TUGAS AKHIR

KINERJA STRUKTUR BETON BERTULANG 5 LANTAI MENGGUNAKAN BASE ISOLATOR PADA LANTAI 2 DENGAN ANALISA BEBAN DORONG (PUSH OVER) (Studi Literatur)

Diajukan Untuk Memenuhi Syarat-Syarat Memperoleh Gelar Sarjana Teknik Sipil Pada Fakultas Teknik Universitas Muhammadiyah Sumatera Utara

Disusun Oleh:

KIKI SULAIMAN NPM : 1407210032

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA MEDAN 2018

HALAMAN PENGESAHAN

Tugas Akhir ini diajukan oleh:

Nama : Kiki Sulaiman

NPM : 1407210032

Program Studi : Teknik Sipil

Judul Skripsi : Kinerja Struktur Beton Bertulang 5 Lantai Menggunakan Base Isolator Pada Lantai 2 Dengan Analisa Beban Dorong (Push Over) (Studi Literatur)

Bidang ilmu : Struktur.

Telah berhasil dipertahankan di hadapan Tim Penguji dan diterima sebagai salah satu syarat yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, Agustus 2018

Mengetahui dan menyetujui:

Dosen Pembimbing I / Penguji

Dr. Ade Faisal, ST, MSc

Dosen Pembanding Penguii

Putra, ST, MT Tondi

UNIVERS!

Dosen Pembimbing II / Penguji

Dr. J sef Hadipramana

Dosen Pembanding II / Penguji

Dr. Fahrizal Zulkarnain, ST, MSc

Dr. Fahrizal Zulkarnain, ST, MSc

Program Studi Teknik Sipil

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Saya yang bertanda tangan di bawah ini:

Nama Lengkap	: Kiki Sulaiman
Tempat /Tanggal Lahir	: Tembung / 04 Februari 1995
NPM	: 1407210032
Fakultas	: Teknik
Program Studi	: Teknik Sipil.

menyatakan dengan sesungguhnya dan sejujurnya, bahwa laporan Tugas Akhir saya yang berjudul:

"Kinerja Struktur Beton Bertulang 5 Lantai Menggunakan Base Isolator Pada Lantai 2 Dengan Analisa Beban Dorong (Push Over) (Studi Literatur)",

bukan merupakan plagiarisme, pencurian hasil karya milik orang lain, hasil kerja orang lain untuk kepentingan saya karena hubungan material dan non-material, ataupun segala kemungkinan lain, yang pada hakekatnya bukan merupakan karya tulis Tugas Akhir saya secara orisinil dan otentik.

Bila kemudian hari diduga kuat ada ketidaksesuaian antara fakta dengan kenyataan ini, saya bersedia diproses oleh Tim Fakultas yang dibentuk untuk melakukan verifikasi, dengan sanksi terberat berupa pembatalan kelulusan/ kesarjanaan saya.

Demikian Surat Pernyataan ini saya buat dengan kesadaran sendiri dan tidak atas tekanan ataupun paksaan dari pihak manapun demi menegakkan integritas akademik di Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, Agustus 2018 aya yang menyatakan, Kiki Sulaiman

ABSTRAK

KINERJA STRUKTUR BETON BERTULANG 5 LANTAI MENGGUNAKAN *BASE ISOLATOR* PADA LANTAI 2 DENGAN ANALISA BEBAN DORONG (*PUSH OVER*)

Kiki Sulaiman 1407210032 Dr. Ade Faisal, ST, MSc Dr. Josef Hadipramana

Gempa bumi merupakan suatu fenomena alam yang tidak dapat dielakkan oleh manusia yang mana kejadian itu mengakibatkan kerugian material dan korban jiwa. Akibat yang ditimbulkan tersebut kebanyakan terjadi oleh kerusakan dan runtuhnya suatu bangunan. Teknologi yang dikembangkan pada pondasi belakangan ini sangat berpengaruh untuk meminimalisir keruntuhan suatu struktur bangunan akibat gempa bumi. Isolasi dasar merupakan inovasi teknologi yang diletakkan pada pondasi yang berfungsi mengurangi efek dari gempa bumi. Kekakuan pada struktur juga mempengaruhi ketahanan bangunan dari kerusakan dan keruntuhan. Material breising juga mampu menahan gaya lateral akibat gempa bumi. Tugas akhir ini bertujuan untuk mengetahui respon struktur gedung yang menggunakan teknologi isolasi dasar di lantai 2. Gedung didesain awal 2 lantai dengan dibebani gaya-gaya yang ada pada bangunan 3 lantai diatasnya dan gedung 5 lantai dengan isolasi dasar di lantai 2. Analisis yang dipakai adalah analisis statik ekivalen, analisis respon spektrum dan analisis beban dorong (push over). Hasil yang didapatkan dari analisa beban dorong gedung 2 lantai dengan dibebani gaya-gaya yang ada pada bangunan 3 lantai diatasnya mampu menahan gaya sebesar 2.699.239,16 kg dan terjadi simpangan 0,0369 m dan gedung 5 lantai dengan isolasi dasar di lantai 2 mampu menahan gaya sebesar 2.354.132,74 kg dan terjadi simpangan 0,0299 m.

Kata kunci: Isolasi dasar, teknologi, gempa bumi, kekakuan, breising.

ABSTRACT

PERFORMANCE OF 5 FLOOR REINFORCED CONCRETE USING BASE ISOLATORS ON FLOOR 2 WITH THREAD LOAD ANALYSIS (PUSH OVER)

Kiki Sulaiman 1407210032 Dr. Ade Faisal, ST, MSc Dr. Josef Hadipramana

Earthquake is a natural phenomenon that cannot be avoided by humans, which has resulted in material losses and loss of life. The resulting consequences mostly occur by damage and collapse of a building. The technology developed in recent foundations is very influential to minimize the collapse of a building structure due to an earthquake. Basic isolation is a technological innovation that is placed on a foundation that serves to reduce the effects of an earthquake. Stiffnes in the structure also affects the resistance of the building from damage and collapse. Breeding materials are also able to withstand lateral forces due to earthquakes. This final project aims to determine the response of the building structure using basic isolation technology on the 2nd floor. The building was originally designed 2 floors with the existing styles on the building 3 floors above and 5-story building with basic insulation on the 2nd floor. The analysis used was equivalent static analysis, spectrum response analysis and push over analysis. The results obtained from the analysis of the thrust load of the 2-story building with the existing styles on the 3-storey building above are able to withstand a force of 2,699,239.16 kg and a deviation of 0.0369 m and a 5-story building with basic insulation on the 2nd floor. withstand a force of 2,354,132.74 kg and a deviation of 0.0299 m.

Keywords: Base Isolator, technology, earthquakes, stiffnes, bracing.

KATA PENGANTAR

Dengan nama Allah Yang Maha Pengasih lagi Maha Penyayang. Segala puji dan syukur penulis ucapkan kehadirat Allah SWT yang telah memberikan karunia dan nikmat yang tiada terkira. Salah satu dari nikmat tersebut adalah keberhasilan penulis dalam menyelesaikan laporan Tugas Akhir ini yang berjudul "Kinerja Struktur Beton Bertulang 5 Lantai Menggunakan Base Isolator Pada Lantai 2 Dengan Analisa Beban Dorong (*Push Over*)" sebagai syarat untuk meraih gelar akademik Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara (UMSU), Medan.

Banyak pihak telah membantu dalam menyelesaikan laporan Tugas Akhir ini, untuk itu penulis menghaturkan rasa terimakasih yang tulus dan dalam kepada:

- Bapak Dr. Ade Faisal, ST, MSc selaku Dosen Pembimbing I dan Penguji yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini, sekaligus sebagai Wakil Dekan Fakultas Teknik, Universitas Muhammadi yah Sumatera Utara.
- Dr. Josef Hadipramana selaku Dosen Pembimbing II dan Penguji yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- Bapak Tondi Amirsyah Putra, ST, MT selaku Dosen Pembanding I dan Penguji dalam penulisan tugas akhir ini.
- 4. Bapak Dr. Fahrizal Zulkarnain, ST, MSc selaku Dosen Pembanding I dan Penguji sekaligus Ketua Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara, yang telah banyak membantu dalam menyelesaikan Tugas Akhir ini.
- Ibu Hj. Irma Dewi ST, MSi, selaku Sekretaris Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara, yang telah banyak membantu dalam menyelesaikan Tugas Akhir ini.
- 6. Bapak Munawar Alfansury Siregar, S.T, M.T selaku Dekan Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

- Seluruh Bapak/Ibu Dosen di Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara yang telah banyak memberikan ilmu keteknik sipilan kepada penulis.
- 8. Orang tua penulis: Darso dan Suliah, yang telah bersusah payah membesarkan dan membiayai studi penulis.
- 9. Kerabat dan Keluarga, yang telah memberi semangat untuk meyelesaikan studi.
- 10. Bapak/Ibu Staf Administrasi di Biro Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- 11. Sahabat-sahabat penulis: Muhammad Fahrul Reza Lubis, Nanda Firnando, Sri Harjono, Firmansyah, Muhammad Rozali, Agus Amrizal Tanjung, Yopi Syahputra Hia, Agustin Pradani, Riki Sutansyah, dan lainnya yang tidak mungkin namanya disebut satu per satu.

Laporan Tugas Akhir ini tentunya masih jauh dari kesempurnaan, untuk itu penulis berharap kritik dan masukan yang konstruktif untuk menjadi bahan pembelajaran berkesinambungan penulis di masa depan. Semoga laporan Tugas Akhir ini dapat bermanfaat bagi dunia konstruksi teknik sipil.

Medan, Agustus 2018

Kiki Sulaiman

DAFTAR ISI

LEMBAR PENGESAHAN				
LEMBAR PERNYATAN KEASLIAN TUGAS AKHIR				
ABSTR	AK		iv	
ABSTRA	ACT		v	
KATA I	PENG	ANTAR	vi	
DAFTA	R ISI		viii	
DAFTA	R TA	BEL	xii	
DAFTA	R GA	MBAR	xvi	
DAFTA	R NC	DTASI	xix	
DAFTA	R SIN	NGKATAN	xxiii	
BAB 1	PEN	IDAHULUAN		
	1.1.	Latar Belakang	1	
	1.2.	Rumusan Masalah	2	
	1.3.	Batasan Masalah	2	
	1.4.	Tujuan Penelitian	3	
	1.5.	Manfaat Penelitian	3	
		1.5.1.Manfaat Teoritis	4	
		1.5.2.Manfaat Praktis	4	
	1.6.	Sistematika Penulisan	4	
BAB 2	STU	DI PUSTAKA		
	2.1.	Gempa	5	
	2.2.	Wilayah Gempa	7	
	2.3.	Klasifikasi Situs, Jenis Pemanfaatan dan Kategori Risiko		
		Struktur Bangunan	8	
	2.4.	Parameter Respon Spektra Percepatan Gempa	11	
	2.5.	Kategori Desain Seismik	14	
	2.6.	Faktor Reduksi Gempa	15	
	2.7.	Gaya Geser Dasar Seismik	17	
	2.8.	Perioda Fundamental	18	

2.9.	Penentuan Distribusi Vertikal Gaya Gempa (Fi)	20
2.10	. Parameter Respon Terkombinasi	21
2.11	. Kekakuan	21
2.12	. Pembebanan	23
	2.12.1 Beban Mati	23
	2.12.2 Beban Hidup	25
	2.12.3 Beban Angin	29
	2.12.4 Beban Gempa	29
2.13	. Simpangan Antar Lantai	30
2.14	. Kombinasi Beban	31
2.15	. Persyaratan Untuk Sistem Rangka Pemikul Momen Khusus	
	(SRPMK) Berdasarkan SNI 2847;2013	33
2.16	Breising Konsentrik	33
	2.16.1 Persyaratan Umum Rangka Breising	34
2.17.	Isolasi Dasar	36
	2.17.1 Elemen Dasar Isolasi Dasar	36
	2.17.2 High-Dumping Rubber Bearing (HDRB)	37
	2.17.3 Prosedur Desain Isolasi Dasar HDRB	38
2.18	. Prosedur Gaya Lateral Ekivalen Sistem Isolasi Menurut	
	SNI 1726;2012	40
	2.18.1 Perpindahan Rencana	40
	2.18.2 Perioda Efektif Pada Saat Perpindahan Rencana	41
	2.18.3 Perpindahan Maksimum	42
	2.18.4 Perioda Efektif Pada Saat Perpindahan Maksimum	42
	2.18.5 Perpindahan Total	43
	2.18.6 Kekakuan Efektif Maksimum	43
	2.18.7 Gaya Lateral Minimum	43
	2.18.8 Distribusi Gaya Vertikal	44
	2.18.9 Batas Simpangan Antar Lantai Pada Struktur Isolasi	
	Dasar	44
2.19	Analisis Beban Dorong	44

BAB 3 METODOLOGI PENELITIAN

	3.1.	Bagan Alir / Flow Chart Penelitian	49
	3.2.	Deskripsi Model struktur	50
	3.3.	Data Penelitian: Data Desain Pada Software	53
		3.3.1. Data Material	53
		3.3.2. Desain Balok dan Kolom	53
		3.3.3. Desain Breising	53
		3.3.4. Desain Plat	54
		3.3.5. Pembebanan	54
	3.4.	Metode Respon Spektrum Berdasarkan SNI 1726;2012	55
	3.5.	Kombinasi Pembebanan	60
	3.6.	Desain Isolasi Dasar	61
	3.7.	Prosedur Gaya Lateral Ekivalen Sistem Isolasi Menurut	
		SNI 1726;2012	63
	3.8.	Analisis Non-Linear Beban Dorong	64
BAB 4	HAS	IL DAN PEMBAHASAN	
	4.1.	Tinjauan Umum	70
	4.2.	Hasil Analisis	70
	4.3.	Penentuan Berat Total Perlantai (Wt)	71
	4.4.	Penentuan Perioda Alami Struktur (T1)	72
	4.5.	Perioda Fundamental Pendekatan (Ta)	76
	4.6.	Penentuan Gaya Geser Seismik (V)	77
	4.7.	Penentuan Distribusi Vertikal Gaya Gempa (Fi)	80
	4.8.	Spektrum Respon Ragam	81
	4.9.	Spektrum Respon Terkombinasi	81
	4.10	. Gaya Geser Analisis Respon Spektrum	82
	4.11	. Nilai Simpangan Gedung (Nilai Respon Bangunan)	88
	4.12	. Kekakuan Struktur	90
	4.13	. Analisa Isolasi Dasar	93
		4.13.1. Gaya Lateral Minimum	93
		4.13.2. Penentuan Distribusi Vertikal Gaya Gempa (Fi)	94

