TUGAS AKHIR

EVALUASI DAN PERKUATAN STRUKTUR RUMAH TOKO DI KOTA MEDAN

Diajukan Untuk Memenuhi Syarat-Syarat Memperoleh Gelar Sarjana Teknik Sipil Pada Fakultas Teknik Universitas Muhammadiyah Sumatera Utara

Disusun Oleh:

INDAH PRASTIWI 1407210028

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA MEDAN 2019

MARLIN PENDIDIRAN TINOGI UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA FAKULTAS TEKNIK

E. KAPTEN ARTEHTAR BASE 1903 MEDIAN DESIR Taly Telp. (061) 6623400. Homopage http://www.amou.uc.ed Email: reknor@main.uc.ed

LEMBAR PERSETUJUAN PEMBIMBING

Tugas Akhir ini diajukan oleh:

: Indah Prastiwi Nama

: 1407210028 NPM

Program Studi: Teknik Sipil

Judul Skripsi : Evaluasi dan Perkuatan Struktur Rumah Toko Di Kota Medan

Bidang Ilmu : Struktur.

Disetujui Untuk Disampaikan Kepada Panitia Ujian

Medan, September 2019

Pembingbing

Pembimbing II

h lutera P, ST, MT

Dr Ade Faisal

HALAMAN PENGESAHAN

Tugas Akhir ini diajukan oleh:

: Indah Prastiwi Nama

: 1407210028 NPM

Program Studi: Teknik Sipil

Judul Skripsi : Evaluasi dan Perkuatan Struktur Rumah Toko Di Kota Medan.

Bidang ilmu : Struktur.

Telah berhasil dipertahankan di hadapan Tim Penguji dan diterima sebagai salah satu syarat yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, September 2019

Mengetahui dan menyetujui:

Dosen Pembernbying 1 / Penguji

Dosen Pembimbing II / Penguji

Putera P, ST, MT

Dosen Pembanding I / Penguji

DR. Fahrizal Zulkarnain, S.T, M.Sc

Dosen Pembanding II / Penguji

Bambang Hadibroto, S.T., M.T.

Program Studi Teknik Sipil

Ketua

Dr. Fahrizal Zulkarnain, S.T., M.Sc

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Says yang bertunda tangan di bawah ini:

Indah Prastiwi Nama Lengkap

Tempat /Tanggal Lahir: Suka Makmut/ 07 April 1995

: 1407210028 NPM

: Teknik Fakultas

Teknik Sipil,

menyatakan dengan sesungguhnya dan sejujurnya, bahwa laporan Tugas Akhir saya yang berjudul:

"Evaluasi dan Perkuatan Struktur Rumah Toko Di Kota Medan".

bukan merupakan plagiarisme, pencurian basil karya milik orang lain, basil kerja orang lain untuk kepentingan saya karena hubungan material dan non-material, ataupun segala kemungkinan lain, yang pada hakekatnya bukan merupakan karya tulis Tugas Akhir saya secara orisinil dan otentik.

Bila kemudian hari didaga kuat ada ketidaksesuatan antara fakta dengan kenyataan ini, saya bersedia diproses oleh Tun Fakultas yang dibentuk untuk melakukan verifikasi, dengan sanksi terberat berupa pembatalan kelulusan/ kesarjanaan saya.

Demikian Surat Pernyutaan ini saya buat dengan kesadaran sendiri dan tidak atas tekarum ataupun paksaan dari pihak manapun demi menegakkan integritas. akademik di Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Samatera Utara.

Medan, September 2019

saya yang menyatakan.

ABSTRAK

EVALUASI DAN PERKUATAN STRUKTUR RUMAH TOKO DI KOTA MEDAN

Indah Prastiwi 1407210028 Tondi Amirsyah Putera , ST, MT Dr. Ade Faisal

Struktur Bangunan Ruko yang berlokasi di Medan direncanakan sebagai suatu struktur gedung beton bertulang yang terdiri dari 3 Model dan teridiri atas 3 lantai. Pada tahap awal desain, struktur direncanakan terhadap beban gempa sesuai dengan SNI-03-1726-2012 (Standar Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung) yang didasarkan pada Peta Gempa 2017 di kota Medan, dan jika struktur gagal menahan beban yang telah di tentukan dari SNI 03-2847-2013 maka struktur perlu di evaluasi untuk perkuatan pada penampang Balok dan kolom saja. Studi ini bertujuan untuk mengetahui berapa banyak penampang yang perlu di perkuat dan seberapa banyak Jacketing yang dibutuhkan untuk memenuhi kebutuhan pada struktur yang rusak. Hasil analisis yang diperoleh dari Program analisa struktur menunjukkan bahwa telah terjadi kerusakan pada penampang Model A sebanyak 44 yang terdiri dari Balok dan kolom dan di perkuatan menggunakan Pemasangan Jacketing, Model B memiliki kegagalan Struktur sebanyak 34 Penampang dan di perkuatan menggunakan Pemasangan Jacketing dan pada Model C memiliki kegagalan struktur sebanyak 82 Penampang dan di perkuat dengan pemasangan Jacketing

Kata kunci: Beton bertulang, Balok, Kolom, sistem struktur, retrofit, *Jacketing*, Evaluasi.

ABSTRACT

EVALUATION AND STRENGTHENING OF SHOP HOUSE STRUCTURES IN CITY MEDAN

Indah Prastiwi 1407210028 Tondi Amirsyah Putera, ST, MT Dr. Ade Faisal

Store Building located in Medan is planned as a reinforced concrete building structure consisting of 3 models and consists of 3 floors. In the initial stages of design, the planned structure of earthquake loads is in accordance with SNI-03-1726-2012 (Earthquake Resilience Planning Standard for Building Structure and Non-Building) which is based on the 2017 Earthquake Map in Medan city, and if the structure fails to withstand the load determined from SNI 03-2847-2013, the structure needs to be evaluated for reinforcement in the beam and column sections only. This study aims to find out how many cross sections need to be strengthened and how much Jacketing is needed to meet the needs of damaged structures. The analysis results obtained from the structure analysis program show that there has been damage to the Model A cross section of 44 consisting of beams and columns and reinforced using a Jacketing Installation, Model B has a structural failure of 34 cross sections and reinforced using Jacketing and Model C has a structural failure of 82 cross sections and is reinforced by Jacketing installation

Keywords: reinforced concrete, beam, column, structural system, retrofit, jacketing, evaluation.

KATA PENGANTAR

Dengan nama Allah Yang Maha Pengasih lagi Maha Penyayang. Segala puji dan syukur penulis ucapkan kehadirat Allah SWT yang telah memberikan karunia dan nikmat yang tiada terkira. Salah satu dari nikmat tersebut adalah keberhasilan penulis dalam menyelesaikan laporan Tugas Akhir ini yang berjudul "Evaluasi dan Perkuatan Struktur Rumah Toko Di Kta Medan pada struktur bangunan Ruko terhadap Respons Spektrum Gempa di kota Medan" sebagai syarat untuk meraih gelar akademik Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara (UMSU), Medan.

Banyak pihak telah membantu dalam menyelesaikan laporan Tugas Akhir ini, untuk itu penulis menghaturkan rasa terimakasih yang tulus dan dalam kepada:

- Bapak Tondi Amirsyah Putera ST, MT selaku Dosen Pembimbing I dan Penguji yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- Bapak Dr. Ade Faisal selaku Dosen Pimbimbing II dan Penguji yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- Bapak selaku Dosen Pembanding I Sekaligus Ketua Prodi Sipil yang telah banyak memberikan koreksi dan masukan kepada penulis dalam menyelesaikan Tugas Akhir ini.
- 4. Bapak selaku Dosen Pembanding II sekaligus Wakil Dekan I yang telah banyak memberikan koreksi dan masukan kepada penulis dalam menyelesaikan Tugas Akhir ini.
- 5. Bapak Munawar Al Fansury Siregar ST, MT selaku Dekan Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- Seluruh Bapak/Ibu Dosen di Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara yang telah banyak memberikan ilmu keteknik sipilan kepada penulis.
- 7. Orang tua penulis: Sudarlin , dan Rosmida, yang telah bersusah payah membesarkan dan membiayai studi penulis.

- 8. Bapak/Ibu Staf Administrasi di Biro Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- 9. Sahabat-sahabat penulis : Hanifa Zahra, Rahmad Hariadi, Rigo Ikhwansyah, Andi Syaputera, Juni Indriani, M Yudistira, Dicky Hadinata Sidabutar.

Laporan Tugas Akhir ini tentunya masih jauh dari kesempurnaan, untuk itu penulis berharap kritik dan masukan yang konstruktif untuk menjadi bahan pembelajaran berkesinambungan penulis di masa depan. Semoga laporan Tugas Akhir ini dapat bermanfaat bagi dunia konstruksi teknik sipil.

Medan, September 2019

Indah Prastiwi

DAFTAR ISI

LEMBA	AR PEF	RSETUJUAN PEMBIMBING	ii
LEMBA	AR PEN	NGESAHAN	iii
LEMBA	AR PEF	RNYATAN KEASLIAN SKRIPSI	iv
ABSTR	AK		V
ABSTRA	ACT		vi
KATA 1	PENGA	ANTAR	vii
DAFTA	R ISI		ix
DAFTA	R TAE	BEL	XV
DAFTA	R GAN	MBAR	XX
DAFTA	R NO	ΓASI	xxii
DAFTA	R SIN	GKATAN	XXV
DAFTA	R SAT	TUAN	xxvi
BAB 1	PENI	DAHULUAN	
	1.1.	Latar Belakang	1
	1.2.	Rumusan masalah	3
	1.3.	Ruang Lingkup penelitian	3
	1.4.	Tujuan penelitian	3
	1.5.	Manfaat penelitian	4
	1.6.	Sistematika Penulisan	4
BAB 2	TINJ	AUAN PUSTAKA	
	2.1.	Umum	5
	2.2.	Mutu bahan	7
	2.3.	Pembebanan	8
	2.4.	Gaya Geser	9
	2.5.	Kondisi Tektonik di sumatera utara	10
	2.6.	Teori Gempa	11
		2.6.1. Mekanisme Gempa Bumi	12
	2.7.	Konsep Perencanaan Bangunan Tahan Gempa	13
		2.7.1. Gempa Rencana	13

		2.7.2. Arah Pembebanan gempa	13
		2.7.3. Respon Gedung Beton Bertulang Akibat Gempa	14
		2.7.4. Evaluasi Kinerja Gedung Beton Terhadap Gempa	15
		2.7.5. Peta Gempa Wilaya Indonesia	15
		2.7.6. Klasifikasi Situs	17
		2.7.7. Percepatan Tanah Puncak	18
		2.7.8. Faktor Keutamaan dan katagori Resiko Struktur	
		Bangunan	19
	2.8.	Struktur Beton Bertulang	19
	2.9.	Analisis Respon Dinamik	20
	2.10.	Simpangan Antar Lantai	21
		2.10.1 Torsi Dan Eksentrisitas	22
	2.11.	Distribusi kekakuan secara vertikal	23
	2.12.	Respon Spektrum	24
		2.12.1. Kategori Desain Seismik	27
	2.13.	Kriteria Desain Perencanaan Struktur gedung Tahan	28
		Gempa	
	2.14.	Ketentuan Perencanaan	31
		2.14.1 Penampang kolom pada kondisi beton tekan	
		menentukan	31
	2.15.	Tulangan Geser	32
		2.15.1. Perilaku Balok Tanpa Tulangan Geser	34
		2.15.2. Perilaku Balok Dengan Tulangan Geser	37
		2.15.3. Perencanaan Penampang Terhadap Geser	38
BAB 3	METO	DDOLOGI PENELITIAN	
	3.1.	Umum	41
	3.2.	Faktor Respon Gempa (C)	42
	3.3.	Pemodelan Struktur Meneliti di Lapangan	47
		3.3.1. Data Perencanaan Struktur	47
		3.3.2. Konfigurasi Bangunan	48
		3.3.3. Faktor Reduksi Gempa	49
		3.3.4. Faktor Keamanan Struktur (<i>I</i>)	49

		3.3.5.	Properties Desain Struktur	49
			3.3.5.1. Tebal Plat Lantai	49
			3.3.5.2. Beban Mati (Dead Load)	50
			3.3.5.3. Beban Hidup (Life Load)	51
	3.4.	Model	1 Ruko A di Lapangan	51
		3.4.1.	Dimensi Balok dan Kolom	53
		3.4.2.	Analisis ResponSpektrum	53
		3.4.3.	Nilai Waktu Getar Alami Fundamental	55
		3.4.4.	Penentuan Faktor Respon Gempa (C)	56
	3.5.	Model	2 Ruko B di Lapangan	57
		3.5.1.	Dimensi Balok dan Kolom	59
		3.5.2.	Analisis ResponSpektrum	59
		3.5.3.	Nilai Waktu Getar Alami Fundamental	61
		3.5.4.	Penentuan Faktor Respon Gempa (C)	62
	3.6.	Model	3 Ruko C di Lapangan	63
		3.6.1.	Dimensi Balok dan Kolom	64
		3.6.2.	Analisis ResponSpektrum	65
		3.6.3.	Nilai Waktu Getar Alami Fundamental	67
		3.6.4.	Penentuan Faktor Respon Gempa (C)	67
	3.7.	Penamb	pahan Jacketing pada Kegagalan Struktur	68
BAB 4	HASII	L DAN P	EMBAHASAN	
	4.1.	Umum		69
	4.2.	Hasil A	nalisis Struktur Ruko A di Lapangan	69
		4.2.1.	Gaya Geser	69
		4.2.2.	Koreksi Faktor Redundansi	71
		4.2.3.	Beban Kombinasi	72
		4.2.4.	Perbandingan Gaya Geser Gedung Tiap Lantai	73
		4.2.5.	Gaya Geser Analisis Respon Spektrum	73
		4.2.6.	Nilai Simpangan	75
		4.2.7.	Pengaruh Efek P-Delta	78
	4.3.	Hasil A	nalisa Struktur Ruko B di Lapangan	79
		4.3.1.	Gaya Geser	79

	4.3.2.	Koreksi Faktor Redundansi	80
	4.3.3.	Beban Kombinasi	81
	4.3.4.	Perbandingan Gaya Geser Gedung Tiap Lantai	82
	4.3.5.	Gaya Geser Analisis Respon Spektrum	83
	4.3.6.	Nilai Simpangan	85
	4.3.7.	Pengaruh Efek P-Delta	87
4.4.	Hasil A	analisa Struktur Model C di Lapangan	88
	4.4.1.	Gaya Geser	89
	4.4.2.	Koreksi Faktor Redundansi	90
	4.4.3.	Beban Kombinasi	91
	4.4.4.	Perbandingan Gaya Geser Gedung Tiap Lantai	92
	4.4.5.	Gaya Geser Analisis Respon Spektrum	93
	4.4.6.	Nilai Simpangan	95
	4.4.7.	Pengaruh Efek P-Delta	97
4.5.	Cek Pe	nampang Kolom Pada Ruko A	98
	4.5.1.	Penambahan Jacketing untuk kolom Lantai 1	
		Ruko A	98
	4.5.2.	Penambahan Jacketing Untuk kolom Lantai 2	
		Ruko A	102
	4.5.3.	Penambahan Jacketing Untuk Kolom Lantai 3	
		Ruko A	106
4.6.	Cek Pe	nampang Balok Ruko A	109
	4.6.1.	Penambahan Jacketing untuk balok lantai 2 ruko	109
		A	
4.7.	Cek Pe	nampang Kolom Pada Ruko B	111
	4.7.1.	Penambahan Jacketing untuk kolom lantai 1 Ruko	111
		В	
	4.7.2.	Penambahan Jacketing untuk kolom lantai 2 Ruko	115
		В	
4.8.	Cek Pe	nampang kolom Ruko C	118
	4.8.1	Penambahan Jacketing untuk kolom lantai 1 Ruko	118
		C	

	4.8.2.	Penambahan Jacketing Untuk Kolom Lantai 2	122
		Ruko C	
	4.8.3.	Penambahan Jacketing untuk Balok Lantai 1 Ruko	125
		С	
4.9.	Hasil D	Pari Penambahan <i>Jacketing</i>	127
	4.9.1. I	Hasil Ruko A Setelah Pemasngan Kolom Jacketing	127
	4.9.2. I	Hasil Ruko B Setelah Pemasngan Kolom Jacketing	128
	4.9.2. I	Hasil Ruko C Setelah Pemasngan Kolom Jacketing	128
4.6.	KESIM	PULAN DAN SARAN	
5.1.	Kesimp	pulan	137
5.2.	Saran		138
DAFTAR PUS	TAKA		139
LAMPIRAN			
DAFTAR RIW	AYAT H	IIDUP	

DAFTAR TABEL

Tabel 2.1	Karakter segmen Sesar di Zona Subduksi Sumatera	10
	(Natawidjaja dan Triyoso, 2007)	
Tabel 2.2	Klasifikasi situs berdasarkan SNI 1726:2012	17
Tabel 2.3	Koefisien situs untuk PGA (F _{PGA}) berdasarkan SNI	18
	1726:2012	
Tabel 2.4	Kategori resiko bangunan gedung dan struktur lainnya	19
	untuk beban gempa berdasarkan SNI 1726:2012	
Tabel 2.5	Faktor keutamaan gempa berdasarkan SNI 1726:2012	19
Tabel 2.6	Simpangan antarlantai izin berdasarkan SNI 1726:2012	22
Tabel 2.7	Koefisien Perioda pendek (Fa) berdasarkan SNI	25
	1726:2012	
Tabel 2.8	Koefisien Perioda 1,0 detik (F_v) berdasarkan SNI	26
	1726:2012	
Tabel 2.9	Kategori desain seismik berdasarkan parameter respon	27
	percepatan pada Perioda pendek berdasarkan SNI	
	1726:2012	
Tabel 2.10	Kategori desain seismik berdasarkan parameter respon	28
	percepatan pada Perioda 1 detik berdasarkan SNI	
	1726:2012	
Tabel 2.11	Ketidak Beraturan horizontal pada struktur berdasarkan	28
	SNI 1726:2012	
Tabel 2.12	Ketidak Beraturan vertikal pada struktur berdasarkan	29
	SNI Gempa 1726:2012	
Tabel 2.13	Faktor keutamaan (Ie), berdasarkan SNI 1726:2012	30
Tabel 2.14	Faktor keutamaan (Ie), berdasarkan SNI 1726:2012	30
Tabel 3.1	Respon Spektrum SNI 1726:2012 Daerah, Kota Medan	44
	dengan jenis tanah Lunak	
Tabel 3.2	Faktor reduksi gempa berdasarkan SNI 1726:2012	49

Tabel 3.3	Berat material konstruksi berdasarkan PPIUG 1983	50
Tabel 3.4	Beban hidup pada lantai struktur berdasarkan SNI 1727:2013	51
Tabel 3.5	Ukuran Penampang pada Model 1 (Ruko A di Jalan	53
	Tuasan Medan Tembung)	
Tabel 3.6	Data Perioda output program Analisa Sruktur Model 1	54
	(Ruko A di Jalan Tuasan Medan Tembung)	
Tabel 3.7	Hasil selisih persentase nilai Perioda Model 1 di	55
Tabel 3.8	Lapangan Pengecekan Perioda berdasarkan pembatasan waktu getar	56
	alami fundamental Model 1 berdasarkan SNI1726:2012	
Tabel 3.9	Rangkuman nilai Cs dan nilai Cs yang digunakan Model	57
	1	
Tabel 3.10	Ukuran Penampang pada Model 2 di lapangan	59
Tabel 3.11	Data Perioda output program Analisa Sruktur Model 2 di	60
	lapangan	
Tabel 3.12	Hasil selisih persentase nilai Perioda Model 2 di lapangan	60
Tabel 3.13	Pengecekan Perioda berdasarkan pembatasan waktu getar	62
	alami fundamental Model 2 di lapangan berdasarkan	
	SNI1726:2012	
Tabel 3.14	Rangkuman nilai Cs dan nilai Cs yang digunakan Model	62
	2	
Tabel 3.15	Ukuran Penampang pada Model 3 dilapangan	65
Tabel 3.16	Data Perioda output program Analisa Sruktur Model 3 di	65
	lapangan	
Tabel 3.17	Hasil selisih persentase nilai Perioda Model 3 di lapangan	66
Tabel 3.18	Pengecekan Perioda berdasarkan pembatasan waktu getar	67
	alami fundamental Model 3 berdasarkan SNI1726:2012	
Tabel 3.19	Rangkuman nilai Cs dan nilai Cs yang digunakan Model	68
	3 di lapangan	
Tabel 4.1	Gaya geser dasar nominal hasil analisis ragam respon	70
	spectrum	

Tabel 4.2	Rekapitulasi faktor skala hasil respon spektrum dengan	71
	statik ekivalen masing-masing arah Model 1	
Tabel 4.3	Pengecekan story shear dengan 35% baseshear terhadap	71
	redundansi 1,0 untuk Model 1 dilapangan terhadap	
	gempa x	
Tabel 4.4	Pengecekan story shear dengan 35% base shear terhadap	72
	redundansi 1,0 untuk Model 1 dilapangan terhadap	
	gempa y	
Tabel 4.5	Kombinasi pembebanan berdasarkan SNI 1729-2012	72
	dengan nilai $S_{DI} = 1$ dan $S_D s = 0.5867$	
Tabel 4.6	Gaya geser hasil <i>output</i> analisis respon spektrum gempa x	74
Tabel 4.7	Gaya geser hasil <i>output</i> analisis respon spektrum gempa y	75
Tabel 4.8	Nilai simpangan gedung Model 1 di lapangan akibat	76
	gempa x, pada kinerja batas ultimit berdasarkan SNI	
	1726-2012	
Tabel 4.9	Nilai simpangan gedung Model 1 di lapangan akibat	77
	gempa y, pada kinerja batas ultimit berdasarkan SNI	
	1726-2012	
Tabel 4.10	Kontrol P-delta pada arah x untuk Model 1 di Lapangan	78
Tabel 4.11	Kontrol P-delta pada arah y untuk Model 1 di Lapangan	78
Tabel 4.12	Gaya geser dasar nominal hasil analisis ragam respon	79
	spektrum	
Tabel 4.13	Rekapitulasi faktor skala hasil respon spektrum dengan	80
	statik ekivalen masing-masing arah Model 2 di lapangan	
Tabel 4.14	Pengecekan story shear dengan 35% base shear terhadap	81
	redundansi 1,0 untuk Model 2 di lapangan terhadap	
	gempa x	
Tabel 4.15	Pengecekan story shear dengan 35% base shear terhadap	81
	redundansi 1,0 untuk Model 2 di lapangan terhadap	
	gempa y	
Tabel 4.16	Kombinasi pembebanan berdasarkan SNI 1729-2012	82
	dengan nilai $S_{DI} = 1$ dan $S_{DS} = 0.5867$	

Tabel 4.17	Gaya geser hasil <i>output</i> analisis respon spektrum gempa x	83
Tabel 4.18	Gaya geser hasil <i>output</i> analisis respon spektrum gempa y	84
Tabel 4.19	Nilai simpangan gedung Model 2 di lapangan akibat	85
	gempa x, pada kinerja batas ultimit berdasarkan SNI	
	1726-2012	
Tabel 4.20	Nilai simpangan gedung Model 2 di lapangan akibat	86
	gempa y, pada kinerja batas ultimit berdasarkan SNI	
	1726-2012	
Tabel 4.21	Kontrol P-delta pada arah x untuk Model 2 di Lapangan	87
Tabel 4.22	Kontrol P-delta pada arah y untuk Model 2 di Lapangan	88
Tabel 4.23	Gaya geser dasar nominal hasil analisis ragam respon	89
	spektrum	
Tabel 4.24	Rekapitulasi faktor skala hasil respon spektrum dengan	90
	statik ekivalen masing-masing arah Model 3 di lapangan	
Tabel 4.25	Pengecekan story shear dengan 35% base shear terhadap	91
	redundansi 1,0 untuk Model 3 di lapangan terhadap	
	gempa x	
Tabel 4.26	Pengecekan story shear dengan 35% base shear terhadap	91
	redundansi 1,0 untuk Model 3 di lapangan terhadap	
	gempa y	
Tabel 4.27	Kombinasi pembebanan berdasarkan SNI 1729-2012	92
	dengan nilai $S_{DI} = 1$ dan $S_{DS} = 0.5867$	
Tabel 4.28	Gaya geser hasil <i>output</i> analisis respon spektrum gempa x	93
Tabel 4.29	Gaya geser hasil <i>output</i> analisis respon spektrum gempa y	94
Tabel 4.30	Nilai simpangan gedung Model 3 di lapangan akibat	95
	gempa x, pada kinerja batas ultimit berdasarkan SNI	
	1726-2012	
Tabel 4.31	Nilai simpangan gedung Model 3 di lapangan akibat	96
	gempa y, pada kinerja batas ultimit berdasarkan SNI	
	1726-2012	
Tabel 4.32	Kontrol P-delta pada arah x untuk Model 3 di Lapangan	98
Tabel 4 33	Kontrol P-delta pada arah y untuk Model 3 di Lapangan	98

Tabel 4.34	Nilai Rencana ϕ Pn_I dan Nilai Rencana ϕ Mn_I	99
Tabel 4.35	Nilai Nominal ϕPn_2 dan Nilai Nominal ϕMn_2	100
Tabel 4.36	Hasil Penjumlahan nilai Rencana ϕ Pn_1 Nilai Nominal	101
	ϕ Pn_2 dan nilai Rencana ϕ Mn_1 Nilai Nominal ϕ Mn_2	
Tabel 4.37	Nilai Rencana ϕ Pn_1 dan Nilai Rencana ϕ Mn_1	103
Tabel 4.38	Nilai Nominal ϕ Pn_2 dan Nilai Nominal ϕ Mn_2	104
Tabel 4.39	Hasil Penjumlahan nilai Rencana ϕ Pn_1	105
	Nilai Nominal	
	ϕ Pn_2 dan nilai Rencana ϕ Mn_1 Nilai Nominal ϕ Mn_2	
Tabel 4.40	Nilai Rencana ϕ Pn_I dan Nilai Rencana ϕ Mn_I	106
Tabel 4.41	Nilai Nominal ϕ Pn_2 dan Nilai Nominal ϕ Mn_2	107
Tabel 4.42	Hasil Penjumlahan nilai Rencana ϕ Pn_1 Nilai Nominal	108
	ϕ Pn_2 dan nilai Rencana ϕ Mn_1 Nilai Nominal ϕ Mn_2	
Tabel 4.43	Nilai Rencana ϕ Pn_1 dan Nilai Rencana ϕ Mn_1	112
Tabel 4.44	Nilai Nominal ϕ Pn_2 dan Nilai Nominal ϕ Mn_2	113
Tabel 4.45	Hasil Penjumlahan nilai Rencana ϕ Pn_1 Nilai Nominal	114
	ϕ Pn_2 dan nilai Rencana ϕ Mn_1 Nilai Nominal ϕ Mn_2	
Tabel 4.46	Nilai Rencana ϕ Pn_1 dan Nilai Rencana ϕ Mn_1	115
Tabel 4.47	Nilai Nominal ϕ Pn_2 dan Nilai Nominal ϕ Mn_2	116
Tabel 4.48	Hasil Penjumlahan nilai Rencana ϕ Pn_1 Nilai Nominal	117
	ϕ Pn_2 dan nilai Rencana ϕ Mn_1 Nilai Nominal ϕ Mn_2	
Tabel 4.49	Nilai Rencana ϕ Pn_1 dan Nilai Rencana ϕ Mn_1	119
Tabel 4.50	Nilai Nominal ϕ Pn_2 dan Nilai Nominal ϕ Mn_2	120
Tabel 4.51	Hasil Penjumlahan nilai Rencana ϕ Pn_1 Nilai Nominal	121
	ϕ Pn_2 dan nilai Rencana ϕ Mn_1 Nilai Nominal ϕ Mn_2	
Tabel 4.52	Nilai Rencana ϕ Pn_1 dan Nilai Rencana ϕ Mn_1	122
Tabel 4.53	Nilai Nominal ϕ Pn_2 dan Nilai Nominal ϕ Mn_2	123
Tabel 4.54	Hasil Penjumlahan nilai Rencana ϕ Pn_1 Nilai Nominal	124
	ϕ Pn_2 dan nilai Rencana ϕ Mn_1 Nilai Nominal ϕ Mn_2	
Tabel 4.55	Rekapitulasi sebelum pemasangan jacketing dan	131
	sesudah pemasangan jacketing	
Tabel 4.56	Rekapitulasi sebelum pemasangan <i>jacketing</i> dan	

	sesudah pemasangan jacketin	133
Tabel 4.57	Rekapitulasi sebelum pemasangan jacketing dan	135
	sesudah pemasangan jacketing	

DAFTAR GAMBAR

Gambar 2.1	Peta sejarah gempa maksimum, laju pergeseran per tahun	11
	dan panjang segmen sesar dikawasan Sumatera	
Gambar 2.2	Jenis-jenis pertemuan dua lempeng tektonik, a)	12
	pertemuan divergen; b) pertemuan konvergen; c)	
	pertemuan saling bergeser horizontal (Faisal, 2015)	
Gambar 2.3	S ₁ , Peta respon spektrum percepatan 1,0 detik di batuan	16
	dasar S_B untuk probabilitas terlampaui 2% dalam 50	
	tahun (redaman 5%) (Peta Gempa 2017)	
Gambar 2.4	S _s , Peta respon spektrum percepatan 0,2 detik di batuan	17
	dasar S_B untuk probabilitas terlampaui 2% dalam 50	
	tahun (redaman 5%) (Peta Gempa 2017)	
Gambar 2.5	Grafik spektrum perbandingan percepatan dengan	24
	Perioda	
Gambar 2.6	Respon spektrum desain	27
Gambar 2.7	Hasil Penambahan Perkutan Jacketing	32
Gambar 2.8	Distribusi tegangan pada balok persegi.	33
Gambar 2.9	Balok 2 tumpuan	34
Gambar 2.10	Trajectory tegangan utama pada balok homogen isotropic	34
	(Dari referensi2)	
Gambar 2.11	Jenis keretahkan pada balok	36
Gambar 2.12	Letak penampang kritis dalam mengevaluasikan V_u (Dari	40
	referensi 4)	
Gambar 3.1	Bagan Alir Penelitian	41
Gambar 3.2	Respons Spektrum berdasarkan SNI 1726 : 2012 Dengan	
	kota Medan dengan Klasifikasi tanah lunak	46
Gambar 3.3	Denah struktur beton Model 1 Ruko A di lapangan	52
Gambar 3.4	Tampak Samping Bangunan Arah X dan Y Model 1 di	52
	lapangan	
Gambar 3.5	Tampak 3D Struktur Bangunan Beton Model 1 di	53

	lapangan				
Gambar 3.6	Denah struktur beton Model 2 ruko B di lapangan	57			
Gambar 3.7	Tampak samping bangunan arah X dan Y Model 2 di	58			
	lapangan				
Gambar 3.8	Tampak 3D struktur bangunan beton Model 2 di	58			
	lapangan				
Gambar 3.9	Denah struktur beton Model 3 ruko C di lapangan	63			
Gambar 3.10	Tampak samping bangunan arah X dan Y Model 3 di 6				
	lapangan				
Gambar 3.11	Tampak 3D struktur bangunan beton Model 3 di	64			
	lapangan				
Gambar 4.1	Diagram gaya geser respon spektrum sumbu x	74			
Gambar 4.2	Diagram gaya geser respon spektrum sumbu y	75			
Gambar 4.3	Diagram nilaisimpangan lantaisumbu x	76			
Gambar 4.4	Perbandingan simpangan respon spektrum arah y	77			
Gambar 4.5	Diagram gaya geser respon spektrum sumbu x	84			
Gambar 4.6	Diagram gaya geser respon spektrum sumbu y	85			
Gambar 4.7	Perbandingan simpangan respon spektrum sumbu x	86			
Gambar 4.8	Perbandingan simpangan respon spektrum	87			
Gambar 4.9	Diagram gaya geser respon spektrum sumbu x	94			
Gambar 4.10	Diagram gaya geser respon spektrum sumbu y	95			
Gambar 4.11	Perbandingan simpangan respon spektrum sumbu x	96			
Gambar 4.12	Perbandingan simpangan respon spektrum sumbu y	97			
Gambar 4.13	Hasil Rencana $\phi P_n I$ dan Rencana $\phi M_n I$	99			
Gambar 4.14	Hasil Rencana Untuk Penambahan kekuatan Pada Kolom	100			
Gambar 4.15	Hasil Setelah Penambahan Kolom Jacketing	102			
Gambar 4.16	Hasil Rencana $\phi P_n I$ dan Rencana $\phi M_n I$	103			
Gambar 4.17	Hasil Rencana Untuk Penambahan kekuatan Pada Kolom	104			
Gambar 4.18	Hasil Setelah Penambahan Kolom Jacketing	105			
Gambar 4.19	Hasil Rencana $\phi P_n I$ dan Rencana $\phi M_n I$	107			
Gambar 4.20	Hasil Rencana Untuk Penambahan kekuatan Pada Kolom	108			
Gambar 4.21	Hasil Setelah Penambahan Kolom Jacketing	109			

Gambar 4.22	Hasil Rencana $\phi P_n I$ dan Rencana $\phi M_n I$	112
Gambar 4.23	Hasil Rencana Untuk Penambahan kekuatan Pada Kolom	114
Gambar 4.24	Hasil Setelah Penambahan Kolom Jacketing	115
Gambar 4.25	Hasil Rencana $\phi P_n I$ dan Rencana $\phi M_n I$	116
Gambar 4.26	Hasil Rencana Untuk Penambahan kekuatan Pada Kolom	117
Gambar 4.27	Hasil Setelah Penambahan Kolom Jacketing	118
Gambar 4.28	Hasil Rencana $\phi P_n I$ dan Rencana $\phi M_n I$	119
Gambar 4.29	Hasil Rencana Untuk Penambahan kekuatan Pada Kolom	120
Gambar 4.30	Hasil Setelah Penambahan Kolom Jacketing	121
Gambar 4.31	Hasil Rencana $\phi P_n I$ dan Rencana $\phi M_n I$	123
Gambar 4.32	Hasil Rencana Untuk Penambahan kekuatan Pada Kolom	124
Gambar 4.33	Hasil Setelah Penambahan Kolom Jacketing	125
Gambar 4.34	Rencana Awal	127
Gambar 4.35	Gambar setelah pemasangan kolom Jacketing	127
Gambar 4.36	Rencana Awal	128
Gambar 4.37	Gambar setelah pemasangan kolom Jacketing	128
Gambar 4.38	Rencana Awal	129
Gambar 4 39	Gambar setelah nemasangan kolom <i>lacketing</i>	129

DAFTAR NOTASI

As = Luas Penampang Tulangan

a = Tinggi Distribusi Tegangan Persegi

b = Lebar Balok

 C_d = Faktor kuat lebih system

CE = Faktor Pengurangan Lingkungan

DL = Beban mati, termasuk SIDL

d = Jarak Serat Tekan terluar terhadap Tulangan

E = Modulus elastisitas

Ex = Beban gempa arah x

Ey = Beban gempa arah y

F = Frekuensi Struktur

 F_a = Koefisien Perioda pendek

Fc' = Kuat Tekan Beton

 F_v = Koefisien Perioda 1,0 detik

Fy = Kuat Leleh Baja

 F_{PGA} = Nilai koefisien situs untuk PGA

h_n = Ketinggian struktur dalam m di atas dasar sampai tingkat

tertinggi struktur (meter)

I = Momen Inersia Kolom/Balok

Ie = Faktor keutamaan gempa

 ω = Kecepatan sudut

k = Kekakuan struktur

1 = Panjang Kolom/Balok

Le = Panjang lekatan aktif

LL = Beban hidup

M_{column} = Momen kapasitas 2 Kolom yang bertemu di *joint*

M_{beam} = Momen kapasitas 2 Balok yang menumpu di Kolom

Mc = Momen puncak

Mn = Momen Nominal

Mu = Momen Ultimit

My = Momen leleh

PGA = Nilai PGA dibatuan dasar (S_B) mengacu pada peta Gempa

SNI 1726:2012

PGA_M = Nilai percepatan tanah puncak yang disesuaikan dengan

pengaruh klasifikasi situs

Q_E = Pengaruh gaya seismik horizontal dari V, yaitu gaya geser

desain total di dasar struktur dalam arah yang ditinjau.

