuk menampilkan warna pada diagram momen dan gaya geser.
- *Show Values on Diagram* : untuk menampilkan nilai pada diagram momen dan gaya geser.

Diagram momen dan gaya geser yang terjadi akibat berbagai macam kombinasi pembebanan ditunjukkan pada Gambar 4.6 – Gambar 4.8 sebagai berikut.

Gambar 4.6: Diagram momen dan gaya geser akibat beban mati dan hidup.

Gambar 4.7: Diagram momen dan gaya geser akibat gempa respons spektrum arah Y.

Gambar 4.8: Diagram momen dan gaya geser akibat gempa respons spektrum arah Y.

Setelah di *Run*, Struktur dapat dianalisa kekuatannya dalam menahan berbagai macam beban yang ada dengan cara *Design – Concrete Frame Design – Start Design/Start of Structur* dapat dilihat pada Gambar 4.9.

Gambar 4.9: Pengecekan struktur dengan ETABS.

Beberapa frame balok yang berwarna merah (*Overstress*) dapat dimodifikasi dengan cara : memeriksa kembali pemodelan struktur, meningkatkan mutu material, atau memperbesar dimensi.

4.3.4 Penulangan Balok

Pada penulangan balok ini hanya menampilkan perhitungan satu balok saja yaitu pada balok lantai 1-9 saja dikarenakan keterbatasan waktu yang ada yaitu dengan dimensi balok terbesar 600mm x 800mm.

Luas tulangan utama balok secara otomatis dapat diketahui dengan cara Design – Concrete Frame Design – Display Design Info – Longitudinal Reinforcing. Balok yang akan dianalisis dapat dilihat pada Gambar 4.10.

Gambar 4.10: Tampak luas lulangan utama balok arah memanjang.

Luas tulangan geser (sengkang) secara otomatis dapat diketahui dengan cara Design – Concrete Frame Design – Display Design Info – Shear Reinforcing dapat dilihat pada Gambar 4.11.

Gambar 4.11: Tampak luas tulangan geser (sengkang) arah memanjang.

Luas tulangan torsi secara otomatis dapat diketahui dengan cara Design – *Concrete Frame Design – Display Design Info – Torsion Reinforcing* dapat dilihat pada Gambar 4.12.

Gambar 4.12: Tampak luas tulangan torsi arah memanjang.

Detail besarnya momen, gaya geser, torsi, dan luas tulangan balok yang ditinjau dapat diketahui dengan cara klik kanan elemen, kemudian *Summary* dapat dilihat pada Gambar 4.13.

Level	Element	ent Unique Name		Section ID		Comb	o ID	Station Loc		Length (mm)		nm)	LLRF	Туре
Story3	B3		126	B1 20x3	30 LT 1-9	DCon6 4000		000	4500			1	Sway Special	
Section Properties														
	b (mm) h (mm) b, (mm) d, (mm) d, (mm) d, (mm)													
	600		600	800	600		0	40		40				
	Material Properties													
		E _c (MPa) f' _c (MPa) Lt.Wt Factor (Unitless) f _y (MPa) f _{ys} (MPa)												
		29725,41			40		1		392		294			
		Design Code Parameters												
	_	Φ_{T} Φ_{CTied}			Φα	Φ _{CSpiral} Φ _{Vins}		Φ _{vs}		Φ _{vjoint}		t		
	_	0,9 0,65		,65	0,75		0,75		0	0,6 0,85		0,85		
		Design Moment and Flexural Reinforcement for Moment, M _{u3}												
			-1	Design Moment kN-m	Design +Momen kN-m	n -Mo nt Re m	ment ebar nm²	+Mo Re n	oment ebar hm²	Minir Ret mi	num bar n²	Req Re m	uired bar m²	
		Top (+2 Axis)		38,2882		1	43	0		191		1	91	
	В	Bottom (-2 Axis)			25,7429	9	0		96 128		28 12		28	
		Shear Force and Reinforcement for Shear, $V_{\mbox{\tiny u2}}$												
		Shear V u2 kN		Shear kN	Shear ΦV ₀ kN		Shear ΦV₅ kN		Shear V p kN		Rebar A _v /S mm²/m		/s	
		257,3698		0		257	7,3698 23		238,8208		1535,8			
Torsion Force and Torsion Reinforcement for Torsion, T _a														
		Φ*T ս kN-m		Tcr KN-m	Area A。 cm²	Peri	Perimeter, j mm		, p _h Rebar A, / mm²/m		A,/s Rebar A /m mm ²		Δ,	
		0.4	684 3	2,4097	3089,3	2	444,4		c)	0			

Beam Element Details (Summary)

Gambar 4.13: Detail informasi momen, luas tulangan, gaya geser, dan torsi, Balok yang ditinjau.

4.3.4.1 Desain Tulangan Utama Balok

Detail luas tulangan utama yang ditinjau pada Gambar 10.10 ditunjukkan sebagai berikut.

Digunakan tulangan ulir diameter 16 (D16) \rightarrow As = ¹/₄ Π d 2

 $= \frac{1}{4} \times 3,14 \times 256 = 200 \text{ mm2}$

a. Tulangan utama daerah tumpuan : Luas tulangan bagian atas = 1233 mm2 → jumlah tulangan = 1233 / 200 = 6,2 ≈ 7 Luas tulangan bagian bawah = 1078 mm2 → jumlah tulangan = 1078 / 200 = 5,3 ≈ 5
b. Tulangan utama daerah lapangan : Luas tulangan bagian atas = 457 mm2 → jumlah tulangan = 457 / 200 = 2,2 ≈ 3

Luas tulangan bagian bawah = 550 mm2 \rightarrow jumlah tulangan

 $= 550 / 200 = 2,7 \approx 3$

4.3.4.2 Desain Tulangan Geser (Sengkang)

Detail luas tulangan geser (sengkang) yang ditinjau pada Gambar 10.11 ditunjukkan sebagai berikut.

Digunakan tulangan polos diameter $12 \rightarrow As = \frac{1}{4} \prod d 2$

 $= \frac{1}{4} \times 3,14 \times 144 = 113 \text{ mm2}$

a. Tulangan geser daerah tumpuan :

Asumsi digunakan sengkang 2P12 - 125 (sengkang 2 kaki diameter 12 mm setiap jarak 125 mm), maka luas tulangan per 1 m :

 $= 2 \text{ x} \frac{1}{4} \text{ J} \text{ d} 2 \text{ x} 1000/125$

= 2 x ¼ x 3,14 x 144 x 1000/125 = 1808 mm2.

Sehingga luas tulangan per meter panjang = 1808 / 1000 = 1,808 mm2 / mm.

Kontrol keamanan : 1,808 > 1,688 \rightarrow sengkang aman dan mampu menahan gaya geser.

b. Tulangan geser daerah lapangan :

Asumsi digunakan sengkang 2P12- 150 (sengkang 2 kaki diameter 13 mm setiap jarak 200 mm), maka luas tulangan per 1 m :

 $= 2 \text{ x} \frac{1}{4} \text{ J} \text{ d} 2 \text{ x} 1000/150$

= 2 x ¼ x 3,14 x 144 x 1000/150 = 1597 mm2.

Sehingga luas tulangan per meter panjang = 1597/1000 = 1,597 mm/2 mm.

Kontrol keamanan : $1,597 > 1,577 \rightarrow$ sengkang aman dan mampu menahan gaya geser.

4.3.4.3 Desain Tulangan Torsi

Detail dari luas tulangan torsi pada balok yang ditinjau pada Gambar 10.12 ditunjukkan sebagai berikut.

Bagian atas menunjukkan luas tulangan torsi untuk sengkang dan bagian bawah menunjukkan luas tulangan torsi untuk tulangan utama (atas dan bawah).

Karena luas tulangan torsi lebih kecil dari luas tulangan utama dan sengkang, maka tidak diperlukan tulangan untuk torsi.

4.3.4.4 Desain Tulangan Badan

Dimensi balok yang relatif tinggi (lebih dari 400 mm) membuat resiko retak pada bagian badan semakin besar. Maka harus diberi tulangan pinggang dengan jarak antar tulangan maksimal d/6 atau 200 mm (diambil yang terkecil).

Perhitungan d = tinggi balok - selimut - Dsengkang - $\frac{1}{2}$ Dtul. utama

= 800- 40- 12- (½ x 16) = 740 mm

Maka diambil jarak tulangan minimum 250 mm, sehingga dengan tinggi balok 800 mm digunakan 2 buah tulangan badan pada masing- masing sisi.

4.3.4.5 Kontrol Persyaratan Pada SRPMK

Berdasarkan SNI Beton 03-2847-2013 Pasal 21.5 komponen struktur lentur SRPMK harus memenuhi persyaratan sebagai berikut :

a. Gaya aksial terfaktor pada balok dibatasi maksimum Ag x fc'/ 10

Cek : Ag x fc'/10 = $(800 \times 600) \times 40$ Mpa /10 = 192 kN.

Dari perhitungan ETABS gaya aksial yang terjadi adalah 0. Nilai tersebut dapat diketahui dengan Run - Display - Show Table - Frame Result - BeamForces. Jadi $0 < 192 \text{ kN} \rightarrow \text{OK}.$

- b. Bentang bersih struktur minimal 4x tinggi efektifnya.
 Tinggi efektif = (d) = 800 (40 + 12 + ½ x 16) = 740 mm x 4 = 2960 mm.
 Bentang bersih balok = bentang balok dimensi kolom = 4500 (1000/2)-(800/2) = 3600 mm. Jadi 3600 mm > 2960 mm → OK.
- c. Perbandingan lebar dan tinggi minimal 0,3h
 b = 600 mm, h = 800 mm, b/ h = 600 / 800 = 0,75.
 Jadi 0,75 > 0,3 → OK.
- d. Lebar elemen tidak boleh :

Kurang dari 250 mm, $b = 600 \text{ mm} > 250 \text{ mm} \rightarrow \text{OK}$.

Melebihi lebar komponen struktur pendukung (diukur pada bidang tegak lurus terhadap sumbu longitudinal komponen struktur lentur) + jarak pada tiap sisi komponen struktur pendukung yang tidak melebihi dari ³/₄ tinggi struktur lentur. Jadi b = 600 mm < 800 mm \rightarrow OK.

e. Persyaratan Tulangan Longitudinal

Luas tulangan atas dan bawah tidak boleh kurang dari persyaratan tulangan minimum untuk struktur lentur sesuai SNI Beton 03-2847-2013 Pasal 21.5.2.1 :

$$A_{s} \min = \frac{0.25 \sqrt{fc'}}{fy} b_{W} d = \frac{0.25 \sqrt{40}}{490} \times 600 \times 736 = 924,961$$
$$A_{s} \min = 1.4 b_{W} d / fy = 1.4 \times 600 \times 736 / 490 = 942,371$$

Berdasarkan output tulangan pada Gambar 10.10, luas tulangan di daerah lapangan bagian atas 457 mm2 dan bagian bawah 550 mm2, sehingga luas tulangan total = $1007 \text{ mm2} > 942 \text{ mm2} \rightarrow \text{OK}$.

Cek rasio tulangan :

$$\rho = \frac{As}{b.d} = \frac{942,371}{600 x 736} = 0,002792$$

$$\rho b = \beta \frac{0,85 x fc}{fy} = 0,85 \frac{0,85 x 40}{490} = 0,05898$$

 $\rho max = 0.75 \text{ x } \rho b = 0.75 \text{ x } 0.05898 = 0.04423$

Berdasarkan SNI Beton 03-2847-2002 Pasal 23.3.2, batas rasio tulangan yang digunakan adalah 0,025. Jadi $\rho < \rho max \text{ dan } \rho < 0,025 \rightarrow \text{OK}.$

f. Persyaratan Tulangan Geser

Tulangan geser/ sengkang yang dipasang pada sendi plastis harus memenuhi persyaratan sebagai berikut :

- Sengkang tertutup pertama harus dipasang Ø 50 mm dari muka tumpuan.
- Jarak sengkang tidak boleh lebih = dari d/4
 Cek : jarak sengkang tumpuan 150 mm < 736/4 = 184 → OK.
- Jarak sengkang tidak boleh lebih dari 8 Dutama.
 Cek : jarak sengkang tumpuan 150 mm < 8 x 22 = 176 → OK.
- Jarak sengkang tidak boleh lebih dari 24Dsengkang.
 Cek : jarak sengkang tumpuan 150 mm < 24 x 13 = 312 → OK.
- Jarak sengkang tidak melebihi 300 mm.
 Cek : jarak sengkang tumpuan 150 mm < 300 → OK.
- Jarak sengkang maksimum di sepanjang balok adalah d/2
 Cek : jarak sengkang lapangan 150 mm < 736/2 = 368 mm → OK.
4.3.4.6 Gambar Detail Penulangan Balok

Detail penulangan balok berdasarkan perhitungan yang telah dilakukan ditunjukkan pada Gambar 4.14.