4.13.3. Nilai Simpangan Gedung Dengan Isolasi Dasar (Nilai						
Respon Bangunan)						
4.14. Analisa Non-Linear Beban Dorong						
4.14.1. Analisa Non-Linier Beban Dorong Gedung Model A	101					
4.14.2. Analisa Non-Linier Beban Dorong Gedung Model B	103					
4.14.3. Analisa Non-Linier Beban Dorong Gedung Model C	104					
4.14.4. Analisa Non-Linier Beban Dorong Gedung Model D	106					
4.14.5. Analisa Non-Linier Beban Dorong Gedung Model E	107					
4.14.6. Analisa Non-Linier Beban Dorong Gedung Model F	108					
4.14.6. Analisa Non-Linier Beban Dorong Gedung Model G	110					
4.15. Perbandingan Respon Bangunan Dengan Analisa Non-Linear	112					
4.15.1. Analisa Non-Linier Beban Dorong Gedung Model B						
dan C	112					
4.15.2. Analisa Non-Linier Beban Dorong Gedung Model D						
dan E	113					
4.15.3. Analisa Non-Linier Beban Dorong Gedung Model D						
dan F	114					
4.15.4. Analisa Non-Linier Beban Dorong Gedung Model E						
dan G	116					
4.15.5. Analisa Non-Linier Beban Dorong Gedung Model F						
dan G	117					
BAB 5 KESIMPULAN DAN SARAN						
5.1. Kesimpulan	119					
5.2. Saran	120					
DAFTAR PUSTAKA						
LAMPIRAN						

DAFTAR RIWAYAT HIDUP

DAFTAR TABEL

Tabel 2.1	Ekuivalen Energy Gempa Bumi Dikonversikan Kedalam	
	Satuan Skala Richter	5
Tabel 2.2	Klasifikasi Situs SNI 1726;2012	8
Tabel 2.3	Kategori Risiko Bangunan Gedung Dan Non Gedung Untuk	
	Beban Gempa SNI 1726;2012	9
Tabel 2.4	Faktor Keutamaan Gempa SNI 1726;2012	11
Tabel 2.5	Koefisien Situs, F _a SNI 1726;2012	11
Tabel 2.6	Koefisien Situs, F_{ν} SNI 1726;2012	12
Tabel 2.7	Kategori Desain Seismik Berdasarkan Parameter Respons	
	Percepatan Pada Periode Pendek	14
Tabel 2.8	Kategori Desain Seismik Berdasarkan Parameter Respons	
	Percepatan Pada Periode 1 Detik	14
Tabel 2.9	Faktor R, C_d , dan Ω_0 Untuk Sistem Penahan Gaya Gempa	
	SNI 1726;2012	15
Tabel 2.10	Nilai Parameter Periode Pendekatan C_r , Dan x Berdasarkan	
	SNI 1726;2012	19
Tabel 2.11	Koefisien Untuk Batas Atas Pada Periode Yang Dihitung	
	Berdasarkan SNI 1726;2012	20
Tabel 2.12	Berat Sendiri Bahan Bangunan Dan Komponen Gedung	23
Tabel 2.13	Beban Hidup Pada Lantai Gedung	25
Tabel 2.14	Faktor Elemen Hidup	28
Tabel 2.15	Simpangan Antar Lantai Izin Berdasarkan SNI 1726;2012	30
Tabel 2.16	Nilai Dasar Material Isolasi HDRB	38
Tabel 2.17	Koefisien Redaman, B _D atau B _M	41
Tabel 3.1	Spesifikasi Profil Baja Siku 200,200,15	53
Tabel 3.2	Beban Hidup Pada Lantai Gedung	54
Tabel 3.3	Beban Mati Tambahan Pada Lantai Gedung	55
Tabel 3.4	Interpolasi Koefisien Situs, F _a dan F _v SNI 1726;2012	56
Tabel 3.5	Nilai S_{DS} dan S_{D1} Untuk Kota Padang	57
Tabel 3.6	Kategori Desain Seismik Berdasarkan Parameter Respons	

	Percepatan Pada Periode Pendek	57
Tabel 3.7	Kategori Desain Seismik Berdasarkan Parameter Respons	
	Percepatan Pada Periode 1 Detik	57
Tabel 3.8	Data Spektrum Respon Berdasarkan SNI 1726;2012 Kota	
	Padang Untuk Tanah Sedang	59
Tabel 3.9	Tabel Kombinasi Pembebanan Untuk $\rho = 1 \text{ dan } S_{DS} = 0.932$	60
Tabel 3.10	Tabel Kombinasi Pembebanan Untuk $\rho = 1.3 \text{ dan } S_{DS} = 0.932$	60
Tabel 3.11	Nilai Dasar Material Isolasi HDRB	61
Tabel 3.12	Nilai-Nilai Parameter Desain Isolasi Dasar HDRB	62
Tabel 3.13	Nilai-nilai Prosedur Dalam Mencari Gaya Lateral Ekivalen	
	Gedung Model C	63
Tabel 3.14	Nilai-nilai Prosedur Dalam Mencari Gaya Lateral Ekivalen	
	Gedung Model F dan G	64
Tabel 4.1	Hasil Berat Sendiri Bangunan Per lantai Struktur Model A,D,dan E	E 70
Tabel 4.2	Hasil Berat Sendiri Bangunan Per lantai Struktur Model B dan C	71
Tabel 4.3	Hasil Berat Sendiri Bangunan Per lantai Struktur Model F dan G	71
Tabel 4.4	Rekapitulasi Berat Total Per Lantai Struktur Model A,D,dan E	71
Tabel 4.5	Rekapitulasi Berat Total Per Lantai Struktur Model B dan C	72
Tabel 4.6	Rekapitulasi Berat Total Per Lantai Struktur Model F dan G	72
Tabel 4.7	Waktu Getar Alami Struktur Bangunan Model A dan D	72
Tabel 4.8	Waktu Getar Alami Struktur Bangunan Model B	73
Tabel 4.9	Waktu Getar Alami Struktur Bangunan Model C	73
Tabel 4.10	Waktu Getar Alami Struktur Bangunan Model E	74
Tabel 4.11	Waktu Getar Alami Struktur Bangunan Model F	75
Tabel 4.12	Waktu Getar Alami Struktur Bangunan Model G	75
Tabel 4.13	Nilai Koefisen Batas Atas (Cu)	76
Tabel 4.14	Nilai Cs Yang Digunakan Model A dan D	77
Tabel 4.15	Nilai Cs Yang Digunakan Model B	78
Tabel 4.16	Nilai Cs Yang Digunakan Model C	78
Tabel 4.17	Nilai Cs Yang Digunakan Model E	78
Tabel 4.18	Nilai Cs Yang Digunakan Model F	78
Tabel 4.19	Nilai Cs Yang Digunakan Model G	79

Tabel 4.20	Gaya Geser Nominal Statik Ekivalen (V) Model A,D, dan E	79
Tabel 4.21	Gaya Geser Nominal Statik Ekivalen (V) Model B	79
Tabel 4.22	Nilai Fix dan Fiy Perlantai Per Lantai gedung Model A,D, dan E	80
Tabel 4.23	Nilai Fix dan Fiy Perlantai Per Lantai gedung Model B	80
Tabel 4.24	Gaya Geser Gedung Tiap Lantai gedung Model A,D, dan E	80
Tabel 4.25	Gaya Geser Gedung Tiap Lantai gedung Model B	81
Tabel 4.26	Gaya Geser Respon Spektrum Struktur Model Adan D	82
Tabel 4.27	Gaya Geser Respon Spektrum Struktur Model B	82
Tabel 4.28	Gaya Geser Respon Spektrum Struktur Model C	82
Tabel 4.29	Gaya Geser Respon Spektrum Struktur Model E	82
Tabel 4.30	Gaya Geser Respon Spektrum Struktur Model F	82
Tabel 4.31	Gaya Geser Respon Spektrum Struktur Model G	83
Tabel 4.32	Hasil Gaya Geser Respon Spektrum Setelah Dikalikan Faktor	
	Skala gedung gedung Model A dan D	87
Tabel 4.33	Hasil Gaya Geser Respon Spektrum Setelah Dikalikan Faktor	
	Skala gedung gedung Model B	87
Tabel 4.34	Hasil Gaya Geser Respon Spektrum Setelah Dikalikan Faktor	
	Skala gedung gedung Model C	87
Tabel 4.35	Hasil Gaya Geser Respon Spektrum Setelah Dikalikan Faktor	
	Skala gedung gedung Model E	87
Tabel 4.36	Hasil Gaya Geser Respon Spektrum Setelah Dikalikan Faktor	
	Skala gedung gedung Model F	87
Tabel 4.37	Hasil Gaya Geser Respon Spektrum Setelah Dikalikan Faktor	
	Skala gedung gedung Model G	88
Tabel 4.38	Nilai simpangan gedung arah x dan y pada kinerja batas ultimit	
	gedung Model A	88
Tabel 4.39	Nilai simpangan gedung arah x dan y pada kinerja batas ultimit	
	gedung Model B	89
Tabel 4.40	Nilai simpangan gedung arah x dan y pada kinerja batas ultimit	
	gedung Model D	89
Tabel 4.41	Nilai simpangan gedung arah x dan y pada kinerja batas ultimit	
	gedung Model E	90

Tabel 4.42	Nilai Kekakuan Struktur Model A dan D	91
Tabel 4.43	Nilai Kekakuan Struktur Model B	91
Tabel 4.44	Nilai Kekakuan Struktur Model E	92
Tabel 4.45	Distribusi Gaya Vertikal Sistem Isolasi Dasar Gedung C	94
Tabel 4.46	Distribusi Gaya Vertikal Sistem Isolasi Dasar Gedung F dan G	95
Tabel 4.47	Nilai F_{ix} dan F_{iy} Tiap Lantai Pada Struktur Gedung Model C	96
Tabel 4.48	Nilai $F_{\mathrm{ix}}danF_{\mathrm{iy}}$ Tiap Lantai Pada Struktur Gedung Model F dan G	G 96
Tabel 4.49	Nilai Simpangan Gedung Isolasi Dasar Gedung Model C	97
Tabel 4.50	Nilai Simpangan Gedung Isolasi Dasar Gedung Model F	97
Tabel 4.51	Nilai Simpangan Gedung Isolasi Dasar Gedung Model G	98
Tabel 4.52	Kemampuan Simpangan Gedung titik pantau di atap Model A	102
Tabel 4.53	Kemampuan Simpangan Gedung titik pantau di atap Model B	103
Tabel 4.54	Kemampuan Simpangan Gedung Titik Pantau Di Base Model C	104
Tabel 4.55	Kemampuan Simpangan Gedung Titik Pantau Di Atap Model C	105
Tabel 4.56	Kemampuan Simpangan Gedung Titik Pantau Di Atap Model D	106
Tabel 4.57	Kemampuan Simpangan Gedung Titik Pantau Di Atap Model E	107
Tabel 4.58	Kemampuan Simpangan Gedung Titik Pantau Di Atap Lantai 2	
	Gedung Model F	108
Tabel 4.59	Kemampuan Simpangan Gedung Titik Pantau Di Atas Atap	
	Lantai 2 Gedung Model F	109
Tabel 4.60	Kemampuan Simpangan Gedung Titik Pantau Di Atap Lantai 5	
	Gedung Model F	109
Tabel 4.61	Kemampuan Simpangan Gedung Titik Pantau Di Atap Lantai 2	
	Gedung Model G	110
Tabel 4.62	Kemampuan Simpangan Gedung Titik Pantau Di Atas Atap	
	Lantai 2 Gedung Model G	111
Tabel 4.63	Kemampuan Simpangan Gedung Titik Pantau Di Atap Lantai 5	
	Gedung Model F	111

DAFTAR GAMBAR

Gambar 2.1	Peta Tektonik Wilayah Indonesia (BMKG)	6
Gambar 2.2	Peta Respon Spektra Percepatan 0,2 Detik Di Batuan Dasar	
	S _b Untuk Probabilitas Terlampaui 2% Dalam 50 Tahun	
	(Redaman 5%)	7
Gambar 2.3	Peta Respon Spektra Percepatan 1 Detik Di Batuan Dasar S_b	
	Untuk Probabilitas Terlampaui 2% Dalam 50 Tahun	
	(Redaman 5%)	7
Gambar 2.4	Bentuk Tipikal Respon Spektra Desain Di Permukaan Tanah	
	SNI 1726;2012	13
Gambar 2.5	Jenis – Jenis Struktur Bresing Konsentrik	34
Gambar 2.6	Mekanisme Deformasi Pada Breising	34
Gambar 2.7	Mekanisme Plastisitas Yang Direncanakan	35
Gambar 2.8	Letak Isolasi Dasar Pada Struktur Bangunan Gedung	36
Gambar 2.9	Perangkat HDRB Dan Mekanisme Pergerakannya	38
Gambar 2.10	Kurva Pushover Dipengaruhi Oleh Pola Distribusi Gaya Lateral	
	Yang Digunakan Sebagai Beban Dorong	45
Gambar 2.11	Kurva Tingkatan Sendi Plastis	47
Gambar 3.1	Bagan Alir (Flow Chart) Penelitian	49
Gambar 3.2	Denah Rencana Struktur Bangunan	50
Gambar 3.3	Tampak Rencana Gedung Model A Dan D	51
Gambar 3.4	Tampak Rencana Gedung Model B	51
Gambar 3.5	Tampak Rencana Gedung Model C	51
Gambar 3.6	Tampak Rencana Gedung Model E	52
Gambar 3.7	Tampak Rencana Gedung Model F	52
Gambar 3.8	Tampak Rencana Gedung Model G	52
Gambar 3.9	Grafik Spektrum Respon Gempa Rencana	58
Gambar 3.10	Pemodelan Desain Isolasi Dasar Yang Akan Diinput Pada	
	Software	63
Gambar 3.11	Penentuan Identitas Analisis Static PUSH	65
Gambar 3.12	Properti Data Gravitasi	65

Gambar 3.13	Distribusi Beban Dorong PUSH	66
Gambar 3.14	Properti Sendi Pada Balok	66
Gambar 3.15	Properti Sendi Pada Kolom	67
Gambar 3.16	Input Data Pushover	67
Gambar 3.17	Pemilihan Titik Tinjau Analisis Pushover	68
Gambar 3.18	Pemilihan Multiple States Pushover	69
Gambar 4.1	Grafik Simpangan Struktur Gedung Terhadap Ketinggian	
	Gedung Model A, D, Dan E	98
Gambar 4.2	Grafik Rasio Simpangan Antar Tingkat Struktur Gedung	
	Model A, D, Dan E	99
Gambar 4.3	Grafik Simpangan Struktur Gedung Terhadap Ketinggian	
	Gedung Model B Dan C	99
Gambar 4.4	Grafik Rasio Simpangan Antar Tingkat Struktur Gedung	
	Model B Dan C	100
Gambar 4.5	Grafik Simpangan Struktur Gedung Terhadap Ketinggian	
	Gedung Model F Dan G	100
Gambar 4.6	Grafik Rasio Simpangan Antar Tingkat Struktur Gedung	
	Model F Dan G	101
Gambar 4.7	Kurva Berdasarkan Kapasitas Analisa Beban Dorong Gedung	
	Model A	102
Gambar 4.8	Kurva Berdasarkan Kapasitas Analisa Beban Dorong Gedung	
	Model B	103
Gambar 4.9	Kurva Berdasarkan Kapasitas Analisa Beban Dorong Gedung	
	Model C	105
Gambar 4.10	Kurva Berdasarkan Kapasitas Analisa Beban Dorong Gedung	
	Model D	106
Gambar 4.11	Kurva Berdasarkan Kapasitas Analisa Beban Dorong Gedung	
	Model E	107
Gambar 4.12	Kurva Berdasarkan Kapasitas Analisa Beban Dorong Gedung	
	Model F	109
Gambar 4.13	Kurva Berdasarkan Kapasitas Analisa Beban Dorong Gedung	
	Model G	111

xvii

Gambar 4.14	Perbandingan	Kurva	Kapasitas	Analisa	Beban Dorong Model	
	B dan C					112
Gambar 4.15	Perbandingan	Kurva	Kapasitas	Analisa	Beban Dorong Model	
	D dan E					114
Gambar 4.16	Perbandingan	Kurva	Kapasitas	Analisa	Beban Dorong Model	
	D dan F					115
Gambar 4.17	Perbandingan	Kurva	Kapasitas	Analisa	Beban Dorong Model	
	E dan G					116
Gambar 4.18	Perbandingan	Kurva	Kapasitas	Analisa	Beban Dorong Model	
	F dan G					117