Pengaruh tersebut harus dihasilkan dari penerapan gaya

horizontal secara serentak dalam dua arah tegak lurus satu

sama lain

R = Faktor koefisien modifikasi respon

 S_S = Nilai parameter respon spektrum percepatan gempa Perioda

pendek 0,2 detik di batuan dasar (S_B) mengacu pada Peta

Gempa SNI 1726:2016

 S_I = Nilai parameter respon spektrum percepatan gempa Perioda

1,0 detik di batuan dasar (S_B) mengacu pada Peta Gempa SNI

1726:2016

 S_{DS} = Respon spektrum percepatan respon desain untuk Perioda

pendek

T_{a minimum} = Nilai batas bawah Perioda bangunan

T_{a maksimum} = Nilai batas atas Perioda bangunan

V_t = Gaya geser dasar nominal yang didapat dari hasil analisis

ragam spektrum respon yang telah dilakukan

V₁ = Gaya geser dasar prosedur gaya lateral statik ekivalen

∈ = Total tegangan yang terjadi

 \in_{v} = Tegangan pada saat leleh

Ø = Faktor Reduksi kekuatan

 θ_{v} = Rotasi pada saat leleh

 θ_{p} = Koefisien rotasi plastis

 θ_{pc} = Koefisien rotasi *post-capping*

 θ_u = Rotasi pada batas ultimit

 ϕ_y = Lengkungan pada saat leleh

 θ_y = Rotasi pada batas leleh

 ϕ_m = Lengkungan maksimum yang akan timbul

 μ_p = Lendutam pada titik plastis

 μ_y = Lendutan pada titik leleh

 ΔVu = Delta Geser Ultimit

 Ω_0 = Faktor pembesaran defleksi

 ρ = Faktor redudansi

 Ψf = Faktor reduksi tambahan

DAFTAR SINGKATAN

ACI = American Concrete Institute

CQC = Complete Quadratic Combination

PGA = Peak Ground Acceleration

PPPURG = Pedoman Perencanaan Pembebanan Untuk Rumah dan Gedung

PPIUG = Peraturan Pembebanan Indonesia Untuk Gedung

SNI = Standar Nasional Indonesia

SRSS = Square Root of the Sum of Square

SRPM = Sistem Rangka Pemikul Momen

SRPMB = Sistem Rangka Pemikul Momen Biasa

SRPMK = Sistem Rangka Pemikul Momen Khusus

BABI

PENDAHULUAN

1.1 Latar Belakang

Struktur beton bertulang banyak digunakan pada berbagai konstruksi bangunan, yang terdiri dari gabungan bahan jenis beton dan baja tulangan. Komponen beton bertulang dapat mengalami suatu kegagalan fungsi dimana struktur tersebut tidak mampu lagi menahan beban yang bekerja disebabkan karena kejadian alam, misalnya gempa bumi. Gempa dapat terjadi akibat pergeseran tiba-tiba pada lapisan tanah dibawah permukaan bumi. Ketika pergeseran ini terjadi, timbul getaran ke segala arah dan sering sekali sampai ke permukaan bumi sehingga dapat dirasakan oleh manusia. Dilihat dari letak geografis Indonesia, sebagian wilayah berada pada kawasan rawan gempa. Dampak dari kejadian alam tersebut bervariasi dari kategori rusak ringan, sedang, berat dan runtuh. Dengan kerusakan tersebut maka perlu upaya perbaikan struktur beton bertulang tersebutdengan metode perbaikan yang baik dan mudah dikerjakan dilapangan.

Struktur bangunan misalnya rumah atau gedung yang berfungsi sebagai tempat tinggal ataupun tempat melakukan kegiatan di dalamnya, seringkali dinyatakan layak untuk dihuni namun pada kenyataannya bangunan tersebut banyak mengalami kegagalan konstruksi. Kegagalan konstruksi pada beton bertulang diharapkan dapat dikurangi persentasenya sekecil mungkin terutama pada kolom. Kolom memiliki peranan yang besar dalam sistem struktur bangunan karena saling terhubung dengan komponen struktur lainnya. Apabila terjadi kegagalan konstruksi pada kolom maka akan berakibat pada runtuhnya komponen struktur lain yang terhubung dengan kolom tersebut. Indonesia merupakan salah satu negara yang berpotensi mengalami bencana alam gempa bumi. Hampir semua wilayah kawasan Indonesia memiliki potensi gempa bumi yang cukup besar, oleh karenanya suatu struktur bangunan juga harus dirancang dan dibangun untuk dapat menahan gempa. Bila terjadi gempa struktur bangunan akan mengalami kerusakan ringan, sedang sampai dengan kerusakan berat. Masalah kerusakan struktur tersebut sebenarnya dapat diselesaikan dengan metode

concrete jacketing, hanya saja metode tersebut masih memiliki kekurangan yaitu menambah dimensi komponen struktur bangunan tersebut. Penambahan dimensi tersebut akan berpengaruh juga pada berat sendiri struktur tersebut yang bertambah besar.

Penelitian tentang perbaikan struktur telah banyak dilakukan. Metode perbaikan yang dilakukan pada kerusakan struktur beton bertujuan untuk meningkatkan kapasitas beban yang biasanya dengan menambah tulangan atau bahan lainnya. Perkuatan dapat menggunakan bahan-bahan antara lain wire mesh atau besi tulangan yang ditambahkan pada area keruntuhan dan ditempelkan pada beton lama dengan shortcrete, penambahan struktur plat baja dan external posttensioning (Poston, 1997).

Sulendra (2000) melakukan penelitian dengan metode penyelubungan beton (concrete jacketing method) dan penambahan tulangan lentur pada balok yang mengalami kerusakan lentur. Perbaikan struktur beton menggunakan metode penyelubungan beton ini dilaksanakan dengan menyelubungi struktur asli dengan beton dan menambahkan tulangan longitudinal dan tulangan transversal yang jumlahnya ditentukan sesuai dengan gaya-gaya yang terjadi pada struktur yang diakibatkan oleh gempa. Sebelum beton penyelubung dicor terhadap struktur aslinya, permukaan struktur tersebut dikasarkan sedalam 2- 3 mm. Hal ini diperlukan untuk memberikan rekatan yang cukup antara beton lama dengan betonbaru. Hasilnya penelitian menunjukkan kapasitas beban lateral, kekuatan, kekakuan, daktilitas, dan disipasi energinya meningkat. Triwiyono dkk. (2006) meneliti tentang kuat geser kolom beton bertulang penampang lingkaran yang diperbaiki dengan metode concrete jacketing. Hasil studi menunjukkan bahwa rumus teoritis untuk menghitung kuat geser kolom asli dan retrofit mempunyai nilai berkisar 75% terhadap hasil eksperimen, sehingga masih bisa diterapkan untuk memprediksi kuat geser kolom baik asli maupun retrofit. Dari hasil eksperimen didapatkan bahwa perbaikan dengan metode concrete jacketing cukup efektif, kekuatan kolom dalam menahan beban lateral meningkat menjadi dua kali dibandingkan kolom asli. Dari kurva histeresis dan pola kerusakannya, kolom retrofit dapat mempertahankan kemampuan menahan beban lateral meskipun

selimut beton sudah mengalami spalling, kekuatan lateral kolom *retrofit* tidak menurun secara mendadak, dengan tingkat daktlitas menjadi sekitar dua kalinya.

1.2 Rumusan Masalah

Berdasarkan latar belakang tersebut, rumusan masalah dapat diuraikan sebagai berikut:

- Bagaimana menganalisa perkuatan kolom dan balok terhadap gaya geser, lentur dan momen
- 2. Bagaiman membuat perkuatan pada struktur kolom.

1.3 Ruang Lingkup Penelitian

Ruang lingkup penelitian ini adalah sebagai berikut:

- 1. Struktur yang di gunakan adalah struktur beton bertulang.
- Jenis pemanfaatan struktur gedung sebagai gedung rumah toko yang terdiri
 3 lantai.
- 3. Pada tugas akhir ini hanya membahas aspek struktual tidak dimasukkan analisis segi biaya dan waktu.
- 4. Peta gempa yang digunakan adalah peta 2017.
- 5. Perkuatan yang dipakai adalah Jacketing dengan beton bertulang.

1.4 Tujuan Penelitian

Penelitian ini memiliki tujuan sebagai berikut:

- 1. Untuk mengetahui perilaku struktur rumah toko di Kota Medan sebelum di perkuat.
- 2. Untuk merencanakan perkuatan pada elemen struktur dengan cara *Jacketing* memakai struktur beton.

1.5 Manfaat Penelitian

Manfaat dari penelitian ini adalah mengaplikasikan ilmu pengetahuan di bidang Teknik Sipil dan Lingkungan. Selain itu, hasil dari penelitian ini diharapkan dapat menjadi masukan atau alternatif dalam memilih metode perkuatan.

1.6 Sistematika Penulisan

Proposal penelitian atau skripsi ini terdiri dari dari lima bab yang direncanakan dan diharapkan dapat menjelaskan perihal topik bahasan, yaitu :

BAB 1 PENDAHULUAN

Bab ini menguraikan latar belakang permasalahan, identifikasi dan rumusan permasalahan, ruang lingkup pembahasan, tujuan dilakukannya penelitian dan manfaat penelitian.

BAB 2 TINJAUAN PUSTAKA

Bab ini menguraikan teori-teori tentang gedung, metode analisa yang akan digunakan serta ketentuan dalam desain yang harus dipenuhi sesuai syarat.

BAB 3 METODE PENELITIAN DAN PEMODELAN

Bab ini menjelaskan rencana atau prosedur yang dilakukan penulis memperoleh jawaban yang sesuai dengan kasus permasalahan.

BAB 4 HASIL DAN PEMBAHASAN

Bab ini menguraikan hasil pembahasan analisis desain dan kinerja struktur.

BAB 5 KESIMPULAN DAN SARAN

Bab ini berisi kesimpulan sesuai dengan analisis terhadap studi literatur dan berisi saran untuk pengembangan lebih lanjut yang baik di masa yang akan datang.

BAB 2

TINJAUAN PUSTAKA

2.1. Umum

Struktur beton bertulang banyak digunakan pada berbagai konstruksi bangunan, yang terdiri dari gabungan bahan jenis beton dan baja tulangan. Komponen beton bertulang dapat mengalami suatu kegagalan fungsi dimana struktur tersebut tidak mampu lagi menahan beban yang bekerja disebabkan karena kejadian alam, misalnya gempa bumi. Dampak dari kejadian alam tersebut bervariasi dari kategori rusak ringan, sedang, berat dan runtuh. Dengan kerusakan tersebut maka perlu upaya perbaikan struktur beton bertulang tersebut dengan metode perbaikan yang baik dan mudah dikerjakan dilapangan.

Dalam praktek telah berkembang bentuk beton bertulang tipis yang berbeda dari beton bertulang biasa atau beton pratekan, terutama dari bahan dan cara pemasangan tulangannya yaitu ferosemen. Ferosemen mempunyai beberapa keuntungan utama, diantaranya adalah kemudahan dalam pengerjaan karena tekniknya tidak banyak berbeda dengan teknik bangunan biasa (mortar dan beton), bahan mudah didapat, volume bahan yang digunakan relatif sedikit. Dengan keuntungan tersebut maka ferosemen dapat dimanfaatkan menjadi metode perbaikan struktur.

Dalam penelitian perbaikan metode jacketing bahan ferosemen ini diteliti tentang balok eksterior dengan beban siklik sampai tingkat kerusakan pada beban ultimit. Benda uji tersebut kemudian diperbaiki (*retrofitting*) dengan metode jacketing ferosemen. Benda uji yang dipergunakan adalah struktur sambungan balok kolom eksterior berpenampang persegi. Tumpuan jepit pada masing-masing kolom dengan pembebanan lateral bolak-balik (siklik) pada balok.

Tujuan dari penelitian ini adalah untuk mengetahui kenaikan beban ultimit sebelum dan setelah perbaikan, serta mengetahui perilaku setelah perbaikan, yaitu meliputi hubungan beban – lendutan, *envelope curve, hysteresis energy*, model keruntuhan, kekakuan (*stiffness*), daktilitas dan pola retak.

Penelitian tentang perbaikan struktur telah banyak dilakukan. Metode perbaikan yang dilakukan pada kerusakan struktur beton bertujuan untuk meningkatkan kapasitas beban yang biasanya dengan menambah tulangan atau bahan lainnya. Perkuatan dapat menggunakan bahan-bahan antara lain wire mesh atau besi tulangan yang ditambahkan pada area keruntuhan dan ditempelkan pada beton lama dengan shortcrete, penambahan struktur plat baja dan external posttensioning (Poston, 1997).

Sulendra (2000) melakukan penelitian dengan metode penyelubungan beton (concrete jacketing method) dan penambahan tulangan lentur pada balok yang mengalami kerusakan lentur. Perbaikan struktur beton menggunakan metode penyelubungan beton ini dilaksanakan dengan menyelubungi struktur asli dengan beton dan menambahkan tulangan longitudinal dan tulangan transversal yang jumlahnya ditentukan sesuai dengan gaya-gaya yang terjadi pada struktur yang diakibatkan oleh gempa. Sebelum beton penyelubung dicor terhadap struktur aslinya, permukaan struktur tersebut dikasarkan sedalam 23 mm. Hal ini diperlukan untuk memberikan rekatan yang cukup antara beton lama dengan beton baru. Hasilnya penelitian menunjukkan kapasitas beban lateral, kekuatan, kekakuan, daktilitas, dan disipasi energinya meningkat.

Triwiyono dkk. (2006) meneliti tentang kuat geser kolom beton bertulang penampang lingkaran yang diperbaiki dengan metode concrete jacketing. Hasil studi menunjukkan bahwa rumus teoritis untuk menghitung kuat geser kolom asli dan retrofit mempunyai nilai berkisar 75% terhadap hasil eksperimen, sehingga masih bisa diterapkan untuk memprediksi kuat geser kolom baik asli maupun retrofit. Dari hasil eksperimen didapatkan bahwa perbaikan dengan metode concrete jacketing cukup efektif, kekuatan kolom dalam menahan beban lateral meningkat menjadi dua kali dibandingkan kolom asli. Dari kurva histeresis dan pola kerusakannya, kolom retrofit dapat mempertahankan kemampuan menahan beban lateral meskipun selimut beton sudah mengalami spalling, kekuatan lateral kolom retrofit tidak menurun secara mendadak, dengan tingkat daktlitas menjadi sekitar dua kalinya.

2.2. Mutu bahan

Beton adalah suatu campuran yang terdiri dari pasir, kerikil, batu pecah, atau agregat-agregat lain yang dicampur menjadi satu dengan suatu pasta yang terbuat dari semen dan air membentuk suatu *massa* mirip batuan. Terkadang, satu atau lebih bahan aditif ditambahkan untuk menghasilkan beton dengan karakteristik tertentu, seperti kemudahan pengerjaan (*workability*), durabilitas dan waktu pengerasan (Mc Cormac, 2004).

Beton didapat dari pencampuran bahan-bahan agregat halus dan kasar yaitu pasir, batu, batu pecah, atau bahan semacam lainnya dengan menambahkan secukupnya bahan perekat semen, dan air sebagai bahan pembantu guna keperluan reaksi kimia selama proses pengerasan dan perawatan beton berlangsung (Dipohusodo, 1999).

Beton bertulang adalah merupakan gabungan logis dari dua jenis bahan beton polos yang memiliki kekuatan tekan yang tinggi akan tetapi kekuatan tarik yang rendah dan batang-batang baja yang ditanamkan didalam beton dapat memberikan kekuatan tarik yang diperlukan (Wang, 1993). Beton tidak dapat menahan gaya tarik melebihi nilai tertentu tanpa mengalami retak-retak. Untuk itu, agar beton dapat bekerja dengan baik dalam suatu sistem struktur, perlu dibantu dengan memberinya perkuatan penulangan yang terutama akan mengemban tugas menahan gaya tarik yang bakal timbul didalam sistem.

Untuk mencapai kuat tekan beton perlu diperhatian kepadatan dan kekerasan massanya, umumnya semakin padat dan keras massa agregat akan makin tinggi kekuatan dan *durability* (daya tahan terhadap penurunan mutu dan akibat pengaruh cuaca). Untuk itu diperlukan susunan gradasi butiran yang baik. Nilai kuat tekan beton yang dicapai ditentukan oleh mutu bahan agregat ini (Dipohusodo, 1994) Parameter-parameter yang paling mempengaruhi kekuatan beton adalah:

- 1. Kualitas semen.
- 2. Proporsi terhadap campuran.
- 3. Kekuatan dan kebersihan agregat,
- 4. Interaksi atau adhesi antara pasta semen dengan agregat.
- 5. Pencampuran yang cukup dari bahan-bahan pembentuk beton.

- 6. Penempatan yang benar, penyelesaian dan pemadatan beton.
- 7. Perawatan beton.
- 8. Kandungan klorida tidak melebihi 0,15 % dalam beton yang diekspos dan 1 % bagi beton yang tidak diekspos (Nawy, 1985).

Dalam menentukan mutu bahan untuk suatu komponen struktur, ada berbagai macam aspek yang harus diperhatikan, antara lain adalah fungsi gedung dan fungsi komponen struktur. Fungsi gedung berkaitan dengan kegunaan gedung itu sendiri. Sebagai contoh, bila gedung berfungsi sebagai gedung perkantoran, mutu bahannya tentu berbeda dengan gedung yang berfungsi sebagai *bunker* pertahanan yang membutuhkan mutu beton yang lebih tinggi. Demikian juga berdasarkan fungsi komponen struktur, misalnya mutu bahan untuk pelat lantai tidak sama dengan pondasi disamping itu, pengaruh lingkungan sekitar bangunan juga mempengaruhi penentuan mutu beton yang digunakan dan cara perlindungan beton dari korosi. Dalam tabel 1 SNI 03-2847-2002 pasal 6 dicantumkan persyaratan rasio air semen dan kuat tekan karateristik beton untuk pengaruh lingkungan khusus.

2.3. Pembebanan

Beban-beban pada struktur bangunan bertingkat, menurut arah bekerjanya dapat dibagi menjadi dua, yaitu :

- 1. Beban Vertikal (Gravitasi).
 - a. Beban mati (Dead Load).
 - b. Beban Hidup (*Live Load*).
 - c. Beban Air Hujan.
- 2. Beban Horizontal (Lateral).
 - a. Beban Gempa (Earthquake).
 - b. Beban Angin (Wind Load).
 - c. Tekanan Tanah dan Air Tanah.

Beban-beban yang direncanakan, akan bekerja dalam suatu struktur gedung tergantung dari fungsi ruangan, lokasi, bentuk, kekakuan, massa dan ketinggian gedung itu sendiri Pada perencanaan konstruksi bangunan bertingkat ini, beban-

beban yang diperhitungkan adalah beban mati, beban hidup, beban gempa, dan beban angin.

1. Beban mati (DL)

Beban mati adalah berat dari semua bagian dari suatu gedung yang bersifat tetap, termasuk segala unsur tambahan, penyelesaian-penyelesaian (*finishing*), mesin-mesin, serta peralatan tetap yang merupakan bagian yang tak terpisahkan dari gedung.

2. Beban hidup (*LL*)

Beban hidup adalah semua beban yang terjadi akibat penghunian atau penggunaan suatu gedung, dan termasuk beban-beban pada lantai yang berasal dari barang-barang yang berpindah, mesin-mesin serta peralatan yang tidak merupakan bagian yang tak terpisahkan dari gedung dan dapat diganti selama masa hidup dari gedung itu, sehingga mengakibatkan perubahan dalam pembebanan atap dan lantai tersebut.

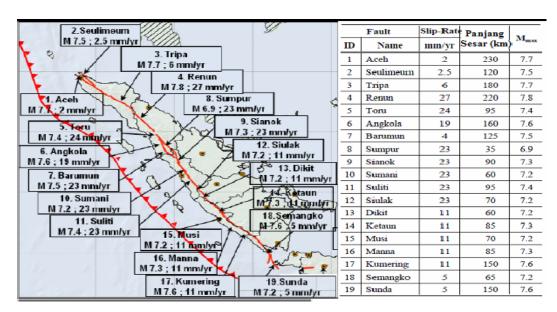
3. Beban angin (WL)

Beban angin adalah semua beban yang bekerja pada gedung atau bagian gedung yang disebabkan oleh selisih tekanan udara.

4. Beban Gempa (*E*)

Beban gempa adalah semua beban statik ekuivalen yang bekerja dalam gedung atau bagian gedung yang menirukan pengaruh dari gerakan tanah akibat gempa itu, maka yang diartikan dengan gempa disini ialah gaya-gaya didalam struktur tersebut yang terjadi oleh gerakan tanah akibat gempa.

2.4.Gaya Geser


Gaya geser adalah gaya yang arahnya terletak pada bidang penampang struktur (tegak lurus dengan sumbu aksial struktur). Setiap struktur memiliki suatu kapasitas geser tertentu. Apabila gaya geser yang yang terjadi melebihi kapasitas geser struktur, maka struktur akan mengalami kerusakan geser.

2.5.Kondisi Tektonik di Sumatera

Data karakter sesar subduksi sumatera dan gempa-gempa besar yang pernah terjadi disepanjang pulau sumatera pada sumbu utara-selatan (*latitude*), yaitu pada lintasan bukit barisan (panjang ~ 1900 km). kawasan antarmuka (*interface*) subduksi berada pada kedalaman kurang lebih 100-175 km dibawah sesar aktif sumatera. Sesar ini dibagi kedalam 19 segmen oleh sieh dan natawidjaja (2002) dimana 12 segmen adalah segmen sesar aktif (gambar 2.1). laju pergeseran (*slip-rate*) yang dimiliki sesar ini berkisar 27 mm/tahun dibagian utara dan 11 mm/tahun dibagian selatan, sedangkan secara rata-rata laju pergeseran disepanjang sesar hamper sama yaitu sebesar 25 mm/tahun (Natawidjaja dan Triyoso, 2009)

Table 2.1: Karakter segmen Sesar di Zona Subduksi Sumatera (Natawidjaja dan Trivoso, 2007).

Segmen	Panjang	Dip	Kedalaman Down-dip	Pergeseran Rata-rata	Konvergensi Rata-rata	Interval Kemunculan	Gempa
Sesar	(km)	(o)	(km)	(m)	(mm/thn)	(tahun)	Bersejarah
Aceh- Andaman	1500	12-17	30	15-25	14-34	> 500	2004 (Mw 9.15), 1881 (Mw.), 1941 (Mw.) 1861 (M
Nias- Simeuleu	400	12-15	35	8-12	40	200-360	8.5), 1907 (7.8), 2005 (Mw 8.7)
Batu Mentawai	65	12	30	3	15-20	150-200	1935 (Mw 7.7)
	670	12	35-50	12	40	200-300	1833 (Mw 8.9-9.0), 1797 (Mw. 8.4- 8.7)

Gambar 2.1: peta sejarah gempa maksimum, laju pergeseran per tahun dan panjang segmen sesar dikawasan Sumatera (Natawidjaja dan Triyoso, 2007).

2.6. Teori Gempa

Gempa bumi adalah getaran atau guncangan yang terjadi di permukaan bumi (permukaan tanah). Menurut Budiono dan Supriatna (2011), secara garis besar gempa bumi dapat diklasifikasikan menjadi empat jenis, yaitu:

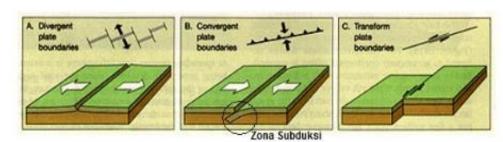
1. Gempa Bumi Vulkanik

Gempa bumi ini terjadi akibat adanya aktivitas magma yang biasa terjadi sebelum gunung api meletus. Apabila keaktifan gunung api semakin tinggi maka akan meneyebabkan timbulnya ledakan dan juga terjadinya gempa bumi.

2. Gempa Bumi Tektonik

Gempa bumi ini disebabkan oleh adanya aktivitas pergerakan lempeng pelat tektonik, yaitu pergeseran lempeng-lempeng tektonik yang terjadi secara tibatiba sehingga menyebabkan gelombang-gelombang seismik yang menyebar dan merambat melalui lapisan kulit bumi atau kerak bumi yang dapat menimbulkan kerusakan dahsyat dan bencana lainnya seperti tsunami.

3. Gempa Bumi Runtuhan


Gempa bumi ini disebabkan oleh keruntuhan baik di atas maupun di bawah permukaan tanah. Gempa ini biasanya terjadi pada daerah kapur ataupun pada daerah pertambangan. Gempa bumi ini jarang terjadi dan bersifat lokal.

4. Gempa Bumi Buatan

Gempa bumi buatan adalah gempa bumi yang disebabkan oleh aktivitas manusia seperti peledakan dinamit, bom, dan nuklir.

2.6.1. Mekanisme Gempa Bumi

Gempa bumi tektonik lebih sering terjadi dibandingkan semua jenis gempa lainnya. Gempa bumi ini disebabkan oleh pergerakan lempeng bumi (kerak bumi). Walaupun kelihatannya diam, akan tetapi lapisan-lapisan bagian permukaan bumi (litosfer) yang materialnya bersifat padat, keras dan dingin selalu bergerak. Ini diakibatkan oleh sejumlah energi yang menekan dan menarik lapisan tersebut sebagai hasil dari proses konveksi yang terjadi pada lapisan di bawahnya (astenosfer) yang sifat materialnya lebih cair, lemah dan jauh lebih panas. Lapisan terluar bumi ini bergerak melalui lempeng-lempengnya, sehingga menimbulkan tekanan, tarikan dan geseran pada lempeng-lempeng itu sendiri. Artinya lempeng-lempeng itu dapat saling bertubrukan (konvergen), saling menjauh (divergen), dan saling bergeser horizontal (transform) seperti yang diilustrasikan pada Gambar 2.2.

Gambar 2.2: Jenis-jenis pertemuan dua lempeng tektonik, a) pertemuan divergen; b) pertemuan konvergen; c) pertemuan saling bergeser horizontal (Faisal, 2015).

Secara geologis, Indonesia terletak di antara tiga lempeng utama dunia yaitu Australia, Eurasia, dan Pasifik sehingga menyebabkan Indonesia menjadi salah satu Negara yang rawan gempa bumi. Selain itu, gempa bumi tektonik biasanya

jauh lebih kuat getarannya dibandingkan dengan gempa bumi vulkanik, gempa bumi runtuhan, maupun gempa bumi buatan. Oleh karena itu, getaran gempa bumi tektonik merupakan gempa yang paling banyak menimbulkan kerusakan terhadap benda atau bangunan di permukaan bumi dan mengakibatkan banyaknya korban jiwa.

2.7. Konsep Perencanaan Bangunan Tahan Gempa

2.7.1. Gempa Rencana

Menurut Budiono dan Supriatna (2011), akibat pengaruh gempa rencana, struktur gedung secara keseluruhan masih harus berdiri walaupun sudah berada dalam kondisi diambang keruntuhan. Berdasarkan SNI 1726:2012, zona peta gempa menggunakan peta gempa untuk probabilitas 2% terlampaui dalam 50 tahun atau memiliki periode ulang 2500 tahun.

Faktor gempa yang berpengaruh pada respon atau reaksi struktur bangunan adalah lamanya waktu gempa dan rentang frekuensi gempa. Durasi gempa berpengaruh pada besarnya perpindahan energi dan vibrasi tanah ke energi struktur. Gempa dengan percepatan sedang dan durasi yang lama menyebabkan kerusakan lebih besar dibandingkan dengan gempa yeng memiliki percepatan besar tapi durasinya singkat.

2.7.2. Arah Pembebanan Gempa

Gempa menyebabkan guncangan pada tanah. Tingkat keparahan beban gempa tergantung pada lokasi (sesuai dengan peraturan mengenai standar bangunan). Guncangan tanah dapat menambah beban pada unsur-unsur bangunan, guncangan tanah yang lebih kuat atau unsur-unsur bangunan yang lebih besar dapat menambah beban pada gedung itu sendiri.

Beban gempa cenderung horizontal (walaupun tetap ada komponen vertikal arah beban) dan dapat menyerang dari arah manapun. Beban gempa akan datang bersiklus. Struktur bangunan yang bertingkat tinggi harus dapat memikul beban-beban yang bekerja pada struktur tersebut, diantaranya beban gravitasi dan beban

lateral. Beban gravitasi adalah beban mati struktur dan beban hidup, sedangkan yang termasuk beban lateral adalah beban angin dan beban gempa.

Dalam perencanaan struktur gedung, arah utama pengaruh gempa rencana harus ditentukan sedemikian rupa sehingga memberi pengaruh terbesar terhadap unsur-unsur subsistem dan sistem struktur gedung secara keseluruhan. Untuk mensimulasikan pengaruh gempa rencana yang sembarang terhadap struktur gedung, pengaruh pembebanan gempa dalam arah utama yang ditentukan harus dianggap efektif 100% dan harus dianggap terjadi bersamaan dengan pengaruh pembebanan gempa dalam arah tegak lurus pada arah utama pembebanan tersebut, tetapi dengan efektifitas 30%.

2.7.3. Respon Gedung Beton Bertulang Akibat Gempa

Untuk menentukan simpangan maksimum sebuah bangunan akibat getaran gempa di perlukan identifikasi profil dasar simpangan bangunan saat mencapai respon non-elastis (Chandler dan lam, 2001). Simpangan maksimum ini sangat berguna untuk mengetahui faktor daktilitas simpangan atau yang lebih di kenal sebagai faktor daktilitas.

faktor daktilitas struktur merupakan rasio antara simpangan maksimum dan simpangan saat pertama leleh (*first yield*). faktor ini sering dikaitkan dengan gaya geser dasar dari sebuah gempa. untuk indonesia, menurut peraturan gempa untuk bangunan indonesia SNI-1726-2003 harga faktor daktilitas struktur, mulai dari elastis penuh sampai dengan daktail penuh, berkisar antara 1,0 sampai 5,3.

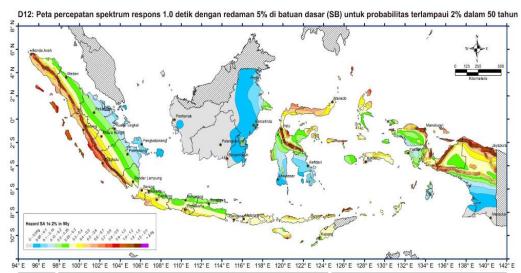
Penyelidikan empiris dan studi yang terkait dengan teori respon dinamik pada struktur rangka beton bertulang dibebani getaran gempa yang kuat menunjukan sebuah hubungan yang sangat jelas antara simpangan antar tigkat (*inter-story drift*) dan potensi kegagalan struktur. harga kritis simpangan antar tingkat sebesar 2% terjadi pada lantai 7 pada bangunan beton bertulang 10 lantai yang dibebani gempa sangat kuat (Kappos,1994). Negro dkk. (1996) melakukan uji sampai hancur dengan menggunakan beban dinamis tiruan pada bangunan beton bertulang 4 lantai yang menghasilkan harga kritis simpangan antar tingkat sebesar 7,18%. bangunan beton bertulang berlantai 10 hasil Study Dymiotis dkk.(1999)

menunjukan kolom pertama kali hancur terjadi seketika setelah simpangan mencapai 3%.

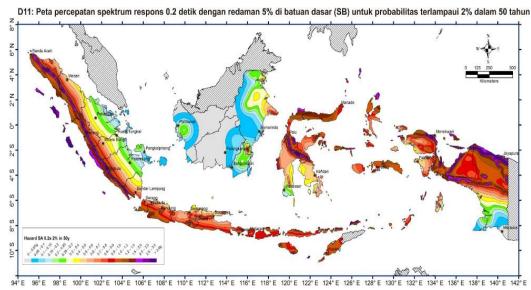
Studi-studi tentang gempa berulang menunjukan bahwa struktur bangunan dapat mengalami kerusakan yang lebih parah bila mengalami gempa berulang akibat akumulasi kerusakan (Elnashai dkk., 1998; Amadio dkk., 2003; Zhai dkk., 2015). hal yang sama juga dijelaskan oleh Hatzigeorgiou and Lioslios (2010) dan Faisal dkk. (2012) dimana berbagai jenis bangunan bertingkat yang dimodelkan mengalami gempa berulang akan mengalami kerusakan yang lebih banyak di banding bila mengalami gempa tunggal.

2.7.4. Evaluasi Kinerja Gedung Terhadap Gempa

Evaluasi Kinerja sebuah bangunan bertingkat beton bertulang sering didasarkan kepada kurva kapasitas atau kurva simpangan atap dengan gaya geser lateral. Umumnya aturan yang sering digunakan adalah berdasarkan peraturan yang dikembangkan di USA yang dikenal dengan FEMA 274. Belakangan ini evaluasi kinerja bangunan sering menggunakan analisa beban dorong (*pushover analysis*). Evaluasi yang dibuat berdasarkan kepada sebuah penilaian terhadap parameter-parameter kinerja penting seperti simpangan (*drift*) global, simpangan antar tingkat (*inter-story drift*), deformasi elemen inelastik (nilai leleh), deformasi antar elemen dan gaya-gaya pada elemen dengan sambungan.


Menurut Krawinker dan Seneviratna (1998) analisa beban dorong diperkirkan dapat memberikan informasi sejumlah karakter respon yang tidak dapat di peroleh melalui analisa statis elastik atau analisa dinamis. Analisa beban dorong telah dilakukan terhadap struktur banguan rumah toko di Medan (Faisal dan Sari, 2007) berdasarkan estimasi skenario gempa terburuk yang akan terjadi di kota tersebut menurut Faisal (2005). Hasil menunjukan bahwa bangunan rumah toko akan rusak secara signifikan.

2.7.5. Peta Gempa Wilayah Indonesia.


Pada umumnya, desain struktur bangunan tahan gempa merupakan desain yang mengatur hubungan antara respon gaya horizontal yang bekerja pada struktur (faktor kekuatan), kekakuan (*stiffness*), dan deformasi lateral struktur.

Kekuatan struktur dirancang agar saat terjadi gempa kekuatannya dapat tercapai (capacity design). Karena struktur mempunyai kekakuan, didalam suatu perpindahan yang terjadi pada struktur. Redaman (damping) diperlukan oleh struktur sebagai penyerap energi gempa. Elemen yang daktail akan mampu berdeformasi melebihi batas kekuatan elastisnya dan akan terus mampu menahan beban sehingga mampu menyerap energi gempa yang lebih besar.

Berdasarkan SNI 1726:2012 pasal 14, wilayah gempa Indonesia ditetapkan berdasarkan peta percepatan tanah puncak (PGA), parameter Ss (percepatan batuan dasar pada periode pendek 0,2 detik) dan S_I (percepatan batuan tanah dasar pada periode 1 detik) ditunjukkan pada Gambar 2.3 - 2.5.

Gambar 2.3: S_1 , Peta respon spektrum percepatan 1,0 detik di batuan dasar S_B untuk probabilitas terlampaui 2% dalam 50 tahun (redaman 5%) (Peta Gempa 2017).

Gambar 2.4: S_s , Peta respon spektrum percepatan 0,2 detik di batuan dasar S_B untuk probabilitas terlampaui 2% dalam 50 tahun (redaman 5%) (Peta Gempa 2017.

2.7.6. Klasifikasi Situs

Berdasarkan SNI 1726:2012, klasifkasi kelas situs dikategorikan seperti yang ditampilkan dalam Tabel 2.2.

Tabel 2.2: Klasifikasi situs berdasarkan SNI 1726:2012.

Tabel 2.2. Klasilikasi situs be	1 auei 2.2. Kiasiiikasi situs ueiuasaikaii 5111 1/20.2012.				
Kelas Situs	\tilde{V}_s (m/detik)	\overline{N} atau \overline{N}_{ch}	\bar{S}_u (kPa)		
SA (batuan keras)	> 1500	N/A	N/A		
SB (batuan)	750 sampai	N/A	N/A		
	1500				
SC (tanah keras, sangat	350 sampai 750	> 50	≥ 100		
padat dan batuan lunak)	_				
SD (tanah sedang)	175 sampai 350	15 sampai 50	50 sampai 100		
	< 175	< 15	< 50		
	Atau setiap profi	l tanah yang me	engandung lebih		
SE (tanah lunak)	dari 3 m tanah der	ngan karakteristik	sebagai berikut:		
	1. Indeks plastisita	PI > 20,			
	2. Kadar air, W ≥	40 %, dan			
	3. Kuat geser niral	ir $S_u < 25$ kPa.			
SF (tanah khusus, yang	Setiap profil lapisan tanah yang memiliki salah satu				
membutuhkan investigasi	atau lebih dari karakteristik berikut:				
geoteknik spesifik dan	Rawan dan berpotensi gagal atau runtuh akibat				
analisa respon spesifik	beban gempa seperti mudah likuifaksi, lempung				
situs yang mengikuti Pasal	sangat sensitif, tanah tersementasi lemah.				