URAIAN	BALOK UTAMA LT 1 - LT 9					
	TUL. TUMPUAN	TUL. LAPANGAN				
- UKURAN BALOK	600 mm	x 800 mm				
- TULANGAN ATAS	7 - D16	3 - D16				
- TULANGAN BADAN	2 - P12	2 - P12				
- TULANGAN BAWAH	5 - D16	3 - Ø16				
- SENGKANG	Ø12- 125	Ø12 - 150				

Gambar 4.14: Detail Penulangan Balok.

4.3.5 Penulangan Kolom

Luas tulangan utama kolom secara otomatis dapat diketahui dengan cara Design – Concrete Frame Design – Display Design Info – Longitudinal Reinforcing. Kolom yang akan dianalisis ditunjukkan pada Gambar 4.15.

Gambar 4.15: Tampak Luas Tulangan Utama Kolom Arah Memanjang.

Luas tulangan geser (sengkang) secara otomatis dapat diketahui dengan cara Design – Concrete Frame Design – Display Design Info – Shear Reinforcing ditunjukkan pada Gambar 4.16.

Gambar 4.16: Tampak Luas Tulangan Geser Kolom Arah Memanjang.

Detail besarnya momen, gaya geser, torsi, dan luas tulangan balok yang ditinjau dapat diketahui dengan cara klik kanan elemen, kemudian *Summary* dapat dilihat pada Gambar 4.17.

Gambar 4.17: Detail Informasi Luas Tulangan, Momen, Gaya Geser, dan Torsi, Kolom yang Ditinjau.

Untuk menampilkan diagram interaksi kolom yang ditinjau guna mendapatkan hasil perhitungan, dapat dilakukan dengan cara klik kanan kolom, kemudian Interaction seperti pada Gambar 4.18.

Gambar 4.18: Diagram Interaksi Kolom yang Ditinjau.

4.3.5.1 Desain Tulangan Utama Kolom

Detail dari luas tulangan utama kolom yang ditinjau = 10000 mm2. Digunakan tulangan ulir diameter $28 \rightarrow As = \frac{1}{4} \Pi d 2$

$$= \frac{1}{4} \times 3,14 \times 784 = 615 \text{ mm2}$$

Maka jumlah tulangan yang dibutuhkan = $10000 / 615 = 16,2 \rightarrow$ digunakan 16 tulangan agar dapat tersebar disemua sisi kolom. Jadi tulangan utama kolom adalah 16D28.

4.3.5.2 Desain Tulangan Geser Kolom

Dari ETABS detail luas tulangan geser (sengkang) kolom yang ditinjau = 1339 mm2. Digunakan tulangan polos $3D16 \rightarrow As = 3 \times \frac{1}{4} \int d2$

$$= 3 x \frac{1}{4} x 3,14 x 256 = 602 mm2$$

Jarak sengkang = $602 / 1339 = 0,450 \text{ mm} \rightarrow \text{digunakan } 150 \text{ mm}$ (sesuai persyaratan). Jadi tulangan geser (sengkang) kolom adalah 3P16- 150.

4.3.5.3 Kontrol Persyaratan Pada SRPMK

Berdasarkan SNI Beton 03-2847-2013 Pasal 21.6 komponen struktur yang menerima kombinasi lentur dan aksial pada SRPMK harus memenuhi persyaratan sebagai berikut :

- a. Gaya aksial terfaktor maksimal yang bekerja pada kolom harus melebihi 0,1 Ag x fc' / 10 Cek : = (1000 mm x 1000 mm) x 40 N/mm2 /10 = 4000 kN. Dari hasil analisis ETABS diperoleh Pu sebesar 1783,742 kN Jadi 1783,742 > 40000 → Not Ok.
- b. Sisi terpendek kolom tidak boleh kurang dari 300 mm.
 Cek : lebar penampang kolom 1000 mm > 300 mm → OK.
- c. Rasio dimensi tidak boleh kurang dari 0,4
 Cek : lebar penampang kolom 1000 mm > 300 mm → OK.
 Maka gaya aksial terfaktor yang bekerja pada klom diijinkan dengan pu= 1783,742 > 4000 diijinkan
- d. Persyaratan Tulangan Geser

Tulangan geser / sengkang kolom yang dipasang harus memenuhi persyaratan sesuai SNI Beton 03-2847-2013 Pasal 23.4 .4.2 bahwa jarak maksimum sengkang dipilih yang terkecil diantara :

- ¹/₄ dimensi penampang kolom terkecil.
 Cek : jarak sengkang kolom di tumpuan 150 mm < ¹/₄ x 1000 = 250 mm OK
- Jarak sengkang tidak boleh lebih dari 6 Dutama.
 Cek : jarak sengkang kolom di tumpuan 150 mm < 6 x 28 = 168 → OK.
- e. Kuat Lentur Kolom

Berdasarkan SNI Beton 03-2847-2013 Pasal 21.6.2 kuat kolom harus memenuhi persyaratan Σ Mnc \geq 1,2 Σ Mnb.

Dimana :

 Σ Mnc = Jumlah Mn dua kolom yang bertemu di join,

 Σ Mnb = Jumlah Mn dua balok yang bertemu di join,

Untuk kolom kuat balok lemah (kontrol strong column weak beam) dihitung melalui program analasis dengan cara run – design – concrete frame design- start design check – design display info – 6/5 beam/column capacity ratios dengan hasil dari perhitung anilisis program struktur tidak boleh lebih dari 1 seperti terlihat pada Gambar 4.19.

Gambar 4.19: Hasil strong column weak beam dari program analisis struktur.

4.3.5.4 Gambar Detail Penulangan Kolom

Dari Hasil perhitungan diatas didapat detail penulangan kolom berdasarkan perhitungan yang telah dilakukan diatas dengan mengontrol *Strong Column Weak Beam* seperti yang telah disyaratkan maka didapatlah jumlah tulangan yang akan digunakan ditunjukkan pada Gambar 4.20.

Gambar 4.20: Detail Penulangan Kolom.

4.3.6 Penulangan Plat Lantai

Besarnya nilai tegangan yang terjadi pada plat lantai secara otomatis dapat diketahui dengan cara *Run – Display – Show Member Forces / Stress Diagram – Shell Stresses/ Forces* seperti pada Gambar 4.21.

Gambar 4.21: Tegangan yang terjadi pada plat Akibat beban mati dan hidup.

Dari hasil analisis program didapatkan Mu = 7, 067 kNm Digunakan tulangan polos P12- 150 Luas tulangan terpakai, As = ¹/₄ x π x d² x b/S = ¹/₄ x 3,14 x 18² x 4500/150 = 3391,2 mm² Tinggi balok regangan, a = $\frac{AS \ x \ fy}{0,85 \ x \ fc' x \ b}$ = $\frac{3391 \ x \ 250}{0,85 \ x \ 20 \ x \ 4500}$ = 11,08 mm Momen nominal, Mn = As x fy x (d - $\frac{a}{2}$) x 10⁻⁶ = 7630,2 x 290 x (12 - $\frac{11,08}{2}$) x 10⁻⁶ = 12,32 Knm Syarat : φ Mn \geq Mu 0,8 x 12,32 \geq 7,067

 $9,851 \ge 7,067 \rightarrow OK$, Plat mampu menerima beban.

4.3.7 Perencanaan Belttruss

Belt-truss direncanakan menggunakan profil WF 257 x 204 x 15 x 8, dengan data-data sebagai berikut :

d	=	257,0	mm	Fy	=	250	Mpa
bf	=	204,0	mm	ix	=	11,0	Cm
tw	=	8,89	mm	iy	=	5,08	Cm
tf	=	15,07	mm	h	=	257,0	Mm
Jx	=	10,350	Cm4	Ag	=	83,3	Cm2
Jy	=	2,215	Cm4	W	=	83,3	Kg/m
Zx	=	804,7	Cm3	r	=	12,7	mm
Zy	=	218,0	Cm3				

Gambar 4.22: Rencana belttruss.

Pu tekan = 154385,33 kN (didapat dari ETABS)

Pu tarik = 154385,33 kN (didapat dari ETABS)

- a. Kontrol Kuat Momen Lentur
- Kontrol plat sayap

$$\lambda = \frac{b}{2.tf} = \frac{204}{2.15,07} = 6,768$$
$$\lambda r = \frac{250}{\sqrt{250}} = \frac{250}{\sqrt{250}} = 14,680$$

 $\lambda \leq \lambda r$ Penampang Tidak Langsing

- Kontrol plat badan

$$\lambda = \frac{h}{tw} = \frac{257}{8,89} = 28,908$$
$$\lambda r = \frac{665}{\sqrt{250}} = \frac{665}{\sqrt{250}} = 42,058$$

 $\lambda \leq \lambda r$ Penampang Tidak Langsing

- b. Kontrol Kekuatan Belttruss
- Panjang belttruss

$$L = \sqrt{fy^2 + L^2} = \sqrt{250^2 + 420^2} = 488,773 \text{ cm}$$

$$Arah X \to \lambda x = \frac{Lkx}{ix} = \frac{615,54}{17,45} = 44,433$$

$$Arah Y \to \lambda y = \frac{Lky}{iy} = \frac{615,54}{6,78} = 96,215$$

$$\lambda y \to \lambda = 96,215$$

- Tegangan kritis Fcr ditentukan sebagai berikut

$$Fe = \frac{\pi^2 x e}{\left(\frac{KL}{r}\right)^2} = \frac{3,14^2 x 2 10^6}{96,215^2} = 213,010 \ Kg/cm^2$$

$$\frac{Lky}{iy} \le 4,71 \sqrt{\frac{E}{fy}}$$

$$96,215 \le 4,71 \sqrt{\frac{2 x 10^5}{250}}$$

$$96,215 \le 133,218$$

$$Fcr = \left[0,658 \frac{fy}{fe}\right] x Fy$$

$$= \left[0,658 \frac{290}{213,0102}\right] x 2500$$

$$= 2009,879 \ Kg/m^2$$

- Belttruss tarik

$$P_{max} = R_y \cdot F_y \cdot A_g$$

= 1,5.2500.83,3 = 312375 Kg
 $\phi_c P_n = 0,9.759510 = 154385,33 Kg$
 $\phi_c P_n \ge P_u$ 154385,33 Kg \ge 26903,514 Kg (OK)

- Belttruss tekan

$$P_{max} = 1,1 R_y . A_g . Fcr$$

= 1,1.1,5.83,3.2009,879 = 276248 Kg
 $\emptyset_c P_n = 0,85.671235,3 = 570550 Kg$
 $\emptyset_c P_n \ge P_u 570550 Kg \ge 26903,514 Kg$ (OK)

4.3.8 Perencanaan Outrigger

Belt-truss direncanakan menggunakan profil WF 310 x 254 x 16 x 9, dengan data-data sebagai berikut :

А	=	110,1	Cm2	Fy	=	290	Mpa
d	=	310	mm	ix	=	13,41	Cm
bf	=	254	mm	iy	=	6,38	Cm
tw	=	9,12	mm	h	=	310	Mm
tf	=	16,28	mm	Ag	=	110,1	Cm2
Jx	=	19,820	Cm4	W	=	86,31	Kg/m
Jy	=	4,471	Cm4	r	=	15,2	mm
Zx	=	1280	Cm3				
Zy	=	350,7	Cm3				

Pu tekan= 154385,33 kg (didapat dari ETABS)Pu tarik= 165062,97 kg (didapat dari ETABS)

- a. Kontrol Kuat Momen Lentur
- Kontrol plat sayap

$$\lambda = \frac{b}{2.tf} = \frac{254}{2.16,28} = 7,8010$$
$$\lambda r = \frac{250}{\sqrt{250}} = \frac{250}{\sqrt{250}} = 14,6805$$

 $\lambda \leq \lambda r$ Penampang Tidak Langsing

- Kontrol plat badan

$$\lambda = \frac{h}{tw} = \frac{310}{9,12} = 33,991$$
$$\lambda r = \frac{665}{\sqrt{250}} = \frac{665}{\sqrt{250}} = 42,058$$

 $\lambda \leq \lambda r$ Penampang Tidak Langsing

- b. Kontrol Kekuatan Outrigger
- Panjang *Outrigger*

$$L = \sqrt{fy^2 + L^2} = \sqrt{250^2 + 420^2} = 488,773 \text{ cm}$$

Arah X \rightarrow \lambda x = $\frac{Lkx}{ix} = \frac{488,773}{13,41} = 36,448$
Arah Y \rightarrow \lambda y = $\frac{Lky}{iy} = \frac{488,773}{6,38} = 76,611$
 $\lambda y \rightarrow \lambda = 76,611$

- Tegangan kritis Fcr ditentukan sebagai berikut

$$Fe = \frac{\pi^2 x e}{\left(\frac{KL}{r}\right)^2} = \frac{3.14^2 x 2 10^6}{76,611^2} = 335,980 \ Kg/cm^2$$

$$\frac{Lky}{iy} \le 4,71 \sqrt{\frac{E}{fy}}$$

$$76,611 \le 4,71 \sqrt{\frac{2 x 10^5}{250}}$$

$$76,611 \le 133,213$$

$$Fcr = \left[0,65 \frac{fy}{fe}\right] x Fy$$

$$= \left[0,65 \frac{250}{335,980}\right] x 2500$$

$$= 1478,13493 \ Kg/m^2$$

- Outrigger tarik

$$P_{max} = R_y \cdot F_y \cdot A_g$$

= 1,5.2500.110,1 = 478935 Kg
 $\phi_c P_n = 0,9.478935 = 431041,5 Kg$
 $\phi_c P_n \ge P_u$ 431041,5 Kg \ge 154385,33 Kg (OK)

- Outrigger tekan

$$P_{max} = 1,1 R_y \cdot A_g \cdot Fcr$$

= 1,1.1,5.174,6.2329,95 = 268525 Kg
$$\phi_c P_n = 0,85.268525 = 241672,84 Kg$$

$$\phi_c P_n \ge P_u \quad 241672,84 Kg \ge 165062,97 Kg$$
 (OK)

4.4. Hasil Perbandingan Pemodelan Struktur

4.4.1. Perbandingan Simpangan Antar Lantai

Berikut ini akan disajikan grafik perbandingan perpindahan total dan rasio simpangan antar lantai pada setiap model dengan analisis respons spektrum ragam, sebagaimana terlihat pada Gambar 4.23 - 4.26.