DAFTAR NOTASI

А	= luasan area bantalan (mm ²)				
А	= percepatan (m/s ²)				
a	= lebar efektif strat (m)				
A_g	= luas bruto penampang kolom (mm ²)				
A _T	= luas struktur bangunan (m ²)				
As	= luasan penyangga besi perletakan bantalan (mm ²)				
b	 ukuran denah struktur tependek diukur tegak lurus terhadap d (mm) 				
B _D	= koefisien numerik terkait dengan redaman efektif sistem isolasi pada perpindahan rencana				
B _M	= koefisien numerik terkait dengan redaman efektif sistem isolasi pada perpindahan maksimum.				
b_w	= lebar komponen balok				
<i>c</i> ₂	= komponen struktur penumpu				
C_d	= koefisien amplikasi defleksi				
C_r	= parameter periode pendekatan				
C_s	= koefisien respons seismik				
C_u	= ditentukan dari Tabel 2.12				
C_{vx}	= faktor distribusi vertikal				
d	= ukuran terpanjang denah struktur (mm)				
D	= perpindahan horizontal maksimum (mm)				
D atau DL	= beban mati				
d	= perpindahan (mm)				
D _D	= pepindahan rencana sistem isolasi (mm)				
D_M	= perpindahan maksimum sistem isolasi (mm)				
D _{TD}	= perpindahan rencana total (mm)				
D_{TM}	= total perpindahan maksimum (mm)				
D_y	= deformasi leleh (m)				
e	= eksentrisitas sesungguhnya diukur dari denah antara titik pusat massa stuktur di atas batas pemisah isolasi dan titik pusat				
	kekakuan sistem isolasi, ditamban dengan eksentrisitas tak				

	terduga, diambil sebesar 5% dari ukuran maksimum bangunan
	tegak lurus untuk arah gaya yang ditinjau
E	= beban gempa
Ec	= modulus elastisitas (MPa)
E _{fe}	= modulus elastisitas material portal
Eh	= beban gempa horizontal
E _{me}	= modulus elastisitas material portal
Ev	= beban gempa vertical
EX	= beban gempa arah x
EY	= beban gempa arah y
F_a	= koefisien situs untuk perioda pendek
f'_c	= mutu beton (MPa)
F_i atau F_x	= bagian V yang bekerja di tingkat x (kg)
fm	= kuat tekan rata-rata
F_{v}	= koefisien situs untuk perioda panjang
F_{ys}	= Tegangan leleh tulangan sengkang (MPa)
G	= modulus geser (MPa)
g	= percepatan grafitasi (m/s ²)
h atau h_n	= tinggi struktur (m)
h _{col}	= tinggi kolom diantara as-balok (m)
h _{inf}	= tinggi dinding portal (m)
$h_x dan h_i$	= tinggi tingkat x dari dasar (m)
I _{col}	= inersia penampang kolom (m ⁴)
I_e	= faktor keutamaan gempa
K _d	= kekakuan rencana (kN/m)
K _{Dmin}	= kekakuan efektif minimum sistem isolasi
K _{Dmax}	= kekakuan efektif maksimum
K _{eff}	= kekakuan efek satu unit isolasi (kN/m)
K _H	= kekakuan horizonral (N/mm)
K_i	= kekakuan di tingkat-i
K _{LL}	= faktor elemen beban hidup
K _{Mmin}	= kekakuan efektif minimum sistem isolasi, pada saat perpindahan maksimum

K _u	= kekakuan ultimit (kN/m)
K _V	= kekakuan vertical (N/mm)
L atau LL	= beban hidup rencana tereduksi
ℓ_n	= Bentang bersih komponen struktur (m)
Lo	= beban hidup rencana tanpa reduksi
Ν	= jumlah tingkat
Natau Nch	= tahanan penetrasi standar lapangan rata-rata
PI	= indeks plastisitas
P_U	= gaya tekan aksial terfaktor
Q_u	= kapasitas ultimit (kN)
Qy	= kapasitas gaya leleh (kN)
R atau R ^a	= koefisien modifikasi respons
R ₁	= koefisien numerik yang berhubungan dengan sistem gaya
	penahan
r _{inf}	= panjang diagonal dinging pengisi (m)
S	= shape faktor
S_a	= respon spektra percepatan
S_{I}	 parameter percepatan respon spektral MCE dari peta gempa pada periode 1 detik, redaman 5 persen
S_d	= simpangan relatif maksimum
S _{D1}	= parameter percepatan respon spektral pada perioda 1 detik, redaman 5 persen
S _{DS}	= parameter percepatan respon spektral pada perioda pendek, redaman 5 persen
S_{M1}	 parameter percepatan respon spektral MCE pada pada perioda 1 detik yang sudah disesuaikan terhadap pengaruh kelas situs
S _{MS}	= parameter percepatan respon spektral MCE pada pada perioda pendek yang sudah disesuaikan terhadap pengaruh kelas situs
S_S	= parameter percepatan respon spektral MCE dari peta gempa pada periode pendek, redaman 5 persen
Su	= kuat geser niralir rata-rata (kpa)
Т	= perioda fundamental bangunan (s)
T ₀	$=0.2\frac{S_{D1}}{S_{DS}}$
Ta	= Perioda fundamental pendekatan minimum (s)

T _{a maksimum}	= Perioda fundamental pendekatan maksimum (s)
T _D	= periode efektif, pada saat perpindahan rencana (s)
T_{M}	= periode efektif, pada saat perpindahan maksimum (s)
t _{inf}	= tebal dinding pengisi (m)
T _S	$=\frac{S_{D1}}{S_{DS}}$
t	= tebal karet per layer
t _r	= tebal keseluruhan bantalan (mm)
V	= gaya geser dasar (kg)
V	= kecepatan (m/s)
V_b	= gaya lateral minimum yang berada dibawah sistem isolasi (kg)
V_s	= gaya lateral minimum diatas sistem isolasi (kg)
\overline{vs}	= kecepatan rata-rata gelombang geser (m/s)
W	= berat total gedung (kg)
W	= kadar air (%)
$w_x dan w_i$	= bagian dari W yang ditempatkan di tingkat x (kg)
у	 jarak antara titik pusat kekakuan sistem isolasi dan elemen yang diinginkan dihitung tegak lurus dengan arah yang ditinjau
ρ	= factor redundansi struktur
Ec	= rengangan pada tegangan maksimum
β	= redaman (%)
θ	= sudut yang dibentuk antara tinggi dan panjang dinding pengisi
γ	= regangan geser maksimum
λ	= faktor reduksi kekakuan
λ_1	= koefisien yang digunakan untuk menentukan lebar efektif strat
Ω_0	= faktor kuat lebih sistem
μ	= adalah konstanta yang tergantung pada peraturan perencanaan bangunan yang digunakan, misalnya untuk IBC-2009 dan ASCE 7-10 dengan gempa 2500 tahun menggunakan nilai μ sebesar 2/3 tahun
Δ	= simpangan antar tingkat
Δi	= simpangan di tingkat i
Φ	= diameter lingkaran karet (mm)

DAFTAR SINGKATAN

- ASCE = American Society of Civil Engineers
- BJLS = Baja Lapis Seng
- CQC = Complete Quadratic Combination
- DKK = Dan Kawan Kawan
- SAP = Structural Analysis Program
- FEMA = Federal Emergency Management Agency
- FPS = Friction Pendulum System
- HDRB = High-Dumping Rubber Bearing
- IBC = Intermediate Bulk Container
- LRB = Lead Rubber Bearing
- PPPURG = Pedoman Perencanaan Pembebanan Untuk Rumah dan Gedung
- RBE = Rangka Bresing Eksentris
- SDOF = Single Degree Of Freedom
- SNI = Standar Nasional Indonesia
- SRPMB = Struktur Rangka Pemikul Momen Biasa
- SRPMK = Struktur Rangka Pemikul Momen Khusus
- SRPMM = Struktur Rangka Pemikul Momen Menengah
- SRSS = Square Root of the Sum of Squares
- TNT = Tri Nitro Toluene
- UBC = Uniform Building Code

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Sumatera Barat khusus nya kota Padang merupakan suatu daerah di Indonesia yang rawan terjadi gempa. Akibat peristiwa ini banyak bangunan yang mengalami kerusakan serta banyaknya korban jiwa. Hal ini yang harus menyadarkan kita tentang penting nya merencanakan bangunan dengan konsep tahan dengan gempa.

Konsep bangunan tahan gempa adalah pada saat terjadi gempa ringan, struktur bangunan dan fungsi bangunan harus dapat tetap berjalan (*servicable*) sehingga struktur harus kuat dan tidak ada kerusakan baik pada elemen struktural dan elemen nonstruktural, pada saat terjadi gempa sedang, struktur diperbolehkan mengalami kerusakan pada elemen nonstruktural, tetapi tidak diperbolehkan terjadi kerusakan pada elemen struktural, pada saat gempa besar, diperbolehkan terjadi kerusakan pada elemen struktural dan nonstruktual, namun tidak boleh sampai menyebabakan bangunan runtuh sehingga tidak ada korban jiwa atau dapat meminimalkan jumlah korban jiwa (Budiono dan Supriatna, 2011).

Penelitian ini menguji bangunan tahan gempa dengan menggunakan isolasi dasar (*base isolator*). Penulis memilih isolasi dasar sebagai topik penelitian karena isolasi dasar merupakan salah satu teknologi tinggi gedung penahan gempa yang dimulai dan diteliti tahun 1991 di *Uniform Building Code* (UBC) (Gary dkk., 2000), dimana teknologi isolasi dasar ini telah dipakai di berbagai negara yang berada di wilayah rawan gempa. Di berbagai penelitian, isolasi dasar dapat mengurangi respon bangunan terutama pada nilai simpangan yang terjadi akibat gempa pada struktur bangunan. Isolasi dasar direncanakan pada lantai 2 gedung 5 lantai karena berdasarkan SNI 1726;2012 pasal 12.4.1. Tinggi struktur dengan isolasi dasar kurang atau sama dengan 4 lantai atau 19,8 m dari tinggi struktur *hn*. Oleh karena itu penulis merencanakan gedung 3 lantai di atas nya agar dapat diketahui perilaku gedung 2 lantai jika dibebani gaya-gaya akibat gedung 3 lantai di atas

nya dan juga penulis merencankan langsung bangunan 5 lantai dengan isolasi dasar di lantai 2.

1.2 Rumusan Masalah

Berdasarkan latar belakang di atas, maka dapat diambil rumusan masalah sebagai berikut:

- 1. Bagaimana perilaku gedung 2 lantai dengan perletakan jepit apabila dibebani gaya-gaya gedung 3 lantai.
- 2. Bagaimana perilaku gedung 5 lantai dengan isolasi dasar dilantai 2.
- 3. Bagaimana kapasitas kemampuan bangunan dalam merespon kekuatan gempa dengan analisa beban dorong.

1.3 Batasan Masalah

Agar permasalahan tidak meluas dan sesuai dengan sasaran yang ingin dicapai, maka perlu dibatasi permasalahannya. Adapun batasan masalah yang diberikan adalah sebagai berikut:

- Struktur bangunan yang di tinjau adalah bangunan sekolah 5 lantai dan 5 bentang dengan struktur gedung beraturan dan di modelkan dengan software analisis struktur dalam bentuk 3D (tiga dimensi).
- 2. Bangunan berada di wilayah Sumatera Barat dengan kondisi tanah berada pada kelas situs SD (tanah sedang).
- 3. Acuan yang menjadi tugas akhir ini berpedoman pada peraturan-peraturan sebagai berikut:
 - a. Menggunakan peraturan SNI 2847;2013 beton struktural untuk bangunan gedung.
 - b. Menggunakan peraturan SNI 1729;2015 untuk bangunan gedung baja struktural.
 - c. Menggunakan peraturan SNI 1726;2012 untuk perencanaan ketahanan gempa untuk struktur bangunan gedung dan non gedung.
 - d. Menggunakan peraturan SNI 1727;2013 beban minimum untuk perancangan bangunan gedung dan struktur Lain.

- e. Pembebanan Struktur Berdasarkan Peraturan Pembebanan Indonesia Untuk Rumah dan Gedung 1987.
- 4. Beban-beban yang diperhitungkan meliputi:
 - a. Beban mati/berat sendiri bangunan (dead load).
 - b. Beban mati tambahan (super dead load).
 - c. Beban hidup (live load).
 - d. Beban gempa statik ekivalen.
 - e. Beban gempa dinamik respon spektrum.
 - f. Beban gempa dorong (pushover).
- 5. Beban tangga dan opening pintu dan jendela pada dinding di abaikan.
- Plat lantai hanya diasumsikan menggunakan beton setebal 12 cm untuk lantai dan 10 cm untuk lantai atap, serta tidak diperhitungkan secara detail dalam tugas akhir ini.
- 7. Menggunakan isolasi dasar jenis HDRB (High Damping Rubber Bearing).
- 8. Sambungan antara material breising ke kolom beton tidak diperhitungkan secara detail dalam tugas akhir ini.
- 9. Dashspot tidak direncanakan pada studi ini dan dianggap isolasi dasar masih bekerja pada kondisi elastis.

1.4 Tujuan Penelitian

Tujuan dari penulisan skripsi ini adalah sebagai berikut :

- Untuk mengetahui perilaku gedung 2 lantai dengan perletakan jepit apabila dibebani gaya-gaya gedung 3 lantai.
- 2. Untuk mengetahui perilaku gedung 5 lantai dengan isolasi dasar dilantai 2.
- 3. Untuk mengetahui kapasitas kemampuan bangunan dalam merespon kekuatan gempa dengan analisa beban dorong.

1.5 Manfaat Penelitian

Manfaat dari penulisan skripsi ini dapat dikemukakan menjadi dua sisi:

1.5.1 Manfaat teoritis

Penelitian ini diharapkan dapat memberikan manfaat secara teoritis, sekurang-kurangnya dapat berguna sebagai sumbangan pemikiran bagi dunia pendidikan khususnya teknik sipil.

1.5.2 Manfaat praktis

Menambah wawasan penulis mengenai pentingnya memperhatikan struktur bangunan yang kita rencanakan khususnya struktur bangunan penahan gempa dengan menggunakan isolasi dasar karena kita berada dalam daerah yang rawan akan gempa bumi.

1.6 Sistematika Penulisan

BAB. 1: Pendahuluan

Dalam bab ini dibahas latar belakang, rumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian, sistematika penulisan.

BAB. 2: Studi Pustaka

Bab ini membahas dasar teori yang digunakan untuk menyelesaikan masalahmasalah yang ada.