Tabel 2.2: Lanjutan.

6.10.1 tentang Analisa	- Lempung sangat organik dan/atau gambut
Respon Situs berdasarkan	(ketebalan H > 3 m
SNI 1726:2012	– Lempung berplastisitas sangat tinggi (ketebalan
	H > 7,5 dengan Indeks Plastisitas $PI > 7,5$)
	Lapisan lempung lunak/setengah teguh dengan
	ketebalan H >35 m dengan S_u > 50 kPa.

Catatan : N/A = tidak dapat dipakai

2.7.7. Percepatan Tanah Puncak

Berdasarkan SNI 1726:2012, besarnya percepatan tanah puncak diperoleh dengan mengalikan koefisien situs F_{PGA} dengan nilai PGA yang diperoleh dari Gambar. Besarnya F_{PGA} ditentukan dalam Tabel 2.3.

Tabel 2.3: Koefisien situs untuk PGA (F_{PGA}) berdasarkan SNI 1726:2012.

Klasifikasi situs			PGA		
(sesuai Tabel 2.3)	PGA≤0,1	PGA=0,2	PGA=0,3	PGA=0,4	PGA≥0,5
SA	0,8	0,8	0,8	0,8	0,8
SB	1,0	1,0	1,0	1,0	1,0
SC	1,2	1,2	1,1	1,0	1,0
SD	1,6	1,4	1,2	1,1	1,0
SE	2,5	1,7	1,2	0,9	0,9
SF	$\geq 0.6 (SS)$				

Keterangan:

PGA = Nilai PGA dibantuan dasar (S_B) mengacu pada peta Gempa SNI 1726:2012 (Gambar 2.14).

 S_S = Lokasi yang memerlukan investigasi geoteknik dan analisa respon spesifik.

Percepatan tanah puncak dapat diperoleh dengan menggunakan Pers 2.4 berikut:

$$PGA_{M} = F_{PGA} \cdot PGA$$
 (2.4)

dimana:

 PGA_M = Nilai percepatan tanah puncak yang disesuaikan dengan pengaruh klasifikasi situs.

 F_{PGA} = Nilai koefisien situs untuk PGA

2.7.8. Faktor Keutamaan dan Kategori Risiko Struktur Bangunan

Faktor keutamaan gempa berdasarkan SNI 1726:2012 ditentukan berdasarkan jenis pemanfaatan dan kategori risiko dari tiap jenis bangunan yang digunakan dan ditentukan. Untuk struktur bangunan perkantoran, dapat dilihat dan Tabel 2.4. Selanjutnya besarnya faktor keutamaan gempa tersebut dapat dilihat dalam Tabel 2.5.

Tabel 2.4: Kategori resiko bangunan gedung dan struktur lainnya untuk beban gempa berdasarkan SNI 1726:2012.

Jenis Pemanfaatan	Kategori resiko
Semua gedung dan struktur lain, kecuali yang	
termasuk dalam kategori resiko I, III, IV,	
termasuk, tapi tidak dibatasi untuk:	
 Perumahan 	
 Rumah toko dan rumah kantor 	
• Pasar	
Gedung perkantoran	<u>II</u>
Gedung apartemen / Rumah susun	
Pusat perbelanjaan / Mall	
Bangunan industri	
 Fasilitas manufaktur 	
Pabrik	

Tabel 2.5: Faktor keutamaan gempa berdasarkan SNI 1726:2012.

Kategori resiko	Faktor Keutamaan gempa, I_e
I atau II	<u>1,0</u>
III	1,25
IV	1,50

2.8. Struktur Beton Bertulang

Menurut Nazmi (2012), beton adalah bahan konstruksi bangunan sipil yang terjadi dari proses pengeresan dan pembatuan. Suatu massa yang berasal dari adukan yang berbahan dasar semen, pasir, kerikil (batu pecah) dan bahan *additive* dalam perbandingan semen sebagai bahan perekat air sebagai bahan pengaduk, pasir, kerikil, batu pecah sebagai pengisi tertentu.

Beton bertulang adalah beton yang ditulangi dengan luas dan jumlah tulangan tertentu untuk mendapatkan suatu penampang yang berdasarkan asumsi bahwa kedua material bekerja bersama-sama dalam menahan gaya yang bekerja. Apabila beton mempunyai berat isi 2200 - 2500 kg/m³ maka disebut beton berat normal (Armeyn, 1999).

Parameter yang paling mempengaruhi kekuatan beton (Chairina, 2014):

- a. Kualitas semen
- b. Proporsi semen terhadap campuran
- c. Kekuatan dan kebersihan agregat
- d. Interaksi antara pasta semen dengan agregat
- e. Pencampuran bahan yang baik

2.9. Analisis Respon Dinamik

Berdasarkan studi komparasi desain bangunan tahan gempa, parameter respon terkombinasi respons masing-masing ragam yang ditentukan melalui spektrum respons rencana gempa merupakan respons maksimum. Pada umumnya, respons masing-masing ragam mencapai nilai maksimum pada saat yeng berbeda sehingga respons maksimum ragam-ragam tersebut tidak dapat dijumlahkan begitu saja.

Terdapat dua cara metode superposisi, yaitu metode Akar Kuadrat Jumlah Kuadrad (Square Root of the Sum of Squares/SRSS) dan Kombinasi Kuadratik Lengkap (Complete Quadratic Combination/CQC). Dalam hal ini, jumlah ragam vibrasi yang ditinjau dalam penjumlahan ragam respons menurut metode ini harus sedemikian rupa sehingga partisipasi massa dalam menghasilkan respons total harus mencapai sekurang-kurangnya 90%. Untuk penjumlahan respons ragam yang memiliki waktu-waktu getar alami yang berdekatan, harus dilakukan dengan metode yang telah disebutkan sebelumnya yaitu Kombinasi Kuadratik Lengkap (Complete Quadratic Combination/CQC). Waktu getar alami harus dianggap berdekatan apabila selisihnya kurang dari 15%. Untuk struktur yang memiliki waktu getar alami yang berjauhan, penjumlahan respons ragam tersebut dapat dilakukan dengan metode yang dikenal dengan Akar Kuadrad Jumlah Kuadrat (Square Root of the Sum of Squares/SRSS). Berdasarkan SNI 1726:2012 Pasal

7.9.4.1, nilai akhir respon dinamik struktur gedung terhadap pembebanan gempa nominal akibat pengaruh gempa rencana dalam suatu arah tertentu, tidak boleh diambil kurang dari 85% nilai respons ragam yang pertama. Bila respons dinamik struktur gedung dinyatakan dalam gaya geser V_t , maka persyaratan tersebut dapat dinyatakan dalam Pers. 2.5

$$V_t \ge 0.85 \ V_I$$
 dimana: (2.5)

 V_I = Gaya geser dasar nominal sebagai respons ragam yang pertama atau yang didapat dari prosedur gaya geser statik ekivalen.

Vt = Geser dasar dari kombinasi ragam yang di syaratkan.

Maka, apabila nilai akhir respon dinamik lebih kecil dari nilai respons ragam pertama, gaya geser tingkat nominal akibat pengaruh gempa rencana sepanjang tinggi struktur gedung hasil analisis spektrum respons ragam dalam suatu arah tertentu harus dikalikan nilainya dengan suatu faktor skala.

2.10. Simpangan Antar Lantai

Berdasarkan SNI 1726:2012 pasal 7.8.6. simpangan antar lantai hanya terdapat satu kinerja, yaitu kinerja batas ultimit. Penentuan simpangan antar lantai tingkat desain (Δ) harus dihitung sebagai perbedaan defleksi pada pusat masa teratas dan terbawah yang ditinjau. Apabila pusat masa tidak terletak segaris, dalam arah vertikal, diizinkan untuk menghitung defleksi didasar tingkat berdasarkan proyeksi vertikal dari pusat massa diatasnya.

Bagi struktur yang dirancang untuk katagori desain seismik C,D,E, atau F yang memiliki ketidakberaturan horizontal tipe 1a atau 1b pada Tabel 2.1, simpangan antar lantai desain (Δ) harus dihitung sebagai selisih terbesar dari defleksi titiktitik diatas dan dibawah tingkat yang diperhatikan yang letaknya segaris vertikal disepanjang salah satu bagian struktur.

Simpangan antar lantai, nilainya harus diperbesar dengan menggunakan Pers. 2.47:

$$\frac{\text{cd. }\delta \text{xe}}{Ie} \tag{2.47}$$

Dimana:

 Δi = Simpangan antar tingkat

Cd = Faktor pembesaran defleksi

Ie = Faktor keutamaan gedung

Dari nilai simpangan antar tingkat desain (Δ) tidak boleh melebihi simpangan antar lantai izin (Δ_a), sesuai dengan Tabel 2.13, bahwa struktur gedung harus berada dalam simpangan yang diizinkan.

Tabel 2.6: Simpangan antarlantai izin berdasarkan SNI 1726:2012.

	Kategori resiko		
Struktur	I atau II	III	IV
Struktur, selain struktur dinding geser batu bata, 4 tingkat atau kurang dengan dinding interior, partisi, langit-langit dan sistem mengakomodasi simpangan antar lantai tingkat.	$0.025 h_{sx}^{c}$	$0,020 \ h_{sx}$	$0,015 h_{sx}$
Struktur dinding geser batu bata lainnya	$0,007 h_{sx}$	$0,007 \; h_{sx}$	$0,007 \; h_{sx}$
Semua struktur lainnya	$0,020 \; h_{sx}$	$0,015 h_{sx}$	$0,010 \ h_{sx}$

Catatan: h_{sx} = Tinggi tingkat yang bersangkutan

2.10.1. Torsi dan Eksentrisitas

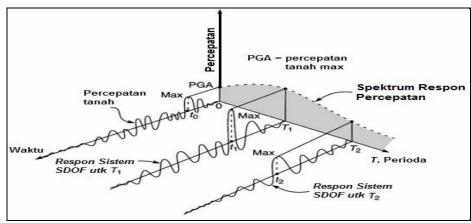
Berdasarkan SNI 1726:2012 pasal 7.8.4.2 dan pasal 7.8.4.3 terdapat dua jenis torsi yang terjadi, yaitu:

1. Torsi bawaan

Untuk diafragma yang fleksibel atau kaku, distribusi gaya lateral di masingmasing tingkat harus memperhitungkan pengaruh momen torsi bawaan (M_t) yang dihasilkan dari eksentrisitas antara lkasi pusat masssa dan pusat kekakuan. Untuk diafragma fleksibel, distribusi gaya ke elemen vertikal

harus memperhitungkan posisi dan sitribusi massa yang mendukungnya.

2. Torsi tak terduga


Jika diafragma tidak fleksibel, desain harus menyertakan momen torsi bawaan (M_t) yang dihasilkan dari lokasi massa struktur ditambah momen torsi tak terduga (M_{ta}) yang diakibatkan oleh perpindahan pusat massa dari lokasi aktualnya yang diasumsikan pada masing-masing arah dengan jarak sama dengan 5 persen dimensi struktur tegak lurus terhadap arah gaya yang diterapkan. Jika gaya gempa diterapkan secara serentak dalam dua arah orthogonal, perpindahan pusat massa 5 persen yang disyaratkan tidak perlu diterapkan dalam kedua arah orthogonal pada saat bersamaan, tetapi harus diterapkan dalam arah yang menghasilkan pengaruh yang lebih besar. Struktur yang dirancang untuk kategori desain seismic C, D, E, atau F, dimana tipe 1a atau 1b ketidakberaturan torsi harus mempunyai pengaruh yang diperhitungkan dengan mengalikan M_{ta} di masing-masing tingkat dengan faktor pembesaran.

2.11. Distribusi Kekakuan Secara Vertikal

Berdasarkan Seismologi Teknik dan Rekayasa Kegempaan Kekakuan merupakan salah satu unsur penting terhadap kestabilan struktur bangunan. Struktur bangunan harus cukup kaku agar mampu menahan beban baik beban gravitasi maupun beban horisontal dengan nilai simpangan/displacement yang masih relatif kecil. Simpangan yang relatif besar walaupun tegangan bahannya masih relatif aman akan menjadi bangunan yang kurang/tidak nyaman untuk ditempati. Struktur atau elemen yang pendek umumnya akan ditentukan oleh keterbatasan tegangan sedangkan struktur/elemen yang besar/panjang umumnya simpangan akan menjadi penentu tingkat layanan. Sebagaimana pada denah dan potongan, distribusi kekakuan secara vertikal menurut tinggi bangunan dipandang sebagai sesuatu yang sangat penting untuk diperhatikan. Menurut pengamatan kerusakan bangunan akibat gempa distribusi banyak diantaranya bersumber pada distribusi kekakuan secara vertikal yang tidak baik.

2.12. Respon Spektrum

Menurut Faisal (2015), respon spektrum adalah spektrum (plot) yang memuat nilai-nilai amplituda max dari sebuah nilai respon sistem teredam untuk beragam variasi perioda (frekuensi) alami.

Gambar 2.5: Grafik spektrum perbandingan percepatan dengan perioda.

Berdasarkan SNI 1726:2012 Pasal 6 tentang Wilayah Gempa dan Respon Spektrum, desain respon spektrum harus ditentukan dan dibuat terlebih dahulu berdasarkan data-data yang ada. Data-data yang dibutuhkan dan prosedur pembuatan respon spektrum antar lain:

1. Parameter percepatan batuan dasar

Parameter S_S (percepatan batuan dasar perioda pendek) dan S_1 (percepatan batuan dasar pada perioda 1 detik) harus ditetapkan masing-masing dari respon spektrum percepatan 0,2 detik dan 1 detik dalam peta gerak tanah seismik seperti pada Gambar 2.13 dan Gambar 2.14 dengan kemungkinan 2% terlampaui dalam 50 tahun dan dinyatakan dalam bilangan desimal terhadap percepatan gravitasi.

2. Parameter kelas situs

Ditentukan berdasarkan sifat-sifat tanah pada situs, maka situs harus diklarifikasikan sesuai dengan Tabel 2.2.

3. Koefisien-koefisien situs dan parameter-parameter respon spektrum percepatan gempa maksimum yang dipertimbangkan risiko tertarget

(MCE_R). Berdasarkan SNI 1726:2012 untuk menentukan respon spektrum percepatan gempa di permukaan tanah, diperlukan faktor amplifikasi seismik pada perioda pendek 0,2 detik (F_a) dan perioda 1,0 detik (F_v). Selanjutnya parameter respon spektrum percepatan gempa di permukaan tanah dapat diperoleh dengan cara mengalikan koefisien F_a dan F_v yang terdapat dalam Tabel 2.5 dan Tabel 2.6 dengan spektrum percepatan untuk perioda pendek 0,2 detik (S_s) dan perioda 1,0 detik (S_s) di batuan dasar yang diperoleh dari peta gempa Indonesia SNI 1726:2012 sesuai Pers. 2.19 dan 2.20.

$$S_{MS} = Fa \cdot S_S \tag{2.19}$$

$$S_{MI} = F_{\nu} \cdot S_I \tag{2.20}$$

dimana:

 S_S = Nilai parameter respon spektrum percepatan gempa perioda pendek 0,2 detik di batuan dasar (S_B) mengacu pada Peta Gempa SNI 1726:2012 (Gambar 2.13)

 S_I = Nilai parameter respon spektrum percepatan gempa perioda 1,0 detik di batuan dasar (S_B) mengacu pada peta Gempa SNI 1726:2012 (Gambar 2.12)

 F_a = Koefisien perioda pendek

 F_{ν} = Koefisien perioda 1,0 detik

Tabel 2.7: Koefisien perioda pendek (F_a) berdasarkan SNI 1726:2012.

Klasifikasi situs			PGA		
(sesuai Tabel 2.3)	S _s ≤0,25	$S_s = 0.5$	S _s =0,75	S _s =0,4	S _s ≥1,25
SA	0,8	0,8	0,8	0,8	0,8
SB	1,0	1,0	1,0	1,0	1,0
SC	1,2	1,2	1,1	1,0	1,0
SD	1,6	1,4	1,2	1,1	1,0
SE	2,5	<u>1,7</u>	1,2	0,9	0,9
SF	Memerlukan investigasi geoteknik spesifik dan analisa respon				
			situs-spesifik	ζ	

Klasifikasi **PGA** situs (sesuai $S_1 \le 0,1$ $S_1 = 0.2$ $S_1 = 0,4$ $S_1 = 0,3$ $S_1 \ge 0.5$ Tabel 2.3) 0,8 0,8 0,8 0,8 0,8 SA SB1,0 1,0 1,0 1,0 1,0 SC 1,7 1,6 1,5 1,4 1,3 SD 2,4 2,0 1,8 1,6 1,5 2,8 2,4 SE 3,5 3.2 2,4 SF Memerlukan investigasi geoteknik spesifik dan analisa respon situs-spesifik

Tabel 2.8: Koefisien perioda 1,0 detik (F_{ν}) berdasarkan SNI 1726:2012.

d. Parameter percepatan spektrum desain

Parameter percepatan spektrum desain untuk perioda pendek (S_{DS}) dan perioda 1 detik (S_{DS}) harus ditetapkan melalui Pers. 2.21 - 2.24.

$$S_{DS} = \frac{2}{3} S_{MS} \tag{2.21}$$

$$S_{DI} = \frac{2}{3} S_{MI} \tag{2.22}$$

$$T_0 = 0.2 \frac{s_{D1}}{T} \tag{2.23}$$

$$T_S = \frac{S_{D1}}{S_{DS}} \tag{2.24}$$

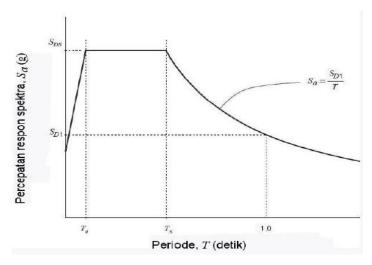
dimana:

 S_{DS} = Respon spektrum percepatan respon desain untuk perioda pendek

 S_{DI} = Respon spektrum percepatan desain untuk perioda 1,0 detik

T = Perioda getar fundamental struktur

Untuk mendapatkan spektrum respon desain harus dikembangkan dengan mengikuti ketentuan berikut:


1. Untuk perioda yang lebih kecil T_0 , spektrum respon percepatan desain, S_a didapatkan dari Pers. 2.21,

$$S_a = S_{DS} \left(0.4 + 0.6 \, \frac{T}{T_0} \right) \tag{2.25}$$

- 2. Untuk perioda lebih besar dari atau sama dengan T_0 dan lebih kecil dari atau sama dengan T_S , spektrum respon percepatan desain, S_a sama dengan S_{DS} .
- 3. Untuk perioda lebih besar dari T_S , spektrum respon percepatan desain S_a diambil berdasarkan Pers. 2.22.

$$S_a = \frac{S_{D1}}{T}$$
(2.26)

Selanjutnya, semua parameter respon desain diplot di dalam grafik dan akan menghasilkan respon spektrum desain seperti yang terlihat pada Gambar 2.14.

Gambar 2.6: Respon spektrum desain.

2.12.1. Kategori Desain Seismik

Berdasarkan SNI 1726:2012, kategori desain seismik dibagi menjadi enam yaitu kategori desain seismik A, B, C, D, E dan F. Kategori desain seismik ditentukan oleh kategori risiko struktur yang ditinjau (I-IV) dan nilai parameter gempa dari situs dimana struktur atau bangunan tersebut akan dibangun (S_{DS} dan S_{D1}), seperti yang ditampilkan dalam Tabel 2.9 dan 2.10.

Tabel 2.9: Kategori desain seismik berdasarkan parameter respon percepatan pada perioda pendek berdasarkan SNI 1726:2012.

Nilai C	Kategori resiko			
Nilai S_{DS}	I atau II atau III	IV		
S_{DS} < 0,167	A	A		
$0.167 \le S_{DS} < 0.33$	В	С		
$0.33 \le S_{DS} < 0.50$	С	D		
$0.50 \le S_{DS}$	D	D		

Tabel 2.10: Kategori desain seismik berdasarkan parameter respon percepatan

pada perioda 1 detik berdasarkan SNI 1726:2012.

Nilei C	Kategori resiko		
Nilai S_{DI}	I atau II atau III	IV	
S_{DI} < 0,067	A	A	
$0.067 \le S_{DS} < 0.133$	В	C	
$0.133 \le S_{DS} < 0.20$	С	D	
$0.20 \le S_{DS}$	D	D	

Untuk kategori desain seismik C, D, E dan F diharuskan untuk dilakukan investigasi geoteknik yang meliputi analisa stabilitas lereng, likuifaksi, penurunan total dan beda penurunan, serta perpindahan permukaan akibat patahan. Khusus untuk kategori desain seismik D, E dan F investigasi geoteknik harus mencakup gaya seismik dinamik tanah dan potensi likuifaksi. Untuk menghitung potensi likuifaksi digunakan PGA_M (Peak Ground Accelecation, terkoreksi untuk kelas situs).

2.13. Kriteria Design Perencanaan Struktur Gedung Tahan Gempa

Berdasarkan SNI 1726:2012 pasal 7.3.2 ketidak beraturan struktur bangunan dapat dibedakan menjadi ketidak beraturan horizontal dan vertikal.

Tabel 2.11: Ketidakberaturan horizontal pada struktur berdasarkan SNI 1726:2012.

No	Tipe dan penjelasan ketidak beraturan	Penerapan kategori
		desain seismic
	Ketidakberaturan torsi di definisikan ada jika	D, E, dan F
1	simpangan antar lantai tingkat maksimum, torsi yang	B, C, D, E, dan F
	melintang terhadap sumbu lebih dari 1,2 kali	C, D, E, dan F
	simpangan antar lantai tingkat rata-rata di kedua ujung	C, D, E, dan F
	struktur. Pers.yaratan ketidakberaturan torsi dalam	D, E, dan F
	pasal-pasal refrensi berlaku hanya untuk struktur di	B, C, D, E, dan F
	mana diafragmanya kaku atau setengah kaku.	
	Ketidakberaturan torsi berlebihan di definesikan ada	E dan F
	jika simpangan antar lantai tingkat maksimum, torsi	D

Tabel 2.11: Lanjutan.

	or 2.11. Early wart.	
	yang dihitung termasuk tak terduga, di sebuah ujung	B, C, dan d
	struktur melintang terhadap sumbu lebih dari 1,4 kali	C dan D
	simpangn antar lantai tingkat rata-rata di kedua ujung	C dan D
	struktur.Persyaratan ketidakberaturan torsi berlebihan	D
	dalam pasal-pasal referensi berlaku hanya untuk	B, C, dan D
	struktur di mana diagfragmanya kaku atau setengah	
	kaku	
2	Ketidakberaturan sudut dalam didefinisika ada jika	D, E, dan F
	kedua proyeksi denah dari sudut dalam lebih besar dari	D, E, dan F
	15% dimensi denah struktur dalam arah yang	
	ditentukan	
3	definisikan ada jika terdapat diafragma dengan	D, E, dan F
	diskontinuitas atau variasi kekakuan mendadak,	
4	Ketidak beraturan sistem non peralel didefnisikan ada	C, D, E, dan F
	jika elemen penahan gaya leteral vertikal tidak parelel	B, C, D, E, dan F
	atau simetris terhadap sumbu-sumbu orthogonal utama	D, E, dan F
	sistem penahan gaya gempa	B, C, D, E, dan F
1	1	ı

Tabel 2.12: Ketidak beraturan vertikal pada struktur berdasarkan SNI Gempa 1726-2012.

No.	Tipe dan penjelasan ketidak beraturan	Penerapan kategori
		desain seismic
1	Ketidakberaturan kekakuan tingkat lunak	D, E, dan F
	didefinisikan ada jika terdapat suatu tingkat dimana	
	kekakuan lateralnya kurang dari 70% kekakuan	
	leteral tingkat di atasnya atau kurang dari 80%	
	Pers.en kekakuan rata-rata tiga tingkat di atasnya.	
2	Ketidakberaturan berat (massa) di definisikan ada	D, E, dan F
	jika massa efektif semua tingkat lebih dari 150%	
	massa efektif tingkat di dekatnya. Atap yang lebih	
	ringgan dari lantai di bawahnya tidak perlu di tinjau	

Tabel 2.12: Lanjutan.

3	Ketidakberaturan geometri vertikal di definisikan	D, E, dan F			
	ada jika dimensi horizontal sistem penahan gaya				
	seismic di semua tingkat lebih dari 130% dimensi				
	horizontal sistem penahanan gaya seismic tingkat di				
	dekatnya.				
4	Diskontinuitas arah bidang dalam ketidak beraturan	B, C, D, E, dan F			
	elemen gaya lateral vertikal di definisikan ada jika	D, E, dan F			
	pegeseran arah bidang elemen penahan gaya lateral				
	lebih besar dari panjang elemen itu atau terdapat				
	reduksi kekakuan elemen penahan di tingkat di				
	bawahnya.				
5	bawahnya. Diskontruksi dalam ketidakberaturan kuat lateral	B dan C			
5	•				
5	Diskontruksi dalam ketidakberaturan kuat lateral	E dan F			
5	Diskontruksi dalam ketidakberaturan kuat lateral tingkat di definisikan ada jika kuat lateral tingkat	E dan F			
5	Diskontruksi dalam ketidakberaturan kuat lateral tingkat di definisikan ada jika kuat lateral tingkat kurang dari 80% kuat lateralnya tingkat di atasnya	E dan F			
5	Diskontruksi dalam ketidakberaturan kuat lateral tingkat di definisikan ada jika kuat lateral tingkat kurang dari 80% kuat lateralnya tingkat di atasnya kuat lateral tingkat adalah kuat lateral total semua	E dan F			
5	Diskontruksi dalam ketidakberaturan kuat lateral tingkat di definisikan ada jika kuat lateral tingkat kurang dari 80% kuat lateralnya tingkat di atasnya kuat lateral tingkat adalah kuat lateral total semua elemen penahan seismic yang berbagi geser tingkat	E dan F			
5	Diskontruksi dalam ketidakberaturan kuat lateral tingkat di definisikan ada jika kuat lateral tingkat kurang dari 80% kuat lateralnya tingkat di atasnya kuat lateral tingkat adalah kuat lateral total semua elemen penahan seismic yang berbagi geser tingkat untuk arah yang di tinjau. Diskontinuitas dalam	E dan F			
5	Diskontruksi dalam ketidakberaturan kuat lateral tingkat di definisikan ada jika kuat lateral tingkat kurang dari 80% kuat lateralnya tingkat di atasnya kuat lateral tingkat adalah kuat lateral total semua elemen penahan seismic yang berbagi geser tingkat untuk arah yang di tinjau. Diskontinuitas dalam ketidakberaturan kuat lateral tingkat yang	E dan F			

Tabel 2.13: Faktor keutamaan (Ie), berdasarkan SNI 1726:2012.

Kategori resiko	Faktor keutamaan gempa, Ie
I atau II	1,0
III	1,25

Tabel 2.14: Faktor keutamaan (*Ie*), berdasarkan SNI 1726:2012.

Kategor i resiko	Faktor keutamaan gempa, <i>Ie</i>
IV	1,5

2.14. Ketentuan Perencanaan.

Beberapa ketentuan yang penting untuk diperhatikan dalam perncanaan kolom meliputin hal- hal berikut :

- 1. Luas tulangan
- 2. Diameter tulangan geser (begel atau geser)
- 3. Gaya Tarik dan gaya tekan pada penampang kolom
- 4. Nilai tegangan dan regangan baja tulangan
- 5. Kolom dengan beban aksial tekan kecil
- 6. Penempatan tulangan geser

2.14.1 Penampang Kolom Pada Kondisi beton tekan menentukan

Jikabeban Pn pada kondisi beban sentris digeser ke kanan, maka pada penampang kolom sebelah kiri mlai menahan beban Tarik relatif kecil (sehingga baja tulangan Tarik belum ke leleh) sedangkan penampang kolom sebelah kanan tetap menahan beban tekan yang cukup besar (sehingga dapat menimbulkan retak beton tekan).

1. Langkah- langkah Menghitung gaya *Pn* dan *Mn*

Menghitung gaya Tarik dan gaya tekan pada penampang kolom Ts = As. Fs

Gaya tekan yang ditahan beton bagian kanan, sebesar Cc = 0.85. Fc'. a. b

Jika luas beton tekan diperhitungkan, maka Cs = As'. (Fs' - 0,85 - .fc')

Jika luas beton tekan diabaikan, maka Cs = As'. fs'

Selanjutnya dengan memperhatikan keseimbangan gaya vertical diperoleh gaya aksial.

$$Pn = Cc + Cs + Ts$$

2. Menghitung gaya Tarik dan gaya tekan Lengan ke sumbu -Zs = -(h/2-ds)

Gaya tekan yang ditahan beton bagian Lengan ke sumbu Zc = (h/2-a/2)

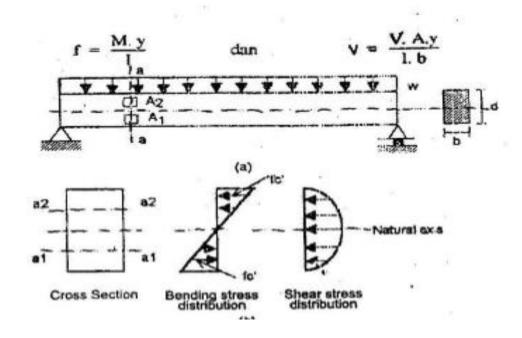
Jika luas beton tekan diperhitungkan Lengan ke sumbu Zs' = -(h/2-ds')

Selanjutnya dengan memperhitungkan gaya keseimbangan gaya Momen yang di peroleh.

$$Mn = Ts. Zs + Cc. Zc + Cs. Zs$$

3. Menghitung gaya $\phi Pn \operatorname{dan} \phi Mn$

Memperbandingkan hasil rencana awal dan hasil rencana pemasangan jacketing pada kolom yang gagal


Gambar 2.7: Hasil Penambahan Perkuatan Jacketing.

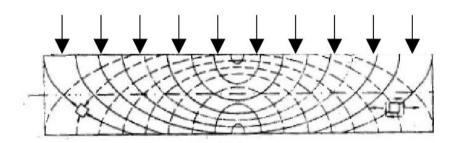
2.15. Tulangan Geser

Semua elemen struktur balok, baik struktur beton maupun baja, tidak terlepas dari masalah gaya geser. Gaya geser umumnya tidak bekerja sendirian, tetapi berkombinasi dengan lentur, torsi atau gaya normal. Percobaan-percobaan yang telah dipublikasikan menunjukkan bahwa sifat keruntuhan akibat gaya geser pada suatu elemen struktur beton bertulang adalah getas (brittle), tidak daktail, dan keruntuhannya terjadi secara tiba-tiba tanpa ada peringatan. Hal tersebut disebabkan kekuatan geser struktur beton bertulang terutama tergantung pada kekuatan tarik dan tekan beton. Keadaan ini sangat berbeda dengan tujuan perencanaan yang selalu menginginkan suatu struktur yang daktail. Sehingga meskipun prediksi keruntuhan geser cukup sulit, seorang perencana harus berupaya agar jenis keruntuhan geser tidak terjadi. Untuk memahami mekanisme geser, kita tinjau suatu balok sederhana yang homogen, isotropis, dan linier elastis dengan pembebanan merata. Kita tinjau dua elemen kecil A1 dan A2 pada balok tersebut, maka tegangan.lentur (f) dan tegangan geser (v) pada elemen-elemen tersebut adalah:

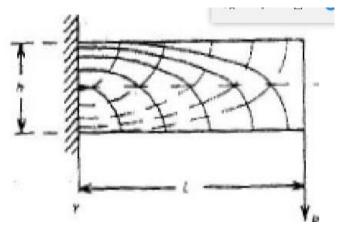
$$f = \frac{M.y}{I}$$

$$V = \frac{V.A.y}{I.b}$$

Gambar 2.8.:Distribusi tegangan pada balok persegi.


Tegangan Tarik utama : $f_{max} = \frac{ft}{2} + \sqrt{\left(\frac{ft}{2}\right)^2} + V^2$

Tegangan tekan Utama : $f_{max} = \frac{ft}{2} + \sqrt{\left(\frac{ft}{2}\right)^2 + V^2}$


Arah tegangan Utama : tan $2\phi = \frac{V}{(ft/2)}$

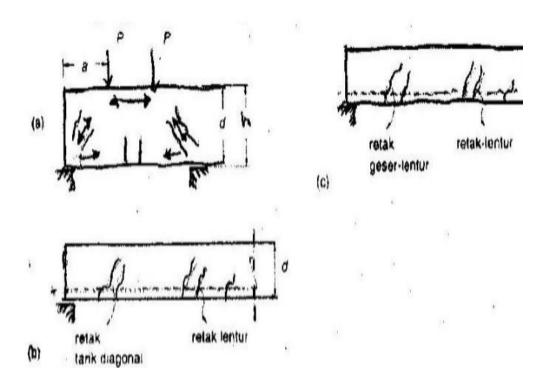
Perilaku beton tidak homogen, kekuatan tarik beton kira-kira hanya 1/10 dari kekuatan tekannya, sehingga mudah sekali terjadi keretakan akibat tegangan utama tarik. Pada elemen A2 (diatas garis netral), keretakan tidak akan terjadi karena tegangan utama maksimum yang terjadi adalah tekan. Untuk elemen A1 (di bawah garis netral), tegangan utama maksimum yang terjadi adalah tarik, sehingga retak bisa terjadi. Semakin dekat ke perletakan, tegangan lentur f akan mengecil sedangkan tegangan geser v akan membesar, sehingga di daerah perletakan. tegangan utama tarik bekerja pada sudut sekitar 45°. Karena kekuatan

tarik beton sangat rendah, retak tarik diagonal akan terjadi di daerah tumpuan ini. Untuk mencegah keretakan jenis ini, penulangan khusus yang disebut penulangan tarik diagonal diperlukan. Trajectory tegangan utama dari suatu balok dengan pembebanan merata terlihat pada gambar berikut, garis utuh menunjukkan trajectory tegangan utama tarik, sedangkan garis putus-putus menunjukkan trajectory tegangan utama tekan. Dari trajectory tegangan utama ini dapat diperkirakan arah dari keretakan yang akan terjadi

Gambar 2.11 : Balok dua tumpuan.

Gambar 2.12: *Trajectory* tegangan utama pada balok homogen *isotropic*.

2.15.1 Perilaku Balok Tanpa Tulangan Geser


Untuk balok yang mempunyai tulangan memanjang, yaitu tulangan yang direncanakan untuk memikul gaya-gaya lentur tarik dan tekan yang ditimbulkan oleh momen lentur, tegangan geser yang tinggi menimbulkan retak miring. Untuk mencegah pembentukan retak miring, maka digunakan penulangan transversal (dikenal dengan penulangan geser), yang berbentuk sengkang tertutup atau yang

berbentuk U di arah vertical atau miring untuk menutupi penulangan memanjang utama di sekeliling muka balok. Pada dasarnya ada tiga jenis keretakan pada balok:

- 1.Retak lentur (flexural crack), terjadi di daerah yang mempunyai harga momen lentur besar. Arah retak hampir tegak lurus.pada sumbu balok.
- 2.Retak geser lentur (flexural shear crack), terjadi pada bagian balok yang sebelumnya telah terjadi keretakan lentur. Jadi retak geser lentur merupakan perambatan retak miring dari retak lentur yang sudah terjadi sebelumnya.
- 3.Retak geser badan / retak tarik diagonal (web shear crack), terjadi pada daerah garis netral penampang dimana gaya geser maksimum dan tegangan aksial sangat kecil.