Gambar 4.23: Grafik perbandingan nilai simpangan arah x terhadap ketinggian gedung (Model 1, 2 dan 3).

Dari Gambar 4.23 dapat disimpulkan bahwa perpindahan (*displacement*) struktur arah x yang terjadi pada Model 2 lebih kecil yaitu 0,0602 m dibandingkan dengan Model 1 = 0,0716 m dan Model 3 = 0,0652 m di karenakan tingkat kekakuan struktur pada Model 2 dengan Penempatan Posisi *belttruss* dan *outrigger* di lantai 4,9,14 lebih efektif, dengan selisih penurunan (%) dari Model 1 adalah Model 2 = 18,86%, dan Model 3 = 9,74%.

Gambar 4.24: Grafik perbandingan nilai simpangan arah y terhadap ketinggian gedung (Model 1, 2 dan 3).

Dari Gambar 4.24 dapat disimpulkan bahwa perpindahan (*displacement*) struktur arah y yang terjadi pada Model 2 lebih kecil yaitu 0,0609 m dibandingkan dengan Model 1 = 0,0719 m dan Model 3 = 0,0654 m di karenakan tingkat kekakuan struktur pada Model 2 dengan Penempatan Posisi *belttruss* dan *outrigger* di lantai 4,9,14 lebih efektif, dengan selisih penurunan (%) dari Model 1 adalah Model 2 = 12,21%, dan Model 3 = 7,02% .

Gambar 4.25: Grafik perbandingan nilai rasio simpangan antar tingkat arah x terhadap ketidnggian gedung (Model 1, 2 dan 3).

Gambar 4.26: Grafik perbandingan nilai rasio simpangan antar tingkat arah y terhadap ketidnggian gedung (Model 1, 2 dan 3).

Dari Gambar 4.25 dan Gambar 4.26 menunjukkan bahwa simpangan antar lantai (*ratio drift*) struktur arah x terkecil terjadi pada Model 2 dibandingkan dengan Model 1 dan 3, dan simpangan antar lantai (*ratio drift*) struktur arah y terkecil terjadi pada Model 1 dibandingkan dengan Model 2 dan 3.

4.4.2. Perbandingan Gaya Geser Lantai

Gaya geser akibat gaya gempa respon spectrum (RS) menunjukan perubahan pada setiap penempatan *Outrigger* dan *Belttruss* yang digunakan. Gaya geser yang terjadi pada gedung tanpa *Outrigger* dan *Belttruss* paling rendah, lalu meningkat dengan penggunaan *Outrigger* dan *Belttruss*. Hal ini menandakan bahwa struktur yang menjadi lebih kaku akan menghasilkan gaya geser yang terjadi semakin besar.

Berikut ini akan disajikan grafik perbandingan gaya geser dasar terhadap ketinggian gedung pada setiap model dengan analisis respons spektrum ragam, sebagiamana terlihat pada Gambar 4.27 - 4.28.

Gambar 4.27: Grafik perbandingan nilai gaya geser dasar arah x terhadap ketinggian gedung (Model 1, 2 dan 3).

Berdasarkan pada Gambar 4.27 nilai gaya geser terbesar untuk arah x terjadi pada Model 2 dengan nilai 1088,702 kN dibandingkan dengan Model 1 yang nilainya 940,249 kN dan Model 3 yang nilainya 1071,997 kN. Besarnya gaya geser yang terjadi pada model 1 dikarenakan besarnya nilai beban lateral yang dikenai pada struktur.

Gambar 4.28: Grafik perbandingan nilai gaya geser dasar arah y terhadap ketinggian gedung (Model 1, 2 dan 3).

Berdasarkan pada Gambar 4.28 nilai gaya geser terbesar untuk arah y terjadi pada Model 2 dengan nilai 457,380 kN dibandingkan dengan Model 3 yang nilainya 181,662 kN dan Model 1 yang nilainya 153,629 kN. Besarnya gaya geser yang terjadi pada model 3 dikarenakan besarnya nilai beban lateral yang dikenai pada struktur.

BAB 5

KESIMPULAN DAN SARAN

5.1. Kesimpulan

Berdasarkan analisis data dan pembahasan mengenai "Perencanaan Bangunan *Tower Air Traffic Control* (ATC) Setinggi 80 M Terhadap Posisi *Belttrus* Berdasarkan SNI 1726-2012 Peta Gempa 2017 Dan SNI 1729-2015", maka dapat diambil kesimpulan sebagai berikut:

- Dari hasil analisis yang deperoleh untuk simpangan yang paling efisien didapat pada Model 2 yaitu SRPMK dengan *Belttruss* dan *Outrigger* di Lt 4, 9 dan 14 dengan simpangan gempa arah x yaitu 0,0602 m dan gempa arah y 0,0609 m dengan selisih kenaikan sebessar 18,86 %, sedangkan untuk gaya geser terbesar di dapat juga pada model 2 dengan nilai gaya geser arah x 1088,702 kN dan gaya geser arah y 215,088 kN dengan selisih kenaikan sebesar 15,79 %.
- Setelah dianalisis, dari ketiga model masing-masing memiliki keuntungan dan kerugian. Namun, penempatan posisi *belttruss* dan yang paling efektif diantara kedua model yang terpasang sistem pengaku adalah penempatan *belttruss* dan *outrigger* pada Lt 4, 9 dan 14 yaitu terdapat pada Model 2, berikut uraiannya.
 - a. Model 2 memiliki waktu getar prioda fundamental terkecil dibandingkan pemodelan yang lainnya.
 - Model 2 memiliki nilai simpangan yang lebih kecil dari tiga model lainnya.
 - c. Penempat posisi *belttruss* tidak terlalu tinggi dan juga tidak terlalu rendah pada lantai struktur gedung.

5.2. Saran

 Pada Tugas Akhir ini, analisa beban struktur gempa hanya menggunakan analisis respon spektrum hingga batas elastis. Penulis menyarankan agar dilakukan peninjauan lebih dalam lagi sampai batas plastis menggunakan analisis *push over* (analisis *non-linear*). Sehingga pada analisis *push over* maka didapat batas leleh maksimum yang terjadi pada struktur beton bertulang menggunakan *beltruss* tersebut.

- 2. Penulis menyarankan nantinya dalam tugas akhir ini dilakukan perbandingan menggunakan analisis *time history* baik itu gempa dekat (*pulse*) dan gempa jauh (*no pulse*).
- 3. Untuk mendapatkan hasil yang akurat sebaiknya tanah yang di tinjau ada 3 jenis yaitu tanah keras, tanah sedang, dan tanah lunak. Di tugas akhir ini penulis hanya meninjau pada 1 jenis tanah yaitu tanah sedang.

DAFTAR PUSTAKA

- Badan Standarisasi Nasional (2012) Persyaratan Beton Struktural Untuk Bangunan Gedung SNI 2847:2013. Jakarta: Departemen Pekerjaan Umum.
- Badan Standarisasi Nasional (2012) *Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung SNI 1726:2012.* Jakarta: Departemen Pekerjaan Umum.
- Badan Standarisasi Nasional (2013) *Beban Minimum Untuk Perancangan Bangunan Gedung dan Struktur Lain SNI 1727:2013*. Jakarta: Departemen Pekerjaan Umum.
- Badan Standarisasi Nasional (2015) Spesifikasi Untuk Banguan Gedung Baja Struktural SNI 1729:2015. Jakarta: Departemen Pekerjaan Umum.
- Badan Standarisasi Nasional (2017) *Peta Sumber Dan Bahaya Gempa Indonesia Tahun 2017*. Jakarta: Departemen Pekerjaan Umum.
- Budiono, B. dan Supriatna, L. (2011) Studi Komparasi Desain Bangunan Tahan Gempa Dengan Menggunakan SNI 03-1726-2002 dan SNI 03-1726-2012. Bandung: ITB.
- Ferrary, E, G. (2017) Desain Penampang Dan Sambungan Outrigger Pada Bangunan Gedung 40 Lantai Berdasarkan SNI 1726:2012 Dan SNI 7860:2015. Laporan Tugas Akhir. Program Studi Teknik Sipil. Medan. UMSU.
- F.A.A (2004) Air Traffic Control Tower, Department of Transportation Federal Aviation Administration.Whashington:America.
- Hartmann. J. H. (2014) *Feasibility Study Of Air Traffic Control Towers Around The Globe*. Netdherlands: University Of Teqnolog.
- Riza, M, M. (2010) Aplikasi Perencanaan Struktur Gedung Dengan ETABS, Jakarta: Indonesia.
- Sarbaini, L. (2017) Prilaku Struktur Gedung Bertingkat Yang Memikul Massa Tidak Seragam Perlantai Terhadap Beban Gempa Menggunakan Sistem Rangka Pemikul Momen Khusus (SRPMK). Laporan Tugas Akhir. Program Studi Teknik Sipil. Medan. UMSU.
- Tumilar, S. (2015) Contoh Analisi Gedung 4 Lantai Di Banda Aceh. Jakarta: Indonesia.

LAMPIRAN

LAMPIRAN

A. Perencanaan Struktur

A1. Perhitungan Tebal Pelat Lantai

Perencanaan tebal pelat lantai mengacu kepada SNI 2847:2013, pelat lantai menggunakan sistem pelat dua arah dimana rasio perbandingan antara ly/lx \leq 2. Berikut ini adalah perhitungan tebal pelat pelat dua arah:

Data-data:

-	Lx = 4500 mm	-	ln	= 4500 mm
-	Ly = 4500 mm	-	β	= ly/lx $=$ 1

-
$$Fy = 400 \text{ Mpa}$$

$$h_{min} = \frac{l_n \left(0.8 + \frac{f_y}{1400}\right)}{36 + 9\beta} \qquad h_{max} = \frac{l_n \left(0.8 + \frac{f_y}{1400}\right)}{36}$$
$$h_{min} = \frac{4500 \left(0.8 + \frac{200}{1400}\right)}{36 + 9(1)} \qquad h_{max} = \frac{4500 \left(0.8 + \frac{200}{1400}\right)}{36}$$
$$h_{min} = 93,33 \quad \text{mm} \qquad h_{max} = 116,667 \,\text{mm}$$

maka, tebal yang digunakan yaitu:

- Seluruh Lantai Bangunan = 120 mm

A2. Perhitungan Berat Tambahan Beban Mati A2.1. Beban Mati Tambahan Pelat Lantai

Berikut ini perhitungan beban mati tambahan pada lantai yang dibedakan menjadi pelat lantai untuk keseluruhan lantai yaitu lantai 1-19.