BAB. 3: Metodologi Penelitian

Bab ini berisikan metode penelitian, rancangan penelitian, dan analisa struktur.

BAB. 4: Hasil dan Pembahasan

Bab ini berisi tentang data hasil penelitian dan analisis yang telah dilakukan.

BAB. 5: Kesimpulan dan Saran

Dalam bab ini mengenai kesimpulan mengenai hasil penelitian dan analisis. Sebagai pelengkap laporan disertakan juga beberapa data hasil analisis sebagai lampiran.

BAB 2

STUDI PUSTAKA

2.1 Gempa

Gempa merupakan suatu gejala fisik yang ditandai dengan bergetarnya bumi dengan berbagai intensitas yang ada baik disebabkan dengan keadaan lalu lintas, getaran mesin, badai, ledakan, tanah longsor maupun runtuhnya suatu tambang. Gempa tektonik merupakan gempa yang banyak menyebabkan kerusakan pada bangunan.

Besarnya nilai gempa yang terjadi adalah jumlah total energi yang dilepaskan, besarnya diukur secara langsung oleh pihak yang berwenang di wilayah tersebut. Saat ini nilai yang sering digunakan untuk menentukan besarnya gempa yang terjadi adalah skala richter (Young, 1975). Untuk melihat besarnya energi gempa yang terjadi dalam skala richter bisa dilihat pada Tabel 2.1.

Earthquake Magnitude (SR)	TNT ekuivalen	Contoh
1.0	6 ons	
1.5	2 pounds	
2.0	13 pounds	
2.5	63 pounds	
3.0	397 pounds	
3.5	1.000 pounds	
4.0	6 tons	
4.5	32 tons	
5.0	199 tons	
5.3	500 tons	
5.5	1.000 tons	
6.0	6.270 tons	
6.3	15.800 tons	Solok dan Bukit Tinggi, 2007
6.5	31.550 tons	Kepulauan Banggai, 2000
7.0	199.000 tons	
7.1	250.000 tons	Papua, 1976

Tabel 2.1: Ekuivalen energy gempa bumi dikonversikan kedalam satuan skala Richter.

Earthquake Magnitude (SR)	TNT Ekuivalen	Contoh
7.7	1.990.000 tons	Ciamis dan Cilacap, 2006
8.0	6.270.000 tons	Kepulauan Sunda, 1977
8.2	12.550.000tons	Pulau Nias, 2005
8.5	31.550.000tons	Seluruh Pulau Sumatera, 2012
9.0	199.999.000tons	Aceh dan sebagian Sumatera
		Utara, 2004

Tabel 2.1: Lanjutan.

• Gempa Bumi Tektonik

Gempa bumi tektonik disebabkan adanya pergeseran-pergeseran di dalam bumi secara tiba-tiba. Gejala ini sangat erat hubungannya dengan pembentukan pegunungan yang biasanya diikuti dengan pembentukan sesar-sesar baru.

Ketegangan-ketegangan yang terjadi di dalam bumi akan mengaktifkan kembali sesar-sesar lama yang sudah tidak aktif. Apabila pergerakan tersebut cukup besar dan terekam oleh seismograf akan menyebabkan terjadinya gempa bumi tektonik.

Gambar 2.1: Peta tektonik wilayah Indonesia (BMKG).

2.2 Wilayah Gempa

Berdasarkan SNI1726;2012 pasal 14, wilayah gempa Indonesia ditetapkan berdasarkan parameter S_s (percepatan batuan dasar pada periode pendek 0,2 detik) dan S_1 (percepatan batuan tanah dasar pada periode 1 detik).

Gambar 2.2: Peta respon spektra percepatan 0,2 detik di batuan dasar s_b untuk probabilitas terlampaui 2% dalam 50 tahun (redaman 5%).

Gambar 2.3: Peta respon spektra percepatan 1 detik di batuan dasar s_b untuk probabilitas terlampaui 2% dalam 50 tahun (redaman 5%).

2.3 Klasifikasi Situs, Jenis Pemanfaatan dan Kategori Risiko Struktur Bangunan

Struktur bangunan direncanakan gedung sekolah dengan kategori resiko IV dan klasifikasi situs untuk desain seismik diasumsikan dengan kelas situs SD. Karena penulis tidak melakukan analisis perhitungan geoteknik, maka untuk kecepatan rata-rata gelombang geser, \overline{vs} , tahanan penetrasi standar lapangan ratarata, \overline{N} , dan kuat geser niralir rata-rata, \overline{Su} nilainya hanya diasumsikan.

Kelas situs	\overline{vs} (m/detik)	N atau Nch	<i>Su</i> (kPa)	
SA (batuan keras)	>1500	N/A	N/A	
SB (batuan)	750 sampai N/A 1500		N/A	
SC (tanah keras, sangat padat dan batuan lunak	350 sampai 750	>50	≥100	
SD (tanah sedang)	175 sampai 350	15 sampai 50	50 sampai 100	
SE (tanah lunak)	<175	<15	<50	
	 Atau setiap profil tanah yang mengandung lebih dari 3 m tanah dengan karakteristik sebagai berikut: 1. Indeks plastisitas, <i>PI</i> > 20, 2. Kadar air, w ≥ 40% 3. Kuat geser niralir, S_u< 25 kPa 			
<i>SF</i> (tanah khusus, yang membutuhkan investigasi geoteknik spesifik dan analisis respons spesifik- situs	Setiap profil lapisan tanah yang memiliki salah satu atau lebih dari karakteristik berikut: - Rawan dan berpotensi gagal atau runtuh akibat beban gempa seperti likuifaksi, lempung sangat sensitif, dan tanah tersementasi lemah			
	- Lempung sangat	g sangat organik dan/atau gambut		
	(ketebalan $H > 3m$)			
	- Lempung berplastisitas sangat tinggi (ketebalan H > 7,5m dengan indeks plastisitas PI > 75)			
	Lapisan lempung lunak/setengah teguh dengan ketebalan H > 35m dengan $S_u < 50$ kPa			

Tabel 2.2: Klasifikasi Situs (SNI 1726-2012).

Catatan: N/A = tidak dapat dipakai

Tabel 2.3: Kategori risiko bangunan gedung dan non gedung untuk beban gempa SNI 1726;2012.

Jenis Pemanfaatan	Kategori Risiko
 Gedung dan non gedung yang memiliki risiko rendah terhadap jiwa manusia pada saat terjadi kegagalan, termasuk tapi tidak dibatasi untuk, antara lain : Fasilitas pertanian, perkebunan, peternakan, dan perikanan Fasilitas sementara Gudang penyimpanan Rumah jaga dan struktur kecil lainnya. 	Ι
 Semua gedung dan struktur lain, kecuali yang termasuk dalam kategori risiko I, II, IV termasuk, tapi tidak dibatasi untuk: Perumahan Rumah toko dan rumah kantor Pasar Gedung perkantoran Gedung apartemen/ rumah susun Pusat perbelanjaan/ mall Bangunan industri Fasilitas manufaktur Pabrik 	Π
 Gedung dan non gedung yang memiliki risiko tinggi terhadap jiwa manusia pada saat terjadi kegagalan, termasuk, tapi tidak dibatasi untuk : Bioskop Gedung pertemuan Stadion Fasilitas kesehatan yang tidak memiliki unit bedah dan unit gawat darurat Penjara Bangunan untuk orang jompo Gedung dan non gedung, tidak termasuk kedalam kategori risiko IV, yang memiliki potensi untuk menyebabkan dampak ekonomi yang besar dan /atau gangguan massal terhadap kehidupan masyarakat sehari-hari bila terjadi kegagalan, termasuk, tapi tidak dibatasi untuk : Pusat pembangkit listrik biasa Fasilitas penanganan air Fasilitas penanganan limbah Pusat telekomunikasi 	Π

Tabel 2.3: Lanjutan.

Ionia Domonfooton	Kategori
Jenis Fentaniaatan	Risiko
Gedung dan non gedung, tidak termasuk dalam kategori risiko	
IV, (termasuk, tetapi tidak dibatasi untuk fasilitas manufaktur,	
proses, penanganan, penyimpanan, penggunaan atau tempat	
pembuangan bahan bakar berbahaya, bahan kimia berbahaya,	
limbah berbahaya, atau bahan yang mudah meledak) yang	III
mengandung bahan beracun atau peledak dimana jumlah	
kandungan bahannya melebihi nilai batas yang disyaratkan oleh	
instansiyang berwenang dan cukup menimbulkan bahaya bagi	
masyarakat jika terjadi kebocoran.	
Gedung dan non gedung yang ditunjukkan sebagai fasilitas	
penting, termasuk, tapi tidak dibatasi untuk :	
- Bangunan-bangunan monumental	
- Gedung sekolah dan fasilitas pendidikan	
- Rumah sakit dan fasilitas kesehatan lainnya yang	
memiliki fasilitas bedah dan unit gawat darurat	
- fasilitas pemadam kebakaran, ambulans, dan kantor	
polisi, serta garasi kendaraan darurat	
- Tempat perlindungan terhadap gempa bumi, badai angin,	
dan tempat perlindungan darurat lainnya	
- Fasilitas kesiapan darurat, komunikasi, pusat operasi dan	
fasilitas lainnya untuk tanggap darurat	IV
- Pust pembangkit energi dan fasilitas publik lainnya yang	
dibutuhkan pada saat keadaan darurat	
- Struktur tambahan (termasuk menara telekomunikasi,	
tangki penyimpanan bahan bakar, menara pendingin,	
struktur stasiun listrik, tangki air pemadam kebakaran	
atau struktur rumah atau struktur pendukung air atau	
material atau peralatan pemadam kebakaran) yang	
disyaratkan untuk beroperasi pada saat keadaan darurat	
Gedung dan non gedung yang dibutuhkan untuk mmpertahankan	
fungsi struktur bangunan lain yang masuk ke dalam kategori	
risiko IV.	

Kategori risiko	Faktor keutamaan gempa, I_e		
I atau II	1,0		
III	1,25		
IV	1,50		

Tabel 2.4: Faktor keutamaan gempa (SNI 1726-2012).

2.4 Parameter Respon Spektra Percepatan Gempa

Respon spektra merupakan konsep pendekatan yang digunakan untuk keperluan perencanaan bangunan. Definisi respons spektra adalah respons maksimum dari suatu sistem struktur *Single Degree of Freedom (SDOF)* baik percepatan (*a*), kecepatan (*v*), perpindahan (*d*) dengan struktur tersebut di bebani oleh gaya luar tertentu.

Absis dari respons spektra adalah periode alami sistem struktur dan ordinat dari respons spektra adalah respons maksimum. Kurva respons spektra akan memperlihatkan simpangan relativ maksimum (S_d) . (Budiono dan Supriatna, 2011).Untuk penetuan perameter respon spektra percepatan di permukaan tanah,di perlukan faktor amplifikasi terkait spectra percepatan untuk perioda pendek (F_a) dan periode 1,0 detik (F_v) .

Selanjutnya parameter respon spectra percepatan di permukaan tanah dapat diperoleh dengan cara mengalikan koefisien F_a dan F_v dengan spektra percepatan untuk perioda pendek (S_s) dan perioda 1,0 detik (S_I) di batuan dasar yang di peroleh dari peta gempa Indonesia SNI 1726:2012.

Kelas situs	Parameter respon spektral percepatan gempa (MCE _R) terpetakan pada perioda pendek, $T = 0.2$ detik, S_s^{a}				
	$S_{s} \le 0.25 S_{s} = 0.5 S_{s} = 0.75 S_{s} = 1.0 S_{s} \ge 1.25$				
SA	0,8	0,8	0,8	0,8	0,8
SB	1,0	1,0	1,0	1,0	1,0
SC	1,2	1,2	1,1	1,0	1,0
SD	1,6	1,4	1,2	1,1	1,0
SE	2,5	1,7	1,2	0,9	0,9
SF			SS ^b		

Tabel 2.5:Koefisien situs, F_a (SNI 1726-2012).

Kelas situs	Parameter respon spektral percepatan gempa (MCE_R)				
	terpetakan pada perioda pendek, $T = 1$ detik, S_1^a				
	$S_1 \leq 0,1$	$S_1 = 0,2$	$S_1 = 0,3$	$S_1 = 0,4$	$S_1 \ge 0,5$
SA	0,8	0,8	0,8	0,8	0,8
SB	1,0	1,0	1,0	1,0	1,0
SC	1,7	1,6	1,5	1,4	1,3
SD	2,4	2	1,8	1,6	1,5
SE	3,5	3,2	2,8	2,4	2,4
SF		•	SS ^b		

Tabel 2.6:Koefisien situs, F_v (SNI 1726-2012).

Catatan:

a) Untuk nilai-nilai antara S₁ dapat dilakukan interpolasi linier

b) SS = situs yang memerlukan investigasi geoteknik spesifik dan analisa respons situsspesifik.

Paremeter spektrum respon percepatan pada periode pendek (S_{MS}) dan periode 1 detik (S_{M1}) yang disesuaikan dengan pengaruh klasifikasi situs, harus ditentukan dengan Pers. 2.1 dan 2.2 berikut:

$$S_{MS} = F_a S_s \tag{2.1}$$

$$S_{M1} = F_{\nu}S_1 \tag{2.2}$$

dimana:

- S_s = adalah parameter respon spektral percepatan gempa terpetakan untuk periode pendek.
- S_1 = adalah parameter respon spektral percepatan gempa terpetakan untuk periode 1 detik.

Parameter percepatan spektral desain untuk perioda pendek, S_{ds} dan pada perioda 1 detik, S_{D1} , ditentukan dari Pers. 2.3 dan 2.4 :

$$S_{DS} = \mu S_{MS} \tag{2.3}$$

$$S_{D1} = \mu S_{M1}$$
 (2.4)

dimana:

 S_{DS} = adalah respon spektra percepatan desain untuk periode pendek.

 S_{D1} = adalah respon spektra percepatan desain untuk periode 1 detik.

μ

= adalah konstanta yang tergantung pada peraturan perencanaan bangunan yang digunakan, misalnya untuk IBC-2009 dan ASCE 7- 10 dengan gempa 2500 tahun menggunakan nilai μ sebesar 2/3 tahun.

Gambar 2.4.Bentuk tipikal respon spektra desain di permukaan tanah SNI1726;2012.

Kurva spektrum respon desain harus mengikuti ketentuan berikut ini:

1. Untuk periode lebih kecil dari T_0 , respon spektra percepatan desain, S_a harus diambil dari Pers. 2.5 berikut:

$$S_a = S_{DS} \left(0,4+0,6\frac{T}{T_0} \right)$$
(2.5)

- 2. Untuk periode lebih besar atau sama dengan T_0 , dan lebih kecil atau sama dengan T_S , respon spektra percepatan, S_a adalah sama dengan S_{DS} .
- 3. Untuk periode lebih besar dari T_S , respon spektra percepatan, S_a didapatkan dari Pers. 2.6.

$$S_a = \frac{S_{DS}}{T} \tag{2.6}$$

4. Untuk nilai T_0 dan T_s dapat ditentukan dengan Pers. 2.7 dan 2.8.

$$T_0 = 0.2 T_s$$
 (2.7)
$$T_s = \frac{S_{DI}}{S_{DS}} \tag{2.8}$$

Keterangan:

T adalah periode getar fundamental struktur.