Keruntuhan geser pada balok dapat dibagi menjadi empat kategori (a dan d lihat gambar 4.5):

- 1.Balok tinggi dengan rasio a/d < 1/2 Untuk jenis ini, tegangan geser lebih menentukan dibanding tegangan lentur. Setelah terjadi keretakan miring, balok cenderung berperilaku sebagai suatu busur dengan beban luar ditahan oleh tegangan tekan beton dan tegangan tarik ada tulangan memanjang. Begitu keretakan miring terjadi balok segera berubah menjadi suatu busur yang memiliki kapasitas yang cukup besar.
- 2.Balok pendek dengan 1 < a/d < 2,5, kekuatan gesernya melampaui kapasitas keretakan miring. Seperti balok tinggi kapasitas, kapasitas geser ultimit juga melampaui kapasitas keretakan geser. Keruntuhan akan terjadi pada tingkat beban tertentu yang lebih tinggi dari tingkat beban yang menyebabkan keretakan miring. Setelah terjadi retakan geser-lentur, retakan ini menjalar ke daerah tekan beton bila beban terus bertambah
- 3.Balok dengan 2,5 < a/d < 6, kekuatan geser sama dengan besar kapasitas keretakan miring. Pada jenis ini lentur muiai bersifat dominan, dan keruntuhan geser sering dimulai dengan retak lentur murni yang vertical di tengah bentang dan akan semakin miring jika semakin dekat ke perletakan yang tegangan gesernya semakin besar.

Gambar 2.13: Jenis keretahkan pada balok.

4.Balok panjang dengan rasio a/d>6, kekuatan lentur lebih kecil dibanding kekuatan gesernya, atau dengan kata lain keruntuhan akan sepenuhnya ditentukan oleh ragam lentur Variasi kekuatan geser menurut nilai a/d diperlihatkan pada gambar berikut:

Transfer gaya geser akan berupa:

- Komponen gaya geser pada daerah blok beton tekan Vcz
- Komponen gaya geser antar permukaan retak Vay
- Komponen gaya dowel action (aksi pasak) oleh tulangan memanjang Vd
- Komponen gaya pelengkung

$$V = Vcz + Vd + Vay$$

Pada balok tanpa tulangan geser, keruntuhan balok dapat disebabkan oleh runtuhnya salah satu dari ketiga komponen gaya transfer di atas segera setelah terbentuknya keretakan miring. Jumlah dari ketiga komponen di atas, pada ACI dan SNI disebut dengan "komponen gaya geser yang ditahan oleh beton" atau Vc. Pada balok semacam ini beban keretakan miring Vc merupakan parameter penentu

dalam disain. Karena keruntuhan balok tanpa sengkang tiba-tiba tanpa adanya aba-aba yang cukup, dimana hal ini tidak diinginkan, maka peraturan pada umumnya mensyaratkan sedapat mungkin pemakaian sengkang. Persyaratan penggunaan tulangan geser minimum, yaitu untuk Φ , $Vc > V > 0.5 \Phi$. Vc, digunakan sengkang minimum sebesar:

$$Av = \frac{75\sqrt{f'cbw\ S}}{(1200)fy}$$

$$Av > \frac{1}{3} \frac{bw S}{fy}$$

2.15.2. Perilaku Balok Dengan Tulangan Geser.

Jenis tulangan plat badan yang umum dikenal adalah sengkang vertical (ve rtical stirrup) yang dapat berupa baja tulangan yang berdiameter kecil ataupun jaringan kawat baja las yang dipasang tegak lurus terhadap sumbu aksial penampang, dan sengkang miring. Sengkang biasanya terbuat dari tulangan berdiameter kecil, seperti diameter 8, 10, atau 12 mm yang mengikat tulangan longitudinal. Sengkang miring untuk komponen struktur non pratekan dapat berupa tulangan longitudinal yang dibengkokkan membentuk sudut 300 atau lebih terhadap arah tulangan tarik longitudinal.

Fungsi tulangan badan adalah untuk:

- a. Menahan sebagian gaya geser pada bagian yang retak
- b. Mencegah penjalaran retak diagonal sehingga tidak menerus ke bagian tekan beton.
- c. Memberi kekuatan tertentu terhadap terlepasnya beton, karena umumnya sengkang mengikat tulangan longitudinal sehingga membentuk suatu beton yang lebih massif.

2.15.3. Perencanaan Penempang Terhadap Geser

Dalam laporan ASCE Committee 426, kekuatan geser beton dengan atau tanpa tulangan adalah sama, yaitu merupakan nilai gaya geser yang menyebabkan keretakan miring. Dalam hal ini tulangan geser dianggap hanya menahan kelebihan gaya geser dari yang dapat ditahan oleh beton tanpa tulangan. Kriteria ini didasarkan pada hasil-hasil percobaan.

Langkah-langkah perencanaan penampang terhadap geser adalah:

- 1. Hitung gaya geser terfaktor Vu pada penampang kritis di sepanjang elemen.
- 2. Untuk suatu penampang kritis, hitung kekuatan geser beton Vc.
- 3. a). Bila $(Vu \Phi, Vc) > 0.67.bw d. \sqrt{f'c}$, ukuran balok diperbesar.
- b). Bila $(Vu \Phi, Vc) < 0.67$. $bw \cdot d \cdot \sqrt{f'c}$, tentukan jumlah tulangan geser untuk menahan kelebihan tegangan.
- c). Bila Vu > 0.5. Φ . Vc, gunakan tulangan geser minimum

 $Vu = \Phi$. Vn Dengan Vu adalah gaya geser terfaktor yang bekerja pada penampang yang ditinjau, Sedangkan Vn merupakan kuat geser nominal yang dihitung dari : Vn = Vc + Vs Dengan Vc = kekuatan geser nominal yang diberikan oleh beton Vs = kekuatan geser nominal yang diberikan oleh tulangan badan

- 4. Harga Vc dihitung berdasarkan kondisi sebagai berikut :
- a) Untuk kombinasi geser dan lentur

$$Vc = \left[\frac{f'c}{6}\right] bw d$$

Atau dengan perhitungan yang lebih rinci:

$$Vc = \left[\sqrt{f'c + 120\rho w \, \frac{Vu. \, d}{Mu}} \right] \frac{bw \, d}{7}$$

b) Untuk kombinasi geser dan aksial tekan:

$$Vc = \left[1 + \frac{Nu}{14Ag}\right] \left[\frac{f'c}{6}\right] bw. d$$

c) Untuk kombinasi geser dan aksial Tarik:

$$Vc = \left[1 + \frac{0.3 \, Nu}{Ag}\right] \left[\frac{f'c}{6}\right] bw \ d$$

- 5. a) Bila $Vu \le \Phi$. Vc. tidak perlu tulangan geser, hanya tulangan geser praktis
 - b) Bila 0,5. Φ . $Vc < Vu < \Phi$. Vc, gunakan tulangan geser minimum
 - c) Bila $Vu > \Phi.Vc$, diperlukan tulangan geser, dengan gaya yang harus ditahan oleh sengkang sebesar :

$$Vs = Vn - Vc$$

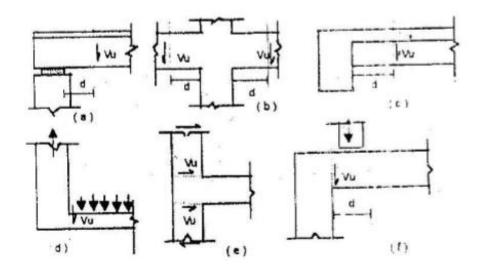
$$Vs = \frac{Vu}{\emptyset} - Vc$$

Untuk sengkang vertikal:

$$V_{s} = \frac{Av \, fy \, d}{s}$$

Untuk sengkang miring:

$$Vs = \frac{As fy (sin\sigma + cos\sigma) d}{s}$$


Untuk tulangan sejajar yang ditekuk miring:

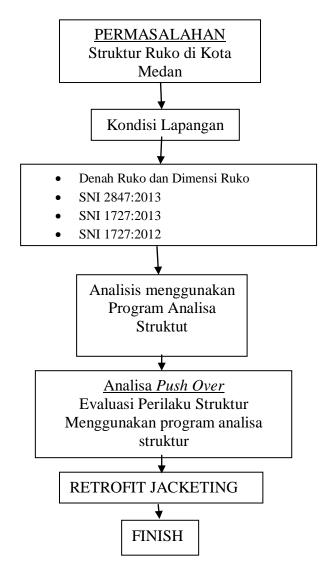
$$Vs = Av fy sin \sigma$$

$$Vs < \left[\frac{f'c}{a}\right] bw. d$$

Nilai Vs harus lebih kecil dari bw.d

Perhitungan Vu harus dilakukan oada penempang kritis. Letak penampang kritis pada tumpuan balok yang menghasilkan tegangan tekan dapat dievaluasi pada jarak d dari perletakan, gambar 4.10.(a),(b),(c). Sedangkan untuk tumpuan yang memberikan tegangan tarik, penampang kritis harus dievaluasi pada muka kolom, gambar 4.10.(d),(e),(f).

Gambar 2.14: Letak penampang kritis dalam mengevaluasi Vu.


Jarak maximum tulangan geser adalah :

- a) Bila $Vs < 1/3.bw.d.\sqrt{(f'c)}$, jarak maximum d/2 atau 600 mm.
- b) Bila $Vs > 1/3.bw.d.\sqrt{(f'c)}$, jarak maximum d/4 atau 300 mm.

BAB 3 METODOLOGI PENELITIAN

3.1.Umum

Bab ini berisi tentang pemodelan struktur yang direncanakan. Struktur dianalisis menggunakan program analisa struktur. Secara umum, metode penelitian dalam Tugas Akhir ini dibuat dalam suatu diagram alir seperti yang tampak pada Gambar 3.1.

Gambar 3.1: Bagan alir penelitian.

Berdasarkan Gambar 3.1, dapat dijelaskan bahwa dalam tugas akhir ini analisis dilakukan terhadap 3 model, yaitu sistem rangka pemikul momen khusus. Dengan menggunakan Metode Analisis Respons Spektrum (*Responsse Spectrum Analysis*) dengan menggunakan program analisa struktur.

3.2. Faktor Respons Gempa (C)

Rencananya berdirinya bangunan dalam pemodelan struktur gedung ini di kota Medan yang dinilai sebagai daerah rawan gempa di Indonesia dengan data PGA ($Peak\ Ground\ Acceleration$) Ss = 0,55 g dan S₁ = 0,275 g pada tanah keras.

Berdasarkan SNI 1726:2012, Respons Spektrum gempa rencana harus dianalisis terlebih dahulu. Pada peta gempa *Hazard* SNI 1726:2012 atau dapat dilihat pada Gambar 2.8 dan 2.9. Adapun tahapan yang perlu dilakukan untuk membuat Spektrum Respons gempa desain dapat dilakukan sebagai berikut.

A. Penentuan koefisien F_a dan F_v

Koefisien F_a ditentukan berdasarkan beberapa parameter, yaitu nilai S_s yang terdapat pada Tabel 2.9 dan berdasarkan jenis tanah sedang. Maka diperoleh nilai F_a di bawah ini.

$$F_a = 1.6$$

Koefisien F_{ν} ditentukan berdasarkan beberapa parameter, yaitu nilai S_{I} yang terdapat pada Tabel 2.10 dan berdasarkan jenis tanah sedang. Maka diperoleh nilai F_{ν} di bawah ini.

$$F_{v} = 2.9$$

B. Penentuan nilai S_{MS} dan S_{MI}

1.
$$S_{MS}$$
 = F_a . S_s
= 1,6 . 0,55
= 0,88
2. S_{MI} = F_v . S_I
= 2,9 . 0,275
= 0,7975

C. Penentuan nilai S_{DS} dan S_{DI}

Nilai
$$\mu = 2/3$$

1.
$$S_{DS} = \mu . S_{MS}$$

= $(2/3) . 0,88$
= $0,5867$
2. $S_{DI} = \mu . S_{MI}$

2.
$$S_{DI} = \mu . S_{MI}$$

= (2/3) . 0,7975
= 0,532

D. Penentuan nilai T_s dan T_0

1.
$$Ts = \frac{Sd1}{Sds}$$

2. $Ts = \frac{0,532}{0,5867} = 0,90625$
3. $T_0 = 0,2 \cdot T_s$
 $= 0,2 \cdot 0,90625$
 $= 0,181$

- E. Penentuan nilai S_a
- F. Untuk periode yang lebih kecil dari T_0 , Spektrum Respons percepatan desain (S_a) harus diambil dari persamaan:

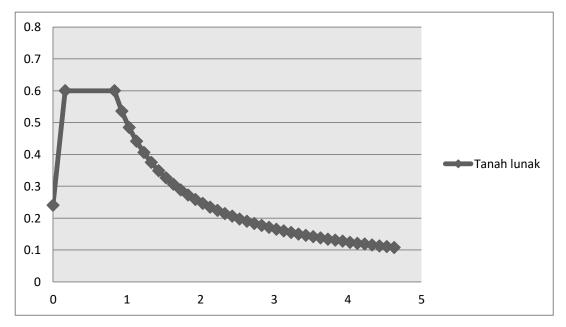
$$Sa = Sds (0.4 + 0.6 \frac{T}{To})$$

- G. Untuk periode yang lebih besar dari atau sama dengan T_0 dan lebih kecil dari atau sama dengan T_s , Spektrum Respons desain S_a sama dengan S_{DS} .
- H. Untuk periode lebih besar dari T_s , Spektrum Respons percepatan desain S_a diambil berdasarkan persamaan:

$$Sa = \frac{Sds}{T}$$
.

Spektrum Respons percepatan disajikan dalam Tabel 3.1 dan grafik Spektrum Respons pada Gambar 3.2.

Tabel 3.1: Respons Spektrum SNI 1726:2012 Daerah, Kota Medan dengan jenis tanah Lunak.


Respons Spektrum Tanah K	eras Data yang di peroleh
T(Detik)	Sa(g)
0	0,283
0,181	0,587
0,906	0,587
0,956	0,556
1,006	0,528
1,056	0,503
1,106	0,481
1,156	0,460
1,206	0,411
1,256	0,423
1,306	0,407
1,356	0,392
1,406	0,378
1,456	0,365
1,506	0,353
1,556	0,342
1,606	0,331
1,656	0,321
1,706	0,312
1,756	0,303
1,806	0,294
1,856	0,286
1,906	0,279
1,956	0,272
2,006	0,265
2,056	0,259
2,106	0,252
2,156	0,247
2,256	0,236
2,306	0,231
2,356	0,226
2,406	0,221
2,456	0,216
2,506	0,212

Tabel 3.1: Lanjutan.

Respons Spektrum Tanah Ke	Respons Spektrum Tanah Keras Data yang di peroleh		
T(Detik)	Sa(g)		
2,556	0,208		
2,606	0,204		
2,656	0,200		
2,706	0,196		
2,756	0,193		
2,806	0,189		
2,856	0,186		
2,906	0,183		
2,956	0,180		
3,006	0,177		
3,056	0,174		
3,106	0,171		
3,156	0,168		
3,206	0,166		
3,256	0,163		
3,306	0,161		
3,356	0,158		
3,406	0,156		
3,456	0,154		
3,506	0,152		
3,556	0,150		
3,606	0,147		
3,656	0,145		
3,706	0,143		
3,756	0,142		
3,806	0,140		
3,856	0,138		
3,906	0,136		
3,956	0,134		
4,006	0,133		
4,056	0.131		
4,106	0,129		
4,156	0,128		
4,206	0,126		
4,256	0,125		
4,306	0,123		

Tabel 3.1: Lanjutan.

Respons Spektrum Tanah Keras Data yang di peroleh		
T(Detik)	Sa(g)	
4,356	0,122	
4,406	0,121	
4,456	0,119	
4,506	0,118	
4,556	0,117	
4,606	0,115	
4,656	0,114	
4,706	0,113	
4,756	0,112	
4,806	0,111	
4,256	0,125	
4,306	0,123	
4,356	0,122	
4,806	0,111	

Gambar 3.2: Respons Spektrum berdasarkan SNI 1726:2012 daerah kota Medan dengan klasifikasi tanah lunak.

Dapat dilihat pada Tabel 3.2, bahwa Responss Spektrum gempa rencana yang dihasilkan berdasarkan standar kegempaan SNI 1726:2012 mempunyai nilai

0,5867 untuk percepatan Respons Spektrum desain pada periode pendek (S_{DS}), dan 0,532 untuk parameter percepatan desain pada perioda 1 detik (S_{D1}).

3.3. Pemodelan Struktur Meneliti di Lapangan

3.3.1. Data Perencanaan Struktur

Adapun data perencanaan struktur yang dimiliki setiap data bangunan Ruko dimedan yang dikumpulkan setiap 3 Ruko yaitu: Ruko A Jalan Tuasan Kec. Medan Tembung, Ruko B Jalan Alfalah IV LK. VIII, Ruko C Jalan Budi Kemasyarakatan, Kec. Medan Barat yang setiap Ruko memiliki 3 lantai. Pemodelan dalam program analisa struktur, yaitu:

- A. Ruko A jalan tuasan Kec. Medan Tembung
 - 1. Jenis pemanfaatan gedung Ruko
 - 2. Gedung terletak di Medan, Provinsi Sumatera Utara
 - 3. Klasifikasi situs tanah lunak (SE)
 - 4. Sistem struktur yang digunakan adalah Sistem Rangka Pemikul Momen Khusus (SRPMK)
 - 5. Jenis portal struktur gedung adalah beton bertulang
 - 6. Kuat tekan beton (f'c) yang didapatkan pada Hammer test adalah:

Kolom induk : 21,4 MPaBalok dan slab : 11,9 MPa

7. Mutu baja tulangan yang didapatkan dipenelitian penarikan tulangan adalah:

• Kuat leleh minimum (fy) : 255,2 MPa

• Kuat tarik minimum (fu) : 407,4 Mpa

B. Ruko B Jalan Alfalah IV LK. VIII

- 1. Jenis pemanfaatan gedung Ruko
- 2. Gedung terletak di Medan, Provinsi Sumatera Utara
- 3. Klasifikasi situs tanah lunak (SD)
- 4. Sistem struktur yang digunakan adalah Sistem Rangka Pemikul Momen Khusus (SRPMK)

5. Jenis portal struktur gedung adalah beton bertulang

6. Kuat tekan beton (*f*'*c*) yang didapatkan pada *Hammer test* adalah:

• Kolom dan dinding struktur : 21 MPa

• Balok dan slab : 22 MPa

7. Mutu baja tulangan yang didapatkan dipenelitian penarikan tulangan adalah:

• Kuat leleh minimum (fy) : 228,3 MPa

• Kuat tarik minimum (*fu*) : 358,7 Mpa

C. Ruko C Jalan Budi Kemasyarakatan, Kec. Medan Barat

- 1. Jenis pemanfaatan gedung Ruko
- 2. Gedung terletak di Medan, Provinsi Sumatera Utara
- 3. Klasifikasi situs tanah lunak (SD)
- 4. Sistem struktur yang digunakan adalah Sistem Rangka Pemikul Momen Khusus (SRPMK)
- 5. Jenis portal struktur gedung adalah beton bertulang
- 6. Kuat tekan beton (f'c) yang didapatkan pada Hammer test adalah:

• Kolom dan dinding struktur : 13 MPa

• Balok dan slab : 8 MPa

7. Mutu baja tulangan yang didapatkan dipenelitian penarikan tulangan adalah:

• Kuat leleh minimum (fy) : 241,2 MPa

• Kuat tarik minimum (*fu*) : 461,3 Mpa

3.3.2. Konfigurasi Bangunan

Dalam Tugas Akhir ini, struktur bangunan yang direncanakan adalah struktur beton bertulang dengan sistem rangka pemikul momen khusus. Bangunan berbentuk persegi yang simetri (*regular building*) seperti yang terlihat pada Gambar 3.3.

Adapun jenis struktur yang digunakan pada Tugas Akhir ini adalah:

1. Ruko A = SRPMK (3 Lantai)

2. Ruko B = SRPMK (3 Lantai)

3. Ruko C = SRPMK (3 Lantai)

3.3.3. Faktor Reduksi Gempa

Desain bangunan direncanakan sebagai Sistem Rangka Pemikul Momen Khusus (SRPMK), dimana untuk nilai faktor reduksi gempa yang berdasarkan SNI 1726:2012 dilihat pada Tabel 3.2.

Tabel 3.2: Faktor reduksi gempa berdasarkan SNI 1726:2012.

Arah	Sistem Penahan Gaya Seismik		
X	Rangka Beton Komposit Pemikul Momen Khusus	8	
Y	Rangka Beton Komposit Pemikul Momen Khusus	8	

3.3.4. Faktor Keutamaan Struktur (I)

Menurut SNI 1726:2012, sesuai Tabel 2.7 pemilihan nilai faktor keutamaan berdasarkan kategori resiko dengan fungsi bangunan rumah toko adalah kategori resiko II, dengan hal itu maka didapat melalui Tabel 2.7 nilai faktor keutamaan (Ie) = 1.

3.3.5. Properti Desain Struktur

Komponen struktur yang terdapat pada bangunan ini meliputi balok, kolom, dan pelat. Berikut akan direncanakan dimensi awal dari komponen-komponen struktur bangunan. Untuk semua struktur gedung direncanakan dengan dimensi penampang yang sama.

3.3.5.1. Tebal Plat Lantai

Penentuan tebal pelat lantai yang digunakan yaitu 120 mm = 0,12 m (untuk semua tipe pelat lantai). Dalam pemodelan pelat lantai menggunakan *deck* dan dianggap mampu menahan gaya-gaya horizontal/gempa maupun arah vertikal.

Dalam program analisa stuktur, pada menu *Define Section Properties*, lalu dipilih *Slab deck*.

Di dalam struktur bangunan teknik sipil terdapat dua jenis beban luar yang bekerja yaitu beban statis dan beban dinamis. Beban yang bekerja terus-menerus pada suatu struktur adalah beban statis. Jenis dari beban statis adalah sebagai berikut:

3.3.5.2. Beban Mati (Dead Load)

Beban mati adalah beban-beban yang bekerja secara vertikal yang mengikuti arah gravitasi pada struktur bangunan. Adapun berat komponen material bangunan dapat ditentukan dari peraturan yang berlaku di Indonesia yaitu SNI 1727:2013 Beban Minimum Untuk Perencanaan Bangunan Gedung dan Struktur Lain dan juga menggunakan Peraturan Pembebanan Indonesia Untuk Gedung (PPIUG) 1983 untuk berat satuan material disajikan pada Tabel 3.3.

Tabel 3.3: Berat material konstruksi berdasarkan PPIUG 1983.

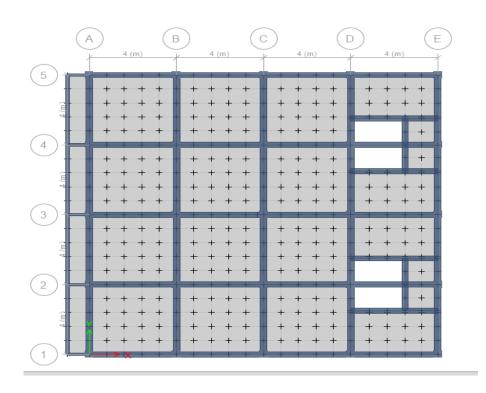
Beban Mati	Berat Jenis
Beton Bertulang	2200-2400 Kg/m ³
Beban Mati	Berat Jenis
Baja	7850 Kg/m ³
Beban Mati	Besarnya Beban
Plafond dan penggantung	0.177 kN/m^2
Adukan 2 cm dari semen	$0,412 \text{ kN/m}^2$
Pasangan bata setengah batu	2,452 kN/m ²
Penutup lantai dari keramik	$0,235 \text{ kN/m}^2$
Mekanikal Elektrikal	$0,392 \text{ kN/m}^2$

1. Pembebanan Dinding Bata

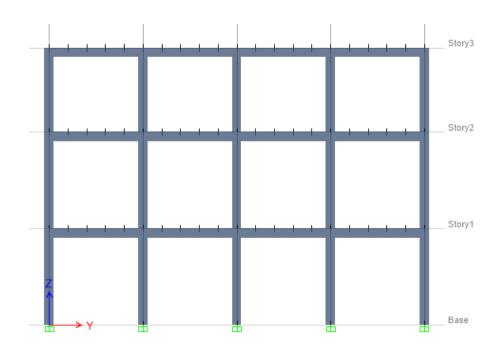
Beban dinding bata setiap bangunan maupun model 1, 2, dan model 3 telah dihitung. Perhitungan di Lampiran A.2.1.

3.3.5.3. Beban Hidup (Life Load)

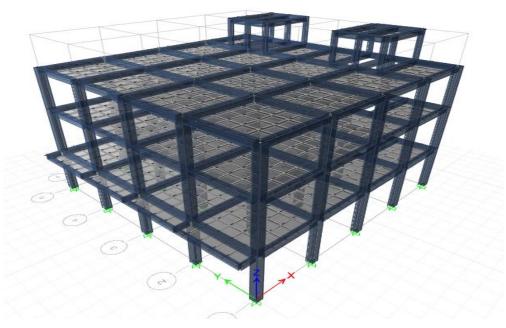
Beban hidup adalah beban yang disebabkan oleh penggunaan maupun hunian dan beban ini bisa ada atau tidak ada pada struktur pada waktu tertantu. Secara umum beban ini bekerja degan arah vertikal ke bawah, tetapi terkadang dapat juga berarah horizontal. Semua beban hidup mempunyai karakteristik dapat bergerak atau berpindah. Berat beban hidup berdasarkan disajikan dalam Tabel 3.4.


Tabel 3.4: Beban hidup pada lantai struktur berdasarkan SNI 1727:2013.

Beban Hidup	Besarnya Beban
Beban Lantai Pertama	$4,79 \text{ kN/m}^2$
Beban Lantai Kedua	$3,59 \text{ kN/m}^2$
Beban Air Hujan	$0,49 \text{ kN/m}^2$


Selanjutnya beban yang diperoleh dari perhitungan dimasukkan sebagai beban area (assign-shell load-uniform) dalam program ETABS Versi 16, sedangkan berat pelat sendiri akan dihitung otomatis oleh komputer dengan memasukkan faktor Reduksi 0,54 untuk self weight multiplier pada saat pembebanan (load case.)

3.4. Model 1 Ruko A di Lapangan


Model gedung yang pertama adalah bentuk struktur menggunakan rangka beton dan komposit pemikul momen khusus. Untuk pemodelan dari struktur gedung tersebut dapat dilihat pada Gambar 3.3-3.5:

Gambar 3.3: Denah struktur beton Model 1 Ruko A di lapangan.

Gambar 3.4: Tampak Samping Bangunan Arah X dan Y Model 1 di Lapangan.

Gambar 3.5: Tampak 3D Struktur Bangunan Beton Model 1 di Lapangan.

3.4.1. Dimensi Balok dan Kolom

Berikut adalah dimensi profil pada Model 1 rangka beton momen khusus dapat dilihat pada Tabel 3.5.

Tabel 3.5: Ukuran Penampang pada Model 1 (Ruko A di Jalan Tuasan Medan Tembung).

Uraian	Dimensi (mm)
Balok utama Lt.1 – Lt.3	400 x 250
Kolom Utama Lt.1-Lt.3	500 x 300

3.4.2. Analisis Respons Spektrum

Prosedur analisis Respons Spektrum dilakukan dengan menggunakan program analisa struktur. Analisis Respons Spektrum ini dilakukan dengan metode kombinasi akar jumlah kuadrat (*Square Root of the Sum of Squares/SRSS*) dengan input gaya gempa seperti pada Gambar 3.2 yang dijelaskan pada sub bab 2.13. Metode kombinasi akar jumlah kuadrat (*Square Root of the Sum of Squares/SRSS*) diperoleh dari hasil selisih nilai perioda yang lebih dari 15%.

Selain itu, penjumlahan ragam Responss menurut metode (*Complete Quadratic Combination*) *CQC* atau *SRSS* harus sedemikian rupa sehingga partisipasi massa dalam menghasilkan Respons total harus mencapai sekurang-kurangnya 90%. Untuk memperoleh nilai perioda dan partisipasi massa (*Sum UX dan Sum UY*) menggunakan program analisa struktur yaitu pada *Structure Output (Modal Participating Mass Ratios)*. Nilai Perioda untuk Model 1 dilapangan terdapat pada Tabel 3.6.

Tabel 3.6: Data perioda output program analisa struktur Model 1(Ruko A di Jalan Tuasan Medan Tembung).

TABEL: Modal Participating Mass Ratios					
Case	Modal	Perioda	Sum UX	Sum UY	
Modal	1	1,307	0	0,861	
Modal	2	1,032	0,826	0	
Modal	3	1,012	0	0,0021	
Modal	4	0,395	0	0,1183	
Modal	5	0,295	0,0001	0,0002	
Modal	6	0,288	0,1366	0	
Modal	7	0,234	6,98E-07	0,0181	
Modal	8	0,201	1,64E-05	0,0001	
Modal	9	0,19	0,0043	1,25E-05	
Modal	10	0,184	0,0003	0,0001	
Modal	11	0,175	0,0113	9,94E-07	
Modal	12	0,158	0,0006	3,82E-06	

Persentase nilai perioda yang menentukan jenis perhitungan menggunakan *CQC* ataukah *SRSS* dapat dilihat pada Tabel 3.7.

Mode	Persentase (%)	<i>CQC</i> < 15%	<i>SRSS</i> > 15%
T1-T2	21,04	Not ok	Ok
T2-T3	1,94	Ok	Not ok
T3-T4	60,97	Not ok	Ok
T4-T5	25,32	Not ok	Ok
T5-T6	2,37	Ok	Not ok
T6-T7	18,75	Not ok	Ok
T7-T8	14,10	Ok	Not ok
T8-T9	5,47	Ok	Not ok
T9-T10	3,16	Ok	Not ok
T10-T11	4,89	Ok	Not ok
T11-T12	9,71	Ok	Not ok

Penjumlahan ragam Respons menurut metode *CQC* atau metode Akar Kuadrat Jumlah Kuadrat (*Square Root of the Sum of Squares/SRSS*) harus sedemikian rupa sehingga partisipasi massa dalam menghasilkan Respons total harus mencapai sekurang-kurangnya 90%, dari Tabel 3.7, diperoleh nilai partisipasi massa (*Sum UX dan Sum UY*) sudah hampir mencapai 100%. Maka, pada Model ini partisipasi massa sudah memenuhi syarat dengan mengunakan metode *CQC*.

3.4.3. szNilai Waktu Getar Alami Fundamental

Berdasarkan analisis 3 dimensi yang diperoleh dari program analisa struktur nilai waktu getar alami fundamental atau perioda (T) dari Model 1 adalah:

T arah X = 1,032 detik

T arah Y = 1,307 detik

Maka, menurut sub bab 2.15.3 peraturan SNI 1726:2012, perioda fundamental (T) yang digunakan memiliki nilai batas maksimum dan batas minimum seperti yang dijelaskan pada Pers. 2.34 dan 2.35 pada Bab 2.

 $C_t = 0.0466$ (Tabel 2.14 dengan tipe struktur rangka beton pemikul momen)

Hn = 11,5 m (tinggi gedung dari dasar)

X = 0.9 (Tabel 2.14 dengan tipe struktur rangka beton pemikul momen)

Cu = 1,4 (Tabel 2.15 dengan nilai SD1 \geq 0,4).

Tabel 3.8: Pengecekan perioda berdasarkan pembatasan waktu getar alami fundamental Model 1 berdasarkan SNI 1726:2012.

Arah	T _{a min}	Ta maks	T	Cek min	Cek maks
X	0,4198	0,5877	1,032	Ok	Not OK
Y	0,4198	0,5877	1,307	Ok	Not OK

3.4.4. Penentuan Faktor Respons Gempa (C)

Berdasarkan sub bab 2.15.4 untuk peraturan SNI 1726:2012, penentuan nilai koefisien Respons seismik (C_S) berdasarkan Pers. 2.41 – Pers.2.44 pada Bab 2, yang dijelaskan di bawah ini:

1. C_s maksimum

$$C_{\text{s maksimum}} = \frac{S_{DS}}{\left(\frac{R}{I}\right)}$$
$$= \frac{0.587}{\left(\frac{8}{I}\right)} = 0.07333$$

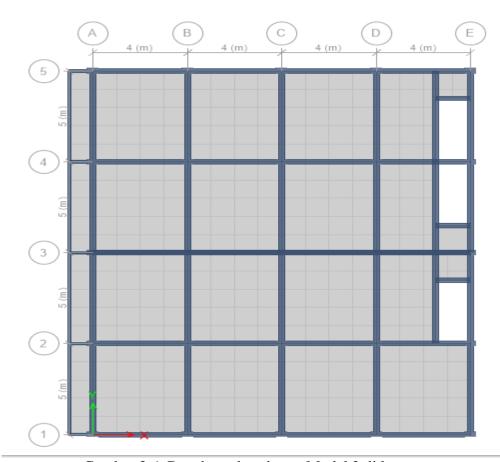
2. C_s hasil hitungan

$$C_{\text{s hasil hitungan}} = \frac{S_{DS}}{T(\frac{R}{I})}$$
$$= \frac{0.587}{0.588(\frac{8}{1})} = 0.114$$

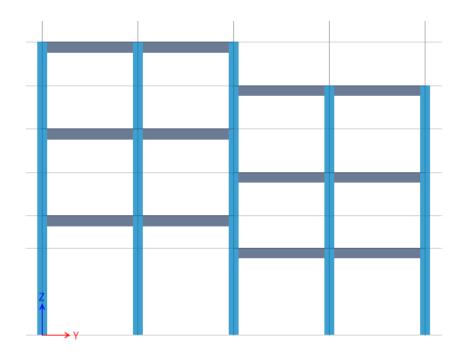
3. C_s minimum

$$C_{s \text{ minimum}} = 0.044 \text{ S}_{DS} \text{ I} \ge 0.01$$

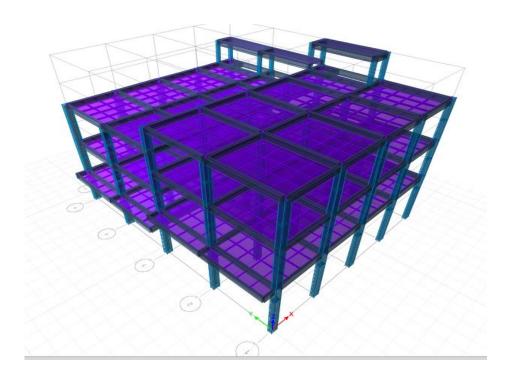
Nilai C_s di atas dan nilai C_s yang digunakan dirangkum ke dalam Tabel 3.9.


Tabel 3.9: Rangkuman nilai Cs dan nilai Cs yang digunakan Model 1.

Arah	C _s maks	C_{S}	$C_{S min}$	C_s yang digunakan
		hitungan		
X	0,073	0,0114	0,026	0,113
Y	0,073	0,0114	0,026	0,113


Pemilihan nilai C_s diatas di dapat karena nilai C_s hitungan lebih kecil diantara C_s minimum dan C_s maksimum. Maka yang digunakan C_s maksimum sesuai Peraturan SNI 1726:2012.

3.5. Model 2 Ruko B di Lapangan


Model gedung yang kedua adalah bentuk struktur menggunakan rangka beton pemikul momen khusus. Untuk pemodelan dari struktur gedung tersebut dapat dilihat pada Gambar 3.6-3.8:

Gambar 3.6: Denah struktur beton Model 2 di lapangan.

Gambar 3.7: Tampak samping bangunan arah X dan Y Model 2 di lapangan.

Gambar 3.8: Tampak 3D struktur bangunan beton Model 2 di lapangan.

3.5.3. Dimensi Balok dan Kolom

Berikut adalah dimensi profil pada model 2 di lapangan beton pemikul momen khusus dapat dilihat pada Tabel 3.10.

Tabel 3.10: Ukuran Penampang pada Model 2 di lapangan.

Uraian	Dimensi (mm)
Balok utama Lt.1 – Lt.3	500 x 250
Kolom Utama Lt.1 - Lt.3	500 x 300

3.5.4. Analisis Respons Spektrum

Prosedur analisis Respons Spektrum dilakukan dengan menggunakan program analisa struktur. Analisis Respons Spektrum ini dilakukan dengan metode kombinasi akar jumlah kuadrat (*Square Root of the Sum of Squares/SRSS*) dengan input gaya gempa seperti pada Gambar 3.2 yang dijelaskan pada sub bab 2.6. Metode kombinasi akar jumlah kuadrat (*Square Root of the Sum of Squares/SRSS*) diperoleh dari hasil selisih nilai perioda yang lebih dari 15%.