Beban Mati tambahan pada pelat Lantai 1-17
 Beban Mati

- Spesi Lantai Keramik (t = 2,5 cm)=42 Kg/m^2 =0,42 kN/m^2 - Penutup lantai keramik=24 Kg/m^2 =0,24 kN/m^2 - Plafon + penggantung=18 Kg/m^2 =0,18 kN/m^2

	- M & E		= 4	0 Kg/m	n^2 =	=	4 kN/m^2	
	Total beban mati		= 12	.4 Kg/m	$n^2 =$	= 1,24	4 kN/m^2	
b.	Beban Mati Tambahan pada plat Lan Beban Mati	tai 18	3					
	- Spesi Lantai Keramik (t = 2 cm)	=	42	Kg/m ²	=	0,42	kN/m ²	
	- Penutup Lantai Keramik	=	24	Kg/m ²	=	0,24	kN/m ²	
	- Plafon + penggantung	=	18	Kg/m ²	=	0,18	kN/m ²	
	- Komputer	=	479	Kg/m ²	=	4,79	kN/m ²	
	- M & E	=	40	Kg/m ²	=	0,4	kN/m ²	
	Total beban mati	=	603	Kg/m ²	=	6,03	kN/m ²	
 Beban Mati Tambahan pada plat Lantai 19 Beban Mati 								
	- Spesi Lantai Keramik (t = 2 cm)	=	42	Kg/m ²	=	0,42	kN/m ²	
	- Penutup Lantai Keramik	=	24	Kg/m ²	=	0,24	kN/m ²	
			10	TT (2		0.10	1 2	

-	Plafon + penggantung	=	18	Kg/m ²	=	0,18	kN/m ²	
-	Komputer	=	479	Kg/m ²	=	4,79	kN/m ²	
-	M & E	=	40	Kg/m ²	=	0,4	kN/m ²	
-	Struktur Atap Baja + Kolom	=	50	Kg/m ²	=	0,5	kN/m ²	
-	Antena Sinyal ATC	=	20	Kg/m ²	=	0,2	kN/m ²	
-	Penutup Atap	=	100	Kg/m ²	=	1,0	kN/m ²	
-	Fasad Angin Pesawat	=	120	Kg/m ²	=	1,20	kN/m ²	
-	Fasad tegak Lurus	=	300	Kg/m ²	=	3,00	kN/m ²	
	Total beban mati	=	603	Kg/m ²	=	7,26	kN/m ²	

A2.2. Beban Dinding Dan Kaca

Beban dinding dijadikan sebagai beban terbagi rata yang ditumpu oleh balokbalok yang berhubungan pada masing-masing lantai. Nilai beban dinding yang didapatkan adalah sebagai berikut:

Data	:	Dinding Batako 15 cm	= 2	250 kg	y/m^2	
		Tinggi Setiap Lantai	= 4	4 m		
a. Beba	a. Beban Mati Tambahan pada Dinding Lt 1 - 17					
- Dine	ding	g Batako (15 cm)	=	250	kg/m ²	

Beban garis	=	2500*1/2(4+	4)		
	=	1200 kg/m	$n^2 =$	12,0	kN/m ²

b. Beban Mati Tambahan Dinding Kaca Lt 18

-	Dinding Batako (15 cm)	=	30,54	kg/m ²			
-	Baja Alumunium	=	35	kg/m ²			
		=	65,5	kg/m ²	=	0,658	kN/m ²

A2.3. Beban Tangga

Berikut ini perhitungan beban tangga dimana beban tangga dibedakan menjadi beban tangga base ke lantai 17 dan beban tangga lantai 18 ke lantai 19.

Data Perencanaan	Panjang	Satuan
Tinggi antar lantai ke bordes	2,2	m
Lebar tangga	1,75	m
Kemiringan (α)	30,690	m
Panjang Bordes	3,7	m
Panjang Tangga	3	m
Optrade	0,2	m
Antrade	0,3	m

Tabel A1: Data perencanaan tangga dari base ke lantai 17.

Tabel A2: Data perencanaan tangga dari lantai 18 ke lantai 19.

Data Perencanaan	Panjang	Satuan
Tinggi antar lantai ke bordes	1,8	m
Lebar tangga	1,5	m
Kemiringan (α)	30,690	m
Panjang Bordes	3,7	m
Panjang Tangga	3,3	m
Optrade	0,2	m
Antrade	0,3	m

a. Perhitungan Struktur Tangga

- Tebal pelat tangga base ke lantai 17

$$H_{min} = \frac{Tinggi antar lantai/\sin \alpha}{27}$$

$$H_{min} = \frac{2,2/\sin 30,690}{27}$$

 $H_{min} = 0,147 \text{ m}$, diambil h = 0,150 m

- Tebal pelat tangga lantai 18 ke lantai 19

$$H_{min} = \frac{Tinggi antar lantai/sin \alpha}{27}$$
$$H_{min} = \frac{1,8/sin 30,690}{27}$$

$$H_{min} = 0,120 \text{ m}$$
, diambil h = 0,150 m

- Tebal pelat bordes diambil h = 0,120 m (diambil dari interval pelat lantai).
- b. Perhitungan beban tambahan tangga

Data perencanaan :

-

-

1. Berat jenis beton bertul	ang = 2400 k	kg/m ³	
2. Berat jenis tulangan	= 7850 k	kg/m^3	
3. Adukan semen	= 21 k	kg/m^2	
4. Penutup lantai keramik	= 24 k	kg/m^2	
5. Railing Tangga	= 89 k	kg/m^2	
6. Poison rasio beton	= 0,2		
7. Poison rasio tulangan	= 0,3		
Beban tangga base ke lanta	i 17		
Berat anak tangga	= 0,080 x 2400	0 = 192	$kg/m^2 = 1,760 kN/m^2$
Adukan semen ($t = 2cm$)	$= 0,02 \ge 21$	= 0,42	$kg/m^2 = 0,004 kN/m^2$
Railing tangga		= 89	$kg/m^2 = 0.89 kN/m^2$
Penutup lantai		= 24	$kg/m^2 = 0.024 kN/m^2$
		= 305,42	$kg/m^2 = 3,054 kN/m^2$
Beban tangga lantai 18 ke l	antai 19		
Berat anak tangga	$= 0,05 \ge 2400$	= 120	$kg/m^2 = 1,2 kN/m^2$
Adukan semen ($t = 2cm$)	$= 0,02 \ge 21$	= 0,42	$kg/m^2 = 0,004 kN/m^2$
Railing tangga		= 89	$kg/m^2 = 0.89 kN/m^2$
Penutup lantai		= 24	$kg/m^2 = 0.240 kN/m^2$
		= 233,42	$kg/m^2 = 2,334 kN/m^2$

-	Beban pelat bordes						
	Adukan semen (t = 2 cm) = 0,02 x	2	1	= 0,42	kg/m	a ² =0,004	4 kN/m^2
	Penutup lantai			= 24	kg/m	² =0,240	$\frac{0 \text{ kN}}{m^2}$
				= 24,42	2 kg/m	² =0,244	4 kN/m^2
c.	Perhitungan beban mati akibat tangaa	L					
-	Beban tangga base ke lantai 17						
	Pelat tangga = 1,75 x 305,42 =	=	534,4	85 kg/m	= 5,34	45 kN/	m
	Pelat tangga = $1,85 \times 24,42$ =	=	<u>45,17</u>	<u>7 kg/m</u>	= 0,4	52 kN/	<u>m</u>
			579,6	62 kg/m	= 5,7	97 kN/	m
-	Beban tangga lantai 18 ke lantai 19						
	Pelat tangga = $1,5 \times 233,42$ =	=	350,1	30 kg/m	= 3,5	01 kN/	m
	Profil tangga = 1,85 x 24,42 =	=	<u>45,17</u>	<u>7 kg/m</u>	= 0,4	52 kN/	<u>m</u>
			395,3	07 kg/m	= 3,9	53 kN/	m
d.	Perhitungan berat sendiri						
-	Beban tangga base ke lantai 17						
	Pelat tangga = $1,75 \ge 0,150 \ge 2400$)	=	630	kg/m =	6,300	kN/m
	Pelat bordes = $1,85 \ge 0,120 \ge 2400$)	=	532,8	kg/m =	5,328	kN/m
				1162,8	kg/m =	11,628	kN/m
-	Beban tangga lantai 18 ke lantai 19						
	Pelat tangga = $1,5 \ge 0,150 \ge 2400$		=	540	kg/m =	5,400	kN/m
	Pelat bordes = $1,85 \ge 0,120 \ge 2400$)	=	532,8	kg/m =	5,328	kN/m
				1072,8	kg/m =	10,728	kN/m

Tabel A3: Rekapitulasi beban mati pada tangga.

Rekapitul					
Beban Mati Pelat Tangga					
Berat Sendiri =		630	kg/m	6,3	kN/m
Beban Tambahan =		534,485	kg/m	5,34	kN/m
	Total	1164,485	kg/m	11,64	kN/m
Beban Mati Pelat Tangga	a Lt 18 Ke Lt 19				
Berat Sendiri =		540	kg/m	5,4	kN/m
Beban Tambahan =		350,13	kg/m	3,50	kN/m
	Total	1285,939	kg/m	8,90	kN/m

Tabel A3: Lanjutan.

Rekapitula									
Beban Mati Pelat Bordes Base Ke Lt 17									
Berat Sendiri =		532,8	kg/m	5,328	kN/m				
Beban Tambahan =		45,177	kg/m	0,45	kN/m				
	Total	577,177	kg/m	5,78	kN/m				
Beban Mati Pelat Bordes	Base Ke Lt 17								
Berat Sendiri =		532,8	kg/m	5,328	kN/m				
Beban Tambahan =	Beban Tambahan = 45,177 kg/m								
	Total	577,177	kg/m	5,78	kN/m				

A2.4. Beban Lift

Beban lift diperhitungkan dengan membuat seluruh beban yang bekerja menjadi beban mati terpusat dan diletakkan yang paling mempengaruhi struktur untuk mendapatkan beban maksimal. Terdapat 2 point yang harus dipenuhi:

1. Beban yang bekerja pada balok penumpu:

Beban yang bekerja merupakan beban akibat dari mesin penggerak lift + berat kereta + perlengkapan (R1) dan berat bandul pemberat + perlengkapan (R2).

2. Koefisien kejut oleh keran:

Koefisien kejut ditentukan oleh pasal 3.3.(3) PPIUG 1983.

 $\psi = (1+k1 . k2 . v) \ge 1,15$

dimana:

- ψ = Koefisien kejut yang nilainya tidak boleh diambil kurang dari 1,15
- v = Kecepatan angkat maksimum dalam m/det pada pengangkatan muatan maksimum dalam kedudukan keran induk dan keran angkat yang paling menentukan bagi struktur yang ditinjau, tidak perlu diambil lebih dari 1,00 m/det.
- k1 = Koefisien yang bergantung pada kekakuan struktur keran induk, keran induk dengan struktur rangka nilainya dapat diambil sebesar 0,6.
- k2 = Koefisien yang bergantung pada ifat mesin angkat dari keran angkatnya, diambil sebesar 1,3.

Kapasitas		Opening		Car Size	
Person	Load (Kg)	Widht Height		Widht	Length
6	450	800		1460	1005
Tuno	Hoist	way	I	Reaction	Speed
Type	Widht	Length	R1	R2	(M/Min)
1 Cars	1800	1440	3600	2000	60

Tabel A4: Spesifikasi lift Hyundai Elevator.

Jadi, beban yang bekerja pada balok penumpu adalah:

- $P = \sum R \cdot \Psi$
 - $= (3600 + 2000) \times (1+0.6 \times 1.3 \times 1)$
 - = 10324 kg
 - = 101,28 KN

Beban P diletakkan di tengah bentang balok penumpu yang merupakan tempat yang paling mempengaruhi struktur untuk mendapatkan beban maksimal.

A3. Perhitungan Beban Hidup

Pada tugas akhir ini, beban hidup dibedakan menjadi dua yaitu beban hidup seragam dan beban hidup tidak seragam. Untuk nilai masing-masing beban hidup dapat dilihat pada Tabel 2.16. Namun, setiap nilai beban hidup perlu dihitung faktor reduksi beban hidup.

A3.1. Reduksi Beban Hidup Merata

Komponen struktur yang memiliki nilai $K_{LL}A_T$ adalah 400 ft² (37,16 m²) atau lebih diizinkan untuk dirancang dengan beban hidup tereduksi. Reduksi beban hidup untuk setiap jenis beban di setiap lantai menggunakan faktor reduksi terbesar (beban dengan reduksi terkecil). Maka A_{TT} diambil yang terkecil sebagai perwakilan untuk setiap jenis beban.

Tabel A5: Beban hidup merata berdasarkan SNI 1727:2013.

Beban Hidup, Lo						
1. Luasan Lantai 1 – Lantai 17	=	56 m ²				

Tabel A5: Lanjutan.

Beban Hidup, Lo						
2. Luasan Lantai 18	=	$182 m^2$				
3. Luasan Lantai 19	=	153 m ²				

a. Reduksi beban hidup Lt 1 – Lt 17

Data-data:

- $K_{LL} = 1$ (SNI 1727-2013 Tabel 4.3)
- A_T = 56 m^2

Faktor reduksi =
$$0,25 + \frac{4,57}{\sqrt{K_{LL}A_T}}$$

= $0,25 + \frac{4,57}{\sqrt{1 \times 56}}$
= $0,86 > 0,4$

b. Reduksi beban hidup Lt 18

Data-data:

- $K_{LL} = 1$ (SNI 1727-2013 Tabel 4.3)
- $A_T = 182 \text{ m}^2$

Faktor reduksi =
$$0,25 + \frac{4,57}{\sqrt{K_{LL}A_T}}$$

= $0,25 + \frac{4,57}{\sqrt{1 \times 182}}$
= $0,59 > 0,4$

c. Reduksi beban hidup Lt 19

Data-data:

- $K_{LL} = 1$ (SNI 1727-2013 Tabel 4.3)
- $A_T = 152 \text{ m}^2$

Faktor reduksi = $0,25 + \frac{4,57}{\sqrt{K_{LL}A_T}}$ = $0,25 + \frac{4,57}{\sqrt{1 \times 152}}$

$$= 0,62 > 0,4$$

A3.2. Beban Hidup Tangga

Perhitungan beban hidup tangga tidak seperti beban mati tangga. Perhitungan beban hidup tangga digabung menjadi satu bagian. Karena nilai beban hidup tangga nilainya yaitu 479 kg/m². Beban hidup tangga dibah menjadi beban per satuan panjang. Berikut ini adalah perhitungan beban hidup tangga.

a. Beban hidup tangaa Lt base – Lt 17

Data-data:

- Beban hidup tangga = 479 kg/m^2 Beban hidup per satuan panjang (keseluruhan) $= 1,75 \times 479 = 838,25 \text{ kg/m} = 8,838$ kN/m Pelat tangga Pelat bordes $= 1,85 \times 479 = 886,15 \text{ kg/m} = 8,862$ kN/m = 1724,4 kg/m = 12,224kN/m Beban hidup tangaa Lt 18 ke 19

b.