2.5 Kategori Desain Seismik

Struktur harus ditetapkan memiliki suatu katagori desain seismik mengikuti pada Tabel 2.7 dan 2.8. Struktur dengan katagori risiko I, II, atau III yang berlokasi dimana parameter respon spektral percepatan terpetakan pada periode 1 detik, S_{I_1} lebih besar dari atau sama dengan 0,75 harus ditetapkan sebagai struktur dengan katagori desain seismik E.

Tabel 2.7: Kategori desain seismik berdasarkan parameter respons percepatan pada periode pendek.

Nilai S _{DS}	Kategori resiko			
	I atau II atau III	IV		
$S_{DS} < 0.167$	А	А		
$0,167 \le S_{DS} < 0,33$	В	С		
$0,33 \le S_{DS} < 0,50$	С	D		
$0,50 \le S_{DS}$	D	D		

Tabel 2.8: Kategori desain seismik berdasarkan parameter respons percepatan pada periode 1 detik.

Nilai S _{D1}	Kategori resiko			
	I atau II atau III	IV		
$S_{D1} < 0.067$	А	А		
$0,067 \le S_{D1} < 0,133$	В	С		
$0{,}133{\leq}S_{D1}{<}0{,}20$	С	D		
$0,20 \le S_{D1}$	D	D		

2.6 Faktor Reduksi Gempa

Sistem struktur yang digunakan harus sesuai dengan batasan sistem struktur dan batasan ketinggian struktur. Koefisien modifikasi respons yang sesuai, R, faktor kuat lebih sistem, Ω_0 , dan koefisien amplikasi defleksi, C_d , harus digunakan dalam penentuan geser dasar, gaya desain elemen, dan simpangan antar lantai tingkat desain.

Pada perencanaan tugas akhir ini penulis memakai Sistem Rangka Pemikul Momen Khusus (SRPMK). Berdasarkan SNI 1726;2012, nilai koefisien modifikasi respons (R^a), Faktor kuat lebih sistem (Ω_0^g), Faktor pembesaran defleksi (C_d^b) untuk sistem ganda adalah sebagai berikut :

Tabel 2.9: Faktor R, C_d , dan Ω_0 untuk sistem penahan gaya gempa SNI 1726;2012.

Sistem Penahan gaya seismik	Koefisien modifikasi respons	Faktor kuat lebih sistem	Faktor pembesara n defleksi	Batasan sistem struktur batasan tinggi struktur, (m) ^c Kategori desain seismi			dan h _n ik	
	K	${\mathbf \Omega_0}^{\mathrm{g}}$	\mathcal{L}_d	В	C	D^{d}	E ^d	\mathbf{F}^{d}
C. Sistem rangka pemikul momen								
1. Rangka baja pemikul momen khusus	8	3	51/2	TB	ТВ	ТВ	TB	ТВ
2. Rangka batang baja pemikul momen khusus	7	3	51/2	ТВ	ТВ	48	30	ΤI
3. Rangka baja pemikul momen menengah	41⁄2	3	4	ТВ	ТВ	10 ^h	TI^{h}	TI^{i}
4. rangka baja pemikul momen biasa	31⁄2	3	3	ТВ	ТВ	TI^{h}	TI^{h}	TI^{i}
5. Rangka beton bertulang pemikul momen khusus	8	3	51⁄2	ТВ	ТВ	ТВ	ТВ	ТВ
6. Rangka beton bertulang pemikul momen menengah	5	3	41⁄2	TB	ТВ	ΤI	ΤI	TI
7. Rangka beton bertulang pemikul momen biasa	3	3	21/2	TB	ΤI	ΤI	ΤI	ΤI
8. Rangka baja dan beton komposit pemikul momen khusus	8	3	51/2	TB	TB	TB	TB	TB

Tabel 2.9: Lanjutan.

	TT C 1	Faktor		Bata	san si	stem st	ruktur	dan
	Koefisien	kuat	Faktor	bata	asan ti	nooi st	ruktur	h
Sistem Penahan	modifikasi	1.1.7	pembesaran	ouu	abun ti		runnur,	n n
oava seismik	respons	lebih	defleksi			(m) °		
gaya seisining		sistem,		Ka	ategori	desain	seism	ik
	R^{a}	\mathbf{O}_{o}^{g}	C_d	В	С	\mathbf{D}^{d}	\mathbf{E}^{d}	\mathbf{F}^{d}
		0				-		-
9. Rangka baja								
komposit pomikul	5	3	41⁄2	TB	TB	ΤI	ΤI	TI
momen menengah								
10 Rangka baja								
dan beton								
komposit	6	3	51/2	48	48	30	ΤI	ΤI
terkekang parsial	-	-						
pemikul momen								
11. Rangka baja						-	-	
dan beton	2	2	21/4	тр	тт	тт	тт	тт
komposit pemikul	5	3	272	ID	11	11	11	11
momen biasa								
12. Rangka baja								
canai dingin		a 0		10	10	10	10	10
pemikul momen	31/2	3°	31/2	10	10	10	10	10
khusus dengan								
pembautan								
D. Sistem ganda								
nomilail momon								
khusus vang								
mampu menahan								
paling sedikit 25								
persen gaya								
gempa yang								
ditetapkan								
1.Rangka baja								
dengan bresing	8	21/2	4	TB	TB	TB	TB	TB
eksentris								
2.Rangka baja								
dengan bresing	7	21/2	51/2	TB	TB	TB	TB	TB
konsentris khusus								
3.Dinding geser	-	21/	-1 /	TD	TD	TTD	TD	TD
beton bertulang	1	21/2	51/2	TB	TB	TB	TB	TB
khusus								
4. Dinding geser	6	21/2	5	тр	тр	тт	тт	тт
biasa	U	∠†2	3	ID	ID	11	11	11
5 Ranoka haia dan								
beton komposit								
dengan bresing	8	21/2	4	TB	TB	TB	TB	TB
eksentris								

Tabel 2.9: Lanjutan.

	Koofician	Faktor	Faltor	Bata	asan si	stem s	truktur	dan
	Koensien	kuat			batasan tinggi struktur, h_n			
Sistem Penahan-	modifikasi	lebih	lebih pembesaran (m) ^c					
gaya seismik	respons,	ic on i	defleksi,	(11)				
	R^a	sistem,	$C_{\cdot}{}^{b}$	K	ategor	i desai	n seism	nik
	Λ	${oldsymbol{\Omega}_0}^{ m g}$	\mathbf{C}_d	В	С	\mathbf{D}^{d}	\mathbf{E}^{d}	\mathbf{F}^{d}
6.Rangka baja dan beton komposit dengan bresing konsentris khusus	6	21/2	5	TB	TB	TB	TB	TB
7.Dinding geser pelat baja dan beton komposit	71⁄2	21/2	6	TB	ΤB	TB	TB	TB
8.Dinding geser baja dan beton komposit khusus	7	21/2	6	TB	ΤB	TB	TB	TB
9.Dinding geser baja dan beton komposit biasa	6	21/2	5	TB	TB	TI	TI	TI
10.Dinding geser batu bata bertulang khusus	51⁄2	3	5	TB	TB	TB	TB	TB
11.Dinding geser batu bata bertulang menengah	4	3	31/2	TB	TB	TI	TI	TI
12.Rangka baja dengan bresing terkekang terhadap tekuk	8	21/2	5	TB	TB	TB	TB	TB
13.Dinding geser pelat baja khusus	8	21/2	61/2	TB	TB	TB	ТВ	ТВ

Catatan : ^cTB = Tidak Dibatasi dan TI = Tidak Dijinkan ^a faktor modifikasi respon, ^b faktor pembesaran defleksi, ^d sistem penahan gaya gempa yang dibatasi, ^g harga tabel faktor kuat lebih, ^h untuk struktur yang dikenai kategori disain seismik D atau E, ⁱ untuk struktur yang dikenai kategori disain seismic E.

2.7 Gaya Geser Dasar Seismik

Berdasarkan SNI1726;2012 Pasal 7.8.1, gaya geser dasar (V) dalam arah yang ditetapkan harus ditentukan sesuai dengan Pers. 2.9.

$$V = C_s . W \tag{2.9}$$

dimana:

 C_s = koefisien respons seismik

W =berat total gedung

Untuk nilai C_s menurut SNI 1726;2012 Pasal 7.8.1.1, persamaan yang digunakan untuk menentukan koefisien C_s adalah:

• Koefisien respon seismik, C_s

Untuk koefisien respon seismik C_s ditentukan berdasarkan rumus berikut

$$C_s = \frac{S_{DS}}{\binom{R}{l_e}}$$
(2.10)

dimana:

- S_{DS} = parameter percepatan spektrum respons desain dalam rentang periode pendek.
- R = faktor modifikasi respon berdasarkan Tabel 2.9
- I_e = faktor keutamaan hunian yang ditentukan berdasarkan Tabel 2.4

Nilai C_s diatas tidak perlu melebihi C_s hitungan berdasarkan rumus berikut:

$$C_s = \frac{S_{D1}}{T\left(\frac{R}{l_e}\right)} \tag{2.11}$$

 C_s harus tidak kurang dari:

$$C_s = 0.044 \ S_{DS} I_e \ge 0.01 \tag{2.12}$$

dimana:

 S_{D1} = parameter percepatan respons spektrum desain pada periode 1 detik

T = periode getar struktur (detik)

 S_I = parameter percepatan spektrum respons maksimum yang dipetakan Sebagai tambahan untuk struktur yang berlokasi di daerah dimana S_I sama dengan atau lebih besar dari 0,6 g maka C_s harus tidak kurang dari Pers. 2.13.

$$C_s = \frac{0.5. S_I}{\left(\frac{R}{I_e}\right)} \tag{2.13}$$

2.8 Perioda Fundamental

Menurut SNI 1726;2012 pasal 7.8.2.1 menyatakan bahwa periode struktur fundamental (T) dalam arah yang ditinjau harus diperoleh dengan menggunakan properti struktur dan karateristik deformasi elemen penahan dalam analisis yang

teruji. Perioda struktur fundamental memiliki nilai batas minimum dan nilai batas maksimum. Nilai batas tersebut adalah:

1. Perioda fundamental pendekatan minimum (T_a)

$$Ta = C_t \cdot h_n^{x} \tag{2.14}$$

dimana:

Ta =Nilai batas bawah periode bangunan

- h_n =Ketinggian struktur dalam m diatas dasar sampai tingkat tertinggi struktur
- C_t = Koefisien fundamental
- x =Ditentukan dari Tabel 2.10

Sebagai alternatif diizinkan untuk menentukan perioda fundamental (Ta) dari persamaan berikut untuk struktur dengan ketinggian tidak melebihi 12 tingkat dimana sistem penahan gaya gempa terdiri dari rangka pemikul momen beton atau baja secara keseluruhan dan tinggi tingkat paling sedikit 3 meter menurut Pers. 2.15.

$$T_a = 0.1 \text{ N}$$
 (2.15)

dimana :

N = jumlah tingkat

2. Perioda fundamental pendekatan maksimum $(T_{a maksimum})$

 $Ta_{maksimum} = C_u . Ta \tag{2.16}$

dimana:

Ta maksimum = Nilai batas atas periode bangunan

 C_u = Ditentukan dari Tabel 2.11

Tabel 2.10: Nilai parameter periode pendekatan C_r , dan x berdasarkan SNI1726;2012.

Tipe Struktur	C_t	x
Sistem rangka pemikul momen dimana rangka memikul		
100% seismik yang diisyaratkan dan tidak dilingkupi atau		
dihubungkan dengan komponen yang lebih kaku dan akan		
mencegah rangka dari defleksi jika gaya gempa:		

Tabel 2.10: Lanjutan.

Tipe Struktur	C_t	X
Rangka baja pemikul momen	0,0724 ^a	0,8
Rangka beton pemikul momen	0,0466 ^a	0,9
Rangka baja dengan bresing eksentris	0,0731 ^a	0,75
Rangka baja dengan bresing terkekang terhadap tekuk	0,0731 ^a	0,75
Semua sistem struktur lainnya	0,0488 ^a	0,75

^a faktor modifikasi respon.

Tabel 2.11: Koefisien untuk batas atas pada periode yang dihitung berdasarkan SNI 1726;2012.

Parameter Percepatan Respons Spektra Desain pada 1 Detik S_{D1}	Koefisien (C_u)
≥0,4	1,4
0,3	1,4
0,2	1,5
0,15	1,6
<u>≤</u> 0,1	1,7

2.9 Penentuan Distribusi Vertikal Gaya Gempa (Fi)

Distribusi horizontal gaya gempa ditentukan berdasarkan Pers. 2.17 dan 2.18.

$$F_x = C_{vx}V \tag{2.17}$$

$$C_{\nu x} = \frac{w_x h_x^k}{\sum_{i=1}^n w_i h_i^k} \tag{2.18}$$

dimana:

F _x	= bagian V yang bekerja di tingkat x.
C _{vx}	= faktor distribusi vertikal.
V	= gaya geser lateral struktur sesuai Pers 2.9.
$w_x dan \; w_i$	= bagian dari W yang ditempatkan di tingkat x.
h _x dan h _i	= tinggi tingkat x dari dasar.
k	= eksponen yang terkait dengan perioda struktur sebagai berikut:
	• Untuk struktur yang mempunyai perioda sebesar 0,5 detik atau
	kurang, $k = 1$.

- Untuk struktur yang mempunyai perioda sebesar 2,5 detik atau lebih , k = 2.
- Untuk struktur yang mempunyai perioda antara 0,5 dan 2,5 detik, k harus sebesar 2 atau harus ditentukan dengan interpolasi linier antar 1 dan 2.

2.10 Parameter Respon Terkombinasi

Menurut (Budiono dan Supriatna, 2011), respons masing-masing ragam yang ditentukan melalui spektrum respons rencana gempa merupakan respons maksimum. Pada umumnya, respons masing-masing ragam mencapai nilai maksimum pada saat yang berbeda sehingga respon maksimum ragam-ragam tersebut tidak dapat dijumlahkan begitu saja. Terdapat dua cara metode superposisi, yaitu metode Akar Kuadrat Jumlah Kuadrat (*Square Root of the Sum of Squares/SRSS*) dan Kombinasi Kuadrat Lengkap (*Complete Quadratic Combination/CQC*).

Dalam hal ini, jumlah ragam vibrasi yang ditinjau dalam penjumlahan ragam respons menurut metode ini harus sedemikian rupa sehingga partisipasi massa dalam menghasilkan respons total harus sekurang-kurangnya 90%. Untuk penjumlahan respons ragam yang memiliki waktu-waktu getar alami yang berdekatan, harus dilakukan dengan metode yang telah disebutkan sebelumnya yaitu Kombinasi Kuadrat Lengkap (*Complete Quadratic Combination/CQC*). Waktu getar alami harus dianggap berdekatan apabila selisihnya kurng dari 15%. Untuk struktur yang memiliki waktu getar alami yang berjauhan, penjumlahan respon ragam tersebut dapat dilakukan dengan metode yang dikenal dengan metode Akar Kuadrat Jumlah Kuadrat (*Square Root of the Sum of Squares/SRSS*).