Selain itu, penjumlahan ragam Responss menurut metode (*Complete Quadratic Combination*) *CQC* atau *SRSS* harus sedemikian rupa sehingga partisipasi massa dalam menghasilkan Respons total harus mencapai sekurangkurangnya 90%. Untuk memperoleh nilai perioda dan partisipasi massa (*Sum UX dan Sum UY*) menggunakan program analisa struktur yaitu pada *Structure Output (Modal Participating Mass Ratios)*. Nilai Perioda untuk Model 2 terdapat pada Tabel 3.11

Tabel 3.11: Data perioda output program analisa struktur Model 2 di lapangan.

TABEL: Modal Participating Mass Ratios					
Case	Modal	Perioda	Sum UX	Sum UY	
Modal	1	1,523	0,0004	0,9521	
Modal	2	1,461	0,4735	0,0017	
Modal	3	0,948	0,7136	0,0007	
Modal	4	0,444	5,83E-06	0,0643	
Modal	5	0,336	0,0216	0,0008	
Modal	6	0,299	0,0481	0,0005	
Modal	7	0,27	0,0002	0,0114	
Modal	8	0,218	0,0029	3,81E-05	
Modal	9	0,208	0,0044	1,12E-05	
Modal	10	0,199	0,0035	2,01E-05	
Modal	11	0,178	0,0004	1,36E-05	
Modal	12	0,16	0,0104	4,87E-06	

Persentase nilai perioda yang menentukan jenis perhitungan menggunakan *CQC* ataukah *SRSS* dapat dilihat pada Tabel 3.12.

Tabel 3.12: Hasil selisih persentase nilai perioda Model 2 di lapangan.

Mode	Persentase	CQC <	SRSS >
	(%)	15%	15%
T1-T2	23,61	Not Ok	Ok
T2-T3	10,14	Ok	Not Ok
T3-T4	53,16	Not Ok	Ok
T4-T5	24,32	Not Ok	Ok
T5-T6	11,01	Ok	Not Ok
T6-T7	9,70	Ok	Not Ok
T7-T8	19,26	Not Ok	Ok

Tabel 3.12: *Lanjutan*, Hasil selisih persentase nilai perioda Model 2 di lapangan.

Mode	Persentase (%)	CQC < 15%	SRSS >15%
T8-T9	4,59	Ok	Not Ok
T9-T10	4,53	Ok	Not Ok
T10-T11	10,55	Ok	Not Ok
T11-T12	10,11	Ok	Not Ok

Penjumlahan ragam Respons menurut metode *CQC* atau metode Akar Kuadrat Jumlah Kuadrat (*Square Root of the Sum of Squares/SRSS* harus sedemikian rupa sehingga partisipasi massa dalam menghasilkan Respons total harus mencapai sekurang-kurangnya 90%, dari Tabel 3.11, diperoleh nilai partisipasi massa (*Sum UX dan Sum UY*) sudah hampir mencapai 100%. Maka, pada Model ini partisipasi massa sudah memenuhi syarat dengan mengunakan metode *CQC*.

3.5.5. Nilai Waktu Getar Alami Fundamental

Berdasarkan analisis 3 dimensi yang diperoleh dari program analisa struktur nilai waktu getar alami fundamental atau perioda (T) dari Model 2 di lapangan adalah:

T arah X = 1.523 detik

T arah Y = 1,461 detik

Maka, menurut sub bab 2.15.3 peraturan SNI 1726:2012, perioda fundamental (T) yang digunakan memiliki nilai batas maksimum dan batas minimum seperti yang dijelaskan pada Pers. 2.34 dan 2.35 pada Bab 2.

 $C_t = 0.0466$ (Tabel 2.14 dengan tipe struktur rangka beton pemikul momen)

Hn = 13 m (tinggi gedung dari dasar)

X = 0.9 (Tabel 2.14 dengan tipe struktur rangka beton pemikul momen)

Cu = 1,4 (Tabel 2.15 dengan nilai SD1 \geq 0,4).

Tabel 3.13: Pengecekan perioda berdasarkan pembatasan waktu getar alami fundamental Model 2 di lapangan berdasarkan SNI 1726:2012.

Arah	T _{a min}	Ta maks	T	Cek min	Cek maks
X	0,4198	0,5877	1,523	Ok	Not OK
Y	0,4198	0,5877	1,461	Ok	Not OK

3.5.4Penentuan Faktor Respons Gempa (C)

Berdasarkan sub bab 2.15.4 untuk peraturan SNI 1726:2012, penentuan nilai koefisien Respons seismik (C_S) berdasarkan Pers. 2.41 – Pers.2.44 pada Bab 2, yang dijelaskan di bawah ini:

1. C_s maksimum

$$C_{\text{s maksimum}} = \frac{S_{DS}}{\left(\frac{R}{I}\right)}$$
$$= \frac{0.587}{\left(\frac{8}{I}\right)} = 0.0733$$

2. C_s hasil hitungan

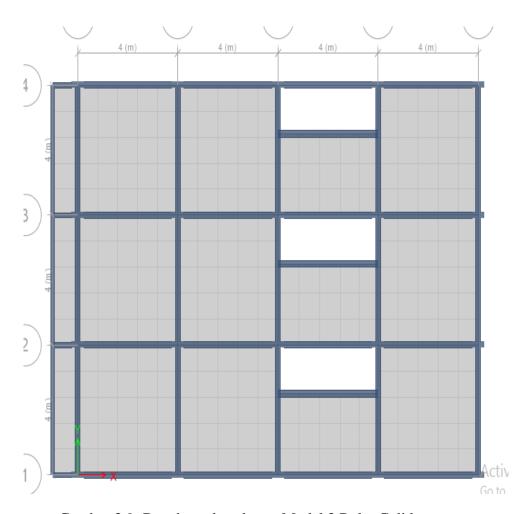
$$C_{\text{s hasil hitungan}} = \frac{s_{DS}}{T(\frac{R}{I})}$$
$$= \frac{0.587}{0.656(\frac{8}{1})} = 0.10127$$

3. C_s minimum

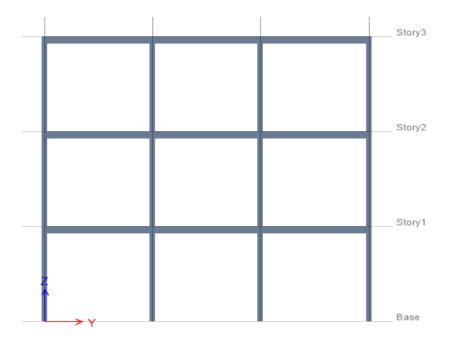
$$C_{s \text{ minimum}} = 0.044 \text{ S}_{DS} \text{ I} \ge 0.01$$

$$C_{\text{s minimum}} = 0.0258133 \ge 0.01$$

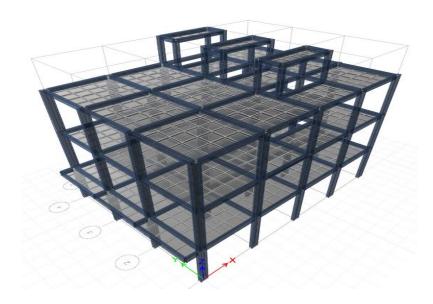
Nilai C_s di atas dan nilai C_s yang digunakan dirangkum ke dalam Tabel 3.14.


Tabel 3.14: Rangkuman nilai Cs dan nilai Cs yang digunakan Model 2.

X 0,073 0,1131 0,0258 0,1131 Y 0,073 0,1131 0,0258 0,1131	Arah	Cs maks	Cs hitungan	Cs min	C_s yang digunakan
Y 0,073 0,1131 0,0258 0,1131	X	0,073	0,1131	0,0258	0,1131
	Y	0,073	0,1131	0,0258	0,1131


Pemilihan nilai C_s diatas di dapat karena nilai C_s hitungan lebih kecil diantara C_s minimum dan C_s maksimum. Maka yang digunakan C_s maksimum sesuai Peraturan SNI 1726:2012.

3.6. Model 3 Ruko C di Lapangan


Model gedung yang ketiga adalah bentuk struktur menggunakan rangka beton pemikul momen khusus. Untuk pemodelan dari struktur gedung tersebut dapat dilihat pada Gambar 3.9-3.11:

Gambar 3.9: Denah struktur beton Model 3 Ruko C di lapangan.

Gambar 3.10: Tampak samping bangunan arah X dan Y Model 3 di lapangan.

Gambar 3.11: Tampak 3D struktur bangunan beton Model 3 di lapangan.

3.6.1. Dimensi Balok dan Kolom

Berikut adalah dimensi profil pada Model 3 rangka beton pemikul momen khusus dapat dilihat pada Tabel 3.15.

Tabel 3.15: Ukuran Penampang pada Model 3 dilapangan.

Uraian	Dimensi (mm)
Balok utama Lt.1–Lt.3	500 x 200
Kolom Utama Lt.1-Lt.3	300 x 200

3.6.2. Analisis Respons Spektrum

Prosedur analisis Respons Spektrum dilakukan dengan menggunakan program analisa struktur. Analisis Respons Spektrum ini dilakukan dengan metode kombinasi akar jumlah kuadrat (*Square Root of the Sum of Squares/SRSS*) dengan input gaya gempa seperti pada Gambar 3.2 yang dijelaskan pada sub bab 2.6. Metode kombinasi akar jumlah kuadrat (*Square Root of the Sum of Squares/SRSS*) diperoleh dari hasil selisih nilai perioda yang lebih dari 15%.

Selain itu, penjumlahan ragam Responss menurut metode (*Complete Quadratic Combination*) *CQC* atau *SRSS* harus sedemikian rupa sehingga partisipasi massa dalam menghasilkan Respons total harus mencapai sekurang-kurangnya 90%. Untuk memperoleh nilai perioda dan partisipasi massa (*Sum UX dan Sum UY*) menggunakan program analisa struktur yaitu pada *Structure Output (Modal Participating Mass Ratios)*. Nilai Perioda untuk Model 3 terdapat pada Tabel 3.16.

Tabel 3.16: Data perioda output program analisa struktur Model 3 di lapangan.

TABEL: Modal Participating Mass Ratios						
Case	Modal	Perioda	Sum UX	Sum UY		
Modal	1	2.373	0	0,8703		
Modal	2	1,66	0,0007	0,0006		
Modal	3	1,539	0,8041	0		
Modal	4	0,745	0	0,1162		
Modal	5	0,487	1,16E-05	2,68E-05		

Tabel 3.16: Lanjutan.

1 abel 5.10. Lai	ij iii cii i			
Modal	6	0,455	1,38E-06	0,0128
Modal	7	0,408	0,1568	0
Modal	8	0,275	0	8,06E-07
Modal	9	0,262	4,38E-05	4,66E-06
Modal	10	0,244	0	2,87E-06
Modal	11	0,211	0,0354	0
Modal	12	0,202	0,0001	1,25E-06

Persentase nilai perioda yang menentukan jenis perhitungan menggunakan *CQC* ataukah *SRSS* dapat dilihat pada Tabel 3.17.

Tabel 3.17: Hasil selisih persentase nilai perioda Model 3 di lapangan.

Mode	Persentase (%)	<i>CQC</i> < 15%	<i>SRSS</i> > 15%
T1-T2	30,05	Not Ok	Ok
T2-T3	7,29	Ok	Not Ok
T3-T4	51,59	Not Ok	Ok
T4-T5	34,63	Not Ok	Ok
T5-T6	8,62	Ok	Not Ok
Т6-Т7	8,31	Ok	Not Ok
Т7-Т8	32,60	Not Ok	Ok
Т8-Т9	4,73	Ok	Not Ok
T9-T10	6,87	Ok	Not Ok
T10-T11	13,52	Ok	Not Ok
T11-T12	4,27	Ok	Not Ok

Penjumlahan ragam Respons menurut metode *CQC* atau metode Akar Kuadrat Jumlah Kuadrat (*Square Root of the Sum of Squares/SRSS* harus sedemikian rupa sehingga partisipasi massa dalam menghasilkan Respons total

harus mencapai sekurang-kurangnya 90%, dari Tabel 3.27, diperoleh nilai partisipasi massa (*Sum UX dan Sum UY*) sudah hampir mencapai 100%. Maka, pada Model ini partisipasi massa sudah memenuhi syarat dengan mengunakan metode *CQC*.

3.6.3. Nilai Waktu Getar Alami Fundamental

Berdasarkan analisis 3 dimensi yang diperoleh dari program analisa struktur nilai waktu getar alami fundamental atau perioda (T) dari Model 3 adalah:

T arah X = 1,36 detik

T arah Y = 1,909 detik

Maka, menurut sub bab 2.15.3 peraturan SNI 1726:2012, perioda fundamental (T) yang digunakan memiliki nilai batas maksimum dan batas minimum seperti yang dijelaskan pada Pers.2.34 dan 2.35 pada Bab 2.

 $C_t = 0.0466$ (Tabel 2.14 dengan tipe struktur rangka beton pemikul momen)

Hn = 12 m (tinggi gedung dari dasar)

X = 0.9 (Tabel 2.14 dengan tipe struktur rangka beton pemikul momen)

Cu = 1,4 (Tabel 2.15 dengan nilai SD1 \geq 0,4).

Tabel 3.18: Pengecekan perioda berdasarkan pembatasan waktu getar alami fundamental Model 3 berdasarkan SNI 1726:2012.

Arah	T _{a min}	Ta maks	T	Cek min	Cek maks
X	0,4198	0,5877	1,660	Ok	Not OK
Y	0,4198	0,5877	2,373	Ok	Not OK

3.6.4. Penentuan Faktor Respons Gempa (C)

Berdasarkan sub bab 2.15.4 untuk peraturan SNI 1726:2012, penentuan nilai koefisien Respons seismik (C_S) berdasarkan Pers.2.60 – Pers.2.63 pada Bab 2, yang dijelaskan di bawah ini:

1. C_s maksimum

$$C_{\text{s maksimum}} = \frac{S_{DS}}{\left(\frac{R}{I}\right)}$$
$$= \frac{0.587}{\left(\frac{8}{I}\right)} = 0.0733$$

2. C_s hasil hitungan

$$C_{\text{s hasil hitungan}} = \frac{s_{DS}}{T(\frac{R}{I})}$$
$$= \frac{0.587}{0.611(\frac{8}{1})} = 0.108836$$

3. C_s minimum

$$C_{s \text{ minimum}} = 0.044 \text{ S}_{DS} \text{ I} \ge 0.01$$

$$C_{\text{s minimum}} = 0.0258133 \ge 0.01$$

Nilai C_s di atas dan nilai C_s yang digunakan dirangkum ke dalam Tabel 3.18.

Tabel 3.19: Rangkuman nilai Cs dan nilai Cs yang digunakan Model 3 di lapangan.

Arah	Cs maks	$C_{\mathcal{S}}$	C _s min	C_s yang digunakan
		hitungan		
X	0,073	0,1131	0,0258	0,1131
Y	0,073	0,1131	0,0258	0,1131

Pemilihan nilai C_s diatas di dapat karena nilai C_s hitungan lebih kecil diantara C_s minimum dan C_s maksimum. Maka yang digunakan C_s maksimum sesuai Peraturan SNI 1726:2012.

3.7. Penambahan Jacketing Pada kegagalan Kolom

Penambahan Jacketing akan dibahas secara Hipotesis, diawali dengan membersihkan dan meratakan permukaan yang akan diberi perkuatan. Setelah permukaan dibersihkan, dilakukan persiapan membuat cetakan yang sudah di perbesar dari rencana awak dan memasang tulangan di permukaan yang telah retak atau yang ingin di pasang *jacketing* untuk campuran matriksnya itu di gunakan pasir semen dann pengeras beton tambahan atau zat adiktif lalu dibiarkan hingga melekat dengan baik dan kering sempurna. Proses ini berlangsung selama 3 sampai 7 hari.

BAB 4

HASIL DAN PEMBAHASAN

4.1.Umum

Pada bab ini akan membahas beberapa nilai perbedaan hasil analisis oleh program Analisa struktur pada tiap model. Diantaranya adalah nilai simpangan, gaya-gaya dalam struktur gedung, kekakuan gedung dan tahanan gempa. Berdasarkan ketiga model yang telah direncanakan dilakukan penambahan perkuatan pada struktur Balok atau Kolom menggunakan *Jacketing* bila memang diperlukan.

4.2. Hasil Analisis Struktur Ruko A di lapangan

Pada Model 1 analisis respons spektrum ini dilakukan dengan metode kombinasi jumlah kuadrat lengkap (Complete Quadratic Combination/CQC).

4.2.1. Gaya Geser

Pada dasarnya nilai gaya geser pada gedung yang simetris akibat arah X maupun arah Y tetap sama. Tetapi, nilai gaya geser yang dihasilkan oleh respons spektrum program analisia struktur sangat teliti sehingga arah X dan arah Y tidak sama walaupun bangunannya simetris. Adapun bangunan yang direncanakan menggunakan struktur rangka pemikul momen khusus. Oleh karena itu, hasil perioda yang diperoleh terhadap arah X dan arah Y tidak sama.

Ketentuan ini berlaku pada setiap model gedung. Dari hasil analisis respons spektrum yang menggunakan program analisis Struktur diperoleh nilai gaya geser dasar (V) berdasarkan SNI 1726-2012 yang disajikan pada Tabel 4.1.

Tabel 4.1: Gaya geser dasar nominal hasil analisis ragam respons spektrum.

TABEL: Base Reactions					
OutputCase FX FY					
Text	Kgf	Kgf			
GEMPA X	51007,56	12,64			
GEMPA Y	12,64	42113,01			

Berikut perhitungan koreksi nilai akhir respons spektrum terhadap respons ragam pertama.

1. Gempa Arah X

$$V_{Ix} = Cs$$
. Wt

$$V_{Ix} = 0.1131 \text{ x } 941767,83$$

= 106531,9416 Kgf (Gaya geser statik ekivalen arah X).

2. Gempa Arah Y

$$V_{Iv} = Cs$$
. Wt

$$V_{Iy} = 0.1131 \text{ x } 941767,83$$

= 106531,9416 Kgf (Gaya geser statik ekivalen arah Y).

Berdasarkan SNI 1726-2012 Kontrol faktor skala:

1. Arah X

$$V_x = 51007,56 \text{ Kgf}$$

$$V_{Ix} = 106531,9416 \text{ Kgf}$$

Syarat
$$Vx \le 0.85$$
. Vix

$$51007,56 \le 0,85.106531,9416$$

$$51007,56 \le 90552,15$$

Faktor skala =
$$\frac{0.85 \, Vlx}{Vr} \ge 1$$

$$=\frac{0.85x\ 106531,9416}{51007,56}=1,77\ \ge 1...OK!$$

2. Arah Y

$$V_{y} = 42113,01 \text{ Kgf}$$

$$V_{Iy} = 106531,9416 \text{ Kgf}$$

Syarat
$$Vy \le 0.85$$
. Viy

$$42113,01 \le 0,85.106531,9416$$

$$42113,01 \le 90552,15$$

Faktor skala =
$$\frac{0.85 \, Vly}{Vy} \ge 1$$

= $\frac{0.85 \times 106531,9416}{42113,01} = 2,15 \ge 1...OK!$

Tabel 4.2: Rekapitulasi faktor skala hasil respons spektrum dengan statik ekivalen masing—masing arah Model 1.

V1 ELF		Vt C	CQC	Faktor Skala	
Arah x Kgf	Arah y Kgf	Arah x Kgf	Arah y Kgf	Arah x	Arah y
106531,9416	106531,9416	51007,56	42113,01	1,2263	1,2263

4.2.2. Koreksi Faktor Redudansi

Berdasarkan sub sub bab 2.15, bahwasanya untuk struktur yang dirancang pada kategori desain seismik D, penggunaan redundansi harus sama dengan 1,3 kecuali jika satu dari dua kondisi yang ditentukan pada sub subbab 2.15 dipenuhi, dimana redundansi diijinkan diambil sebesar 1,0. Salah satu kondisi yang menentukan tersebut yaitu masing-masing lantai harus menahan lebih dari 35 persen geser dasar dalam arah yang ditinjau, maka redundansi diijinkan diambil 1,0. Apabila kondisi ini tidak terpenuhi, maka nilai faktor redundansi 1,0 harus diganti dengan redundansi 1,3. Tabel 4.3-4.4 merupakan pengecekan untuk setiap gaya geser pada masing-masing lantainya terhadap nilai redundansi 1,0.

Tabel 4.3: Pengecekan *story shear* dengan 35% *base shear* terhadap redundansi 1,0 untuk Model 1 di lapangan terhadap gempa x.

	V _x	V_{y}	35 % Vx	35 % Vy		
Lantai	(kgf)	(kgf)	Base Shear	Base Shear	Kontrol	Kontrol
Floor3	23330,16	28,54	18204,6340	4,5115	OK	OK
Floor2	42177,09	20,55	18204,6340	4,5115	OK	OK
Floor1	52013,24	12,89	18204,6340	4,5115	OK	OK

Tabel 4.4: Pengecekan *story shear* dengan 35% *base shear* terhadap redundansi 1,0 untuk Model 1 di lapangan terhadap gempa y.

	V _x	V_{y}	35 % Vx	35 % Vy		
Lantai	(kgf)	(kgf)	Base Shear	Base Shear	Kontrol	Kontrol
Floor3	5,94	18503,56	4,5115	15030,1585	OK	OK
Floor2	9,44	33957,93	4,5115	15030,1585	OK	OK
Floor1	12,89	42943,31	4,5115	15030,1585	OK	OK

Dari Tabel 4.3-4.4 diketahui bahwa gaya geser pada lantai 1-3 dengan redundansi 1,0 memenuhi syarat lebih kecil dari 35 persen gaya geser dasar. Sehingga nilai faktor redundansi yang digunakan pada pemodelan struktur dengan menggunakan program Analisis Struktur adalah 1.

4.2.3. Beban Kombinasi

Seluruh beban mati, beban hidup dan beban gempa tersebut diperhitungkan dengan faktor pembesaran dan kombinasi (*loads combinations*) yang diinput ke dalam program analisa struktur berdasarkan SNI 1726:2012. Untuk Pemodelan ini dengan menggunakan nilai $\rho = 1$ yang diperoleh dari desain seismik D dan nilai $S_{DS} = 0.62333$ diperoleh dari sub bab 3.3, maka kombinasi pembebanannya dapat dilihat pada Tabel 4.5.

Tabel 4.5: Kombinasi pembebanan berdasarkan SNI 1729-2012 dengan nilai $\rho = 1$ dan Sds = 0.5867.

Kombinasi	Ko	efisien	Koe	efisien	Koe	fisien	Ko	efisien
Kombinasi 1	1,4	DL	0	LL	0	EX	0	EY
Kombinasi 2	1,2	DL	1,6	LL	0	EX	0	EY
Kombinasi 3	1,44	DL	1,0	LL	0,3	EX	1	EY
Kombinasi 4	0,96	DL	1,0	LL	-0,3	EX	-1	EY
Kombinasi 5	1,07	DL	1,0	LL	0,3	EX	-1	EY
Kombinasi 6	1,33	DL	1,0	LL	-0,3	EX	1	EY
Kombinasi 7	1,44	DL	1,0	LL	1	EX	0,3	EY
Kombinasi 8	0,96	DL	1,0	LL	-1	EX	-0,3	EY
Kombinasi 9	1,33	DL	1,0	LL	1	EX	-0,3	EY
Kombinasi 10	1,07	DL	1,0	LL	-1	EX	0,3	EY
Kombinasi 11	1,14	DL	0	LL	0,3	EX	1	EY
Kombinasi 12	0,66	DL	0	LL	-0,3	EX	-1	EY

Tabel 4.5: Lanjutan.

Kombinasi 13	0,77	DL	0	LL	0,3	EX	-1	EY
Kombinasi 14	1,03	DL	0	LL	-0,3	EX	1	EY
Kombinasi 15	1,14	DL	0	LL	1	EX	0,3	EY
Kombinasi 16	0,66	DL	0	LL	-1	EX	-0,3	EY
Kombinasi 17	1,03	DL	0	LL	1	EX	-0,3	EY
Kombinasi 18	0,77	DL	0	LL	-1	EX	0,3	EY

4.2.4. Perbandingan Gaya Geser Gedung Tiap Lantai

Berdasarkan SNI 1726-2012 pasal 7.8.3, gaya gempa lateral (F_i) yang timbul disemua tingkat dapat ditentukan oleh:

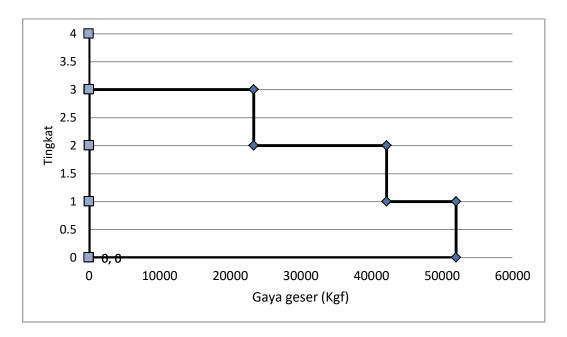
1.
$$Fi = Cvx. V \rightarrow Cvx = \frac{wi.hi^{k}}{\Sigma wi.hi^{k}}$$

- K = Eksponen yang terkait dengan perioda struktur sebagai berikut.
- Untuk struktur yang memiliki $T \le 0.5$ detik; k = 1
- Untuk struktur yang memiliki $T \ge 2.5$ detik; k = 2

Untuk struktur yang memiliki 0.5 < T < 2.5; k adalah hasil interpolasi berikut cara mendapatkan nilai k.

Tx = 1,039
Ty = 1,311
Kx =
$$1 + \frac{(2-1)}{(2,5-0,5)} (1,039 - 0,5) = 1,269$$

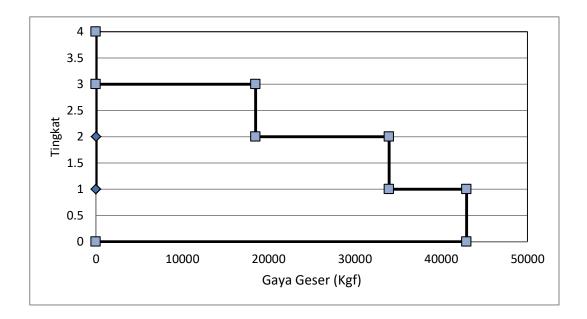
Ky = $1 + \frac{(2-1)}{(2.5-0.5)} (1,311 - 0,5) = 1,405$


Setelah dilakukan perhitungan, didapatlah nilai dari distribusi gaya geser horizontal arah x berdasarkan metode analisis statik ekivalen.

4.2.5. Gaya Geser Analisis Respons Spektrum

Gaya geser lantai merupakan distribusi dari gaya geser dasar yang dibagi pada setiap lantai untuk masing-masing arah gempa. Nilai gaya geser lantai yang didapat dari pemodelan struktur dengan menggunakan program Analisis Struktur dapat dilihat pada Tabel 4.5-4.6.

Tabel 4.6: Gaya geser hasil *output* analisis respons spektrum gempa x.


	TABLE: Story Responsse Seismic X						
Story	Elevation	Location	X-Dir	Y-Dir			
	M		Kgf	Kgf			
Floor 3	11,5	Тор	23330,16	28,54			
		Bottom	23330,16	28,54			
Floor2	8	Тор	42177,09	20,55			
		Bottom	42177,09	20,55			
Floor1	4	Тор	52013,24	12,89			
		Bottom	52013,24	12,89			
Basement	0	Тор	0	0			
		Bottom	0	0			

Gambar 4.1: Diagram gaya geser respons spektrum sumbu x.

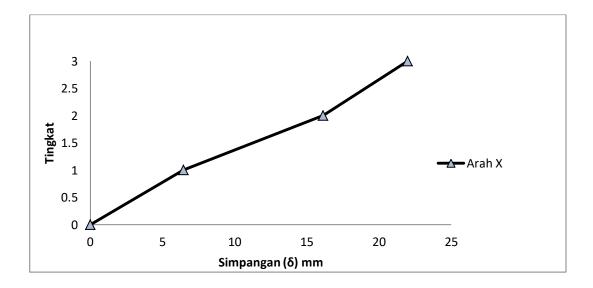
Tabel 4.7: Gaya geser hasil *output* analisis respons spektrum gempa y.

	TABLE: Story Responsse Seismic Y							
Story	Elevation	Location	X-Dir	Y-Dir				
	M		Kgf	Kgf				
Floor 3	11,5	Тор	5,94	18503,56				
		Bottom	5,94	18503,56				
Floor2	8	Тор	9,44	33957,93				
		Bottom	9,44	33957,93				
Floor1	4	Тор	12,89	42943,31				
		Bottom	12,89	42943,31				
Basement	0	Тор	0	0				
		Bottom	0	0				

Gambar 4.2: Diagram gaya geser respons spektrum sumbu y.

4.2.6. Nilai Simpangan

Simpangan antar lantai merupakan selisih dari nilai defleksi gedung antara lantai i dengan lantai di bawahnya. Berdasarkan peraturan SNI 1726:2012, kontrol simpangan antar lantai hanya terdapat satu kinerja batas, yaitu kinerja batas ultimit. Simpangan antar lantai tingkat desain tidak boleh melebihi simpangan antar lantai ijin seperti yang terdapat pada Tabel 2.15 yang dikalikan dengan nilai

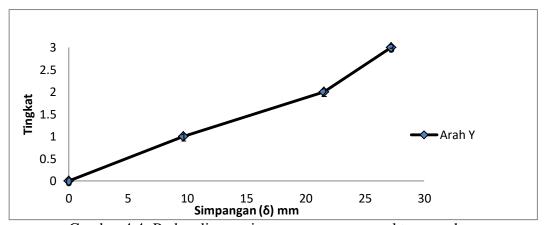

faktor redundansi. Tabel 4.7-4.8 merupakan hasil nilai simpangan antar lantai untuk Model 1.

Tabel 4.8: Nilai simpangan gedung Model 1 di lapangan akibat gempa x, pada kinerja batas ultimit berdasarkan SNI 1726-2012.

		Perpinda	Perpindahan Elastis		Perpindahan Total		Simpangan	
Tingkat	h	((δe)	(δe*Cd)/Ie		Antar	Antar Lantai (Δ)	
	(mm)							
		X	Y	X	Y	X	Y	
		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
3	11500							
		21,9820	0,0030	120,9010	0,0165	32,2355	0,0055	
2	8000							
		16,1210	0,0020	88,6655	0,0110	53,1465	0,0055	
1	4000							
		6,4580	0,0010	35,5190	0,0055	35,5190	0,0055	

Tabel 4.8: Lanjutan.

Tingkat	Syarat	Cek	Cek
Tiligkat	$\Delta a/\rho$ (mm)	X	Y
3	70,0000	OK	OK
2	80,0000	OK	OK
1	80,0000	OK	OK


Gambar 4.3: Diagram nilai simpangan lantai sumbu x.

Tabel 4.9: Nilai simpangan gedung Model 1 di lapangan akibat gempa y, pada kinerja batas ultimit berdasarkan SNI 1726-2012.

Tingkat		Perpindahan Elastis (δe)		Perpindahan Total (δe*Cd)/Ie		Simpangan Antar Lantai (Δ)	
	(mm)	X (mm)	Y (mm)	X (mm)	Y (mm)	X (mm)	Y (mm)
3	11500	0,0010	27,2210	0,0055	149,7155	0,0038	31,2235
2	8000	0,0003	21,5440	0,0017	118,4920	0,0110	65,2905
1	4000	0,0010	9,6730	0,0055	53,2015	0,0055	53,2015

Tabel 4.9: Lanjutan.

Tingkat	Syarat	Cek	Cek
Imgkat	Δa/ρ (mm)	X	Y
3	70,0000	OK	OK
2	80,0000	OK	OK
1	80,0000	OK	OK

Gambar 4.4: Perbandingan simpangan respons spektrum arah y.

Pada Tabel 4.7-4.8 diatas dapat dilihat besarnya simpangan yang terjadi akibat gempa arah x maupun y. Besar simpangan arah sumbu x dan y berbeda, hal ini diakibatkan oleh sistem penahan gaya lateral yang terpasang hanya pada arah tertentu. Arah utama pengaruh gempa rencana harus ditentukan sedemikian rupa sehingga memberi pengaruh terbesar terhadap unsur-unsur sub sistem dan sistem struktur gedung secara keseluruhan. Pengaruh pembebanan gempa dalam

arah utama yang ditentukan harus dianggap efektif 100% dan harus dianggap terjadi bersamaan dengan pembebanan tadi, tetapi dengan efektifitas 30%.

4.2.7. Pengaruh Efek P-Delta

Berdasarkan SNI 1726:2012 efek P-delta harus diperhitungkan untuk struktur gedung yang memikul beban gempa. Akan tetapi, efek P-delta dapat diabaikan jika nilai *stability ratio* lebih kecil dari 0,1. Kontrol pengaruh P-delta untuk arah x dan y tertera pada Tabel 4.9 dan 4.10

Tabel 4.10: Kontrol P-delta pada arah x untuk Model 1 di Lapangan.

		Story	Gaya Geser	Beban	Beban	Stability	
Lantai	Tinggi	Drift	Seismik, V _x	Vertikal	Vertikal	Ratio	Cek
Lainai				Total	Kumulatif		X
	(mm)	(mm)	(Kgf)	(Kgf)	(kgf)	(θ_{x})	
Floor 3	11500	32,236	23330,16	253181,03	253226,93	0,006	OK
Floor 2	8000	53,147	42177,09	325941,92	579168,85	0,017	OK
Floor 1	4000	35,519	52013,24	362644,88	941813,74	0,029	OK

Tabel 4.11: Kontrol P-delta pada arah y untuk Model 1 di Lapangan.

		Story	Gaya Geser	Beban	Beban	Stability	
Lantai	Tinggi	Drift	Seismik, V _y	Vertikal	Vertikal	Ratio	Cek
Lantai				Total	Kumulatif		Y
	(mm)	(mm)	(Kgf)	(Kgf)	(Kgf)	(θ_x)	
Floor 3	11500	31,224	18503,56	253181,03	253226,93	0,007	OK
Floor 2	8000	65,291	33957,93	325941,92	579168,85	0,025	OK
Floor 1	4000	53,202	42943,31	362644,88	941813,74	0,053	OK

Dari Tabel 4.9 dan 4.10 diketahui bahwa tidak ada nilai *stability ratio* yang lebih besar dari 0,1. Sehingga efek P-delta untuk Model 1 dapat diabaikan.

4.3. Ruko B di lapangan

Pada Model 2 analisis respons spektrum ini dilakukan dengan metode kombinasi jumlah kuadrat lengkap (Complete Quadratic Combination/CQC).

4.3.1. Gaya Geser

Pada dasarnya nilai gaya geser pada gedung yang simetris akibat arah X maupun arah Y tetap sama. Tetapi, nilai gaya geser yang dihasilkan oleh respons spektrum program analisia struktur sangat teliti sehingga arah X dan arah Y tidak sama walaupun bangunannya simetris. Adapun bangunan yang direncanakan menggunakan struktur rangka pemikul momen khusus. Ketentuan ini berlaku pada gedung setiap model.

Dari hasil analisis respons spektrum yang menggunakan program Analisis Struktur diperoleh nilai gaya geser dasar (V) berdasarkan SNI 1726-2012 yang disajikan pada Tabel 4.12.

Tabel 4.12: Gaya geser dasar nominal hasil analisis ragam respons spektrum.

TABEL: Base Reactions						
OutputCase	FX	FY				
Text	Kgf	Kgf				
GEMPA X	66810,11	2279,88				
GEMPA Y	2279,88	52150,55				

Berikut perhitungan koreksi nilai akhir respons spektrum terhadap respons ragam pertama.

1. Gempa Arah X

$$V_{Ix} = Cs$$
. Wt

$$V_{Ix} = 0.1131 \times 1054022,31$$

= 119209,92 Kgf (Gaya geser statik ekivalen arah X).

2. Gempa Arah Y

$$V_{Iv} = Cs$$
. Wt

$$V_{Iy} = 0.1131 \times 1054022,31$$

= 119209,92 Kgf (Gaya geser statik ekivalen arah Y).