Data-data:

- Beban hidup tangga = 479 kg/m^2 Beban hidup per satuan panjang (keseluruhan) Pelat tangga $= 1,5 \times 479$ = 718,5 kg/m = 7,185 kN/m= 1,85 x 479 = 886,15 kg/m = 8,862 kN/mPelat bordes = 1604,65 kg/m = 12,224kN/m

Beban mati tangga dan beban hidup tangga didistribusikan ke sepanjang pelat tangga dan bordes sebagai beban yang diinput ke program SAP 2000 v.19 untuk mendapatkan reaksi yang akan di input ke program ETABS v.16.2 Skema pembebanan untuk input ke program SAP 2000 v.19 dapat dilihat pada Gambar A1.

Gambar A1: Pembebanan tangga.

B. Perhitungan Analisis

B1. Prosedur Gaya Lateral Ekivalen

Berikut ini adalah perhitungan gaya lateral statik ekivalen dari masing-masing model.

a. Gaya Lateral Statik Ekivalen Model 1

Tabel B1: Perhitungan distribusi vertikal gaya gempa dan distribusi horizontal gaya gempa arah x.

Lantai	Tingkat (h _i)	Berat (w _i) Mass x	W h ^{.k}	C	$F_{i=Cvx}\ast_V$	Story Shear V _x
Lunui	(m)	(kN)	••• x 111	νx	(kN)	(kN)
19	76	3729,7869	83200329,58	0,220	31231,1919	31231,19191
18	72	4513,6294	88854336,02	0,235	33353,5556	64584,74753
17	68	2060,6731	35544278,91	0,094	13342,3774	77927,12491
16	64	2110,1155	31636929,56	0,084	11875,6623	89802,78723
15	60	2110,1155	27251594,53	0,072	10229,5241	100032,3114
14	56	2110,1155	23233623,43	0,061	8721,28459	108753,5959
13	52	2110,1155	19575188,74	0,052	7348,00546	116101,6014
12	48	2110,1155	16268067,60	0,043	6106,60010	122208,2015
11	44	2110,1155	13303588,89	0,035	4993,81360	127202,0151
10	40	2110,1155	10672567,93	0,028	4006,19828	131208,2134
9	36	2217,5454	8791113,790	0,023	3299,95041	134508,1638
8	32	2273,5801	6864628,085	0,018	2576,79889	137084,9627

Lantai	Tingkat (h _i)	Berat (w _i) Mass x	$W_{x} h_{i}^{k}$	C _{vx}	$F_{i=Cvx}\ast_V$	Story Shear V _x
	(m)	(kN)		- 14	(kN)	(kN)
7	28	2273,5801	5041266,209	0,013	1892,35732	138977,3200
6	24	2273,5801	3529869,533	0,009	1325,01918	140302,3392
5	20	2273,5801	2315749,681	0,006	869,270868	141171,6101
4	16	2273,5801	1382406,168	0,004	518,918525	141690,5286
3	12	2273,5801	710848,9132	0,002	266,833785	141957,3624
2	8	2273,5801	278390,4371	0,001	104,500369	142061,8627
1	4	2273,5801	56062,56487	0,000	21,0443965	142082,9071
Tota		45481,084	378510840,6	1,000	142082,907	2228888,847

Tabel B1: Lanjutan.

Tabel B2: Perhitungan distribusi vertikal gaya gempa dan distribusi horizontal gaya gempa arah y.

Lantai	Tingkat	Berat (w _i) Mass v	h ^k	C	$F_{i=Cvy*V}$	Story Shear V_y
Lantai	(m)	(kN)	w _i II _i	C_{vy}	(kN)	(kN)
19	76	3729,7869	85947084,39	0,220	31461,4083	31461,40828
18	72	4513,6294	91750538,01	0,235	33585,7948	65047,20303
17	68	2060,6731	36687111,95	0,094	13429,5214	78476,72441
16	64	2110,1155	32639288,07	0,084	11947,7929	90424,51735
15	60	2110,1155	28101406,22	0,072	10286,6760	100711,1934
14	56	2110,1155	23945745,16	0,061	8765,47320	109476,6666
13	52	2110,1155	20163967,24	0,052	7381,13236	116857,7990
12	48	2110,1155	16747318,42	0,043	6130,44906	122988,2480
11	44	2110,1155	13686572,77	0,035	5010,04609	127998,2941
10	40	2110,1155	10971964,09	0,028	4016,34848	132014,6426
9	36	2217,5454	9030590,936	0,023	3305,69804	135320,3406
9	32	2273,5801	7045399,718	0,018	2579,00775	137899,3484
7	28	2273,5801	5168842,710	0,013	1892,08362	139791,4320
6	24	2273,5801	3615016,119	0,009	1323,29676	141114,7288
5	20	2273,5801	2368368,836	0,006	866,954585	141981,6833
4	16	2273,5801	1411453,460	0,004	516,670390	142498,3537
3	12	2273,5801	724221,0824	0,002	265,105155	142763,4589
2	8	2273,5801	2273,580119	0,000	0,83225665	142764,2911
1	4	2273,5801	2273,580119	0,000	0,83225665	142765,1234
Total		45481,084	390009436,4	1,000	142765,123	2242355,457

b. Gaya Lateral Statik Ekivalen Model 2

T anta:	Tingkat	Berat (w _i) Mass x	W Lk	C	$F_{i=Cvx}\ast_{V}$	Story Shear V _x
Lantai	(m_1) (m)	(kN)	w _x n _i	C_{vx}	(kN)	(kN)
19	76	3729,7869	39502547,94	0,210	26742,7057	26742,70566
18	72	4513,6294	42581154,91	0,227	28826,8821	55569,58778
17	68	2060,6731	17201969,57	0,092	11645,5073	67215,09504
16	64	2110,1155	15471462,61	0,082	10473,9768	77689,07185
15	60	2157,5993	13778897,68	0,073	9328,1326	87017,2044
14	56	2157,5993	11887572,46	0,063	8047,73028	95064,9347
13	52	2110,1155	9920952,79	0,053	6716,35462	101781,2893
12	48	2110,1155	8359156,88	0,044	5659,03932	107440,3287
11	44	2110,1155	6938969,13	0,037	4697,59088	112137,9195
10	40	2157,5993	5786010,01	0,031	3917,05272	116054,9723
9	36	2265,0292	4847983,834	0,026	3282,02133	119336,9936
9	32	2273,5801	3782084,403	0,020	2560,42142	121897,4150
7	28	2273,5801	2842028,639	0,015	1924,01603	123821,4310
6	24	2273,5801	2043442,022	0,011	1383,38339	125204,8144
5	20	2321,0640	1412184,035	0,008	956,030028	126160,8445
4	16	2321,0640	875999,523	0,005	593,040161	126753,8846
3	12	2273,5801	463615,6945	0,002	313,861731	127067,7463
2	8	2273,5801	194680,6713	0,001	131,796255	127199,5426
1	4	2273,5801	44169,10959	0,000	29,9019066	127229,4445
Total	76	45765,987	187934881,9	1,000	127229,445	1971385,226

Tabel B3: Perhitungan distribusi vertikal gaya gempa dan distribusi horizontal gaya gempa arah x.

Tabel B4: Perhitungan distribusi vertikal gaya gempa dan distribusi horizontal gaya gempa arah y.

Lantai	Tingkat (h _i)	Berat (w _i) Mass y	$w_i {h_i}^k$	C _{vy}	$F_{i=Cvy}\ast_{V}$	Story Shear V _y
	(m)	(kN)			(kN)	(kN)
19	76	3729,7869	40367251,15	0,211	26904,6688	26904,66879
18	72	4513,6294	43501486,64	0,227	28993,6287	55898,29745
17	68	2060,6731	17568744,20	0,092	11709,5227	67607,82016
16	64	2110,1155	15796550,92	0,082	10528,3605	78136,18061
15	60	2157,5993	14063882,57	0,073	9373,5415	87509,7221
14	56	2157,5993	12129254,74	0,063	8084,11700	95593,8391
13	52	2110,1155	10118902,23	0,053	6744,22224	102338,0613

Lantai	Tingkat (h _i)	Berat (w _i) Mass x	$\mathbf{W} \mathbf{h}^{\mathbf{k}}$	C	$F_{i=Cvx*V}$	Story Shear V_x
Lantai	(m)	(kN)	*** x 111	C _{VX}	(kN)	(kN)
12	48	2110,1155	8522532,81	0,044	5680,24614	108018,3075
11	44	2110,1155	7071510,96	0,037	4713,14382	112731,4513
10	40	2157,5993	5893719,75	0,031	3928,14901	116659,6003
9	36	2265,0292	4935630,911	0,026	3289,58527	119949,1856
8	32	2273,5801	3848194,074	0,020	2564,81143	122513,9970
7	28	2273,5801	2889776,401	0,015	1926,02852	124440,0255
6	24	2273,5801	2076172,223	0,011	1383,76343	125823,7889
5	20	2321,0640	1433495,875	0,007	955,421304	126779,2102
4	16	2321,0640	888228,021	0,005	592,001685	127371,2119
3	12	2273,5801	469411,8358	0,002	312,861778	127684,0737
2	8	2273,5801	2273,580119	0,000	1,51533529	127685,5890
1	4	2273,5801	2273,580119	0,000	1,51533529	127687,1044
Total	76	45765,987	191579292,5	1,000	127687,104	1981332,135

Tabel B4: Lanjutan.

c. Gaya Lateral Statik Ekivalen Model 3

Tabel B5: Perhitungan distribusi vertikal gaya gempa dan distribusi horizontal gaya gempa arah x.

Lantai	Tingkat (h _i)	Berat (w _i) Mass x	$\mathbf{W}_{\mathrm{x}}\mathbf{h}_{\mathrm{i}}^{\mathrm{k}}$	C _{vx}	$F_{i=Cvx*V}$	Story Shear V_x
	(m)	(kN)			(kN)	(kN)
19	76	3729,7869	40895132,30	0,210	26925,0505	26925,05046
18	72	4513,6294	44063206,37	0,227	29010,8868	55935,93728
17	68	2060,6731	17792552,11	0,092	11714,4838	67650,42104
16	64	2157,5993	16354805,49	0,084	10767,8821	78418,30314
15	60	2157,5993	14237695,00	0,073	9373,99232	87792,29547
14	56	2110,1155	12006435,99	0,062	7904,94801	95697,24348
13	52	2110,1155	10239562,70	0,053	6741,65180	102438,8953
12	48	2110,1155	8622087,096	0,044	5676,71791	108115,6132
11	44	2157,5993	7313194,912	0,038	4814,95305	112930,5662
10	40	2157,5993	5959305,649	0,031	3923,56245	116854,1287
9	36	2217,5454	4884389,527	0,025	3215,84568	120069,9744
8	32	2273,5801	3888413,268	0,020	2560,10233	122630,0767
7	28	2273,5801	2918809,252	0,015	1921,72227	124551,7990
6	24	2321,0640	2139837,795	0,011	1408,85326	125960,6522

Tabel B5: Lanjutan.

Lantai	Tingkat (h _i) (m)	Berat (w _i) Mass x (kN)	$W_x h_i^k$	C _{vx}	$F_{i = Cvx * V}$ (kN)	Story Shear V _x (kN)
4	16	2273,5801	877323,9508	0,005	577,623554	127490,5992
3	12	2273,5801	472924,2453	0,002	311,369800	127801,9690
2	8	2273,5801	197946,3760	0,001	130,326419	127932,2954
1	4	2273,5801	44661,68707	0,000	29,4049221	127961,7003
Total	76	45765,987	194354720,8	1,000	127961,700	1984070,496

Tabel B6: Perhitungan distribusi vertikal gaya gempa dan distribusi horizontal gaya gempa arah y.