2.11 Kekakuan (stiffness)

Struktur bangunan harus diberikan kekakuan secukupnya, sehingga gaya inersia (F = m.a) yang terjadi tidak besar dan lendutan atau simpangan (deviasi/sway-drift) antar tingkat bangunan/lantai bangunan masih terletak pada batas yang dizinkan.

Apabila kekakuan bangunan sangat kecil, maka pada saat tanah bergerak akibat gempa bangunan praktis tidak mengalami percepatan atau tidak terbawa untuk bergerak, bangunan lebih terasa mengayun secara fleksibel atau dengan istilah bangunan lebih elastis.Bangunan yang demikian dikatakan memiliki respons yang kecil terhadap gempa. Apabila kekakuan bangunan sangat besar, maka massa bangunan akan dipaksa untuk mengikuti sepenuhnya pergerakan tanah, sehingga percepatan yang dialami bangunan akan persis sama percepatan tanah. Bangunan yang demikian dikatakan mempunyai respons yang besar terhadap gempa.Optimasi yang ideal adalah gabungan komposisi kedua prinsip diatas dalam batas yang diizinkan dengan tidak terlalu kaku dan tidak terlalu lentur. Dalam hal ini material struktur, sistem sambungan struktur sangat berpengaruh terhadap pergerakan massa bangunan.

Untuk bangunan bertingkat*displacement govern*dapat terjadi pada balok biasa atau balok kantilever yang bentangnya panjang serta pada bangunan gedung yang jumlah tingkatnya sangat banyak (*high rise building*). Lendutan balok umumnya diproporsikan terhadap bentang, sedangkan simpangan tingkat biasanya diproporsikan terhadap tinggi tingkat dalam istilah *drift ratio*. *Drift ratio* adalah rasio antara simpangan antar tingkat dengan tinggi tingkat, seperti ditunjukkan pada Pers. 2.19.

$$Drift\ ratio = \frac{\Delta}{h} \tag{2.19}$$

Yang mana Δ adalah simpangan antar tingkat dan hadalah tinggi tingkat.

Apabila simpangan antar tingkat (Δ) terlalu besar maka akan timbul efek P- Δ . Efek P- Δ pada umumnya akan sangat membahayakan kesetabilan struktur, karena akan menimbulkan momen kolom yang sangat besar (akibat P yang umumnya sangt besar). Selain pembatasan lendutan dan simpangan yang terjadi sebagai bentuk dari design kriteria, maka struktur bangunan hendaknya jangan terlalu fleksibel. System pengaku dapat dipakai untuk mengurangi/mengendalikan lendutan/simpangan.

Menurut (Tumilar, 2015) kekakuan struktur dapat juga dihitung dengan Pers. 2.20.

$$Ki = \frac{V}{\Delta i}$$

2.12 Pembebanan

Menurut SNI 1727;2013, struktur gedung harus direncanakan kekuatannya terhadap pembebanan-pembebanan oleh beban mati, beban hidup, beban angin dan beban gempa.

2.12.1 Beban Mati

Menurut SNI 1727;2013 pasal 3.1.1 bahwa beban mati adalah berat dari seluruh bahan konstruksi bangunan gedung yang terpasang, termasuk dinding, lantai atap, plafon, tangga, dinding partisi tetap, *finishing*, klading gedung dan komponen arsitektural serta peralatan layan terpasang lain termasuk berat keran.Nilai berat bahan dan konstruksiyang digunakan adalah nilai yang disetujui oleh pihak yang berwenang.Oleh karena itu berat bahan dan konstruksi diambil dari PPPURG 1987.Berat sendiri dari bahan bangunan adalah merupakan salah satu beban mati yang mana di jabarkan dalam Tabel 2.12.

BAHAN BANGUNAN	Berat Jenis
Baja	7.850 kg/m^3
Batu alam	2.600 kg/m^3
Batu belah, batu bulat, batu gunung (berat tumpuk)	1.500 kg/m^3
Batu karang (berat tumpuk)	700 kg/m ³
Batu pecah	1.450 kg/m^3
Besi tuang	7.250 kg/m ³
Beton	2.200 kg/m^3
Beton bertulang	2.400 kg/m^3
Kayu (Kelas I)	1.000 kg/m^3
Kerikil, koral (kering udara sampai lembab, tanpa diayak)	1.650 kg/m^3
Pasangan bata merah	1.700 kg/m^3
Pasangan batu belah, batu bulat, batu gunung)	2.200 kg/m^3

Tabel 2.12 Berat sendiri bahan bangunan dan komponen gedung.

Tabel 2.12: Lanjutan.

BAHAN BANGUNAN	Berat Jenis
Pasangan batu cetak	2.200 kg/m ³
Pasangan batu karang	1.450 kg/m^3
Pasir (kering udara sampai lembab)	1.600 kg/m ³
Pasir (jenuh air)	1.800 kg/m ³
Pasir kerikil, koral (kering udara sampai lembab)	1.850 kg/m^3
Tanah, lempung dan lanau (kering udara sampai lembab)	1.700 kg/m^3
Tanah, lempung dan lanau (basah)	2.000 kg/m^3
Timah hitam (timbel)	11.400 kg/m ³
KOMPONEN GEDUNG	
Adukan, per cm tebal:	
- dari semen	21 kg/m ²
- dari kapur, semen merah atau tras	17 kg/m ²
Aspal, termasuk bahan-bahan mineral penambah, per cm tebal	14 kg/m ²
Dinding pasangan bata merah	
- satu bata	450 kg/m ²
- setengah batu	250 kg/m ²
Dinding pasangan batako, berlubang:	
- tebal dinding 20 cm (HB 20)	200 kg/m^2
- tebal dinding 10 cm (HB 10)	120 kg/m^2
Dinding pasangan batako, tanpa lubang:	
- tebal dinding 15 cm	300 kg/m ²
- tabal dinding 10 cm	200 kg/m ²
Langit-langit dan dinding (termasuk rusuk-rusuknya, tanpa	
penggantung langit-langit atau pengaku), terdiri dari:	
- semen asbes (eternit dan bahan lain sejenis), dengan tebal maksimum 4 mm	11 kg/m ²
- kaca, dengan tebal 3-5 mm	10 kg/m^2
Lantai kavu sederhana dengan balok kavu, tanpa langit-langit	- 8
dengan bentang maksimum 5 m dan untuk beban hidup 200	40 kg/m^2
kg/m ²	
Penggantung langit-langit (dari kayu), dengan bentang	/ 2
maksimum 5 m dan jarak s.k.s. minimum 0,8 m	7 kg/m ²
Penutup atap genting dengan reng dan usuk/kaso, per m ²	
bidang atap	50 kg/m^2
Penutup atap sirap dengan reng dan usuk/kaso, per m ² bidang	40 1/2
atap	40 Kg/m

Tabel 2.12: Lanjutan.

BAHAN BANGUNAN	Berat Jenis
Penutup atap seng gelombang (BJLS-25) tanpa gordeng	10 kg/m ²
Penutup lantai dab ubin semen portland, teraso dan beton, tanpa adukan, per cm tebal	24 kg/m ²
Semen asbes gelombang (tebal 5 mm)	11 kg/m ²

2.12.2 Beban Hidup

Menurut SNI-1727-2013, beban hidup adalah beban yang diakibatkan oleh pengguna dan penghuni bangunan gedung atau struktur lain yang tidak termasuk beban konstruksi dan beban lingkungan, seperti beban angin, beban hujan, beban gempa, beban banjir atau beban mati. beban hidup pada lantai gedungharus diambil menurut Tabel 2.13.

Tabel 2.13: Beban hidup pada lantai gedung.

	Beban Merata	Beban terpusat
Human atau Penggunaan	$psf(kN/m^2)$	lb (kN)
Apartemen dan hotel(lihat rumah tinggal)		
Sistem lantai akses		
Ruang kantor	50 (2.4)	2000 (8.9)
Ruang computer	100 (4.79)	2000 (8.9)
Gudang persenjataan dan ruang latihan	150 (7.18) ^a	
Ruang pertemuan		
Kursi tetap (terikat dilantai)	100 (4.79) ^a	
Lobi	100 (4.79) ^a	
Kursi dapat dipindahkan	100 (4.79) ^a	
Panggung pertemuan	100 (4.79) ^a	
Lantai podium	150 (7.18)	
Balkon dan dek	1.5 kali beban	
	hidup untuk	
	daerah yang	
	dilayani. Tidak	
	perlu melebihi	
	100 psf (4.79	
	kN/m^2)	
Jalur untuk akses pemeliharaan	40 (1.92)	300 (1.33)
Koridor		
Lantai pertama		
Lantai lain	100 (4.79)	
	Sama seperti	
	pelayanan	
	hunian kecuali	
	disebutkan lain	
Ruang makan dan restoran	100 (4.79) ^a	
Hunian (lihat rumah tinggal)		
R. mesin elevator (pada daerah 2inx2in [50 mmx50 mm]		300 (1.33)

Tabel 2.1	13: L	.anjutan.
-----------	-------	-----------

Hunian atau Penggunaan	Beban Merata $psf(kN/m^2)$	Beban terpusat lb (kN)
Konstruksi pelat lantai <i>finishing</i> ringan (pada area		200 (0.89)
linxlin. [25 mmx 25mm]	100 (4.70)	
Jalur penyelamatan terhadap kebakaran	100 (4.79)	
Human satu keluarga saja	40 (1.92)	
Tangga permanen	SNI-1727-201	3 pasal 4.5
Garasi/parker	ab c	
Mobil penumpang saja	40 (1.92) ^{a,b,c}	
Truk dan bus		
Susuran tangga, rel pengamandan batang pegangan	SNI-1726-201	3 pasal 4.5
Helipad	$60 (2.87)^{de}$	e,ı,g
	Tidak boleh	
	direduksi	
Rumah sakit:		
Ruang operasi laboratorium	60 (2.87)	1000 (4.45)
Ruang pasien	40 (1.92)	1000 (4.45)
Koridor diatas lantai pertama	80 (3.83)	1000 (4.45)
Perpustakaan		
Ruang baca	60 (2.87)	1000 (4.45)
Ruang penyimpanan	150 (7.18) ^{a,n}	1000 (4.45)
Koridor diatas lantai pertama	80 (3.83)	1000 (4.45)
Pabrik		
Ringan	125 (6.00) ^a	2000 (8.9)
Berat	250 (11.97) ^a	3000 (13.4)
Gedung perkantoran		
Ruang arsip dan komputer harus dirancang untuk		
beban yang lebih berat berdasarkan pada perkiraan		
hunian		
Lobi dan koridor lantai pertama	100 (4.79)	2000 (8.9)
kantor	50 (2.4)	2000 (8.9)
koridor diatas lantai pertama	80 (3.83)	2000 (8.9)
Lembaga hokum		
Balok sel	40 (1.92)	
Koridor	100 (4.79)	
Tempat rekreasi	<u>_</u>	
Tempat bowling, kolam renang, dan penggunaan	$75 (3.59)^{a}$	
yang sama		
Bangsal dansa dan ruang dansa	100 (4.79) ^a	
Gymnasium	$100 (4.79)^{a}$	
Tempat menonton baik terbuka atau tertutup	100 (4.79) ^{a,k}	
Stadium dan tribun / arena dengan tempat duduk	60 (2.87)	
tetap (terikat pada lantai)		
Rumah tinggal		
Hunian (satu keluarga dan dua keluarga)		
Loteng yang tidak dapat didiami tanpa gudang	$10 (0.48)^{\circ}$	
Loteng yang tidak dapat didiami dengan gudang	20 (0.96) ^m	
Loteng yang dapat didiami dan ruang tidur	30 (1.44)	
Semuaruang terkecuali tangga dan balkon	40 (1.92)	
Semua hunian rumah tinggal lainnya		
Ruang pribadi dan koridor yang melayani mereka	40 (1.92)	
Ruang publik" dan koridor yang melayani mereka	100 (4.79)	
Atap	a o (a a a)	
Atap datar, berbubung dan lengkung	20 (0.96) ⁿ	
Atap digunakan untuk taman atap	100 (4.79)	

Tabel 2.13: Lanjutan.

Hunian atau Penggunaan	Beban Merata	Beban terpusat
	$pst(kN/m^2)$	lb (kN)
Atap yang digunakan untuk tujuan lain	Sama seperti	i
	nunian dilayani	
Atap yang digunakan untuk hunian lainnya	_	
Awning dan kanopi	5 (0.24) 4:4-1-	
Konstruksi pabrik yang didukung olen struktur	5(0.24) tidak	
rangka kaku ringan	boleh direduksi	200 (0.90)
Rangka tumpu layar penutup	5(0.24) tidak	200 (0.89)
	bolen direduksi	
	dan berdasarkan	
	luas tributary	
	dan atap yang	
	ditumpu oleh	
	rangka	2000 (9.0)
Semua konstruksi lainnya	20 (0.96)	2000 (8.9)
Komponen struktur atap utama, yang terhubung		
langsung dengan pekerjaan lantai		200 (1.22)
litik panel tunggal dari batang bawan rangka		300 (1.33)
atau setiap titik sepanjang komponen struktur		
utama yang mengdukung atap diatas pabrik,		
gudang, dan perbaikan garasi		200 (1.22)
Semua komponen struktur atap utama lainnya		300 (1.33)
Semua permukaan atap dengan beban pekerja		
Pemeinaraan Coloriaria		
Buong kalos	40 (1.02)	1000 (4.5)
Kualig Kelas Koridan diatas lantai nartama	40(1.92)	1000 (4.3) 1000 (4.5)
Kondor diatas lantai pertama	00 (3.83) 100 (4.70)	1000 (4.3) 1000 (4.5)
Rondon landa pertaina Pak bak/sauttlas Pusuk untuk atan kaca dan langit langit	100 (4.79)	200(0.80)
vang dapat diakses		200 (0.89)
Pinggir jalan untuk pajalan kaki, jalan lintas kandaraan	250 (11 07) ^{a,p}	8000 (35.6) ^q
dan lahan /ialan untuk truk truk	230 (11.97)	8000 (33.0)
Tangga dan jalan kalvar	100 (4 70)	200 ^r
Pumph tinggal untuk aatu dan dua kaluarga saja	100(4.79) 40(1.02)	300 300 ^r
Kullan tinggal untuk satu dan dua keluarga saja	40(1.92)	500
Gudang diatas langit-langit	20 (0.90)	
na soor (iika diantisinasi manjadi, sudang panyimpanan		
barus dirangang untuk bahan labih barat)		
Ringan	$125 (600)^{a}$	
Ringan	125(0.00) 250 (11.07) ^a	
Toko	250 (11.97)	
Eceran		
Lantai pertama	100 (4 79)	1000 (4.45)
Lantai portaina Lantai diatasnya	75 (50)	1000 (4.45)
Grosir disemua lantai	$125 (600)^{a}$	1000 (4.45) 1000 (4.45)
Penghalang kendaraan	Libat pasal 4.5	1000 (4.43)
Susuran jalan dan panggung yang ditinggikan (selain	60 (2 87)	
jalan keluar)	00 (2.07)	
Pekarangan dan teras jalur pejalan kaki	$100 (4.79)^{a}$	
i oharangan aan torus, jalar pojalan kaki	100 (7.77)	1

Berhubungan dengan peluang untuk terjadinya beban hidup penuh yang membebani semua bagian dari semua unsur struktur pemikul secara serempak selama umur gedung tersebut adalah sangat kecil, maka untuk hal-hal tersebut beban hidup tersebut dianggap tidak efektif sepenuhnya, sehingga beban hidup terbagi rata dapat dikalikan dengan suatu koefisien reduksi. Menurut SNI 1727;2013 pasal 4.7.2, bahwa koefisien reduksi beban hidup dapat dilihat pada Pers. 2.21.

$$L = L_o \left(0.25 + \frac{4.57}{\sqrt{K_{LL}A_T}} \right)$$
(2.21)

Dimana:

L = beban hidup rencana tereduksi.