Berdasarkan SNI 1726-2012 kontrol faktor skala:

1. Arah X

$$V_x = 66810,11 \text{ Kgf}$$

$$V_{Ix} = 119209,92 \text{ Kgf}$$
Syarat $Vx \le 0,85.Vix$

$$66810,11 \le 0,85. 119209,92 = 66810,11 \le 101328,432$$
Faktor skala = $\frac{0.85 Vlx}{Vx} \ge 1$

$$= \frac{0.85 \times 119209,92}{66810,11} = 1,52 \ge 1...\text{OK!}$$

2. Arah Y

$$V_y = 52150,55$$
 Kgf
 $V_{Iy} = 119209,92$ Kgf
Syarat $Vy \le 0,85.Viy$
 $52150,55 \le 0,85.119209,92$
 $52150,55 \le 101328,432$
Faktor skala = $\frac{0.85 Vly}{Vy} \ge 1$
= $\frac{0.85 \times 119209,92}{52150,55} = 1,94 \ge 1...$ OK!

Tabel 4.13: Rekapitulasi faktor skala hasil respons spektrum dengan statik ekivalen masing—masing arah Model 2 di lapangan.

V1 ELF		Vt (CQC	Faktor Skala		
Arah x	Arah y	Arah x	Arah y	Arah x	Arah y	
Kgf	Kgf	Kgf	Kgf			
119209,92	119209,92	66810,11	52150,55	1,2263	1,2263	

4.3.2. Koreksi Faktor Redudansi

Berdasarkan sub sub bab 2.15, bahwasanya untuk struktur yang dirancang pada kategori desain seismik D, penggunaan redundansi harus sama dengan 1,3 kecuali jika satu dari dua kondisi yang ditentukan pada sub subbab 2.15 dipenuhi, dimana redundansi diijinkan diambil sebesar 1,0. Salah satu kondisi yang menentukan tersebut yaitu masing-masing lantai harus menahan lebih dari 35 persen geser dasar dalam arah yang ditinjau, maka redundansi diijinkan diambil 1,0. Apabila kondisi ini tidak terpenuhi, maka nilai faktor redundansi 1,0 harus

diganti dengan redundansi 1,3. Tabel 4.14-4.15 merupakan pengecekan untuk setiap gaya geser pada masing-masing lantainya terhadap nilai redundansi 1,0.

Tabel 4.14: Pengecekan *story shear* dengan 35% *base shear* terhadap redundansi 1,0 untuk Model 2 di lapangan terhadap gempa x.

	V_{x}	V_{y}	35 % Vx	35 % Vy		
Lantai	(Kgf)	(Kgf)	Base Shear	Base Shear	Kontrol	Kontrol
3.1	16050,37	552,35	15142,6695	550,7390	OK	OK
3	18012,32	578,31	15142,6695	550,7390	OK	OK
2.1	30986,25	866,33	15142,6695	550,7390	OK	OK
2	30986,25	866,33	15142,6695	550,7390	OK	OK
1.1	43264,77	1573,54	15142,6695	550,7390	OK	OK
1	43264,77	1573,54	15142,6695	550,7390	OK	OK

Tabel 4.15: Pengecekan *story shear* dengan 35% *base shear* terhadap redundansi 1,0 untuk Model 2 di lapangan terhadap gempa y.

	V_{x}	$V_{\rm v}$	35 % Vx	35 % Vy		
Lantai	(Kgf)	(Kgf)	Base Shear	Base Shear	Kontrol	Kontrol
3.1	1467,81	14782,07	813,6905	12292,4690	OK	OK
3	1580,03	16546,52	813,6905	12292,4690	OK	OK
2.1	2552,56	24594,37	813,6905	12292,4690	OK	OK
2	2552,56	24594,37	813,6905	12292,4690	OK	OK
1.1	2324,83	35121,34	813,6905	12292,4690	OK	OK
1	2324,83	35121,34	813,6905	12292,4690	OK	OK

Dari Tabel 4.14-4.15 diketahui bahwa gaya geser pada lantai 1-3 dengan redundansi 1,0 memenuhi syarat lebih kecil dari 35 persen gaya geser dasar. Sehingga nilai faktor redundansi yang digunakan pada pemodelan struktur dengan menggunakan program Analisis Struktur adalah 1.

4.3.3. Beban Kombinasi

Seluruh beban mati, beban hidup dan beban gempa tersebut diperhitungkan dengan faktor pembesaran dan kombinasi (*loads combinations*) yang diinput ke dalam program Analisa Struktur berdasarkan SNI 1726:2012. Untuk Pemodelan ini dengan menggunakan nilai $\rho=1$ yang diperoleh dari desain seismik D dan

nilai $S_{DS} = 0.62333$ diperoleh dari sub bab 3.3, maka kombinasi pembebanannya dapat dilihat pada Tabel 4.16.

Tabel 4.16: Kombinasi pembebanan berdasarkan SNI 1729-2012 dengan nilai $\rho = 1$ dan Sds = 0.5867.

Kombinasi	Koefisien		Koe	efisien	Koe	efisien	Koefisien	
Kombinasi 1	1,4	DL	0	LL	0	EX	0	EY
Kombinasi 2	1,2	DL	1,6	LL	0	EX	0	EY
Kombinasi 3	1,44	DL	1,0	LL	0,3	EX	1	EY
Kombinasi 4	0,96	DL	1,0	LL	-0,3	EX	-1	EY
Kombinasi 5	1,07	DL	1,0	LL	0,3	EX	-1	EY
Kombinasi 6	1,33	DL	1,0	LL	-0,3	EX	1	EY
Kombinasi 7	1,44	DL	1,0	LL	1	EX	0,3	EY
Kombinasi 8	0,96	DL	1,0	LL	-1	EX	-0,3	EY
Kombinasi 9	1,33	DL	1,0	LL	1	EX	-0,3	EY
Kombinasi 10	1,07	DL	1,0	LL	-1	EX	0,3	EY
Kombinasi 11	1,14	DL	0	LL	0,3	EX	1	EY
Kombinasi 12	0,66	DL	0	LL	-0,3	EX	-1	EY
Kombinasi 13	0,77	DL	0	LL	0,3	EX	-1	EY
Kombinasi 14	1,03	DL	0	LL	-0,3	EX	1	EY
Kombinasi 15	1,14	DL	0	LL	1	EX	0,3	EY
Kombinasi 16	0,66	DL	0	LL	-1	EX	-0,3	EY
Kombinasi 17	1,03	DL	0	LL	1	EX	-0,3	EY
Kombinasi 18	0,77	DL	0	LL	-1	EX	0,3	EY

4.3.4. Perbandingan Gaya Geser Gedung Tiap Lantai

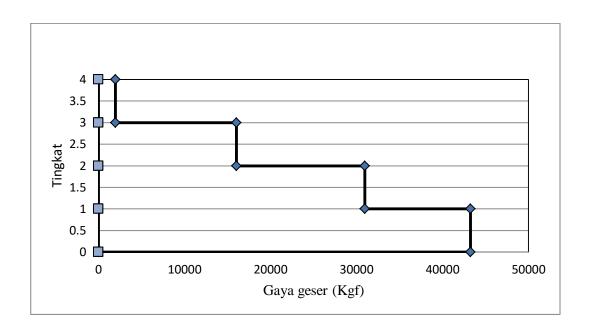
Berdasarkan SNI 1726-2012 pasal 7.8.3, gaya gempa lateral (F_i) yang timbul disemua tingkat dapat ditentukan oleh:

1. Fi = Cvx. V
$$\rightarrow$$
 Cvx = $\frac{wi.hi^{k}}{\Sigma wi.hi^{k}}$

- $\bullet K$ = Eksponen yang terkait dengan perioda struktur sebagai berikut.
- Untuk struktur yang memiliki $T \le 0.5$ detik; k = 1
- ullet Untuk struktur yang memiliki $T \geq 2,5$ detik; k=2 Untuk struktur yang memiliki 0,5 < T < 2,5; k adalah hasil interpolasi berikut cara mendapatkan nilai k.

Tx = 1,523
Ty = 1,461
Kx =
$$1 + \frac{(2-1)}{(2,5-0,5)} (1,461-0,5) = 1,481$$

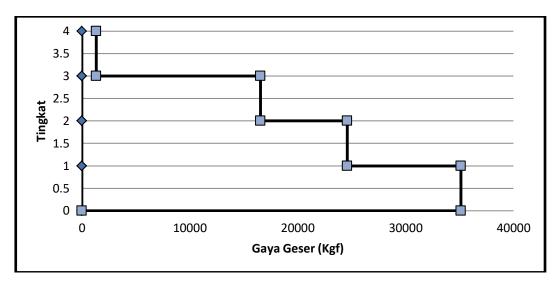
Ky = $1 + \frac{(2-1)}{(2,5-0,5)} (1,523-0,5) = 1,512$


Setelah dilakukan perhitungan, didapatlah nilai dari distribusi gaya geser horizontal arah x berdasarkan metode analisis statik ekivalen.

4.3.5. Gaya Geser Analisis Respons Spektrum

Gaya geser lantai merupakan distribusi dari gaya geser dasar yang dibagi pada setiap lantai untuk masing-masing arah gempa. Nilai gaya geser lantai yang didapat dari pemodelan struktur dengan menggunakan program Analisis Struktur dapat dilihat pada Tabel 4.17-4.18.

Tabel 4.17: Gaya geser hasil *output* analisis respons spektrum gempa x.


	TABLE: Story Responsse Seismic X							
Story	Elevation	Location	X-Dir	Y-Dir				
	M		Kgf	Kgf				
lt3.1	13,5	Top	16050,37	552,35				
		Bottom	16050,37	552,35				
lt3	11,5	Top	18012,32	578,31				
		Bottom	18012,32	578,31				
lt2.1	9,5	Top	30986,25	866,33				
		Bottom	30986,25	866,33				
lt.2	7,5	Top	30986,25	866,33				
		Bottom	30986,25	866,33				
lt1.1	5,5	Top	43264,77	1573,54				
		Bottom	43264,77	1573,54				
lt.1	4	Top	43264,77	1573,54				
		Bottom	43264,77	1573,54				
Base	0	Top	0	0				
		Bottom	0	0				

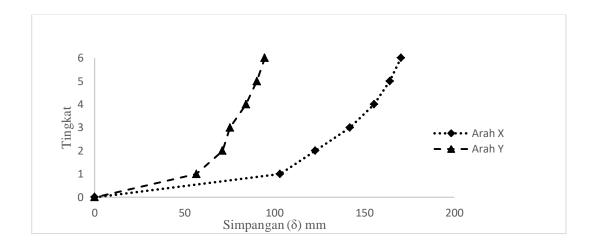
Gambar 4.5: Diagram gaya geser respons spektrum sumbu x.

Tabel 4.18: Gaya geser hasil *output* analisis respons spectrum gempa y.

	TABLE: Story Responsse Seismic Y							
Story	Elevation	Location	X-Dir	Y-Dir				
	M		Kgf	Kgf				
lt3.1	13,5 s	Тор	1467,81	14782,07				
		Bottom	1467,81	14782,07				
lt3	11,5	Top	1580,03	16546,52				
		Bottom	1580,03	16546,52				
lt2.1	9,5	Top	2552,56	24594,37				
		Bottom	2552,56	24594,37				
lt.2	7,5	Top	2552,56	24594,37				
		Bottom	2552,56	24594,37				
lt1.1	5,5	Top	2324,83	35121,34				
		Bottom	2324,83	35121,34				
lt.1	4	Top	2324,83	35121,34				
		Bottom	2324,83	35121,34				
Base	0	Top	0	0				
		Bottom	0	0				

Gambar 4.6: Diagram gaya geser respons spektrum sumbu y.

4.3.6. Nilai Simpangan

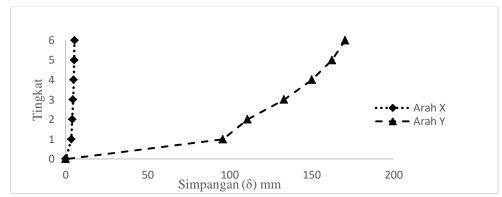

Simpangan antar lantai merupakan selisih dari nilai defleksi gedung antara lantai i dengan lantai di bawahnya. Berdasarkan peraturan SNI 1726:2012, kontrol simpangan antar lantai hanya terdapat satu kinerja batas, yaitu kinerja batas ultimit. Simpangan antar lantai tingkat desain tidak boleh melebihi simpangan antar lantai ijin seperti yang terdapat pada Tabel 2.15 yang dikalikan dengan nilai faktor redundansi. Tabel 4.19-4.20 merupakan hasil nilai simpangan antar lantai untuk Model 2.

Tabel 4.19: Nilai simpangan gedung Model 2 di lapangan akibat gempa x, pada kinerja batas ultimit berdasarkan SNI 1726-2012.

		Perpindahan Elastis		Perpindahan Total		Simpangan	
Tingkat	h		(\delta e)	(δe*C	Cd)/Ie	Antar L	antai (Δ)
		X	Y	X	Y	X	Y
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
3.1	13500	30,9720	17,1970	170,34600	94,58350	6,23150	4,40000
3	11500	29,8390	16,3970	164,11450	90,18350	8,75600	6,03350
2.1	9500	28,2470	15,300	155,35850	84,15000	13,40350	8,93750
2	7500	25,8100	13,675	141,95500	75,21250	19,38200	4,19100
1.1	5500	22,2860	12,913	122,57300	71,02150	19,45900	14,47600
1	4000	18,7480	10,2810	103,11400	56,54550	103,11400	56,54550

Tabel 4.19: Lanjutan.

Tinglest	Syarat	Cek	Cek
Tingkat	Δa/ρ (mm)	X	Y
3.1	270	OKE	OKE
3	230	OKE	OKE
2.1	190	OKE	OKE
2	150	OKE	OKE
1.1	110	OKE	OKE
1	80	OKE	OKE


Gambar 4.7: Perbandingan simpangan respons spektrum sumbu x.

Tabel 4.20: Nilai simpangan gedung Model 2 di lapangan akibat gempa y, pada kinerja batas ultimit berdasarkan SNI 1726-2012.

		Perpindahan Elastis		ndahan Elastis Perpindahan Total		Simpangan		
Tingkat	h		(δe)	(δe*0	Cd)/Ie	Antar L	antai (Δ)	
		X	Y	X	Y	X	Y	
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
3.1	13500	0,978	30,997	5,379	170,484	0,231	8,167	
3	11500	0,936	29,512	5,148	162,316	0,286	12,243	
2.1	9500	0,884	27,286	4,862	150,073	0,380	16,962	
2	7500	0,815	24,202	4,483	133,111	0,495	22,209	
1.1	5500	0,725	20,164	3,988	110,902	0,600	14,999	
1	4000	0,616	17,437	3,388	95,904	3,388	95,904	

Tabel 4.20: Lanjutan.

Tinalzat	Syarat	Cek	Cek
Tingkat	Δa/ρ (mm)	X	Y
3.1	270	OKE	OKE
3	230	OKE	OKE
2.1	190	OKE	OKE
2	150	OKE	OKE
1.1	110	OKE	OKE
1	80	OKE	OKE

Gambar 4.8: Perbandingan simpangan respons spektrum.

Pada Tabel 4.19-4.20 diatas dapat dilihat besarnya simpangan yang terjadi akibat gempa arah x maupun y. Besar simpangan arah sumbu x dan y berbeda, hal ini diakibatkan oleh sistem penahan gaya lateral yang terpasang hanya pada arah tertentu. Arah utama pengaruh gempa rencana harus ditentukan sedemikian rupa sehingga memberi pengaruh terbesar terhadap unsur-unsur sub sistem dan sistem struktur gedung secara keseluruhan. Pengaruh pembebanan gempa dalam arah utama yang ditentukan harus dianggap efektif 100% dan harus dianggap terjadi bersamaan dengan pembebanan tadi, tetapi dengan efektifitas 30%.

4.3.7. Pengaruh Efek P-Delta

Berdasarkan SNI 1726:2012 efek P-delta harus diperhitungkan untuk struktur gedung yang memikul beban gempa. Akan tetapi, efek P-delta dapat diabaikan jika nilai *stability ratio* lebih kecil dari 0,1. Kontrol pengaruh P-delta untuk arah x dan y tertera pada Tabel 4.21 dan 4.22.

Tabel 4.21: Kontrol P-delta pada arah x untuk Model 2 di Lapangan.

		Story	Gaya Geser	Beban	Beban	Stability	
Lantai	Tinggi	Drift	Seismik, V _x	Vertikal	Vertikal	Ratio	Cek
Lamai				Total	Kumulatif		X
	(mm)	(mm)	(Kgf)	(Kgf)	(kN)	(θ_x)	
3.1	13500	6,23150	16050,37	139108,93	139108,93	0,00154	OK
3	11500	8,75600	18012,32	141289,07	2749,000	0,00211	OK
2.1	9500	13,4035	30986,25	182534,31	462932,31	0,00472	OK
2	7500	19,3820	32978,88	188496,61	651428,92	0,00875	OK
1.1	5500	19,4590	43264,77	189544,36	840972,66	0,01347	OK
1	4000	103,114	43264,77	213049,03	1054022,31	0,10499	OK

Tabel 4.22: Kontrol P-delta pada arah y untuk Model 2 di Lapangan.

		Story	Gaya Geser	Beban	Beban	Stability	
Lantai	Tinggi	Drift	Seismik, V _y	Vertikal	Vertikal	Ratio	Cek
Lantai				Total	Kumulatif		Y
	(mm)	(mm)	(Kgf)	(kN)	(kN)	(θ_x)	
3.1	13500	8,1675	14782,07	139108,93	139108,93	0,00180	OK
3	11500	12,243	16546,52	141289,07	2749,000	0,00306	OK
2.1	9500	16,962	24594,37	182534,31	462932,31	0,00569	OK
2	7500	22,209	26251,64	188496,61	651428,92	0,01014	OK
1.1	5500	14,9985	35121,34	189544,36	840972,66	0,01013	OK
1	4000	95,903	35121,34	213049,03	1054022,31	0,09610	OK

Dari Tabel 4.29 dan 4.30 diketahui bahwa tidak ada nilai *stability ratio* yang lebih besar dari 0,1. Sehingga efek P-delta untuk Model 2 di lapangan dapat diabaikan.

4.4. Model 3 di lapangan

Pada Model 3 analisis respons spektrum ini dilakukan dengan metode kombinasi jumlah kuadrat lengkap (Complete Quadratic Combination/CQC).

4.4.1. Gaya Geser

Pada dasarnya nilai gaya geser pada gedung yang simetris akibat arah X maupun arah Y tetap sama. Tetapi, nilai gaya geser yang dihasilkan oleh respons spectrum program analisia struktur sangat teliti sehingga arah X dan arah Y tidak sama walaupun bangunannya simetris. Adapun bangunan yang direncanakan menggunakan struktur rangka pemikul momen khusus. Oleh karena itu, hasil perioda yang diperoleh terhadap arah X dan arah Y tidak sama. Ketentuan ini berlaku pada gedung setiap model.

Dari hasil analisis respons spektrum yang menggunakan program Analisis Struktur diperoleh nilai gaya geser dasar (V) berdasarkan SNI 1726-2012 yang disajikan pada Tabel 4.23.

Tabel 4.23: Gaya geser dasar nominal hasil analisis ragam respons spektrum.

TABEL: Base Reactions							
OutputCase	FX	FY					
Text	Text Kgf Kgf						
GEMPA X	23883,79	16,37					
GEMPA Y	16,37	17021,38					

Berikut perhitungan koreksi nilai akhir respons spektrum terhadap respons ragam pertama.

1. Gempa Arah X

 $V_{Ix} = Cs$. Wt

 $V_{Ix} = 0.1131 \text{x} 941813,74$

= 106519,1335 Kgf (Gaya geser statik ekivalen arah X).

2. Gempa Arah Y

 $V_{Iv} = Cs$. Wt

 $V_{Iy} = 0.1131 \text{ x } 941813,74$

= 106519,1335 Kgf (Gaya geser statik ekivalen arah Y).

Berdasarkan SNI 1726-2012 kontrol faktor skala:

1. Arah X

$$V_x = 23883,79 \text{ Kgf}$$

$$V_{Ix} = 106519,1335 \text{ Kgf}$$
Syarat $Vx \le 0,85.Vix$

$$23883,79 \le 0,85. \ 106519,1335$$

$$23883,79 \le 90541,2635$$
Faktor skala = $\frac{0.85 \ Vlx}{Vx} \ge 1$

$$= \frac{0.85 \times 106519,1335}{23883,79} = 3,79 \ge 1...OK!$$

2. Arah Y

$$V_y = 17021,38$$
 Kgf
 $V_{Iy} = 106519,1335$ Kgf
Syarat $Vy \le 0,85.Viy$
 $17021,38 \le 0,85.106519,1335$
 $17021,38 \le 90541,2635$

Faktor skala =
$$\frac{0.85 \, Vly}{Vy} \ge 1$$

= $\frac{0.85 \times 106519,1335}{17021.38} = 5,32 \ge 1...OK!$

Tabel 4.24: Rekapitulasi faktor skala hasil respons spektrum dengan statik ekivalen masing–masing arah Model 3 di lapangan.

V1 ELF		Vt C	CQC	Faktor Skala		
Arah x Kgf	Arah y Kgf	Arah x Kgf Arah y Kgf		Arah x	Arah y	
106519,1335	106519,1335	23883,79	23883,79	1,2263	1,2263	

4.4.2. Koreksi Faktor Redudansi

Berdasarkan sub sub bab 2.15, bahwasanya untuk struktur yang dirancang pada kategori desain seismik D, penggunaan redundansi harus sama dengan 1,3 kecuali jika satu dari dua kondisi yang ditentukan pada sub subbab 2.15 dipenuhi,

dimana redundansi diijinkan diambil sebesar 1,0. Salah satu kondisi yang menentukan tersebut yaitu masing-masing lantai harus menahan lebih dari 35 persen geser dasar dalam arah yang ditinjau, maka redundansi diijinkan diambil 1,0. Apabila kondisi ini tidak terpenuhi, maka nilai faktor redundansi 1,0 harus diganti dengan redundansi 1,3. Tabel 4.25-4.26 merupakan pengecekan untuk setiap gaya geser pada masing-masing lantainya terhadap nilai redundansi 1,0.

Tabel 4.25: Pengecekan *story shear* dengan 35% *base shear* terhadap redundansi 1,0 untuk Model 3 di lapangan terhadap gempa x.

	V_x	V_{y}	35 % Vx	35 % Vy		
Lantai	(Kgf)	(Kgf)	Base Shear	Base Shear	Kontrol	Kontrol
Floor3	12180,77	8,01	8524,1415	5,8415	OK	OK
Floor2	19179,99	11,81	8524,1415	5,8415	OK	OK
Floor1	24354,69	16,69	8524,1415	5,8415	OK	OK

Tabel 4.26: Pengecekan *story shear* dengan 35% *base shear* terhadap redundansi 1,0 untuk Model 3 di lapangan terhadap gempa y.

	V_{x}	V_{y}	35 % Vx	35 % Vy		
Lantai	(Kgf)	(Kgf)	Base Shear	Base Shear	Kontrol	Kontrol
Floor3	7,43	692,04	5,8415	6074,9395	OK	OK
Floor2	9,81	8669,85	5,8415	6074,9395	OK	OK
Floor1	13,73	13120,74	5,8415	6074,9395	OK	OK

Dari Tabel 4.25-4.26 diketahui bahwa gaya geser pada lantai 1-3 dengan redundansi 1,0 memenuhi syarat lebih kecil dari 35 persen gaya geser dasar. Sehingga nilai faktor redundansi yang digunakan pada pemodelan struktur dengan menggunakan program Analisis Struktur adalah 1.

4.4.3. Beban Kombinasi

Seluruh beban mati, beban hidup dan beban gempa tersebut diperhitungkan dengan faktor pembesaran dan kombinasi (*loads combinations*) yang diinput ke dalam program analisa struktur berdasarkan SNI 1726:2012. Untuk Pemodelan ini dengan menggunakan nilai $\rho = 1$ yang diperoleh dari desain seismik D dan

nilai $S_{DS} = 0.62333$ diperoleh dari sub bab 3.3, maka kombinasi pembebanannya dapat dilihat pada Tabel 4.27.

Tabel 4.27: Kombinasi pembebanan berdasarkan SNI 1729-2012 dengan nilai $\rho = 1$ dan Sds = 0.5867.

Kombinasi	Koef	fisien	Koef	isien	Koef	isien	Koe	fisien
Kombinasi 1	1,4	DL	0	LL	0	EX	0	EY
Kombinasi 2	1,2	DL	1,6	LL	0	EX	0	EY
Kombinasi 3	1,44	DL	1,0	LL	0,3	EX	1	EY
Kombinasi 4	0,96	DL	1,0	LL	-0,3	EX	-1	EY
Kombinasi 5	1,07	DL	1,0	LL	0,3	EX	-1	EY
Kombinasi 6	1,33	DL	1,0	LL	-0,3	EX	1	EY
Kombinasi 7	1,44	DL	1,0	LL	1	EX	0,3	EY
Kombinasi 8	0,96	DL	1,0	LL	-1	EX	-0,3	EY
Kombinasi 9	1,33	DL	1,0	LL	1	EX	-0,3	EY
Kombinasi 10	1,07	DL	1,0	LL	-1	EX	0,3	EY
Kombinasi 11	1,14	DL	0	LL	0,3	EX	1	EY
Kombinasi 12	0,66	DL	0	LL	-0,3	EX	-1	EY
Kombinasi 13	0,77	DL	0	LL	0,3	EX	-1	EY
Kombinasi 14	1,03	DL	0	LL	-0,3	EX	1	EY
Kombinasi 15	1,14	DL	0	LL	1	EX	0,3	EY
Kombinasi 16	0,66	DL	0	LL	-1	EX	-0,3	EY
Kombinasi 17	1,03	DL	0	LL	1	EX	-0,3	EY
Kombinasi 18	0,77	DL	0	LL	-1	EX	0,3	EY

4.4.4. Perbandingan Gaya Geser Gedung Tiap Lantai

Berdasarkan SNI 1726-2012 pasal 7.8.3, gaya gempa lateral (F_i) yang timbul disemua tingkat dapat ditentukan oleh:

1. Fi = Cvx. V - Cvx =
$$\frac{wi.hi^{k}}{\Sigma wi.hi^{k}}$$

- $\bullet K$ = Eksponen yang terkait dengan perioda struktur sebagai berikut.
- Untuk struktur yang memiliki $T \le 0.5$ detik; k = 1
- Untuk struktur yang memiliki $T \ge 2,5$ detik; k = 2

Untuk struktur yang memiliki 0.5 < T < 2.5; k adalah hasil interpolasi berikut cara mendapatkan nilai k.

$$Tx = 1,660$$

$$Ty = 2,373$$

Kx =
$$1 + \frac{(2-1)}{(2,5-0,5)} (1,660-0,5) = 1,606$$

Ky = $1 + \frac{(2-1)}{(2,5-0,5)} (12,373-0,5) = 2,373$

Setelah dilakukan perhitungan, didapatlah nilai dari distribusi gaya geser horizontal arah x berdasarkan metode analisis statik ekivalen.

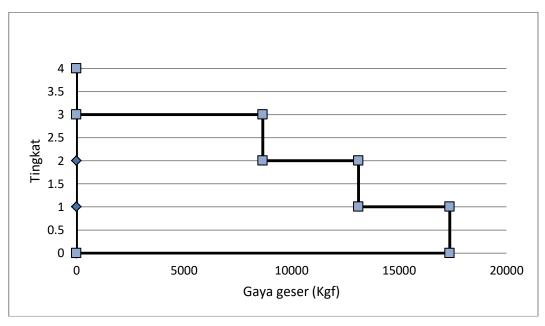
4.4.5. Gaya Geser Analisis Respons Spektrum

Gaya geser lantai merupakan distribusi dari gaya geser dasar yang dibagi pada setiap lantai untuk masing-masing arah gempa. Nilai gaya geser lantai yang didapat dari pemodelan struktur dengan menggunakan program Analisis Struktur dapat dilihat pada Tabel 4.28-4.29.

Tabel 4.28: Gaya geser hasil *output* analisis respons spektrum gempa x.

	TABLE: Story Responsse Seismic X						
Story	Elevation Location X-Dir Y-Dir						
	M		Kgf	Kgf			
Floor 3	12	Top	12180,77	8,01			
		Bottom	12180,77	8,01			
Floor2	8	Тор	19179,99	11,81			

Tabel 4.28 : Lanjutan


		Bottom	19179,99	11,81
Floor1	4	Тор	24354,69	16,69
		Bottom	24354,69	16,69
Basement	0	Top	0	0

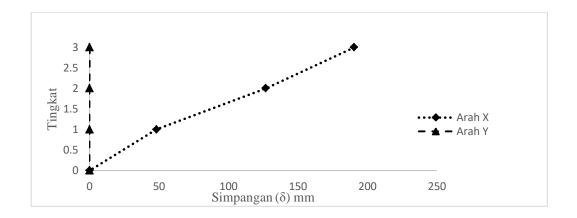
Gambar 4.9: Diagram gaya geser respons spektrum sumbu x.

Tabel 4.29: Gaya geser hasil *output* analisis respons spektrum gempa y.

	TABLE: Story Responsse Seismic Y						
Story	Elevation M	Location	<i>X-Dir</i> Kgf	<i>Y-Dir</i> Kgf			
Floor 3	12	Тор	9,81	8669,85			
		Bottom	9,81	8669,85			
Floor2	8	Top	13,73	13120,74			
		Bottom	13,73	13120,74			
Floor1	4	Top	16,69	17356,97			
		Bottom	16,69	17356,97			
Basement	0	Тор	0	0			
		Bottom	0	0			

Gambar 4.10: Diagram gaya geser respons spektrum sumbu y.

4.4.6. Nilai Simpangan

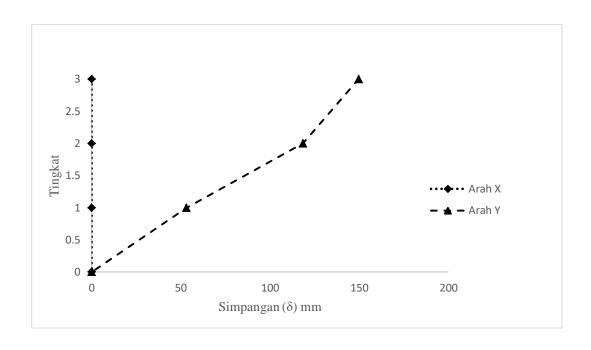

Simpangan antar lantai merupakan selisih dari nilai defleksi gedung antara lantai i dengan lantai di bawahnya. Berdasarkan peraturan SNI 1726:2012, kontrol simpangan antar lantai hanya terdapat satu kinerja batas, yaitu kinerja batas ultimit. Simpangan antar lantai tingkat desain tidak boleh melebihi simpangan antar lantai ijin seperti yang terdapat pada Tabel 2.15 yang dikalikan dengan nilai faktor redundansi. Tabel 4.30-4.31 merupakan hasil nilai simpangan antar lantai untuk Model 3.

Tabel 4.30: Nilai simpangan gedung Model 3 di lapangan akibat gempa x, pada kinerja batas ultimit berdasarkan SNI 1726-2012.

		Perpindahan Elastis		Perpindahan Total		Simpangan	
Tingkat	h	(δe)		(δe*Cd)/Ie		Antar Lantai (Δ)	
	(mm)	X	Y	X	Y	X	Y
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
3	12	34,643	0,037	190,537	0,204	63,696	0,105
2	8	23,062	0,018	126,841	0,099	78,667	0,000
1	4	8,759	0,018	48,175	0,099	48,175	0,099

Tabel 4.30: Lanjutan.

Tingkat	Syarat	Cek	Cek
Tingkut	Δa/ρ (mm)		Y
3	80	OK	OK
2	80	OK	OK
1	80	OK	OK


Gambar 4.11: Perbandingan simpangan respons spektrum sumbu x.

Tabel 4.31: Nilai simpangan gedung Model 3 di lapangan akibat gempa y, pada kinerja batas ultimit berdasarkan SNI 1726-2012.

		Perpindahan Elastis		Perpindahan Total		Simpangan	
Tingkat	h		(\delta e)	(δe*Cd)/Ie		Antar Lantai (Δ)	
		X	Y	X	Y	X	Y
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
3	3500	0,024	51,614	0,132	283,877	0,050	68,316
2	4000	0,015	39,193	0,083	215,562	0,050	113,559
1	4000	0,006	18,546	0,033	102,003	0,033	102,003

Tabel 4.31: Lanjutan.

Tingkat	Syarat	Cek	Cek
Tingkat	Δa/ρ (m)	X	Y
3	70	OK	OK
2	80	OK	OK
1	80	OK	OK

Gambar 4.12: Perbandingan simpangan respons spektrum sumbu y.

Pada Tabel 4.30-4.31 diatas dapat dilihat besarnya simpangan yang terjadi akibat gempa arah x maupun y. Besar simpangan arah sumbu x dan y berbeda, hal ini diakibatkan oleh sistem penahan gaya lateral yang terpasang hanya pada arah tertentu. Arah utama pengaruh gempa rencana harus ditentukan sedemikian rupa sehingga memberi pengaruh terbesar terhadap unsur-unsur sub sistem dan sistem struktur gedung secara keseluruhan. Pengaruh pembebanan gempa dalam arah utama yang ditentukan harus dianggap efektif 100% dan harus dianggap terjadi bersamaan dengan pembebanan tadi, tetapi dengan efektifitas 30%.

4.4.7. Pengaruh Efek P-Delta

Berdasarkan SNI 1726:2012 efek P-delta harus diperhitungkan untuk struktur gedung yang memikul beban gempa. Akan tetapi, efek P-delta dapat diabaikan jika nilai *stability ratio* lebih kecil dari 0,1. Kontrol pengaruh P-delta untuk arah x dan y tertera pada Tabel 4.32 dan 4.33.

Tabel 4.32: Kontrol P-delta pada arah x untuk Model 3 di Lapangan.

		Story	Gaya Geser	Beban	Beban	Stability	
Lantai	Tinggi	Drift	Seismik, V _x	Vertikal	Vertikal	Ratio	Cek
Lantai				Total	Kumulatif		X
	(mm)	(mm)	(Kgf)	(Kgf)	(Kgf)	(θ_{x})	
Floor 3	11500	63,69550	12180,77	253226,93	24826,17	0,02090	OK
Floor 2	8000	78,66650	19179,99	325941,92	579168,85	0,05203	OK
Floor 1	4000	48,17450	24354,69	362644,88	941813,74	0,08173	OK

Tabel 4.33: Kontrol P-delta pada arah y untuk Model 3 di Lapangan.

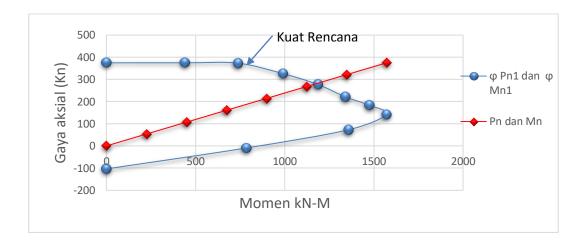
		Story	Gaya Geser	Beban	Beban	Stability	
Lantai	Tinggi	Drift	Seismik, V _y	Vertikal	Vertikal	Ratio	Cek
Lamai			-	Total	Kumulatif		Y
	(mm)	(mm)	(Kgf)	(Kgf)	(Kgf)	(θ_{x})	
Floor 3	11500	0,0495000	8669,85	253226,93	24826,17	0,02094	OK
Floor 2	8000	0,0495000	13120,74	325941,92	579168,85	0,05143	OK
Floor 1	4000	0,0330000	17356,97	362644,88	941813,74	0,08970	OK

Dari Tabel 4.31 dan 4.32 diketahui bahwa tidak ada nilai *stability ratio* yang lebih besar dari 0,1. Sehingga efek P-delta untuk Model 3 di lapangan dapat diabaikan.

4.5. Cek Penampang Kolom Pada Ruko A

Berdasarkan hasil dari analisis dari program analisa struktur ada 40 Kolom dan 4 Balok pada Ruko A yang terindikasi memerlukan retrofit untuk penambahan *Jacketing*.