Lantai	Tingkat	Berat (w _i) Mass v	1 k	C	$F_{i=Cvy*V}$	Story Shear V _y
Lantai	(m)	(kN)	W _i Π _i	C_{vy}	(kN)	(kN)
19	76	3729,7869	41790318,92	0,211	27086,8519	27086,85192
18	72	4513,6294	45015570,54	0,227	29177,3340	56264,18592
17	68	2060,6731	18171918,94	0,092	11778,3279	68042,51378
16	64	2157,5993	16698454,72	0,084	10823,2859	78865,79969
15	60	2157,5993	14532169,05	0,073	9419,18419	88284,98388
14	56	2110,1155	12250534,84	0,062	7940,31804	96225,30192
13	52	2110,1155	10443869,26	0,053	6769,30800	102994,6099
12	48	2110,1155	8790601,883	0,044	5697,72468	108692,3346
11	44	2157,5993	7452884,859	0,038	4830,66877	113523,0034
10	40	2157,5993	6070241,376	0,031	3934,49329	117457,4967
9	36	2217,5454	4972694,785	0,025	3223,10647	120680,6031
8	32	2273,5801	3956381,535	0,020	2564,37193	123244,9751
7	28	2273,5801	2967846,974	0,015	1923,64245	125168,6175
6	24	2321,0640	2174111,985	0,011	1409,17444	126577,7919
5	20	2321,0640	1468265,815	0,007	951,672534	127529,4645
4	16	2273,5801	889570,9367	0,004	576,585124	128106,0496
3	12	2273,5801	478836,7624	0,002	310,363281	128416,4129
2	8	2273,5801	2273,580119	0,000	1,47364580	128417,8865
1	4	2273,5801	2273,580119	0,000	1,47364580	128419,3602
Total	76	45765,987	198128820,4	1,000	128419,360	1993998,243

B3. Hasil Output Analisis ETABS

B3.1. Gaya Geser Dasar

Berikut ini adalah gaya geser lantai untuk setap arah gempa.

a. Gaya Geser Model 1

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
19	76	Тор	206,7058	45,7677
		Bottom	206,7058	45,7677
18	72	Тор	396,6665	86,2797
		Bottom	396,6665	86,2797
17	68	Тор	459,0366	98,2827
		Bottom	459,0366	98,2827
16	64	Тор	501,3909	105,2343
		Bottom	501,3909	105,2343
15	60	Тор	532,9939	109,8141
		Bottom	532,9939	109,8141
14	56	Тор	561,0190	114,0535
		Bottom	561,0190	114,0535
13	52	Тор	587,0785	118,3327
		Bottom	587,0785	118,3327
12	48	Тор	610,5379	122,2764
		Bottom	610,5379	122,2764
11	44	Тор	632,3304	125,9307
		Bottom	632,3304	125,9307
10	40	Тор	655,0341	129,8631
		Bottom	655,0341	129,8631
9	36	Тор	682,2327	134,8436
		Bottom	682,2327	134,8436
8	32	Тор	713,9225	140,8794
		Bottom	713,9225	140,8794
7	28	Тор	747,7679	147,4533
		Bottom	747,7679	147,4533
6	24	Тор	783,8032	154,7661
		Bottom	783,8032	154,7661
5	20	Тор	823,2299	163,4015
		Bottom	823,2299	163,4015
4	16	Тор	864,9548	173,2226
		Bottom	864,9548	173,2226
3	12	Тор	903,2908	182,6720
		Bottom	903,2908	182,6720

Tabel B7: Nilai gaya geser pada setiap lantai akibat gempa x

Tabel B7: Lanjutan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
		Bottom	930,0204	189,4189
1	4	Тор	940,2491	192,0277
		Bottom	940,2491	192,0277

Tabel B8: Nilai gaya geser pada setiap lantai akibat gempa y.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
19	76	Тор	45,8665	205,7831
		Bottom	45,8665	205,7831
18	72	Тор	86,1724	394,8126
		Bottom	86,1724	394,8126
17	68	Тор	98,1544	456,7687
		Bottom	98,1544	456,7687
16	64	Тор	105,101	498,7445
		Bottom	105,101	498,7445
15	60	Тор	109,6987	530,0933
		Bottom	109,6987	530,0933
14	56	Тор	113,966	558,0245
		Bottom	113,966	558,0245
13	52	Тор	118,2699	584,1042
		Bottom	118,2699	584,1042
12	48	Тор	122,2332	607,6148
		Bottom	122,2332	607,6148
11	44	Тор	125,9056	629,426
		Bottom	125,9056	629,426
10	40	Тор	129,8544	652,081
		Bottom	129,8544	652,081
9	36	Тор	134,846	679,1273
		Bottom	134,846	679,1273
8	32	Тор	140,8895	710,537
		Bottom	140,8895	710,537
7	28	Тор	147,4702	743,9922
		Bottom	147,4702	743,9922
6	24	Тор	154,7905	779,5905
		Bottom	154,7905	779,5905

Tabel B8: Lanjutan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
		Bottom	163,4312	818,6211
4	16	Тор	173,2511	860,0519
		Bottom	173,2511	860,0519
3	12	Тор	182,6929	898,1981
		Bottom	182,6929	898,1981
2	8	Тор	189,4311	924,8131
		Bottom	189,4311	924,8131
1	4	Тор	192,0356	934,9901
		Bottom	192,0356	934,9901

Tabel B9: Nilai gaya geser maksimum gabungan pada setiap lantai yang telah diskalakan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
19	76	Тор	26550,3650	5952,9144
		Bottom	26550,3650	5952,9144
18	72	Тор	50949,9026	11184,1305
		Bottom	50949,9026	11184,1305
17	68	Тор	58961,0417	12739,2485
		Bottom	58961,0417	12739,2485
16	64	Тор	64401,2477	13640,833
		Bottom	64401,2477	13640,833
15	60	Тор	68460,5009	14237,558
		Bottom	68460,5009	14237,558
14	56	Тор	72060,1901	14791,402
		Bottom	72060,1901	14791,402
13	52	Тор	75407,4075	15349,996
		Bottom	75407,4075	15349,996
12	48	Тор	78420,6545	15864,384
		Bottom	78420,6545	15864,384
11	44	Тор	81219,7962	16341,017
		Bottom	81219,7962	16341,017
10	40	Тор	84135,9772	16853,523
		Bottom	84135,9772	16853,523
9	36	Тор	87629,5064	17501,372
Tabel B9: Lanjutan.

Tingkat	Tinggi	Lokasi		Vy
	(m)		(KN)	(KN)
		Bottom	91699,9087	18285,745
7	28	Тор	96047,1874	19139,840
		Bottom	96047,1874	19139,840
6	24	Тор	100675,748	20089,926
		Bottom	100675,748	20089,926
5	20	Тор	105739,918	21211,384
		Bottom	105739,918	21211,384
4	16	Тор	111099,281	22485,888
		Bottom	111099,281	22485,888
3	12	Тор	116023,355	23711,319
		Bottom	116023,355	23711,319
2	8	Тор	119456,644	24585,855
		Bottom	119456,644	24585,855
1	4	Тор	120770,471	24923,888
		Bottom	120770,471	24923,888

b. Gaya Geser Model 2

Tabel B10: Nilai gaya geser pada setiap lantai akibat gempa x

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
19	76	Тор	234,9066	49,1038
		Bottom	234,9066	49,1038
18	72	Тор	451,5561	93,4421
		Bottom	451,5561	93,4421
17	68	Тор	521,3688	106,7143
		Bottom	521,3688	106,7143
16	64	Тор	565,8196	114,051
		Bottom	565,8196	114,051
15	60	Тор	599,4878	118,9377
		Bottom	599,4878	118,9377
14	56	Тор	636,676	124,9418
		Bottom	636,676	124,9418
13	52	Тор	668,1545	130,1678

Tinggi	Lokosi	Vx	Vy
(m)	LUKASI	(kN)	(kN)
44	Тор	707,0418	136,1284
	Bottom	707,0418	136,1284
40	Тор	727,1004	139,2909
	Bottom	727,1004	139,2909
36	Тор	761,8929	145,769
	Bottom	761,8929	145,769
32	Тор	803,6907	153,8193
	Bottom	803,6907	153,8193
28	Тор	846,1918	162,1302
	Bottom	846,1918	162,1302
24	Тор	888,5669	170,7167
	Bottom	888,5669	170,7167
20	Тор	935,789	180,8011
	Bottom	935,789	180,8011
16	Тор	991,5411	193,1454
	Bottom	991,5411	193,1454
12	Тор	1041,946	204,4843
	Bottom	1041,946	204,4843
8	Тор	1075,9752	212,1902
	Bottom	1075,9752	212,1902
4	Тор	1088,702	215,0794
	Bottom	1088,702	215,0794
	Tinggi (m) 44 40 36 32 36 32 28 24 20 16 12 8 4 4	Tinggi (m)Lokasi44TopBottom40TopBottom36TopBottom32TopBottom28TopBottom24TopBottom20TopBottom16Top12TopBottom4Top	Tinggi (m) Lokasi Vx (kN) 44 Top 707,0418 Bottom 707,0418 40 Top 727,1004 80ttom 727,1004 36 Top 761,8929 32 Top 803,6907 80ttom 803,6907 846,1918 28 Top 846,1918 24 Top 888,5669 20 Top 935,789 16 Top 991,5411 12 Top 1041,946 8 Top 1075,9752 4 Top 1088,702

Tabel B10: Lanjutan.

Tabel B11: Nilai gaya geser pada setiap lantai akibat gempa y.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
19	76	Тор	49,2081	233,9736
		Bottom	49,2081	233,9736
18	72	Тор	93,3552	449,8465
		Bottom	93,3552	449,8465
17	68	Тор	106,6111	519,339
		Bottom	106,6111	519,339
16	64	Тор	113,9431	563,5221
		Bottom	113,9431	563,5221

Tabel B11: Lanjutan.

Tingkat	Tinggi	Lokasi	Vx	Vy
Inghat	(m)	Lonusi	(kN)	(kN)
14	56	Тор	124,8643	634,2635
		Bottom	124,8643	634,2635
13	52	Тор	130,1101	665,8424
		Bottom	130,1101	665,8424
12	48	Тор	133,6992	688,3229
		Bottom	133,6992	688,3229
11	44	Тор	136,107	704,8049
		Bottom	136,107	704,8049
10	40	Тор	139,2807	724,8054
		Bottom	139,2807	724,8054
9	36	Тор	145,7588	759,4955
		Bottom	145,7588	759,4955
8	32	Тор	153,8122	801,0807
		Bottom	153,8122	801,0807
7	28	Тор	162,1356	843,2349
		Bottom	162,1356	843,2349
6	24	Тор	170,74	885,1846
		Bottom	170,74	885,1846
5	20	Тор	180,8358	931,9948
		Bottom	180,8358	931,9948
4	16	Тор	193,1753	987,397
		Bottom	193,1753	987,397
3	12	Тор	204,505	1037,5375
		Bottom	204,505	1037,5375
2	8	Тор	212,2029	1071,3859
		Bottom	212,2029	1071,3859
1	4	Тор	215,0882	1084,0308
		Bottom	215,0882	1084,0308

Tabel B12: Nilai gaya geser maksimum gabungan pada setiap lantai yang telah diskalakan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
19	76	Тор	23334,1914	4926,7547
		Bottom	23334,1914	4926,7547

Tabel B12: Lanjutan.