 L_o = beban hidup rencana tanpa reduksi.

 K_{LL} = faktor elemen beban hidup.

 A_T = luas struktur bangunan.

L tidak boleh kurang dari $0.4L_0$ untuk komponen struktur yang mendukung dua lantai atau lebih.Nilai faktor elemen hidup (K_{LL}) dapat dilihat pada Tabel 2.14.

Tabel 2.14: Faktor elemen hidup.

Elemen	K_{LL}^{a}
Kolom-kolom interior	4
Kolom-kolom eksterior tanpa pelat kantilever	4
Kolom-kolom tepi dengan pelat kantilever	3
Kolom-kolom sudut dengan pelat kantilever	2
Balok-balok tepi tanpa pelat-pelat kantivaler	2
Balok-balok interior	2
Semua komponen struktur yang tidak disebut diatas:	
Balok-balok tepi dengan pelat-pelat kantiveler	
Balok-balok kantilever	
Pelat-pelat satu arah	
Pelat-pelat dua arah	1
Komponen struktur tanpa ketentuan-ketentuan untuk	
penyaluran	
Geser menerus tegak lurus terhadap bentangnya	

Beban hidup penuh tanpa dikalikan dengan koefisien reduksi tetap harus ditinjau pada:

- Lantai gedung, ruang arsip, perpustakaan dan ruang-ruang penyimpanan lain sejenis.
- Lantai ruang yang memikul beban berat tertentu yang bersifat tetap, seperti alat-alat dan mesin-mesin.

2.12.3 Beban Angin

Beban angin adalah semua beban yang bekerja pada gedung atau bagian gedung yang disebabkan oleh selisih dalam tekanan udara. Beban angin berpengaruh pada gedung yang berlantai 25 atau lebih. Jadi dalam masalah ini beban angin di hiraukan dikarenakan struktur bangunan hanya 5 lantai < 25 lantai dan struktur bangunan tidak memakai atap segitiga dengan menggunakan kuda-kuda.

2.12.4 Beban Gempa

Beban gempa adalah beban yang timbul akibat percepatan getaran tanah pada saat gempa terjadi. Untuk merencanakan struktur bangunan tahan gempa, sesuai dengan pasal-pasal yang ditentukan oleh SNI 1726;2012 Tata Cara Pecencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung, maka terlebih dahulu harus menganalisis/menentukan faktor keutamaan dan kategori resiko struktur bangunan serta kelas situs desain seismik.

Struktur bangunan gedung harus memiliki sistem penahan gaya lateral dan vertikal yang lengkap, yang mampu memberikan kekuatan, kakakuan, dan kapasitas disipasi energi yang lengkap, untuk menahan gerak tanah desain dalam batasan-batasan kebutuhan deformasi dan kekuatan yang disyaratkan. Gerak tanah desian harus diasumsikan terjadi di sepanjang setiap arah horisontal struktur bangunan gedung. Kecukupan sistem struktur harus ditunjukkan melalui pembentukan model matematik dan pengevaluasian model tersebut untuk pengaruh gerak tanah desain.

2.13 Simpangan Antar Lantai

Berdasarkan SNI 1726;2012 pasal 7.8.6, simpangan antar lantai hanya terdapat satu kinerja, yaitu kinerja batas ultimit. Penentuan simpangan antar lantai tingkat desain (Δ) harus dihitung sebagai perbedaan defleksi pada pusat masa teratas dan terbawah yang ditinjau. Apabila pusat masa tidak terletak segaris, dalam arah vertikal, diizinkan untuk menghitung defleksi didasar tingkat berdasarkan proyeksi vertikal dari pusat massa diatasnya.

Jika digunakan desain tegangan izin, Δ harus dihitung memakai gaya gempa tingkat kekuatan tanpa reduksi.Simpangan antar lantai, nilainya harus diperbesar dengan menggunakan Pers.2.22 di bawah ini

$$\delta_x = \frac{C_d \,\delta_{xe}}{I_e} \tag{2.22}$$

Dimana:

 δ_x = defleksi pusat massa di tingkat x.

 δ_{xe} = defleksi pada pada lokasi yang disyaratkan.

 C_d = Faktor pembesaran defleksi.

 I_e = Faktor keutamaan gempa.

Dari nilai simpangan antar tingkat desain (Δ) tidak boleh melebihi simpangan antar lantai izin (Δ_a), sesuai dengan peraturan SNI1726;2012, bahwa struktur gedung harus berada dalam simpangan yang diizinkan.

Tabel 2.15: Simpangan antar lantai izin berdasarkan SNI 1726;2012.

Struktur	Kategori resiko		
Stituktui	I atau II	III	IV
Struktur, selain struktur dinding geser batu bata, 4 tingkat atau kurang dengan dinding interior, partisi, langit-langit dan sistem mengakomodasi simpangan antar lantai tingkat.	$0,025 h_{sx}^{c}$	0,020 h _{sx}	0,015 h _{sx}
Struktur dinding geser kantilever batu bata	$0,010 h_{sx}$	$0,010 h_{sx}$	$0,010 h_{sx}$
Struktur dinding geser batu bata lainnya	$0,007 h_{sx}$	$0,007 h_{sx}$	$0,007 h_{sx}$
Semua struktur lainnya	$0,020 h_{sx}$	$0,015 h_{sx}$	$0,010 h_{sx}$

Catatan: h_{sx} = tinggi tingkat yang bersangkutan

^c = tidak boleh ada batasan simpangan antar lantai

2.14 Kombinasi Beban

Menurut Budiono dan Supriatna (2011), standar kombinasi pembebanan sebagai berikut :

- 1. 1,4DL
- 2. 1,2DL + 1,6LL
- 3. 1,2DL + 1 LL ± 0,3 ($\rho Q_E + 0,2S_{DS}DL$) ± 1 ($\rho Q_E + 0,2S_{DS}DL$)
- 4. 1,2DL + 1 LL ± 1 (ρQ_E + 0,2 $S_{DS}DL$) ± 0,3 (ρQ_E + 0,2 $S_{DS}DL$)
- 5. 0,9 DL \pm 0,3 (ρQ_E + 0,2 $S_{DS}DL$) \pm 1 (ρQ_E + 0,2 $S_{DS}DL$)
- 6. 0,9 DL ± 1 ($\rho Q_E + 0.2S_{DS}DL$) ± 0.3 ($\rho Q_E + 0.2S_{DS}DL$)

Keterangan :

- D Adalah beban mati yang diakibatkan oleh berat konstruksi permanent, termasuk dinding, lantai, atap, plafond, partisi tetap, tangga, dan peralatan layan tetap ;
- L Adalahbeban hidup yang ditimbulkan oleh penggunaan gedung, termasuk kejut, tetapi tidak termasuk beban lingkungan seperti angin, hujan, dan lain lain ;
- E Adalah beban gempa.
 - Pengaruh beban gempa, *E*, untuk penggunaan dalam kombinasi beban 3 dan 4 harus ditentukan sesuai dengan persamaan berikut:

 $E = E_h + E_v$

• Pengaruh beban gempa, *E*, untuk penggunaan dalam kombinasi beban 5 dan 6 harus ditentukan sesuai dengan persamaan berikut:

 $E = E_h - E_v$

Dimana:

E adalah pengaruh beban seismik

E_h adalah pengaruh beban seismik horizontal

Ev adalah pengaruh beban seismik vertikal

• Untuk pengaruh beban seismik horizontal, E_h , harus ditentukan dengan persamaan berikut:

 $E_h = \rho Q_E$

- Untuk pengaruh beban seismik vertikal, E_{ν} , harus ditentukan dengan persamaan berikut:
- $E_v = 0.2S_{DS}DL$

Faktor redundansi, ρ , harus dikenakan pada sistem penahan gaya gempa dalam masing-masing kedua arah ortogonal untuk semua struktur.

Nilai ρ diijinkan sama dengan 1,0 untuk hal-hal berikut:

- 1. Struktur dirancang untuk kategori desain seismik B atau C
- 2. Perhitungan simpangan antar lantai dan pengaruh P-delta
- 3. Desain komponen struktural
- 4. Desain struktur non gedung yang tidak mirip dengan bangunan gedung
- 5. Desain elemen kolektor, sambungan lewatan dan sambungan dimana kombinasi beban dengan faktor kuat lebih digunakan
- 6. Desain elemen struktur atau sambungan dimana kombinasi beban dengan faktor kuat lebih disyaratkan untuk desain
- 7. Struktur dengan sistem peredaman

Sedangkan nilai ρ sama dengan 1,3 untuk struktur yang dirancang untuk kategori desain seismik D, E, dan F, kecuali jika satu dari dua kondisi berikut terpenuhi, dimana ρ diijinkan diambil sebesar 1,0:

- Masing-masing tingkat yang menahan lebih dari 35 persen geser dasar dalam arah yang ditinjau
- 2. Struktur dengan denah beraturan di semua tingkat dengan sistem penahan gaya gempa terdiri paling sedikit dua bentang perimeter penahan gaya gempa yang merangka pada masing-masing sisi struktur dalam masing-masing arah ortogonal di setiap tingkat yang menahan lebih dari 35 persen geser dasar. Jumlah bentang untuk dinding geser harus dihitung sebagai panjang dinding geser dibagi dengan tinggi tingkat atau dua kali panjang dinding geser dibagi dengan tinggi tingkat, h_{sx} , untuk konstruksi rangka ringan.

2.15 Persyaratan Untuk Sistem Rangka Pemikul Momen Khusus (SRPMK) Berdasarkan SNI 2847;2013

Komponen struktur lentur pada SRPMK harus memenuhi syarat-syarat dibawah ini:

- 1. Gaya tekan aksial terfaktor pada komponen struktur, P_u , tidak boleh melebihi $A_g f'_c/10$.
- 2. Bentang bersih komponen struktur, ℓ_n , tidak boleh kurang dari empat kali tinggi efektifnya.
- 3. Lebar komponen, b_w , tidak boleh kurang dari yang lebih kecil dari 0,3h dan 250mm.
- 4. Lebar komponen struktur, b_w , tidak boleh melebihi lebar komponen struktur penumpu, c_2 , ditambah suatu jarak pada masing-masingsisi komponen struktur penumpu yang sama dengan yang lebih kecil dari (a) dan (b) :
 - a. Lebar komponen struktur penumpu, c_2 , dan
 - b. 0,75 kali dimensi keseluruhan komponen struktur penumpu, c_1 .

2.16 Breising Konsentrik

Bracing merupakan elemen struktur penahan gaya lateral. Elemen ini berupa batang yang dipasang pada portal struktur. Karakteristik dari elemen ini adalah dominasi aksial yang terjadi ketika gaya lateral terjadi. Di mana pada saat gempa terjadi, gaya lateral yang diterima oleh struktur akan diteruskan pada elemen bresing ini sebagai gaya-gaya aksial (Ahmadi dan Octaviana, 2008).

Beberapa tipe breising konsentrik yang ada, diantaranya adalah tipe breising konsentrik biasa (*ordinary concenctric braced frames*) dan tipe konsentrik khusus (*special concentric braced frames*). Pada tugas akhir ini, tipe bresing yang digunakan adalah tipe X-Breising Konsentrik atau X-CBF.

Gambar 2.5: Jenis – jenis struktur bresing konsentrik.

Bresing yang digunakan harus kuat dalam menahan beban aksial yang diterimanya. Konsep batang breising ketika menerima gempa dapat dilihat pada gambar berikut.

Gambar 2.6: Mekanisme deformasi pada breising.

2.16.1 Persyaratan Umum Rangka Breising

Breising yang digunakan sebagai komponen penahan gaya lateral harus memenuhi parameter berikut :

• Kelagsingan

Jika batang elemen breising mempunyai profil yang langsing maka akan mengurangi kekakuan breising. Sehingga diupayakan agar elemen yang digunakan tidak menggunakan elemen langsing.

Analisis Tekuk

Berdasarkan jenis elemen breising yang mengalami gaya aksial, maka elemen breising harus dicek terhadap tekuk.

Mekanisme keruntuhan direncanakan terjadi pada elemen breisng dan plat buhul sambunganbreising ke balok dan kolom. Pada saat terjadi gempa besar, diharapkan terjadi tekuk pada batang breising (akibat beban aksial yang diterimanya) sehingga terjadi putaran sudut pada ujung breising yang kemudian menyebabkan pelat buhul pada sambungan ujung bresing leleh (terjadi sendi plastis).

Gambar 2.7: Mekanisme plastisitas yang direncanakan.

2.17 Isolasi Dasar

Isolasi dasar merupakan teknologi yang digunakan untuk meredam kekuatan seismik, meminimalisir terjadinya kerusakan bangunan dan jumlah jatuhnya korban jiwa akibat terjadinya gempa bumi. Isolasi dasar di letakkan diantara kolom dan pondasi bangunan seperti yang diperlihatkan pada Gambar 2.8.

Gambar 2.8: Letak isolasi dasar pada struktur bangunan gedung.

Prinsip isolasi dasar adalah membedakan struktur bawah dengan struktur atas agar gaya gempa yang diterima struktur bawah (pondasi) tidak masuk ke struktur atas bangunan. untuk mencegah terjadinya gaya gempa, struktur bangunan dibuat tidak mengikuti percepatan gempa (Muliadi dkk., 2014).

2.17.1 Elemen Dasar Isolasi dasar

Menurut (Mayes dan Naeim, 2000), terdapat tiga elemen dasar pada system isolasi dasar, yaitu:

- 1. Pemasangan yang flexibel, sehingga getaran perioda total diperpanjang.
- 2. *Damper* atau energi peredam, sehingga lendutan relatif antar bangunan dan tanah dapat dikendalikan untuk desain praktis.

 Alat untuk memberikan kekakuan pada bagian bawah struktur berdasarkan beban angin dan gempa ringan.

Menurut (Teruna dan Singarimbun, 2010), Prinsip utama cara kerja isolasi dasar jenis *elastomeric bearing* (HDRB atau LRB) adalah dengan memperpanjang waktu getar alami struktur diluar frekwensi dominan gempa sampai 2.5 atau 3 kali dari waktu getar struktur tanpa isolasi (*fixed base structures*) dan memiliki damping antara 10 s/d 20%. Akibatnya gaya gempa yang disalurkan ke struktur menjadi lebih kecil.

Sedangkan pada *friction pendulum system* (FPS), parameter yang berpengaruh terhadap besarnya reduksi gaya gempa yang bekerja pada struktur adalah koefisien gesekan dan radius kelengkungan dari permukaan cekung bidang gelincir sistem FPS. Disamping itu satu hal yang unik dari sistem ini adalah waktu getar struktur tidak tergantung kepada massa bangunan tetapi tergantung kepada radius kelengkungan dan percepatan gravitasi Bumi.