4.5.1. Penambahan Jacketing untuk Kolom lantai 1 Ruko A

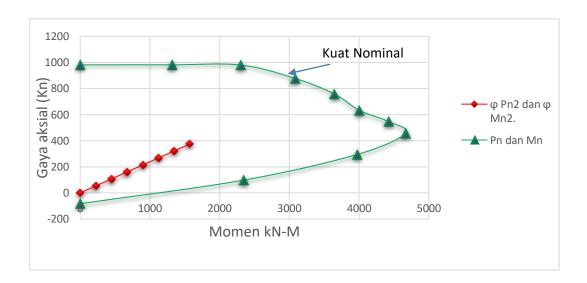

Dari hasil analisa dengan menggunakan program analisa struktur nilai kekuatan pada kolom dan balok terhadap geser, momen, dan lentur. Ternyata pada ruko a terdapat kegagalan pada gaya Momen di Kolom. Maka mengambil salah satu kolom yang gagal untuk diperbaikin atau ditambah kan dengan pemasangan *Jacketing*. Mengambil kolom 1 pada lantai 1 untuk menjadi salah satu sempel penambahan *jacketing*.

Mengambil nilai rencana awal @Pn1 dan mengambil nilai rencana @Mn1 pada hasil struktur pada program analisa struktur , nilai rencana h 500, b 300 dan tulangan 10 D16.

Tabel 4.34: Nilai rencana @Pn1 dan nilai rencana @Mn1.

Nilai @Pn1	Nilai @Mn1
374.6426	0
374.6426	439.3533
372.9338	737.8406
325.6993	990.0651
276.6345	1186.617
221.1514	1339.9
183.1263	1474.528
141.7709	1571.704
72.6778	1357.96
-9.6957	783.5737
-103.764	0

Gambar grafik hasil rencana struktur yang didapat sebelum memasang tulangan jacketing dimana gaya Pn dan Mn terdapat diluar dari gaya @Pn dan @Mn.

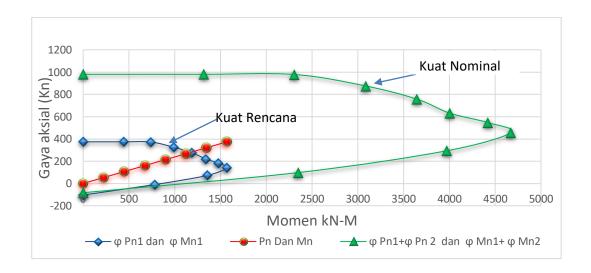

Gambar 4.13 : Hasil rencana @Pn1 dan rencana @Mn1

Hasil nominal yang direncanakan untuk menambakan kekuatan pada kolom dengan nilai h : 700, nilai b 400 Nilai Nominal Tul 4 D 8.

Tabel 4.35: Nilai nominal @Pn2 nilai nominal @Mn2

Nilai @Pn2	Nilai @Mn2
606.5342	0
606.5342	878.9809
606.5342	1567.025
551.0895	2092.742
481.4387	2457.642
410.9009	2664.224
363.7251	2946.575
314.307	3099.513
221.0921	2612.567
107.2865	1561.227
20.7528	0

Gambar grafik hasil rencana struktur yang didapat sesudah menambah tulangan *jacketing* dimana gaya Pn dan Mn terdapat didalam dari gaya @Pn dan @Mn yang di rencanakan di tambah nilai rencana penambahan *jacketing*.


Gambar 4.14: Hasil rencana untuk menambahkan kekuatan pada kolom.

Hasil setelah penambahan nilai @Pn1 + @Pn2 dan penambahan nilai @Mn1 + @Mn1

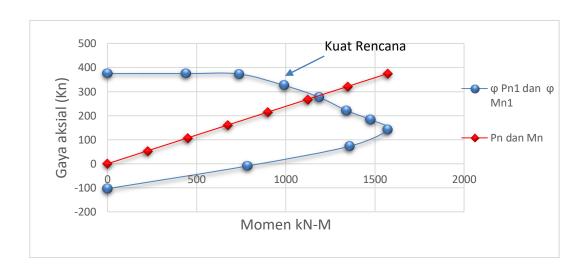
Tabel 4.36: Hasil penjumlahan nilai rencana @Pn1 nilai nominal @Pn2 dan nilai rencana @Mn1 nilai nominal @Mn2.

Nilai @Pn1 + @Pn2	Nilai @Mn1+ @Mn2
981.1768	0
981.1768	1318.3342
979.468	2304.8654
876.7888	3082.8066
758.0732	3644.2584
632.0523	4004.1245
546.8514	4421.1031
456.0779	4671.2171
293.7699	3970.5266
97.5908	2344.8009
-83.0111	0

Gambar grafik hasil rencana struktur yang didapat sesudah menambah tulangan *jacketing* dimana gaya Pn dan Mn terdapat didalam dari gaya @Pn dan @ Mn yang direncanakan ditambah nilai rencana penambahan *jacketing*.

Gambar 4.15: Hasil setelah penambahan kolom *jacketing*.

4.5.2. Penambahan Jacketing untuk Kolom lantai 2 Ruko A

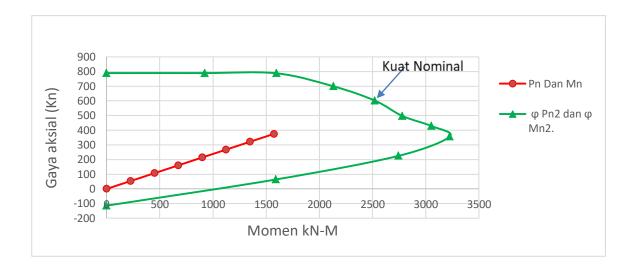

Dari hasil analisa dengan menggunakan program analisa struktur, nilai kekuatan pada kolom dan balok terhadap geser, momen, dan lentur. Ternyata pada ruko a terdapat kegagalan pada gaya momen di kolom. Maka mengambil salah satu kolom yang gagal untuk diperbaiki atau ditambahkan dengan pemasangan *Jacketing*. Mengambil kolom 110 pada lantai 2 untuk menjadi salah satu sempel penambahan *jacketing*.

Mengambil nilai rencana awal @Pn1 dan mengambil nilai rencana @Mn1 pada hasil struktur pada program analisa struktur, nilai rencana h 500, b 300 dan tulangan 10 D16.

Tabel 4.37: Nilai rencana @Pn1 dan nilai rencana @Mn1.

Nilai @Pn1	Nilai @Mn1
374.6426	0
374.6426	439.3533
372.9338	737.8406
325.6993	990.0651
276.6345	1186.617
221.1514	1339.9
183.1263	1474.528
141.7709	1571.704
72.6778	1357.96
-9.6957	783.5737
-103.764	0

Gambar grafik hasil rencana struktur yang didapat sebelum memasang tulangan *jacketing* dimana gaya Pn dan Mn terdapat diluar dari gaya @Pn dan @ Mn.

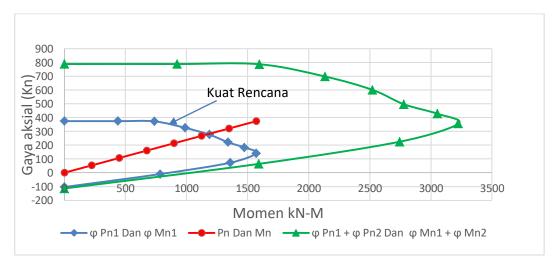

Gambar 4.16: Hasil rencana @Pn1 dan rencana @Pn1

Hasil nominal yang direncanakan untuk menambakan kekuatan pada kolom dengan nilai h : 700, nilai b 400 nilai nominal Tul 4 D 8.

Tabel 4.38: Nilai nominal @ Pn2 nilai nominal @Mn2

Nilai @Pn2	Nilai @Mn2
414.904	0
414.904	483.949
414.904	858.022
373.351	1142.51
324.907	1335.9
275.998	1439.55
245.121	1579.83
214.224	1652.65
152.639	1386.66
74.0655	808.539
-10.376	0

Gambar grafik hasil rencana struktur yang didapat sesudah menambah tulangan *jacketing* dimana gaya Pn dan Mn terdapat didalam dari gaya @ Pn dan @Mn yang direncanakan ditambah nilai rencana penambahan *jacketing*.


Gambar 4.17: Hasil rencana untuk menambahkan kekuatan pada kolom.

Hasil setelah penambahan nilai @Pn1 + @Pn2 dan penambahan nilai @Mn1 + @Mn2.

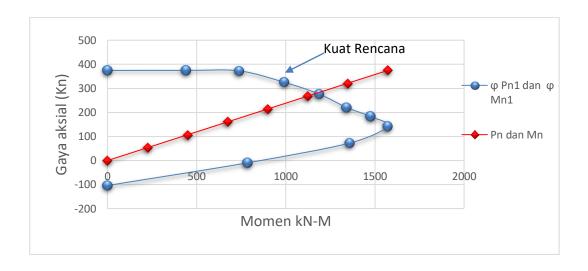
Tabel 4.39: Hasil penjumlahan nilai rencana @Pn1 nilai nominal @Pn2 dan nilai rencana @Mn1 nilai nominal @Mn2.

Nilai @Pn1 + @Pn2	Nilai @Mn1 + @Mn2
789.5469	0
789.5469	923.3018
787.8381	1595.862
699.0507	2132.577
601.5414	2522.512
497.1493	2779.453
428.2469	3054.357
355.9946	3224.35
225.3163	2744.624
64.3698	1592.112
-114.14	0

Gambar grafik hasil rencana struktur yang didapat sesudah menambah tulangan *jacketing* dimana gaya Pn dan Mn terdapat didalam dari gaya @Pn dan @Mn yang direncanakan ditambah nilai rencana penambahan *jacketing*.

Gambar 4.18: Hasil setelah penambahan kolom *jacketing*.

4.5.3. Penambahan Jacketing untuk Kolom lantai 3 Ruko A


Dari hasil analisa dengan menggunakan program analisa struktur, nilai kekuatan pada kolom dan balok terhadap geser, momen, dan lentur. Ternyata pada ruko a terdapat kegagalan pada gaya momen dikolom. Maka mengambil salah satu kolom yang gagal untuk diperbaiki atau ditambah kan dengan pemasangan *Jacketing*. Mengambil kolom 114 pada lantai 3 untuk menjadi salah satu sempel penambahan *jacketing*.

Mengambil nilai rencana awal @Pn1 dan mengambil nilai rencana @Mn1 pada hasil struktur pada Program analisa struktur nilai rencana h 500, b 300 dan tulangan 10 D16.

Tabel 4.40: Nilai rencana @Pn1 dan nilai rencana @Mn1.

Nilai @Pn1	Nilai @Mn1
374.6426	0
374.6426	439.3533
372.9338	737.8406
325.6993	990.0651
221.1514	1339.9
183.1263	1474.528
141.7709	1571.704
72.6778	1357.96
-9.6957	783.5737

Gambar grafik hasil rencana struktur yang didapat sebelum memasang tulangan *jacketing* dimana gaya Pn dan Mn terdapat diluar dari gaya @Pn dan @Mn.

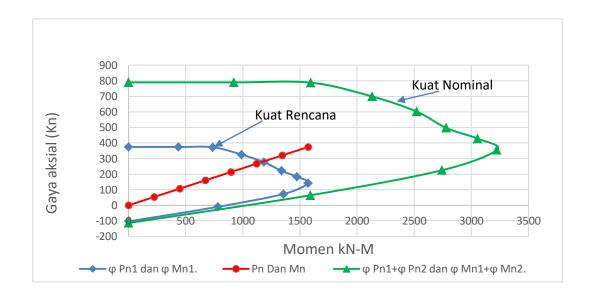
Gambar 4.19: Hasil rencana @Pn1 dan rencana @Mn1.

Hasil nominal yang direncanakan untuk menambakan kekuatan pada kolom dengan nilai h : 700, nilai b 400 Nilai Nominal Tul 4 D 8.

Tabel 4.41: Nilai nominal @Pn2 nilai nominal @Mn2.

Nilai @Pn2	Nilai @Mn2
414.9043	0
414.9043	483.9485
414.9043	858.0217
373.3514	1142.512
324.9069	1335.896
275.9979	1439.553
245.1206	1579.829
214.2237	1652.646
152.6385	1386.664
74.0655	808.5387
-10.3764	0

Gambar grafik hasil rencana struktur yang didapat sesudah menambah tulangan *jacketing* dimana gaya Pn dan Mn terdapat didalam dari gaya @Pn dan @Mn yang direncanakan ditambah nilai rencana penambahan *jacketing*.


Gambar 4.20: Hasil rencana untuk menambahkan kekuatan pada kolom.

Hasil setelah penambahan nilai @Pn1 + @Pn2 dan penambahan nilai @Mn1 + @Mn2.

Tabel 4.42: Hasil penjumlahan nilai rencana @Pn1 nilai nominal @Pn2 dan nilai rencana @Mn1 nilai nominal @Mn2.

Nilai @Pn1 + @Pn2	Nilai @Mn1 + @Mn2
789.5469	0
789.5469	923.3018
787.8381	1595.862
699.0507	2132.577
601.5414	2522.512
497.1493	2779.453
428.2469	3054.357
355.9946	3224.35
225.3163	2744.624
64.3698	1592.112
-114.14	0

Gambar grafik hasil rencana struktur yang didapat sesudah menambah tulangan *jacketing* dimana gaya Pn dan Mn terdapat didalam dari gaya @Pn dan @Mn yang direncanakan ditambah nilai rencana penambahan *jacketing*.

Gambar 4.21: Hasil setelah penambahan kolom *jacketing*.

4.6.Cek Penampang Balok Lantai 2 Ruko A

Setelah diperiksa lebih lanjut pada Ruko A tepatnya di lantai 3 sebanyak 4 balok mengalami kegagalan akibat gaya geser.

4.6.1. Penambahan Jacketing untuk Balok lantai 1 Ruko A

Pada ruko a balok beton yang memiliki kegagalan struktur balok ada 4 yang mengalamin kegagalan balok yang diambil balok 124, dengan dimensi lebar 250 mm dan tinggi 400 mm, dibuat dengan menggunakan beton mutu f'c=11,9 Mpa dan, baja tulangan fy = 255,2Mpa. Sengkang Jika balok digunakan untuk menahan gaya geser sebesar 200 Kn. Merencanakan tulngan geser yang diperlukan.

Penyelesaian:

Tinggi efektif penampang (d) =
$$0.9 * h$$

= $0.9 * 400$
= $360mm$

$$Vu desain = 53,467 Kn$$

$$Vn = Vc + Vs$$

$$\frac{vu}{\phi} = Vc + Vs$$

$$\frac{53,467}{0,75}$$
 = 71,29 Kn

$$Vc = \left[\sqrt{\frac{f'c}{6}} \right] bw d$$

$$= \left| \sqrt{\frac{11,9}{6}} \right| 255,2 . 360$$

$$= 52,88 \text{ Kn}$$

$$\Phi.Vc = 0,75.52,88$$

$$=39,67$$
Kn

$$Vu > \phi Vc$$

71,29 > 39,67 (Di perlukan tulangan geser)

$$V_S = \left[\sqrt{\frac{vu}{\phi}} \right] - V_C$$

$$= 18,41 \text{ Kn}$$

Nilai Vs harus lebih kecil dari

$$= \left| 2 \sqrt{\frac{f'c}{3}} \right|$$
bw . d

$$= \left| 2\sqrt{\frac{11,9}{3}} \right| 255,2 . 360$$

$$= 211,28 \text{ Kn} > \text{Vs} = 18,41 \text{Kn}$$

Dicoba memakai Sengkang diameter 10mm (0,79cm²)

$$Av = 2 * As$$

$$= 2 * 0.79$$

$$= 1.58 \text{cm}^2$$

=158mm

Dipakai Sengkang Vertikal:

$$Vn = \frac{Av \cdot fy \cdot d}{s}$$

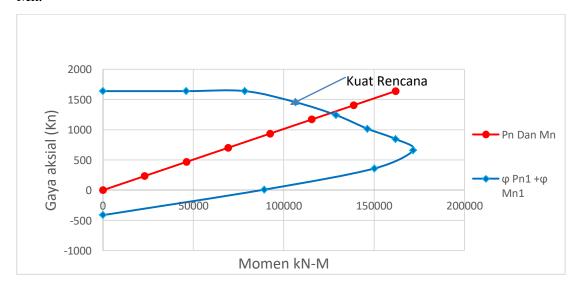
71,29 =
$$\frac{158.255,2.360}{s}$$

S = 203mm
= $(\frac{1}{3}$. Bw.d.√f°c)
= $(\frac{1}{3}$. 255,2.360.√11,9)
= 105,64 kn
72,29 < 105,64 jarak Sengkang maksimum adalah
d/2 = 360/2 = 180 mm
dipasang senkang ϕ 10mm dengan jarak 150 mm

4.7. Cek Penampang Kolom Pada Ruko B

Berdasarkan hasil dari analisis dari program Analisa struktur ada 34 penampang yang rusak dan semuanya adalah kolom yang terindikasi memerlukan retrofit untuk penambahan kekuatan geser nya mulai dari lantai 1 sampai 2. Karena bentuk stuktur ruko B tidak simetris maka dibagi menjadi 2

4.7.1. Penambahan Jacketing untuk Kolom lantai 1 Ruko B

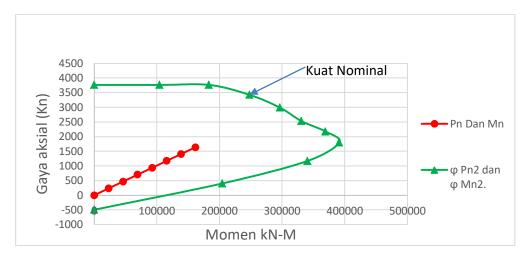

Dari hasil Analisa dengan menggunakan program Analisa struktur nilai kekuatan pada kolom dan balok terhadap geser, momen, dan lentur. Ternyata pada ruko a terdapat kegagalan pada gaya momen dikolom. Maka mengambil salah satu kolom yang gagal untuk diperbaiki atau ditambah kan dengan pemasangan *Jacketing*. Mengambil kolom 301 pada lantai 1 untuk menjadi salah satu sempel penambahan *jacketing*.

Mengambil nilai rencana awal @Pn1 dan mengambil nilai rencana @Mn1 pada hasil struktur pada program analisa struktur nilai rencana h 500, b 300 dan tulangan 10 D16.

Tabel 4.43: Nilai rencana @Pn1 nilai rencana @Mn1.

Nilai @Pn1	Nilai @Mn1
1638.383	0
1638.383	46088.39
1638.383	78576.74
1454.572	106596.4
1241.529	128977
1016.026	146282.9
847.0664	161830.7
659.7533	171685
359.5667	150226.9
8.9138	89220.09
-412.913	0

Gambar grafik hasil rencana struktur yang didapat sebelum memasang tulangan jacketing dimana gaya Pn dan Mn terdapat diluar dari gaya @Pn dan @Mn.

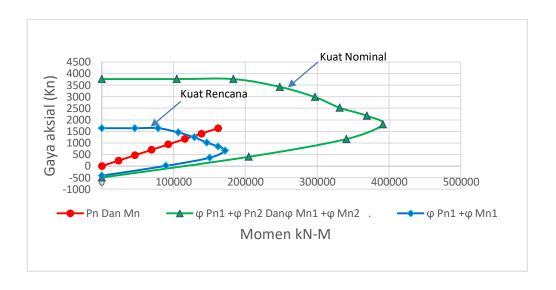

Gambar 4.22: Hasil rencana @Pn1 dan rencana @Mn1.

Hasil nominal yang direncanakan untuk menambakan kekuatan pada kolom dengan nilai h : 550, nilai b 400 nilai nominal Tul 6 D 8

Tabel 4.44: Nilai nominal @Pn2 nilai nominal @Mn2.

Nilai @Pn2	Nilai @Mn2
2124.849	0
2124.049	U
2124.849	58457.77
2124.849	104825.6
1972.254	141267.6
1743.624	167892.5
1509.856	184872.3
1327.553	207575
1136.046	219780.4
809.0267	190298.4
392.9568	115533.3
-82.5825	0

Gambar grafik hasil rencana struktur yang didapat sesudah menambah tulangan *jacketing* dimana gaya Pn dan Mn terdapat didalam dari gaya @Pn dan @Mn yang direncanakan ditambah nilai rencana penambahan *jacketing*.


Gambar 4.23: Hasil rencana untuk menambahkan kekuatan pada kolom.

Hasil setelah penambahan nilai @Pn1 + @Pn2 dan penambahan nilai @Mn1 + @Mn2.

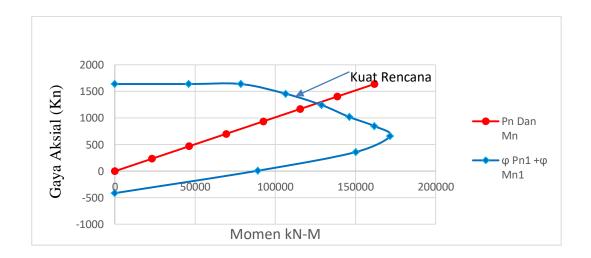
Tabel 4.45: Hasil penjumlahan nilai rencana @Pn1 nilai nominal @Pn2 dan nilai rencana @Mn1 nilai nominal @Mn2.

Nilai @Pn1 + @Pn2	Nilai @Mn1 + @Mn2
2124.849	0
2124.849	58457.77
2124.849	104825.6
1972.254	141267.6
1743.624	167892.5
1509.856	184872.3
1327.553	207575
1136.046	219780.4
809.0267	190298.4
392.9568	115533.3
-82.5825	0

Gambar grafik hasil rencana struktur yang didapat sesudah menambah tulangan *jacketing* dimana gaya Pn dan Mn terdapat didalam dari gaya @Pn dan @Mn yang direncanakan ditambah nilai rencana penambahan *jacketing*.

Gambar 4.24: Hasil setelah penambahan kolom jacketing.

4.7.2. Penambahan Jacketing untuk Kolom lantai 2 Ruko B

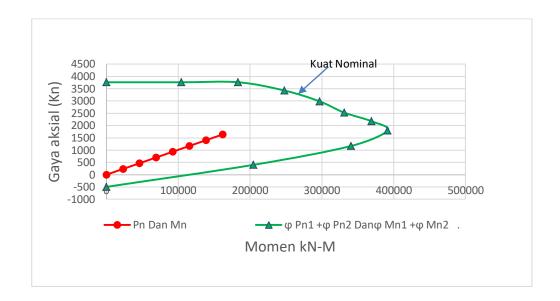

Dari hasil Analisa dengan menggunakan program analisa struktur nilai kekuatan pada kolom dan balok terhadap geser, momen, dan lentur. Ternyata pada ruko a terdapat kegagalan pada gaya Momen dikolom. Maka mengambil salah satu kolom yang gagal untuk diperbaiki atau ditambah kan dengan pemasangan *Jacketing*. Mengambil kolom 285 pada lantai 2 untuk menjadi salah satu sempel penambahan *jacketing*.

Mengambil nilai rencana awal @Pn1 dan mengambil nilai rencana @Mn1 pada hasil struktur pada Sap2000, nilai rencana h 500, b 300 dan tulangan 10 D16.

Tabel 4.46: Nilai rencana @Pn1 nilai rencana \text{\text{\text{\text{\text{0}}}} n1.

Nilai	Nilai @Mn1
1638.383	0
1638.383	46088.39
1638.383	78576.74
1454.572	106596.4
1241.529	128977
1016.026	146282.9
847.0664	161830.7
659.7533	171685
359.5667	150226.9
8.9138	89220.09
-412.913	0

Gambar grafik hasil rencana struktur yang didapat sebelum memasang tulangan *jacketing* dimana gaya Pn dan Mn terdapat diluar dari gaya @Pn dan @Mn.

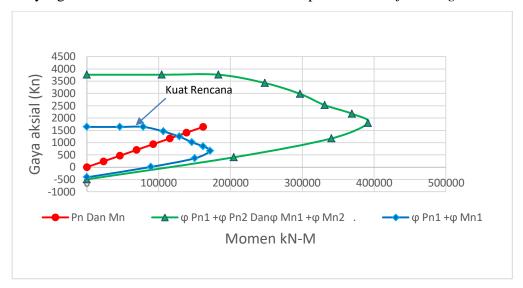

Gambar 4.25: Hasil rencana @Pn1 dan rencana @Mn1.

Hasil nominal yang direncanakan untuk menambakan kekuatan pada kolom dengan nilai h : 550, nilai b 400 Nilai Nominal Tul 6 D 8

Tabel 4.47: Nilai nominal @Pn2 nilai nominal @Mn2.

Nilai @Pn2	Nilai @Mn2
2124.849	0
2124.849	58457.77
2124.849	104825.6
1972.254	141267.6
1743.624	167892.5
1509.856	184872.3
1327.553	207575
1136.046	219780.4
809.0267	190298.4
392.9568	115533.3
-82.5825	0

Gambar grafik hasil rencana struktur yang didapat sesudah menambah tulangan *jacketing* dimana gaya Pn dan Mn terdapat didalam dari gaya @Pn dan @Mn yang direncanakan di tambah nilai rencana penambahan *jacketing*.


Gambar 4.26: Hasil rencana untuk menambahkan kekuatan pada kolom.

Hasil setelah penambahan nilai @Pn1 + @Pn2 dan penambahan nilai @Mn1 + @Mn2.

Tabel 4.48: Hasil penjumlahan nilai rencana @Pn1 nilai nominal @Pn2 dan nilai rencana @Mn1 nilai nominal @Mn2.

Nilai @Pn1 + @Pn2	Nilai @Mn1 + @Mn2
3763.232	0
3763.232	104546.2
3763.232	183402.3
3426.826	247864
2985.153	296869.5
2525.882	331155.2
2174.619	369405.7
1795.799	391465.4
1168.593	340525.3
401.8706	204753.4
-495.496	0

Gambar grafik hasil rencana struktur yang didapat sesudah menambah tulangan *jacketing* dimana gaya Pn dan Mn terdapat didalam dari gaya @Pn dan @Mn yang direncanakan ditambah nilai rencana penambahan *jacketing*.

Gambar 4.27: Hasil setelah penambahan kolom jacketing.

4.8. Cek Penampang Kolom Ruko C

Setelah diperiksa lebih lanjut pada Ruko C tepatnya di lantai 1 sebanyak 20 kolom mengalami kegagalan akibat gaya momen.

4.8.1. Penambahan Jacketing untuk Kolom lantai 1 Ruko C

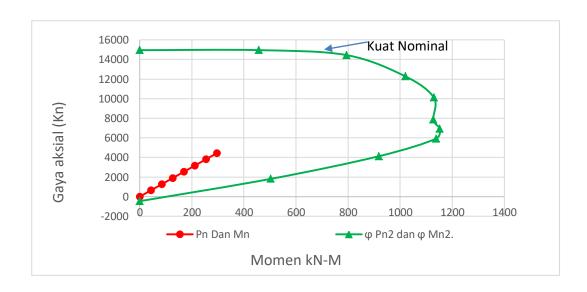
Dari hasil analisa dengan menggunakan program analisa struktur, nilai kekuatan pada kolom dan balok terhadap geser, momen, dan lentur. Ternyata pada ruko a terdapat kegagalan pada gaya momen dikolom. Maka mengambil salah satu kolom yang gagal untuk di perbaiki atau ditambah kan dengan pemasangan *Jacketing*. Mengambil kolom 85 pada lantai 1 untuk menjadi salah satu sempel penambahan *jacketing*.

Mengambil nilai rencana awal @Pn1 dan mengambil nilai rencana @Mn1 pada hasil program analisa struktur nilai rencana h 500, b 300 dan tulangan 10 D16.

Tabel4.49: Nilai rencana @Pn1 nilai rencana @Mn1.

Nilai @Pn1	Nilai @Mn1
4629.3	0
4629.3	120.2372
4443.02	204.0007
3728.56	262.6141
3009.196	290.2385
2214.868	291.1217
1918.204	296.2779
1574.534	291.8131
1002.274	236.4692
256.1776	124.0603
-434.159	0

Gambar grafik hasil rencana struktur yang didapat sebelum memasang tulangan *jacketing* dimana gaya Pn dan Mn terdapat diluar dari gaya @Pn dan @ Mn.

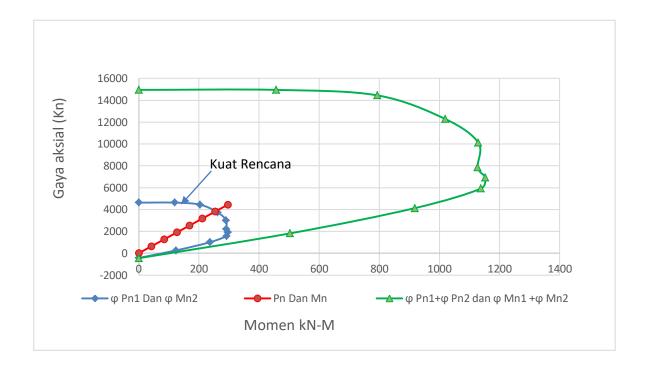

Gambar4.28: Hasil rencana @Pn1 dan rencana @Mn1.

Hasil nominal yang direncanakan untuk menambakan kekuatan pada kolom dengan nilai h : 525, nilai b 350 Nilai Nominal Tul 6 D 8.

Tabel 4.50: Nilai nominal @Pn2 nilai nominal @Mn2.

Nilai @Pn2	Nilai @Mn2				
10322.47	0				
10322.47	337.2242				
10004.26	589.8852				
8552.04	757.1982				
7098.61	839.2706				
5643.04	836.3202				
4994.85	856.0502				
4346.37	846.2192				
3122.077	681.6115				
1558.289	378.9904				
-24.5735	0				

Gambar grafik hasil rencana struktur yang didapat sesudah menambah tulangan *jacketing* dimana gaya Pn dan Mn terdapat didalam dari gaya @Pn dan @Mn yang direncanakan ditambah nilai rencana penambahan *jacketing*.



Gambar 4.29 : Hasil rencana untuk menambahkan kekuatan pada kolom.

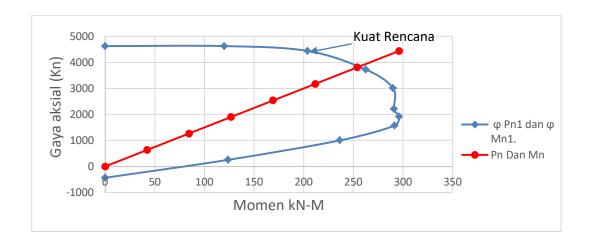
Tabel 4.51:Hasi penjumlahan nilai rencana @Pn1 nilai nominal @Pn2 dan nilai rencana @Mn1 nilai nominal @Mn2.

Nilai @Pn1 + @ Pn2	Nilai @Mn1 + @Mn2
14951.77	0
14951.77	457.4614
14447.28	793.8859
12280.6	1019.812
10107.81	1129.509
7857.908	1127.442
6913.054	1152.328
5920.904	1138.032
4124.351	918.0807
1814.467	503.0507
-458.733	0

Gambar grafik hasil rencana struktur yang didapat sesudah menambah tulangan *jacketing* dimana gaya Pn dan Mn terdapat didalam dari gaya @Pn dan @Mn yang direncanakan ditambah nilai rencana penambahan *jacketing*.

Gambar 4.30: Hasil setelah penambahan kolom *jacketing*.

4.8.2. Penambahan untuk Kolom lantai 2 Ruko C

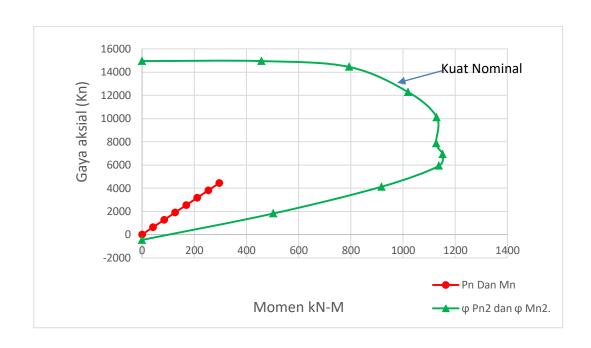

Dari hasil Analisa dengan menggunakan program analisa struktur nilai kekuatan pada kolom dan balok terhadap geser, momen, dan lentur. Ternyata pada ruko a terdapat kegagalan pada gaya momen dikolom. Maka mengambil salah satu kolom yang gagal untuk di perbaiki atau ditambah kan dengan pemasangan *Jacketing*. Mengambil kolom 85 pada lantai 1 untuk menjadi salah satu sempel penambahan *jacketing*.

Mengambil nilai rencana awal @Pn1 dan mengambil nilai rencana @Mn1 pada hasil program analisa struktur, nilai rencana h 500, b 300 dan tulangan 10 D16.

Tabel 4.52: Nilai rencana @Pn1 nilai rencana @Mn1.

Nilai @Pn1	Nilai @Mn1
4629.3	0
4629.3	120.2372
4443.02	204.0007
3728.56	262.6141
3009.196	290.2385
2214.868	291.1217
1918.204	296.2779
1574.534	291.8131
1002.274	236.4692
256.1776	124.0603
-434.159	0

Gambar grafik hasil rencana struktur yang didapat sebelum memasang tulangan *jacketing* dimana gaya Pn dan Mn terdapat diluar dari gaya @Pn dan @Mn.

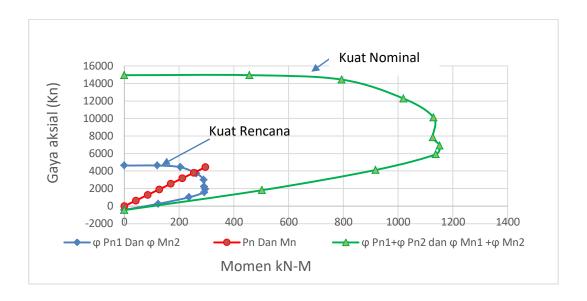

Gambar 4.31: Hasil rencana @Pn1 dan rencana @Mn1.

Hasil nominal yang direncanakan untuk menambakan kekuatan pada kolom dengan nilai h : 525, nilai b 350 Nilai Nominal Tul 6 D 6.

Tabel 4.53: Nilai nominal @Pn2 nilai nominal @Mn2.

Nilai @Pn2	Nilai @Mn2				
10813.64	0				
10813.64	369.4634				
10486.45	646.4552				
8968.37	830.1572				
7449.08	920.6817				
5927.67	918.2559				
5246.82	940.5052				
4565.7	930.127				
3279.72	749.4311				
1637.109	416.7356				
-24.5735	0				

Gambar grafik hasil rencana struktur yang didapat sesudah menambah tulangan *jacketing* dimana gaya Pn dan Mn terdapat didalam dari gaya @Pn dan @Mn yang direncanakan ditambah nilai rencana penambahan *jacketing*.



Gambar 4.32: Hasil rencana untuk menambahkan kekuatan pada kolom.

Tabel 4.54 : Hasil penjumlahan nilai rencana @Pn1 nilai nominal @Pn2 dan nilai rencana @Mn1 nilai nominal @Mn2.

Nilai @Pn1 + @Pn2	Nilai @Mn1 + @Mn2
15442.94	0
15442.94	489.7006
14929.47	850.4559
12696.93	1092.771
10458.28	1210.92
8142.538	1209.378
7165.024	1236.783
6140.234	1221.94
4281.994	985.9003
1893.287	540.7959
-458.733	0

Gambar grafik hasil rencana struktur yang didapat sesudah menambah tulangan *jacketing* dimana gaya Pn dan Mn terdapat didalam dari gaya @Pn dan @Mn yang direncanakan ditambah nilai rencana penambahan *jacketing*.

Gambar 4.33: Hasil setelah penambahan kolom jacketing.

4.8.3. Penambahan Jacketing untuk Balok Lantai 1 Ruko C

Pada ruko C balok betonyang memiliki kegagalan struktur balok yang kegagalannya hamper semua struktur balok yang diambil untuk bahan sempel yang di berikan perkuatan balok 89, dengan dimensi lebar 150mm dan tinggi 300 mm, dibuat dengan menggunakan beton mutu f'c = 8 Mpa dan Tulangan Fy = 241,2Mpa. Tulangan Sengkang ϕ 8 – 100 Jika balok digunakan untuk menahan gaya geser sebesar 200 Kn. Merencanakan tulngan geser yang diperlukan.