Tingkat	Tinggi	Lokasi	Vx	Vy
8	(m)	2011001	(kN)	(kN)
17	68	Тор	51789,6021	10673,9894
		Bottom	51789,6021	10673,9894
16	64	Тор	56205,0739	11408,075
		Bottom	56205,0739	11408,075
15	60	Тор	59549,4679	11898,807
		Bottom	59549,4679	11898,807
14	56	Тор	63243,5173	12501,515
		Bottom	63243,5173	12501,515
13	52	Тор	66370,3998	13026,728
		Bottom	66370,3998	13026,728
12	48	Тор	68596,1350	13386,072
		Bottom	68596,1350	13386,072
11	44	Тор	70233,2274	13627,143
		Bottom	70233,2274	13627,143
10	40	Тор	72225,7266	13944,896
		Bottom	72225,7266	13944,896
9	36	Тор	75681,8017	14593,489
		Bottom	75681,8017	14593,489
8	32	Тор	79833,7407	15399,802
		Bottom	79833,7407	15399,802
7	28	Тор	84055,5411	16233,147
		Bottom	84055,5411	16233,147
6	24	Тор	88264,8256	17094,627
		Bottom	88264,8256	17094,627
5	20	Тор	92955,5815	18105,426
		Bottom	92955,5815	18105,426
4	16	Тор	98493,6556	19340,867
		Bottom	98493,6556	19340,867
3	12	Тор	103500,571	20475,206
		Bottom	103500,571	20475,206
2	8	Тор	106880,825	21245,926
		Bottom	106880,825	21245,926
1	4	Тор	108145,028	21534,804
		Bottom	108145,028	21534,804

c. Gaya Geser Model 3

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
19	76	Тор	222,7103	45,6869
		Bottom	222,7103	45,6869
18	72	Тор	428,8835	86,9144
		Bottom	428,8835	86,9144
17	68	Тор	498,3208	99,8932
		Bottom	498,3208	99,8932
16	64	Тор	552,0452	109,2952
		Bottom	552,0452	109,2952
15	60	Тор	602,1973	118,1171
		Bottom	602,1973	118,1171
14	56	Тор	640,1151	124,5
		Bottom	640,1151	124,5
13	52	Тор	665,7399	128,3453
		Bottom	665,7399	128,3453
12	48	Тор	683,7114	130,6618
		Bottom	683,7114	130,6618
11	44	Тор	702,9068	133,4201
		Bottom	702,9068	133,4201
10	40	Тор	731,7992	138,5876
		Bottom	731,7992	138,5876
9	36	Тор	764,9872	144,7665
		Bottom	764,9872	144,7665
8	32	Тор	799,3605	151,1448
		Bottom	799,3605	151,1448
7	28	Тор	835,0829	157,8553
		Bottom	835,0829	157,8553
6	24	Тор	877,855	166,339
		Bottom	877,855	166,339
5	20	Тор	931,7044	177,6079
		Bottom	931,7044	177,6079
4	16	Тор	985,9962	189,2801
		Bottom	985,9962	189,2801
3	12	Тор	1031,6693	199,251
		Bottom	1031,6693	199,251
2	8	Тор	1061,188	205,7521

Tabel B13: Nilai gaya geser pada setiap lantai akibat gempa x

Tabel B13: Lanjutan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
		Bottom	1061,188	205,7521
1	4	Тор	1071,9979	208,1434
		Bottom	1071,9979	208,1434

Tabel B14: Nilai gaya geser pada setiap lantai akibat gempa y.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
19	76	Тор	45,7742	221,6088
		Bottom	45,7742	221,6088
18	72	Тор	86,8218	426,9114
		Bottom	86,8218	426,9114
17	68	Тор	99,7921	496,0459
		Bottom	99,7921	496,0459
16	64	Тор	109,1957	549,58
		Bottom	109,1957	549,58
15	60	Тор	118,0211	599,6561
		Bottom	118,0211	599,6561
14	56	Тор	124,4161	637,5864
		Bottom	124,4161	637,5864
13	52	Тор	128,28	663,2615
		Bottom	128,28	663,2615
12	48	Тор	130,617	681,2938
		Bottom	130,617	681,2938
11	44	Тор	133,3913	700,5458
		Bottom	133,3913	700,5458
10	40	Тор	138,5615	729,4572
		Bottom	138,5615	729,4572
9	36	Тор	144,7418	762,5555
		Bottom	144,7418	762,5555
8	32	Тор	151,1297	796,6824
		Bottom	151,1297	796,6824
7	28	Тор	157,8588	832,0378
		Bottom	157,8588	832,0378
6	24	Тор	166,3605	874,3902
		Bottom	166,3605	874,3902
5	20	Top	177,6335	927,8164

Tabel B14:	Lanjutan.
------------	-----------

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
		Bottom	177,6335	927,8164
4	16	Тор	189,3029	981,73
		Bottom	189,3029	981,73
3	12	Тор	199,268	1027,0903
		Bottom	199,268	1027,0903
2	8	Тор	205,7634	1056,3896
		Bottom	205,7634	1056,3896
1	4	Тор	208,1518	1067,104
		Bottom	208,1518	1067,104

Tabel B15: Nilai gaya geser maksimum gabungan pada setiap lantai yang telah diskalakan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
19	76	Тор	22596,7144	4682,3454
		Bottom	22596,7144	4682,3454
18	72	Тор	43515,5354	8881,1962
		Bottom	43515,5354	8881,1962
17	68	Тор	50560,8083	10207,9572
		Bottom	50560,8083	10207,9572
16	64	Тор	56011,8131	11169,873
		Bottom	56011,8131	11169,873
15	60	Тор	61100,3640	12072,642
		Bottom	61100,3640	12072,642
14	56	Тор	64947,5937	12726,801
		Bottom	64947,5937	12726,801
13	52	Тор	67547,5466	13122,048
		Bottom	67547,5466	13122,048
12	48	Тор	69370,9776	13361,105
		Bottom	69370,9776	13361,105
11	44	Тор	71318,5883	13644,895
		Bottom	71318,5883	13644,895
10	40	Тор	74250,0796	14173,766
		Bottom	74250,0796	14173,766
9	36	Тор	77617,4127	14805,963
		Bottom	77617,4127	14805,963
8	32	Тор	81105,0091	15459,395

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
		Bottom	81105,0091	15459,395
7	28	Тор	84729,4884	16147,730
		Bottom	84729,4884	16147,730
6	24	Тор	89069,2469	17017,388
		Bottom	89069,2469	17017,388
5	20	Тор	94532,9346	18170,528
		Bottom	94532,9346	18170,528
4	16	Тор	100041,509	19364,217
		Bottom	100041,509	19364,217
3	12	Тор	104675,610	20383,570
		Bottom	104675,610	20383,570
2	8	Тор	107670,647	21047,999
		Bottom	107670,647	21047,999
1	4	Тор	108767,445	21292,313
		Bottom	108767,445	21292,313

Tabel B15: Lanjutan.

B3.2. Simpangan Antar Lantai

Berikut ini adalah nilai perpindahan dan simpangan antar lantai untuk setia arah gempa.

a. Model 1

Tingkat	h	Perpino Elastis	dahan s (δe)	Perpir Total (δ	ndahan e*Cd)/Ie	Simpa Antar La	ngan ntai (Δ)	Syarat Δa/ρ	Cek	Cek
8	(m)	Х	Y	Х	Y	Х	Y	0,02*hsx/p	v	v
		(m)	(m)	(m)	(m)	(m)	(m)	(m)	Λ	1
19	4	0,072	0,014	0,394	0,076	0,016	0,003	0,062	OK	OK
18	4	0,069	0,013	0,378	0,074	0,018	0,004	0,062	OK	OK
17	4	0,065	0,013	0,360	0,070	0,019	0,004	0,062	OK	OK
16	4	0,062	0,012	0,341	0,066	0,020	0,004	0,062	OK	OK
15	4	0,058	0,011	0,320	0,062	0,021	0,004	0,062	OK	OK
14	4	0,054	0,011	0,299	0,058	0,022	0,004	0,062	OK	OK
13	4	0,050	0,010	0,277	0,054	0,023	0,004	0,062	OK	OK
12	4	0,046	0,009	0,254	0,050	0,023	0,004	0,062	OK	OK
11	4	0,042	0,008	0,231	0,045	0,023	0,004	0,062	OK	OK
10	4	0,038	0,007	0,208	0,041	0,023	0,004	0,062	OK	OK

Tabel B16: Nilai simpangan antar lantai akibat gempa x.

Tingkat	h	Perpino Elastis	dahan s (δe)	Perpir Total (δ	ndahan e*Cd)/Ie	Simpa Antar La	ngan ntai (Δ)	Syarat Δa/ρ	Cek	Cek
U	(m)	Х	Y	Х	Y	Х	Y	0,02*hsx/p	x	Y
		(m)	(m)	(m)	(m)	(m)	(m)	(m)		
9	4	0,034	0,007	0,185	0,036	0,022	0,004	0,062	OK	OK
8	4	0,030	0,006	0,163	0,032	0,022	0,004	0,062	OK	OK
7	4	0,026	0,005	0,142	0,028	0,022	0,004	0,062	OK	OK
6	4	0,022	0,004	0,119	0,024	0,023	0,004	0,062	OK	OK
5	4	0,018	0,004	0,097	0,019	0,023	0,004	0,062	OK	OK
4	4	0,013	0,003	0,074	0,015	0,023	0,005	0,062	OK	OK
3	4	0,009	0,002	0,051	0,010	0,022	0,004	0,062	OK	OK
2	4	0,005	0,001	0,029	0,006	0,019	0,004	0,062	OK	OK
1	4	0,002	0,000	0,010	0,002	0,010	0,002	0,062	OK	OK

Tabel B16: Lanjutan.

Tabel B17: Nilai simpangan antar lantai akibat gempa y.

Tingkat	h	Perpine Elastis	dahan s (δe)	Perpir Total (δ	ndahan e*Cd)/Ie	Simpa Antar La	ngan ntai (Δ)	Syarat $\Delta a/\rho$	Cek	Cek
6	(m)	X (m)	Y (m)	X (m)	Y (m)	X (m)	Y (m)	0,02*hsx/ρ (m)	X	Y
19	4	0,0139	0,0719	0,076	0,395	0,0031	0,0154	0,062	OK	OK
18	4	0,0133	0,0691	0,073	0,380	0,0037	0,0185	0,062	OK	OK
17	4	0,0127	0,0657	0,070	0,361	0,0038	0,0193	0,062	OK	OK
16	4	0,0120	0,0622	0,066	0,342	0,0039	0,0204	0,062	OK	OK
15	4	0,0113	0,0585	0,062	0,322	0,0041	0,0213	0,062	OK	OK
14	4	0,0105	0,0546	0,058	0,300	0,0042	0,0220	0,062	OK	OK
13	4	0,0098	0,0506	0,054	0,278	0,0043	0,0227	0,062	OK	OK
12	4	0,0090	0,0465	0,049	0,256	0,0044	0,0231	0,062	OK	OK
11	4	0,0082	0,0423	0,045	0,233	0,0044	0,0234	0,062	OK	OK
10	4	0,0074	0,0380	0,041	0,209	0,0043	0,0230	0,062	OK	OK
9	4	0,0066	0,0339	0,036	0,186	0,0041	0,0218	0,062	OK	OK
8	4	0,0058	0,0299	0,032	0,164	0,0042	0,0220	0,062	OK	OK
7	4	0,0051	0,0259	0,028	0,142	0,0043	0,0224	0,062	OK	OK
6	4	0,0043	0,0218	0,024	0,120	0,0044	0,0227	0,062	OK	OK
5	4	0,0035	0,0177	0,019	0,097	0,0045	0,0230	0,062	OK	OK
4	4	0,0027	0,0135	0,015	0,074	0,0045	0,0230	0,062	OK	OK
3	4	0,0019	0,0093	0,010	0,051	0,0044	0,0222	0,062	OK	OK
2	4	0,0011	0,0053	0,006	0,029	0,0039	0,0192	0,062	OK	OK
1	4	0,0004	0,0018	0,002	0,010	0,0020	0,0099	0,062	OK	OK

b. Model 2

		Perpin	Idahan	Perpir	ndahan	Simpa	ngan	Svarat Aa/o	Cel	Cak
Tingkat	h	Elasti	s (de)	Total (δ	e*Cd)/Ie	Antar La	ntai (Δ)	Syarat 2a/p	ССК	ССК
тпідкаі	(m)	Х	Y	Х	Y	Х	Y	0,02*hsx/p	v	v
		(m)	(m)	(m)	(m)	(m)	(m)	(m)	Λ	1
19	4	0,065	0,012	0,359	0,068	0,018	0,003	0,062	OK	OK
18	4	0,062	0,012	0,341	0,065	0,020	0,004	0,062	OK	OK
17	4	0,058	0,011	0,321	0,061	0,020	0,004	0,062	OK	OK
16	4	0,055	0,010	0,300	0,057	0,018	0,003	0,062	OK	OK
15	4	0,051	0,010	0,282	0,053	0,014	0,003	0,062	OK	OK
14	4	0,049	0,009	0,268	0,051	0,021	0,004	0,062	OK	OK
13	4	0,045	0,009	0,247	0,047	0,024	0,005	0,062	OK	OK
12	4	0,041	0,008	0,223	0,042	0,024	0,004	0,062	OK	OK
11	4	0,036	0,007	0,199	0,038	0,020	0,004	0,062	OK	OK
10	4	0,033	0,006	0,179	0,034	0,012	0,002	0,062	OK	OK
9	4	0,030	0,006	0,167	0,032	0,019	0,004	0,062	OK	OK
8	4	0,027	0,005	0,148	0,028	0,023	0,004	0,062	OK	OK
7	4	0,023	0,004	0,125	0,024	0,023	0,004	0,062	OK	OK
6	4	0,019	0,004	0,102	0,020	0,018	0,003	0,062	OK	OK
5	4	0,015	0,003	0,084	0,016	0,010	0,002	0,062	OK	OK
4	4	0,014	0,003	0,074	0,015	0,019	0,004	0,062	OK	OK
3	4	0,010	0,002	0,056	0,011	0,023	0,005	0,062	OK	OK
2	4	0,006	0,001	0,033	0,006	0,021	0,004	0,062	OK	OK
1	4	0,002	0,000	0,011	0,002	0,011	0,002	0,062	OK	OK

Tabel B18: Nilai simpangan antar lantai akibat gempa x.

Tabel B19: Nilai simpangan antar lantai akibat gempa y.