Penyelesaian:

Tinggi efektif penampang (d) =
$$0.9 * h$$

= $0.9 * 300$
= 270mm

Vu desain = 25,778 Kn

$$Vn = Vc + Vs$$

$$\frac{Vu}{\phi} = Vc + Vs$$

$$\frac{25,778}{0,75} = 34,37 \text{ Kn}$$

$$Vc = \left[\sqrt{\frac{f'c}{6}} \right] bw d$$

$$= \left\lfloor \sqrt{\frac{8}{6}} \right\rfloor 241,2 \cdot 240$$

$$= 0,47.\ 241,2\ .240\ = 27,288\ Kn$$

$$\Phi.Vc = 0,75.27,288 \text{ Kn}$$

= 20,466Kn

$$Vu > \phi Vc$$

25,778 > 20,466 (Di perlukan tulangan geser)

$$V_S = \left[\sqrt{\frac{vu}{\phi}} \right] - V_C$$

= 25,778-20,466

= 5,312Kn

Nilai Vs harus lebih kecil dari

$$=\left[2\sqrt{\frac{f'c}{3}}\right]$$
 bw . d

$$= \left| \mathbf{2} \sqrt{\frac{8}{3}} \right| 241,2.270$$

$$= 122,80 \text{ Kn} > \text{Vs} = 5,31 \text{Kn}$$

Dicoba memakai Sengkang diameter 10mm (0,79cm²)

$$Av = 2 * As$$

$$= 2 * 0.79$$

$$= 1.58 \text{cm}^2$$

$$=158$$
mm

Dipakai Sengkang Vertikal:

$$\operatorname{Vn} = \frac{Av \cdot fy \cdot d}{s}$$

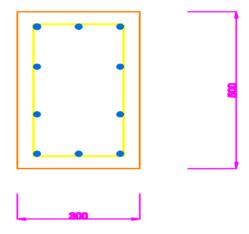
$$34,37 = \frac{158.241,2.270}{s}$$

$$S = 299mm$$

$$=(\frac{1}{3}$$
. Bw.d. $\sqrt{f'c}$)

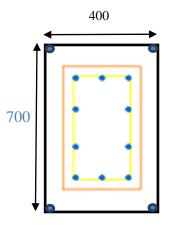
$$= (\frac{1}{3}.241,2.270.\sqrt{8})$$

$$= 61,34 \text{ kn}$$


34,37 < 61,34 jarak Sengkang maksimum adalah

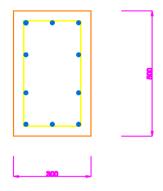
$$d/2 = 270/2 = 135 \text{ mm}$$

dipasang senkang \(\phi \) 10mm dengan jarak 120mm

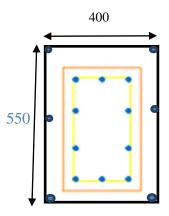

4.9.1. Hasil Ruko A Setelah Pemasangan Kolom Jacketing

Kolom yang direncanakan pada saat belum ditambah $\it Jacketing$ dengan rencana awal 500 x 300 dengan tulangan 10 D 16.

Gambar4.34:Rencana awal.

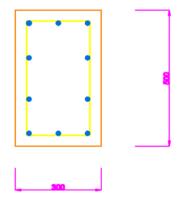

Setelah pemasangan kolom *jacketing* untuk memberikan perkuatan kolom rencana awal yang gagal dengan menambah lebar dan tinggi penampang kolom 700 x 400 dengan tulangan 4 D 8.

Gambar 4.35 : Gambar setelah pemasangan kolom *Jacketing*.

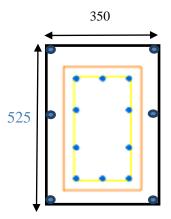

4.9.2. Hasil Ruko B Setelah Pemasangan Kolom Jacketing

Kolom yang direncanakan pada saat belum ditambah Jacketing dengan rencana awal 500 x 300 dengan tulangan 10 D 16.

Gambar 4.36: Rencana awal.


Setelah pemasangan kolom *jacketing* utuk memberikan perkuatan kolom rencana awal yang gagal dengan menambah lebar dan tinggi penampang kolom 550 x 400 dengan tulangan 6 D 8.

Gambar 4.37: Gambar setelah pemasangan kolom *Jacketing*.


4.9.3. Hasil Ruko C Setelah Pemasangan Kolom Jacketing

Kolom yang direncanakan pada saat belum ditambah Jacketing dengan rencana awal 500 x 300 dengan tulangan 10 D 16.

Gambar 4.38: Rencana awal.

Setelah pemasangan kolom jacketing utuk memberikan perkuatan kolom rencana awal yang gagal dengan menambah lebar dan tinggi penampang kolom 525×350 dengan tulangan 6 D 6.

Gambar 4.39: Gambar setelah pemasangan kolom *Jacketing*

Tabel 4.56: Rekapitulasi sebelum pemasangan *Jacketing Dan* sesudah pemasangan *Jacketing*.

		uko A sebelum pe	permanagan ouchemig.	Ruko A setelah pena	ambahan <i>Jacketing</i> .	
NO	Nilai Pu1	Nilai Mu1	Nilai @Pn1 500 : 300, Tul 10 D 16	Nilai @Mn1 500: 300 ,Tul 10 D 16	Nilai @Pn2 700 : 400, Tul 4 D 8	Nilai @Mn2 700: 400 ,Tul 4 D 8
1	0	0	374.6426	0	606.5342	0
2	53.52037143	224.5291429	374.6426	439.3533	606.5342	878.9809
3	107.0407429	449.0582857	372.9338	737.8406	606.5342	1567.025
4	160.5611143	673.5874286	325.6993	990.0651	551.0895	2092.742
5	214.0814857	898.1165714	276.6345	1186.617	481.4387	2457.642
6	267.6018571	1122.645714	221.1514	1339.9	410.9009	2664.224
7	321.1222286	1347.174857	183.1263	1474.528	363.7251	2946.575
8	374.6426	1571.704	141.7709	1571.704	314.307	3099.513
9			72.6778	1357.96	221.0921	2612.567
10			-9.6957	783.5737	107.2865	1561.227
11			-103.764	0	20.7528	0
Jmlh	1498.5704	6286.816	2229.8195	9881.5417	4290.195	19880.5

Pada rencana awal dengan menggunakan dimensi kolom 500:300 dengan tulangan 10 d 16 kolom.

Hasil dari pembagian
$$\frac{Pu}{\phi Pn} + \frac{Mu}{\phi Mn} < 1$$

= $\frac{1498.5704}{2229.8195} + \frac{6286.816}{9881.5417} < 1$
= $0.672059 + 0.636218 < 1$
= 1.308277

Ternyata Dari Hasil di atas $\frac{Pu}{\phi Pn} + \frac{Mu}{\phi Mn} > 1$ (*Tidak Aman*), maka harus ada perbaikan pada kolom dengan pemasangan *Jacketing*.

Jadi, Dilakukan pemasangan Jacketing dengan 700 : 400 dengan Tulangan 4 d 8

Hasil dari pembagian
$$\frac{Pu}{\phi Pn} + \frac{Mu}{\phi Mn} < 1$$

= $\frac{1498.5704}{4290.195} + \frac{6286.816}{19880.5} < 1$
= $0.349301 + 0.31623 < 1$
= 0.665532

Maka Pemasangan Kolom Jacketing Pada Ruko A Aman.

Tabel 4.56: Rekapitulasi sebelum pemasangan *Jacketing Dan* sesudah pemasangan *Jacketing*.

	R	uko B sebelum pe	Ruko B setelah pena	mbahan <i>Jacketing</i> .		
NO	Nilai Pu1	Nilai Mu1	Nilai @Pn1 500 : 300, Tul 10 D 16	Nilai @Mn1 500: 300 ,Tul 10 D 16	Nilai @Pn2 550 : 400, Tul 6 D 8	Nilai @Mn2 550: 400 ,Tul 6 D 8
1	0	0	1638.383	0	2124.849	0
2	234.0547	23118.67	1638.383	46088.39	2124.849	58457.77
3	468.1094	46237.34	1638.383	78576.74	2124.849	104825.6
4	702.1641	69356.01	1454.572	106596.4	1972.254	141267.6
5	936.2189	92474.69	1241.529	128977	1743.624	167892.5
6	1170.274	115593.4	1016.026	146282.9	1509.856	184872.3
7	1404.328	138712	847.0664	161830.7	1327.553	207575
8	1638.383	161830.7	659.7533	171685	1136.046	219780.4
9		-	359.5667	150226.9	809.0267	190298.4
10			8.9138	89220.09	392.9568	115533.3
11		-	-412.913	0	-82.5825	0
Jmlh	6553.532	647322.8	10089.66	1079484	15183.28	1390503

Pada rencana awal dengan menggunakan dimensi kolom 500:300 dengan tulangan 10 d 16 kolom.

Hasil dari pembagian
$$\frac{Pu}{\phi Pn} + \frac{Mu}{\phi Mn} < 1$$

= $\frac{6553.532}{10089.66} + \frac{647322.8}{1079484} < 1$
= $0.64953 + 0.599659 < 1$
= 1.249189

Ternyata Dari Hasil di atas $\frac{Pu}{\phi Pn} + \frac{Mu}{\phi Mn} > 1$ (*Tidak Aman*), maka harus ada perbaikan pada kolom dengan pemasangan *Jacketing*.

Jadi, Dilakukan pemasangan Jacketing dengan 550 : 400 dengan Tulangan 6 d 8

Hasil dari pembagian
$$\frac{Pu}{\phi Pn} + \frac{Mu}{\phi Mn} < 1$$

= $\frac{6553.532}{15183.28} + \frac{647322.8}{1390503} < 1$
= $0.431628 + 0.465531 < 1$
= 0.89716

Maka Pemasangan Kolom Jacketing Pada Ruko B Aman.

Tabel 4.57: Rekapitulasi sebelum pemasangan *Jacketing Dan* sesudah pemasangan *Jacketing*.

			enambahan <i>Jacketin</i>	_	Ruko C setelah penambahan Jacketing			
NO	Nilai Pu1	Nilai Mu1	Nilai @Pn1 500 : 300, Tul 10 D 16	Nilai @Mn1 500: 300 ,Tul 10 D 16	Nilai @Pn2 525 : 350, Tul 6 D 6	Nilai @Mn2 525: 350 ,Tul 6 D 6		
1	0	0	4629.3	0	10322.47	0		
2	634.7171	42.32541	4629.3	120.2372	10322.47	337.2242		
3	1269.434	84.65083	4443.02	204.0007	10004.26	589.8852		
4	1904.151	126.9762	3728.56	262.6141	8552.04	757.1982		
5	2538.869	169.3017	3009.196	290.2385	7098.61	839.2706		
6	3173.586	211.6271	2214.868	291.1217	5643.04	836.3202		
7	3808.303	253.9525	1918.204	296.2779	4994.85	856.0502		
8	4443.02	296.2779	1574.534	291.8131	4346.37	846.2192		
9			1002.274	236.4692	3122.077	681.6115		
10			256.1776	124.0603	1558.289	378.9904		
11		_	-434.159	0	-24.5735	0		
Jmlh	17772.08	1185.112	27149.26	1992.772	64406.19	5743.779		

Pada rencana awal dengan menggunakan dimensi kolom 500:300 dengan tulangan 10 d 16 kolom.

Hasil dari pembagian
$$\frac{Pu}{\phi Pn} + \frac{Mu}{\phi Mn} < 1$$

$$= \frac{17772.082}{27149.26} + \frac{1185.112}{1992.772} < 1$$

$$= 0.654607 + 0.594705 < 1$$

$$= 1.249311$$

Ternyata Dari Hasil di atas $\frac{Pu}{\phi Pn} + \frac{Mu}{\phi Mn} > 1$ (*Tidak Aman*), maka harus ada perbaikan pada kolom dengan pemasangan *Jacketing*.

Jadi, Dilakukan pemasangan Jacketing dengan 525 : 350 dengan Tulangan 6 d 6

Hasil dari pembagian
$$\frac{Pu}{\phi Pn} + \frac{Mu}{\phi Mn} < 1$$

= $\frac{17772.082}{.64406.19} + \frac{1185.112}{5743.779} < 1$
= $0.275937 + 0.20633 < 1$
= 0.482267

Maka Pemasangan Kolom Jacketing Pada Ruko C Aman.

BAB 5

KESIMPULAN DAN SARAN

5.1. Kesimpulan

Berdasarkan analisis dan pembahasan mengenai evaluasi untuk perkuatan pada bangunan ruko di kota Medan dengan menggunakan *Jacketing* maka dapat diambil kesimpulan sebagai berikut:

- 1. Berdasarkan hasil dar Analisa linier elastis metode respon spektrum nilai yang di dapat pada rencana awal memiliki beberapa kegagalan struktur analisa di lakukan dengan mengunakan program analisa struktur.
 - Ruko A terdapat 40 kegagalan pada struktur kolom dan 4 kegagalan pada Balok.
 - Ruko B terdapat 34 kegagalan pada struktur kolom.
 - Ruko C terdapat 25 kegagalan pada struktur kolom dan 57 kegagalan pada Balok.
- Berdasarkan hasil dan Analisis pada struktur kolom dan balok pada setiap model ditemukan kegagalan maka sebab itu dilakukan perkuatan pada struktur balok dan kolom dengan menggunakan *Jacketing* penambahan elemen struktur di luar struktur.
 - Rencana Awal Pada saat belum ada penambahan Jacketing pada kolom.
 - Ruko A rencana awal besar kolom 500 x 300 dengan tulangan 10
 D 16.
 - Ruko B rencana awal besar kolom 500 x 300 dengan tulangan 10 D
 16.
 - Ruko C rencana awal besar kolom 500 x 300 dengan tulangan 10 D
 16.
 - Rencana Setelah Penambahan Perkuatan Jacketing pada kolom yang gagal.
 - Pemasangan jacketing besar 700 x 400 dengan tulangan 4 D 8.
 - Pemasangan jacketing besar 550 x 400 dengan tulangan 6 D 8.

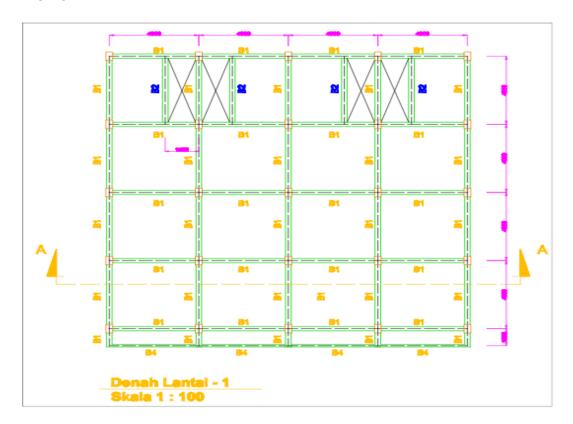
- Pemasangan jacketing besar 525 x 350 dengan tulangan 6 D 6.
- Kegagalan Pada Balok seletah di tambakan tulangan geser.

 - Ruko B di abaikan karna hanya memilikin 1 kegagalan balok.

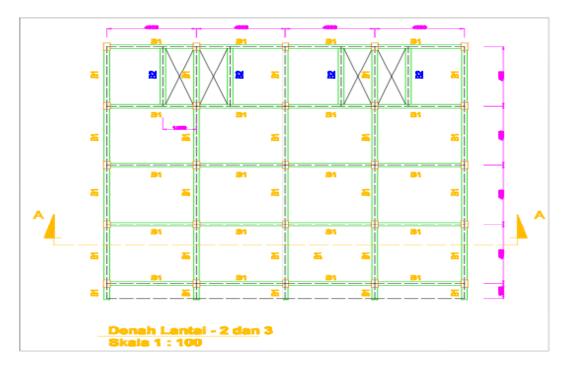
Jumlah struktur balok dan kolom yang membutuhkan perkuatan cukup banyak dari tiap-tiap model hal ini menunjukan bahwa kapasitas struktur dalam memikul beban lebih kecil dari pada gaya yang terjadi. Perkuatan dilakukan dengan *Jacketing* dimana struktur kolom maupun balok tidak perlu di hancurkan untuk memperbaiki kegagalan struktur dalam memikul beban cukup dengan dilakukannya penambahan sesuai kebutuhan perkuatan dengan material yang diperlukan.

5.2. Saran

- Dalam Tugas Akhir ini, komponen gedung seperti tangga, penulangan pelat, dimensi balok kolom yang ekonomis diabaikan. Disarankan untuk penganalisaan selanjutnya komponen tersebut direncanakan agar data yang dihasilkan lebih akurat dan sesuai data kondisi yang ada dilapangan.
- 2. Dalam Tugas Akhir ini, penambahan *Jacketing* yang ekonomis diabaikan karena lebih mengutamakan cara analisis dan penerapan pada struktur yang memerlukan Perkuatan.

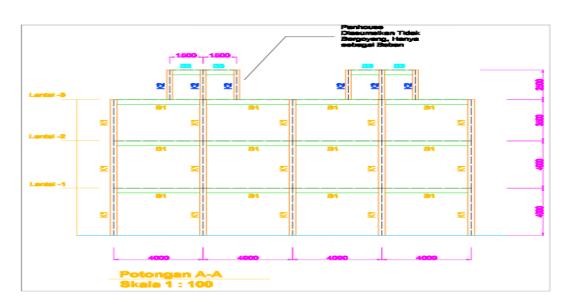

DAFTAR PUSTAKA

- Badan Standarisasi Nasional (2013) *Tata Cara Perhitungan Struktur Beton untuk Bangunan Gedung SNI 2847:2013*. Jakarta: Departemen Pekerjaan Umum.
- Badan Standarisasi Nasional (2013) Tata Cara Perhitungan Beban Minimum untuk Perancangan Bangunan Gedung
- dan Struktur Lain SNI 1727:2013. Jakarta: Departemen Pekerjaan Umum.
- Badan Standarisasi Nasional (2012) *Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung SNI 1726:2012*. Jakarta: Departemen Pekerjaan Umum.
- Badan Standarisasi Nasional (1983) *Peraturan Pembebanan Indonesia Untuk Gedung (PPIUG)*. Jakarta: Departemen Pekerjaan Umum.
- Budiono, B dan Supriatna, L (2011) *Pengaruh Frekuensi Gempa Terhadap Respons Bangunan Bertingkat*. Surakarta: Universitas Muhammadiyah Surakarta.
- Chandler, A. M dan Lam, N (2001) Centre For Earthquake Engineering Research (CEER). Department of Civil Engineering, University of Hongkong.
- Djamaluddin R (2016) *Analisi Hubungan Balok dan Kolom Beton Bertulang*. Jakarta: Universitas Binus.
- Faisal, A. (2014) Catatan Kuliah M.K.Vibrasi dan Teori Gempa. Medan: UMSU.
- Haselton, C. dkk. (2008) Beam-Column Element Model Calibrated For Predicting Flexural Response Leading To Global Collapse of RC Frame Buildings. Berkeley: University of California.
- Khalifa. Dkk (1998) Contribution of Externally Bonded FRP to Shear Capacity of RC Flexural Members. Alexandria University 1998.
- Krawinker and Seneviratna (1998) *Inelastic Torsiob of Multistory Buildings Under Earthquake Excitations.* Greece: University of Patras.
- Martin, Alberto M (2013). *Introduction of Fiber Reinforced Polymer: Polymers and Composite Concepts, Properties and Processes*, Intech 2013.
- Muhammad, Mifta H dan Bagus Jaya S (2014). Analisa Pola Bidang Sesar Pada Zona Subduksi di Wilayah Sumatera Barat, *jurusan fisika*, *institut Sepuluh November*, *Surabaya*
- Murty, C. V. R. dkk. (2008) Perilaku Bangunan Struktur Rangka Beton Bertulang dengan Dinding Pengisi dari Bata terhadap Gempa. Jakarta: Universitas Trisakti.

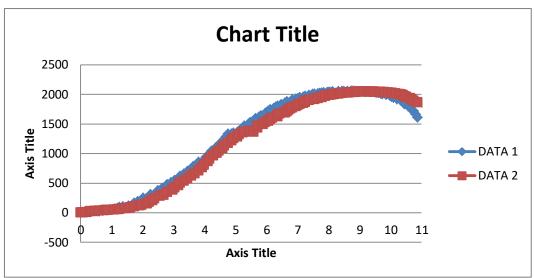

- Natawidjaja dan Triyoso (2009) Karakter Segmen Sesar di Zona Subduksi Sumatera. Jurnal Gempa dan Tsunami.
- Parinduri, B. S. M.(2013) Evaluasi Daktilitas pada Bangunan Rumah Toko di Kota Pematang Siantar Terkait dengan Peraturan Gempa. Medan: Program Studi Teknik Sipil, UMSU.
- Pawirodikromo, W. (2012) *Seismologi Teknik & Rekayasa Kegempaan*. Yogyakarta: Universitas Islam Indonesia.
- Siregar, Y. A. N. (2008) Evaluasi Daktilitas pada Struktur Ganda. Jakarta: Fakultas Teknik, UI.
- Ugo Morelli, dan Thomas R. Mclane 2000. Federal Emergency Management Agency: American Society of Civil Engineers, Washington, D.C.
- USA: ACI 440.2R-08 (2008), Guide for the Design and construction of Externally Bonded FRP System for Strengthening concrete structures, July 2008 America: American Concrete Institute.

LAMPIRAN

RUKO A



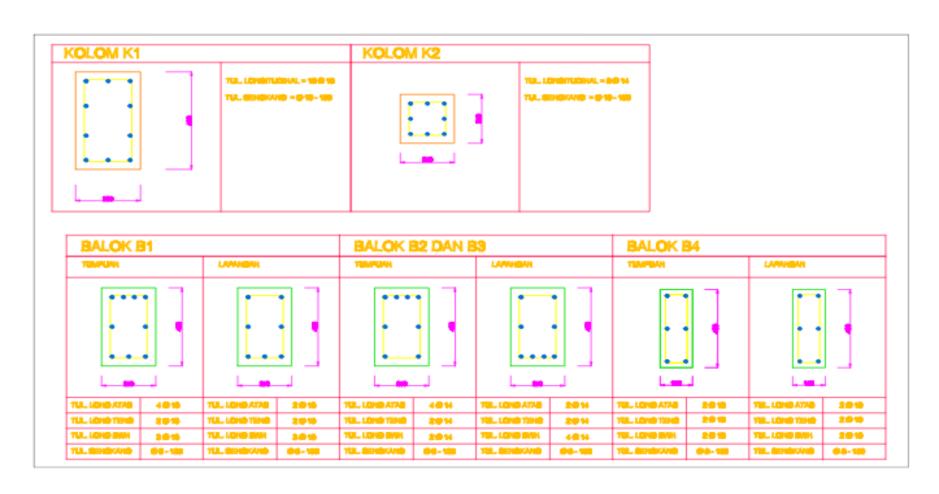
Gambar L1: Denah Lantai 1 Ruko A



Gambar L2: Denah Lantai 2 dan Ruko A.

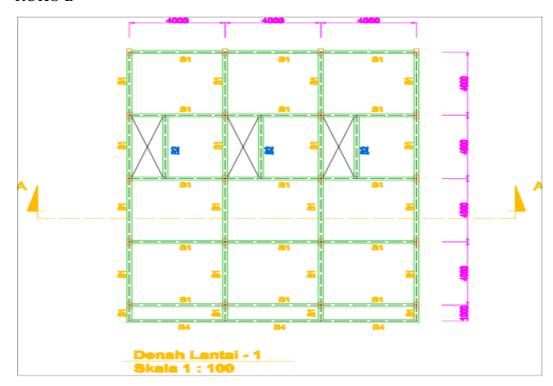
_ _

Gambar L3: Potongan A-A Ruko A.

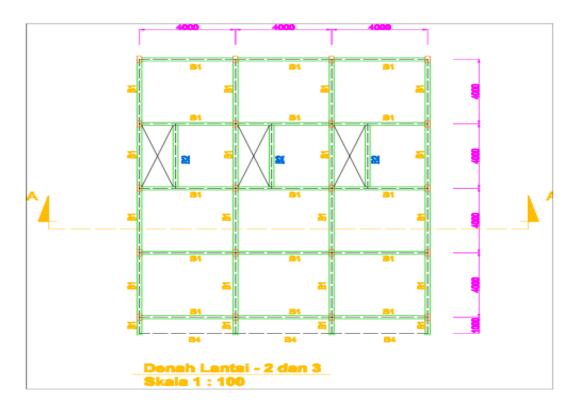

Gambar L4: Grafik uji tarik dan leleh laboratorium.

Tabel L1: Material properties kuat tekan beton Ruko A.

Elemen Struk	tur	Kolom Bal				ok			
Sudut Pukula	ın	O°		0° 0° +90°		10°	-9	o°	
Kode Bidang	Uji	K1		К	2	В	1	B2	
Perkiraan Kuat		Kg/cm ²	N/mm ²	Kg/cm ²	N/mm ²	Kg/cm ²	N/mm ²	Kg/cm ²	N/mm²
Tekan Beton	R	32,4		31,4		23,2		27,3	
Terkoreksi	Average	280	22,3	260	20,5	100	7,1	217	16,8

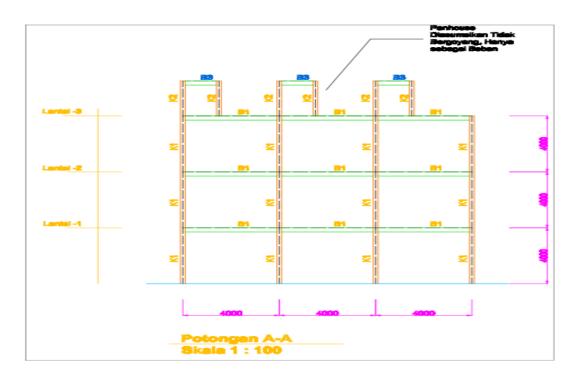

Material Properties Kust Tekan Beton : Kolom , fc' = 21,4 MPa Balok , fc' = 11,9 MPa

Tebel Pelet Lantal (tp) = 120 mm Kuat Tekan Beton = 11,9 MPa

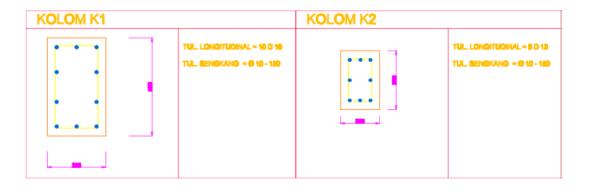


Gambar L5: Penulangan balok dan kolom Ruko A.

RUKO B



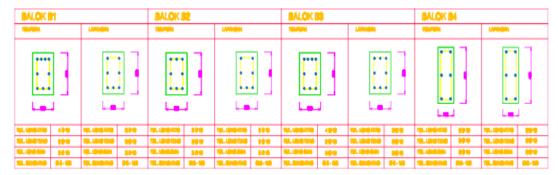
Gambar L6: Denah lantai 1 Ruko B.



Gambar L7: Denah lantai 2dan 3 Ruko B.

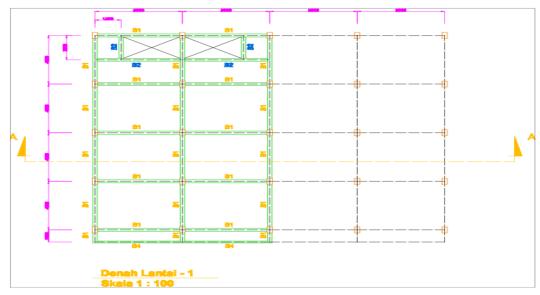
`

Gambar L8: Potongan A-A Ruko B.

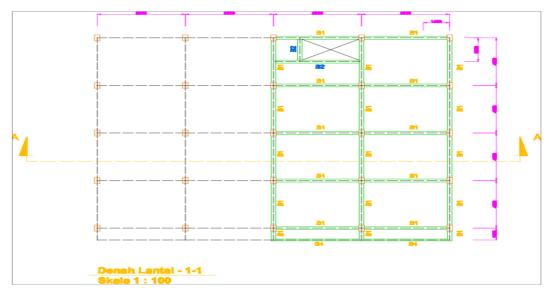

Gambar L9: Penulangan kolom Ruko B.

Tabel L2: Material properties kuat tekan beton Ruko B.

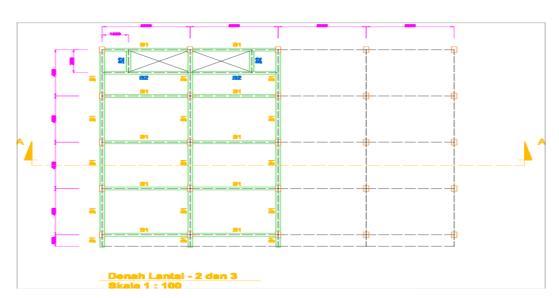
Elemen Struk	tur		Kolo	om		Balok			
Sudut Pukulan		0°		0°		+90°		-90°	
Kode Bidang	Jji	K1		K2		B1		B2	
Perkiraan Kuat		Kg/cm ²	N/mm ²						
Tekan Beton	R	28,0		24,1		12,3		29,1	
Terkoreksi	Average	208	16,0	128	9,3	100	7,1	125	9,1

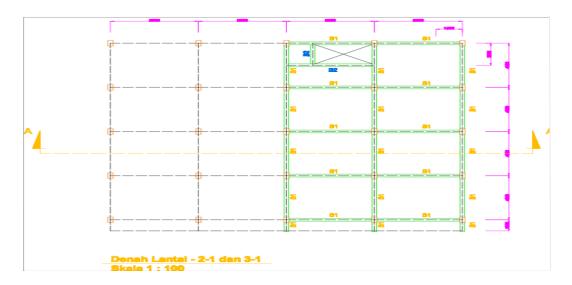

Material Properties Kest Tokan Beton : Kelom , IC = 12,7 MPe

Tobal Polat Lental (lp) = 120 mm Kust Tokan Balan = 8.1 MPa



Gambar L10: Penulangan balok Ruko B.

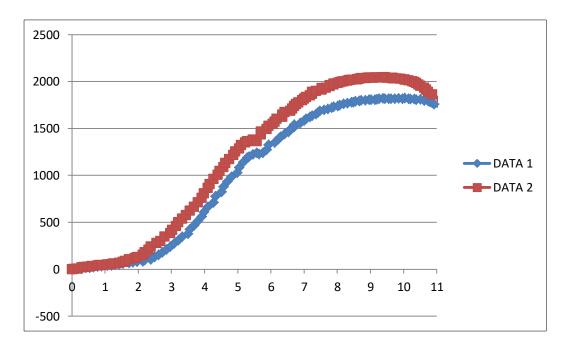

RUKO C


Gambar L11: Denah lantai 1 Ruko C.

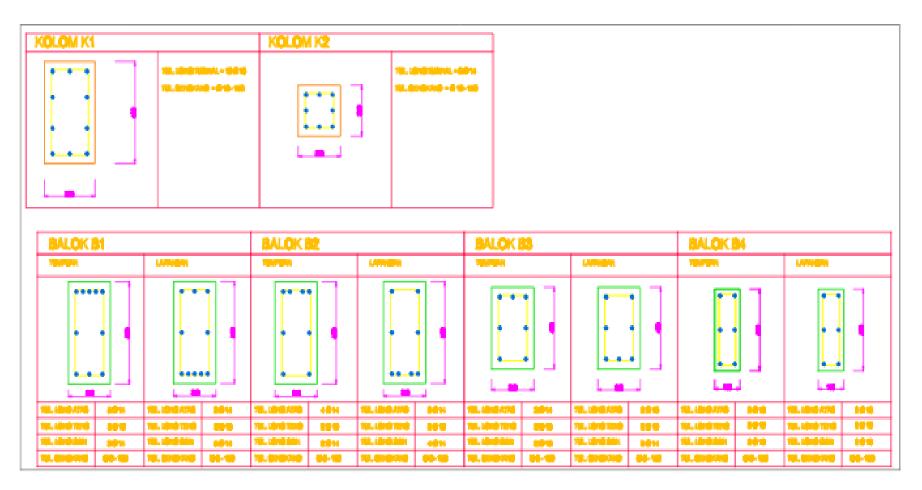
Gambar L12: Denah lantai 1.1 Ruko C.

Gambar L13: Denah lantai 2 dan 3 Ruko C.

Gambar L14: Denah lantai 2.1 dan 3.1 Ruko C.

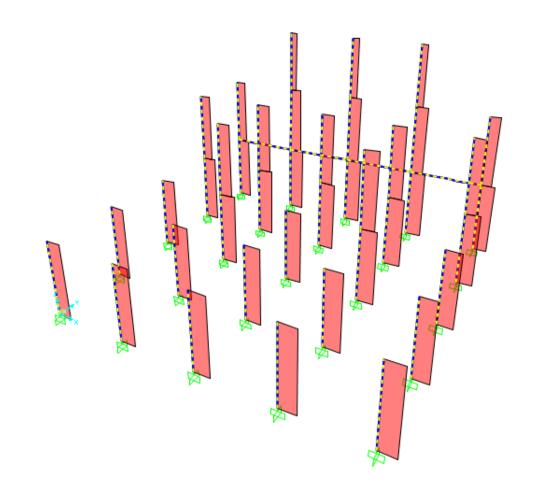

Gambar L15: Potongan A-A Ruko C.

Tabel L3: Material properties kuat tekan beton Ruko C.

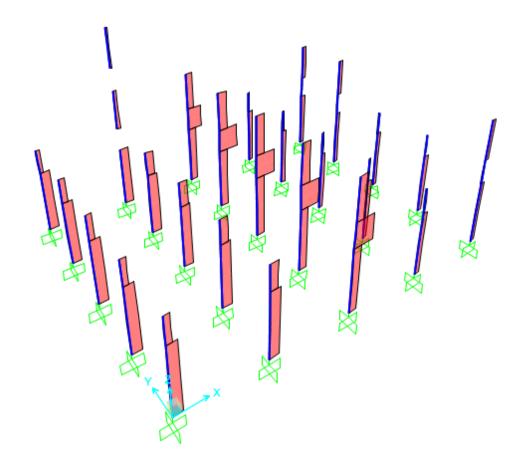

Elemen Struk	tur	Kolom Balok							
Sudut Pukula	ın	0			°	+90°		-90°	
Kode Bidang	Uji	K1		К	2	B1		B2	
Perkiraan Kuat		Kg/cm ²	N/mm ²						
Tekan Beton	R	22,4		28,4		19,5		39,3	
Terkoreksi	Average	280	22,3	260	20,5	100	7,1	440	36,7

Malerial Properties Kost Teken Staten : Kolom , RC = 21,4 MPs Statek , RC = 21,9 MPs

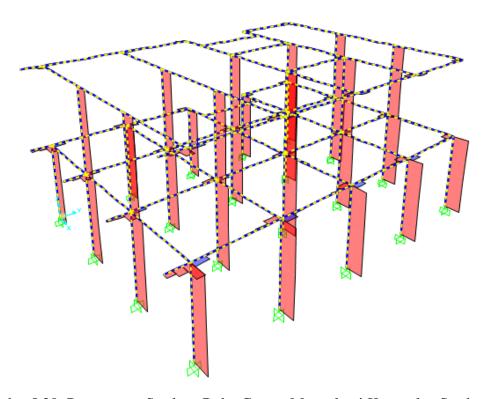
Total Point Lantal ((g) = 100 ms Kuni Takan Balan v 71.5 MPa


Gambar L16: Grafik uji tarik dan leleh laboratorium.

Gambar L17: Penulangan balok dan kolom Ruko C.


PENAMPANG BALOK DAN KOLOM YANG MEMERLUKAN PERKUATAN

Penampang Struktur Ruko A


Gambar L18: Penampang Struktur Ruko A yang Mengalami Kegagalan Struktur.

Penampang Struktur Ruko B

Gambar L19: Penampang Struktur Ruko B yang Mengalami Kegagalan Struktur.

Penampang Struktur Ruko C

Gambar L20: Penampang Struktur Ruko C yang Mengalami Kegagalan Struktur.

DAFTAR RIWAYAT HIDUP

DATA DIRI PESERTA

Nama Lengkap : Indah Prastiwi

Nama Panggilan : Indah.

Tempat, Tanggal Lahir : Suka Makmur,07 04 1995

Jenis Kelamin : Wanita

Alamat : :Jl Polonia Jln Balaidesa, Gg Mesra No 70 Kec Medan

Polonia

Agama : Islam

Nama Orang Tua

Ayah : Sudarlin Ibu : Rosmida

No. Telp : 085762176571

RIWAYAT PENDIDIKAN

SD EKA PENDAWA SAKTI
 SMP EKA PENDAWA SAKTI
 SMK NEGRI 2 MEDAN
 Universitas Muhammadiyah Sumatera Utara

Tahun Lulus
2014
2014 – Selesai.