		Perpir	ıdahan	Perpir	ndahan	Simpa	ngan	Svarat Aa/o	Cek	Cek
Tinglet	h	Elasti	is (δe)	Total (δ	e*Cd)/Ie	Antar La	ntai (Δ)	Syarat 2a/p	ССК	CCK
тпідкаї	(m)	Х	Y	Х	Y	Х	Y	0,02*hsx/p	v	v
		(m)	(m)	(m)	(m)	(m)	(m)	(m)	Λ	1
19	4	0,0124	0,0654	0,068	0,360	0,0034	0,0175	0,062	OK	OK
18	4	0,0118	0,0622	0,065	0,342	0,0041	0,0206	0,062	OK	OK
17	4	0,0110	0,0585	0,061	0,322	0,0039	0,0205	0,062	OK	OK
16	4	0,0103	0,0547	0,057	0,301	0,0035	0,0184	0,062	OK	OK
15	4	0,0097	0,0514	0,053	0,283	0,0026	0,0138	0,062	OK	OK
14	4	0,0092	0,0489	0,051	0,269	0,0039	0,0208	0,062	OK	OK
13	4	0,0085	0,0451	0,047	0,248	0,0045	0,0242	0,062	OK	OK
12	4	0,0077	0,0407	0,042	0,224	0,0045	0,0241	0,062	OK	OK
11	4	0,0069	0,0363	0,038	0,200	0,0037	0,0200	0,062	OK	OK
10	4	0,0062	0,0327	0,034	0,180	0,0022	0,0121	0,062	OK	OK

	h	Perpir Elasti	ndahan is (δe)	Perpir Total (δ	ndahan e*Cd)/Ie	Simpa Antar La	ngan ntai (Δ)	Syarat $\Delta a/\rho$	0.1	
Ingkat	(m)	Х	Y	X	Ŷ	Х	Y	0,02*hsx/p	Cek	Сек
		(m)	(m)	(m)	(m)	(m)	(m)	(m)		
9	4	0,0058	0,0305	0,032	0,168	0,0036	0,0193	0,062	OK	OK
8	4	0,0051	0,0270	0,028	0,148	0,0042	0,0228	0,062	OK	OK
7	4	0,0044	0,0228	0,024	0,126	0,0042	0,0227	0,062	OK	OK
6	4	0,0036	0,0187	0,020	0,103	0,0034	0,0182	0,062	OK	OK
5	4	0,0030	0,0154	0,016	0,085	0,0019	0,0099	0,062	OK	OK
4	4	0,0026	0,0136	0,015	0,075	0,0036	0,0189	0,062	OK	OK
3	4	0,0020	0,0102	0,011	0,056	0,0045	0,0232	0,062	OK	OK
2	4	0,0012	0,0060	0,006	0,033	0,0042	0,0215	0,062	OK	OK
1	4	0,0004	0,0021	0,002	0,011	0,0022	0,0113	0,062	OK	OK

Tabel B19: Lanjutan.

a. Model 3

Tabel 20: Nilai simpangan antar lantai akibat gempa x.

		Perpir	ndahan	Perpir	Idahan	Simpa	ngan	Svarat Δa/o	Cek	Cek
Tingkat	Н	Elasti	is (δe)	Total (δ	e*Cd)/Ie	Antar La	ntai (Δ)	Sydiat Barp	CON	COR
тыдка	(m)	Х	Y	Х	Y	Х	Y	0,02*hsx/p	v	v
		(m)	(m)	(m)	(m)	(m)	(m)	(m)	Λ	1
19	4	0,065	0,012	0,359	0,068	0,018	0,003	0,062	OK	OK
18	4	0,062	0,012	0,341	0,065	0,020	0,004	0,062	OK	OK
17	4	0,058	0,011	0,321	0,061	0,020	0,004	0,062	OK	OK
16	4	0,055	0,010	0,300	0,057	0,018	0,003	0,062	OK	OK
15	4	0,051	0,010	0,282	0,053	0,014	0,003	0,062	OK	OK
14	4	0,049	0,009	0,268	0,051	0,021	0,004	0,062	OK	OK
13	4	0,045	0,009	0,247	0,047	0,024	0,005	0,062	OK	OK
12	4	0,041	0,008	0,223	0,042	0,024	0,004	0,062	OK	OK
11	4	0,036	0,007	0,199	0,038	0,020	0,004	0,062	OK	OK
10	4	0,033	0,006	0,179	0,034	0,012	0,002	0,062	OK	OK
9	4	0,030	0,006	0,167	0,032	0,019	0,004	0,062	OK	OK
8	4	0,027	0,005	0,148	0,028	0,023	0,004	0,062	OK	OK
7	4	0,023	0,004	0,125	0,024	0,023	0,004	0,062	OK	OK
6	4	0,019	0,004	0,102	0,020	0,018	0,003	0,062	OK	OK
5	4	0,015	0,003	0,084	0,016	0,010	0,002	0,062	OK	OK
4	4	0,014	0,003	0,074	0,015	0,019	0,004	0,062	OK	OK
3	4	0,010	0,002	0,056	0,011	0,023	0,005	0,062	OK	OK
2	4	0,006	0,001	0,033	0,006	0,021	0,004	0,062	OK	OK
1	4	0,002	0,000	0,011	0,002	0,011	0,002	0,062	OK	OK

		Perpin	dahan	Perpi	ndahan	Simpa	ingan	Sugrat Ag/a	Cal	Calc
Tingkat	Н	Elasti	s (ðe)	Total (a	Se*Cd)/Ie	Antar La	ntai (Δ)	Syarat $\Delta a/p$	Сек	Сек
тыдка	(m)	Х	Y	Х	Y	Х	Y	0,02*hsx/p	x	Y
		(m)	(m)	(m)	(m)	(m)	(m)	(m)		1
19	4	0,0124	0,0654	0,068	0,360	0,0034	0,0175	0,062	OK	OK
18	4	0,0118	0,0622	0,065	0,342	0,0041	0,0206	0,062	OK	OK
17	4	0,0110	0,0585	0,061	0,322	0,0039	0,0205	0,062	OK	OK
16	4	0,0103	0,0547	0,057	0,301	0,0035	0,0184	0,062	OK	OK
15	4	0,0097	0,0514	0,053	0,283	0,0026	0,0138	0,062	OK	OK
14	4	0,0092	0,0489	0,051	0,269	0,0039	0,0208	0,062	OK	OK
13	4	0,0085	0,0451	0,047	0,248	0,0045	0,0242	0,062	OK	OK
12	4	0,0077	0,0407	0,042	0,224	0,0045	0,0241	0,062	OK	OK
11	4	0,0069	0,0363	0,038	0,200	0,0037	0,0200	0,062	OK	OK
10	4	0,0062	0,0327	0,034	0,180	0,0022	0,0121	0,062	OK	OK
9	4	0,0058	0,0305	0,032	0,168	0,0036	0,0193	0,062	OK	OK
8	4	0,0051	0,0270	0,028	0,148	0,0042	0,0228	0,062	OK	OK
7	4	0,0044	0,0228	0,024	0,126	0,0042	0,0227	0,062	OK	OK
6	4	0,0036	0,0187	0,020	0,103	0,0034	0,0182	0,062	OK	OK
5	4	0,0030	0,0154	0,016	0,085	0,0019	0,0099	0,062	OK	OK
4	4	0,0026	0,0136	0,015	0,075	0,0036	0,0189	0,062	OK	OK
3	4	0,0020	0,0102	0,011	0,056	0,0045	0,0232	0,062	OK	OK
2	4	0,0012	0,0060	0,006	0,033	0,0042	0,0215	0,062	OK	OK
1	4	0,0004	0,0021	0,002	0,011	0,0022	0,0113	0,062	OK	OK

Tabel B21: Nilai simpangan antar lantai akibat gempa y.

TUGAS AKHIR PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA Jl. Kapten Mukhtar Basri No.3 Medan 20238

LEMBAR ASISTENSI

NAMA : SAPTO PRABOWO

NPM : 1407210079

JUDUL TUGAS AKHIR : PERENCANAAN BANGUNAN *TOWER AIR TRAFFIC CONTROL* (ATC) SETINGGI 80 M TERHADAP POSISI *BELTTRUSS* BERDASARKAN SNI 1729-2015 DAN SNI 1726-2012

No	Tanggal	Keterangan	Paraf
Ø	7/5.2018	- Bob 1 : Lobon Belohon og Perboshi - Pembolicaon - Inti - Panutop - Bob 2 Perboshi Arron	A A
2	4/7 2018	- Perbaiki Pemodelan Stutter - Kolom. - Balok	10m
3	20/7 2018	- Confot Permodelan Tangyo Plint	How

PEMBIMBING I

(Tondi Amirsyah P.ST.MT)

TUGAS AKHIR PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA JI. Kapten Mukhtar Basri No.3 Medan 20238

LEMBAR ASISTENSI

NAMA	: SAPTO PRABOWO
NPM	: 1407210079
JUDUL TUGAS AKHIR	: PERENCANAAN BANGUNAN <i>TOWER AIR</i> <i>TRAFFIC CONTROL</i> (ATC) SETINGGI 80 M TERHADAP POSISI <i>BELTTRUSS</i> BERDASARKAN SNI 1729-2015 DAN SNI 1726-2012

No	Tanggal	Keterangan	Paraf
(1)	25/7 2018	- Langet - Bebon Mati	$\left \right $
		- Beban Ardyp	
		- Cambination	OW
		- Masc Source	Vo
F	29/18-2018	- Julisan tolog	
)		- Creel Han'	
		tolog Silementan	Jour
		- pastilen Desar	
		Korlaten	2

PEMBIMBING I

(Tondi Amirsyah P.ST.MT)

TUGAS AKHIR PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA JI. Kapten Mukhtar Basri No.3 Medan 20238

LEMBAR ASISTENSI

:SAPTO PRABOWO

:1407210079

NAMA NPM JUDUL TUGAS AKHIR

PERENCANAAN BANGUNAN *TOWER AIR TRAFFIC CONTROL* SETINGGI 80 METER TERHADAP POSISI BELTTRUS BERDASARKAN PADA SNI 1726:2012 PETA GEMPA 2017 DAN SNL 1729:2015

No	Tanggal	Keterangan	Paraf /
6	21/ (1-2010)	Ac Summer	Kom

PEMBIMBING I

(Tondi Amirsyah P.ST.MT)

TUGAS AKHIR PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA Jl. Kapten Mukhtar Basri No.3 Medan 20238

LEMBAR ASISTENSI

NAMA : SAPTO PRABOWO

NPM : 1407210079

JUDUL TUGAS AKHIR : PERENCANAAN BANGUNAN *TOWER AIR TRAFFIC CONTROL* (ATC) SETINGGI 80 M TERHADAP POSISI *BELTTRUSS* BERDASARKAN SNI 1729-2015 DAN SNI 1726-2012

No	Tanggal	Keterangan	Paraf
1.	11 Agustus 2018	- Pubaiki suang hingkang dar trjvær penelisian. - Cele da pubaiki penulisan - Tabel, banbar. Perc. harus drugte på halimet aebelvæng. - Tambahi Babar Angin.	J Hiddare
2.	29 Agustus 2018	- Cer dan pubaiki penulisa - Pubaiki penyebutan tabel	Huddat

PEMBIMBING II

(Mizanuddin Sitompul.ST. MT)

TUGAS AKHIR PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA Jl. Kapten Mukhtar Basri No.3 Medan 20238

LEMBAR ASISTENSI

NAMA : SAPTO PRABOWO

NPM : 1407210079

JUDUL TUGAS AKHIR : PERENCANAAN BANGUNAN *TOWER AIR TRAFFIC CONTROL* (ATC) SETINGGI 80 M TERHADAP POSISI *BELTTRUSS* BERDASARKAN SNI 1729-2015 DAN SNI 1726-2012

No	Tanggal	Keterangan	Paraf
3.	22 Agnsh> 2018	- Tambahican daytan gamba. dapton notain i dll. - lanjutuan	2 Hindra
Ц.	29 Bgustus Zar	- Acc utic diserninankan	Atin
	3		

PEMBIMBING II

(Mizanuddin Sitompul.ST. MT)

DAFTAR RIWAYAT HIDUP

DATA DIRI PESERTA

Nama Lengkap	: Sapto Prabowo
Nama Panggilan	: Prabowo
Tempat, Tanggal Lahir	: Pematang Panjang, 15 September 1996
Jenis Kelamin	: Laki-laki
Alamat	: Desa Pematang Panjang Dsn XII, Jl Lintas Sumatera
	Km 110, Kec Air Putih, Kab. Batu Bara, Provinsi
	Sumatera Utara
Agama	: Islam
Nama Orang Tua	
Ayah	: Suyono
Ibu	: Marinem
No. Telp	: 0812-9460-8107
Email	: <u>prabowobd7@gmail.com</u>

RIWAYAT PENDIDIKAN

1.	SD Negeri 016510 Pematang Panjang	Tahun Lulus	2008
2.	SMP Negeri 2 Air Putih	Tahun Lulus	2011
3.	SMK Swasta Budhi Darma Indrapura	Tahun Lulus	2014
4.	Universitas Muhammadiyah Sumatera Utara	2014 - Selesa	i