2.17.2 High-Damping Rubber Bearing (HDRB)

High-damping rubber bearing merupakan salah satu jenis dari *Elestomeric Isolasi*. Menururt (Budiono dan Setiawan, 2014), *High-damping rubber bearing* merupakan salah satu jenis laminated rubber bearing yang terbuat dari campuran senyawa karet dengan nilai rasio redaman yang tinggi. *High-damping rubber bearing* memiliki nilai kekakuan awal yang tinggi sehingga mampu mengakomodasi gaya angin dan gempa ringan tanpa berdeformasi secara signifikan.

Dengan meningkatnya eksitasi gempa maka deformasi lateral akan meningkat dan modulus geser dari rubber akan menurun dan menghasilkan sistem isolasi dasar yang efektif (cukup fleksibel untuk memperpanjang periode struktur). Pada nilai regangan geser 250 hingga 300%, kekakuan horizontal akan meningkat kembali akibat pengaruh *hardening effects*.Pengaruh ini berfungsi sebagai "sekring" untuk membatasi deformasi yang melebihi batas gempa maksimum yang direncanakan.Perangkat HDRB dan mekanisme pergerakannya dapat dilihat pada Gambar 2.9.

Gambar 2.9: Perangkat HDRB dan mekanisme pergerakannya.

2.17.3 Prosedur Desain Isolasi dasar HDRB

Dalam mendisain isolasi dasar untuk jenis HDRB. Harus memperhatikan nilai yang terdapat pada material yang akan digunakan, seperti modulus geser dandimensi yang akan digunakan. Menurut penelitian Farissi dan Budiono, nilai material yang dimaksud terdapat pada Tabel 2.16.

HDRB Material Properties		
Diameter	1100 mm	
Ketebalan karet	250 mm	
Ketebalan tiap lapis	10 mm	
Modulus Geser (G)	0.624 MPa	
Poition Ratio	0,49	
Berat jenis	1522 kg/m ³	
Berat isolasi dasar	361.747 kg	
K _{eff}	2359.10 kN/m	
Qy	217.05 kN	
K _d	1469.74 kN/m	
Ku	14697.42 kN/m	
Dy	0.02 m	
Qu	575.74 kN	
β	24.89%	

Tabel 2.16: Nilai dasar material isolasi HDRB (Farissi & Budiono).

Salah satu parameter yang paling penting dalam mendisain isolasi HDRB adalah mencari nilai *shape factor* dengan Pers. 2.23.

$$S = \frac{\phi}{4t} \tag{2.23}$$

dimana:

S = shape factor.

 Φ = diameter lingkaran karet.

t = tebal karet per 1 lembar.

Umumnya desain yang bagus memiliki nilai *shape factor* antara 10-20. Selanjutnya mencari nilai kekakuan horizontal dan vertikal menurut Pers. 2.24 dan 2.25.

$$K_H = \frac{GA}{t_r} \tag{2.24}$$

$$K_V = \frac{E_C A_S}{t_r} \tag{2.25}$$

dimana:

 K_H = kekakuan arah horizontal.

 K_V = kekakuan arah vertikal.

A =luasan area bantalan.

 t_r = tebal keseluruhan bantalan.

 E_c = modulus elastisitas material.

 A_s = luasan penyangga besi perletakan bantalan.

Pada Pers. 2.25 terdapat nilai modulus elastisitas (E_C) yang didapat dengan menggunakan Pers. 2.26.

$$E_c = 6GS^2 \tag{2.26}$$

Selain mencari kekakuan, *shape factor*, dan modulus elastisitas yang akan digunakan dalam mendesain isolasi HDRB, perlu mencari nilai regangan geser maksimum (γ) dengan menggunakan Pers. 2.27.

$$\gamma = \frac{D}{t_r}$$

dimana:

D = perpindahan horizontal maksimum.

2.18 Prosedur Gaya Lateral Ekivalen Sistem Isolasi Menurut SNI 1726; 2012

Menurut SNI 1726;2012 pasasl 12.4.1, prosedur gaya lateral ekivalen sistem isolasi boleh digunakan untuk perencanaan struktur dengan isolasi seismik dengan ketentuan sebegai berikut:

- 1. Struktur terletak disitus dengan S_1 kurang atau sama dengan 0.60g.
- 2. Struktur terletak pada kelas situs SA, SB, SC, atau SD.
- Tinggi struktur diatas pemisah isolasi kurang atau sama dengan 4 lantai, atau 19.8 m dari tinggi struktur, h_n, diukur dari dasar.
- 4. Perioda efektif struktur dengan isolasi pada perpindahan maksimum, T_M , kurang atau sama dengan 3.0 detik.
- Perioda efektif struktur dengan isolasi dengan perpindahan rencana, T_D, lebih besar 3 kali perioda elastic struktur terjepit dari struktur diatas sistem isolasi.
- 6. Konfigurasi struktur diatas sistem isolasi adalah beraturan.
- 7. Sistem isolasi harus memenuhi semua kriteria berikut:
 - a. Kekakuan efektif sistem isolasi pada perpindahan rencana lebih besar dari 1/3 kekakuan efektif pada saat 20% perpindahan rencana.
 - b. Sistem isolasi mampu menghasilkan suatu gaya pemulih.
 - c. Sistem isolasi tidak membatasi perpindahan gempa maksimum yang dipertimbangkan lebih kecil dari perpindahan maksimum total.

2.18.1 Perpindahan Rencana

Menurut SNI 1726;2012 pasal 12.5.3.1 sistem isolasi harus direncanakan dan dibangun untuk menahan perpindahan gempa lateral minimum (D_D) yang dicari menggunakan Pers. 2.28.

$$D_D = \frac{gS_{D1}T_D}{4\pi^2 B_D}$$
(2.28)

dimana:

- g = percepatan grafitasi.
- S_{D1} = parameter percepatan spektral rencana dengan dengan redaman 5% pada perioda 1 detik.
- T_D = perioda efektif struktur dengan isolasi seismik pada perpindahan rencana dalam arah yang ditinjau.
- B_D = koefisien numerik terkait dengan redaman efektif sistem isolasi pada perpindahan rencana.

Koefisien redaman (B_D) yang termasuk pada Pers. 2.28 dapat dilihat pada Tabel 2.17.

Redaman Efektif, β_D atau β_M	Faktor B _D atau B _M
<u>≤</u> 2	0.8
5	1.0
10	1.2
20	1.5
30	1.7
40	1.9
<u>≥</u> 50	2.0

Tabel 2.17: Koefisien redaman, B_D atau B_M.

2.18.2 Perioda Efektif Pada Saat Perpindahan Rencana

Menurut SNI 1726;2012 pasal 12.5.3.2, periode efektif struktur yang di isolasi pada perpindahan rencana (T_D) di hitung dengan menggunakan Pers. 2.29.

$$T_D = 2\pi \sqrt{\frac{W}{K_{Dmin}g}} \to K_{Dmin} = \frac{Wg}{\left(\frac{T_D}{2\pi}\right)^2}$$
(2.29)

dimana:

W = berat seismik efektif struktur diatas pemisah isolasi.

 K_{Dmin} = kekakuan efektif minimum sistem isolasi.

g = percepatan grafitasi.

2.18.3 Perpindahan Maksimum

Menurut SNI 1726;2012 pasal 12.5.3.3, perpindahan maksimum sistem isolasi (D_M) arah yang paling menentukan dari respons horizontal sesuai Pers. 2.30.

$$D_M = \frac{g S_{M1} T_M}{4\pi^2 B_M}$$
(2.30)

dimana:

g = percepatan grafitasi.

- S_{M1} = parameter percepatan spektral gempa maksimum yang dipertimbangkan dengan redaman 5% pada perioda 1 detik.
- T_M = perioda efektif struktur dengan isolasi seismik pada perpindahan maksimum dalam arah yang ditinjau.
- B_M = koefisien numerik terkait dengan redaman efektif sistem isolasi pada perpindahan maksimum.

2.18.4 Perioda Efektif Pada Saat Perpindahan Maksimum

Menurut SNI 1726;2012 pasal 12.5.3.4, periode efektif struktur yang di isolasi pada perpindahan rencana (T_D) di hitung dengan menggunakan Pers. 2.31.

$$T_M = 2\pi \sqrt{\frac{W}{K_{M\min}g}} \to K_{M\min} = \frac{Wg}{\left(\frac{T_M}{2\pi}\right)^2}$$
(2.31)

dimana:

W = berat seismik efektif struktur diatas pemisah isolasi.

- K_{Mmin} = kekakuan efektif minimum sistem isolasi, pada saat perpindahan Maksimum.
- g = percepatan grafitasi.

2.18.5 Perpindahan Total

Menurut SNI 1726;2012 pasal 12.5.3.5, bahwa perpindahan rencana total (D_{TD}) dan total perpindahan maksimum (D_{TM}) dari elemen sistem isolasi dengan distribusi spasial kekakuan lateral yang seragam tidak boleh diambil kurang dari nilai yang ditentukan oleh Pers. 2.32 dan 2.33.

$$D_{TD} = D_D \left(1 + y \frac{12e}{b^2 + d^2} \right)$$
(2.32)

$$D_{TM} = D_M \left(1 + y \frac{12e}{b^2 + d^2} \right)$$
(2.33)

dimana:

- D_D = perpindahan rencana di titik pusat kekakuan sistem isolasi di arah yang ditinjau.
- D_M = perpindahan maksimum di titik pusat kekakuan sistem isolasi di arah yang ditinjau.
- y = jarak antara titik pusat kekakuan sistem isolasi dan elemen yang diinginkan dihitung tegak lurus dengan arah yang ditinjau.
- e = eksentrisitas sesungguhnya diukur dari denah antara titik pusat massa stuktur di atas batas pemisah isolasi dan titik pusat kekakuan sistem isolasi, ditambah dengan eksentrisitas tak terduga, diambil sebesar 5% dari ukuran maksimum bangunan tegak lurus untuk arah gaya yang ditinjau.
- b = ukuran denah struktur tependek diukur tegak lurus terhadap d.
- d = ukuran terpanjang denah struktur.

2.18.6 Kekakuan Efektif Maksimum

Menurut (Mayes dan Naeim, 2000) pasal 14.7.9, nilai kekakuan efektif maksimum (K_{Dmax}) dan kekakuan efektif maksimum pada saat perpindahan maksimum (K_{Mmax}) diambil dari nilai K_{Dmin} dan K_{Mmin} ditambahkan 10% dari nilai tersebut.

2.18.7 Gaya Lateral Minimum

Menurut SNI 1726;2012 pasal 12.5.4 terdapat dua gempa gaya lateral minimum yang bekerja pada struktur isolasi, yaitu gaya lateral minimum yang

berada dibawah sistem isolasi (V_b) dan gaya lateral minimum diatas sistem isolasi (V_s) . Kedua gaya lateral minimum tersebur dapat menggunakan Pers. 2.34 dan 2.35.

$$V_b = K_{Dmax} D_D \tag{2.34}$$

$$V_s = \frac{V_b}{R_I} \tag{2.35}$$

dimana:

 K_{Dmax} = kekakuan efektif maksimum. D_D = perpindahan rencana.

 R_1 = koefisien numerik yang berhubungan dengan sistem gaya penahan.

Faktor R_1 harus harus bernilai 3/8 dari nilai R dengan nilai maksimum tidak lebih besar dari 2 dan nilai minimum tidak lebih kecil dari 1.

2.18.8 Distribusi Gaya Vertikal

Menurut SNI 1726;2012 pasal 12.5.5, gaya geser V_s harus di distribusikan ke seluruh tinggi struktur diatas batas pemisah isolasi sesuai Pers. 2.36.

$$F_x = \frac{V_s w_x h_x}{\sum_{i=1}^n w_i h_i} \tag{2.36}$$

dimana:

Vs = gaya geser lateral gempa sesuai Pers 2.37.

 w_x = bagian dari W yang ditempatkan di tingkat x.

 h_x = tinggi tingkat x dari dasar.

 F_x = bagian V yang bekerja di tingkat x.

2.18.9 Batas Simpangan Antar Lantai Pada Struktur Isolasi Dasar

Menurut SNI 1726;2012 pasal 12.5.6, bahwa simpangan antar lantai struktur diatas sistem isolasi tidak boleh melebihi $0.015 h_{sx}$.

2.19 Analisis Beban Dorong

Analisis beban dorong statik (*static Pushover Analysis*) merupakan analisis perilaku keruntuhan suatu bangunan terhadap gempa dimana pengaruh gempa

rencana terhadap struktur gedung dianggap sebagai beban-beban statik yang menangkap pada pusat massa masing-masing lantai, yang nilainya ditingkatkan secara berangsur-angsur sampai melampaui pembebanan yang menyebabkan terjadinya pelelehan disatu atau lebih lokasi di struktur tersebut, kemudian dengan peningkatan beban lebih lanjut mengalami perubahan bentuk elastoplastis yang besar sampai ambang posisi keruntuhan.

Analisis Pushover menghasilkan kurva Pushover, kurva yang menggabarkan hubungan antara gaya geser (V) versus perpindahan titik acuan pada atap (D).

Gambar 2.10 : Kurva *Pushover* dipengaruhi oleh pola distribusi gaya lateral yang digunakan sebagai beban dorong.

Tujuan analisis beban dorong adalah untuk memperkirakan gaya maksimum dan deformasi yang terjadi serta memperoleh informasi bagian mana saja yang kritis. Selanjutnya dapat diidentifikasi bagian-bagian yang memerlukan perhatian khusus untuk pendetilan atau stabilitasnya.

Dalam pengerjaan analisa beban dorong dilakukan terlebih dahulu asumsi sendi plastis (*hinges*) pada *software* analisis struktur, untuk mengetahui bentuk ketidak mampuan elemen struktur (balok dan kolom) menahan gaya dalam. Perencanaan suatu bangunan harus sesuai dengan konsep desain kolom kuat balok lemah. Apabila terjadi suatu keruntuhan struktur, maka yang runtuh adalah baloknya dahulu. Apabila kolomnya runtuh dahulu, maka struktur langsung hancur.

Menentukan metode yang digunakan untuk prosedur statik non-linier biasanya digunakan Metode Koefisien Perpindahan atau Displacement Coefficient

Method (DCM) yaitu FEMA 356. Metode FEMA 356 dilakukan dengan memodifikasi respons elastis linier dari sistem SDOF ekivalen dengan faktor koefisien C0, C1, C2 dan C3 sehingga dapat dihitung target perpindahan (δt) seperti Pers 3.6 sebagai berikut:

$$\partial_{t} = C_{0} \cdot C_{1} \cdot C_{2} \cdot C_{3} \cdot S_{a} \left(\frac{T_{e}}{2\pi}\right)^{2} \cdot g$$
 (3.6)

Dimana:

 $\delta t = target perpindahan$

Te = waktu getar alami efektif

- C0= koefisien faktor bentuk, untuk merubahperpindahan spectral menjadi perpindahanatap, umumnya memakai faktor partisipasi ragam yang pertama atau berdasarkan Tabel 3-2 dari FEMA 356.
- C1 = faktor modifikasi untuk menghubungkan perpindahan inelastic maksimum dengan perpindahan respons elastik linier. Nilai

$$C1 = 1,0$$
 untukTe \geq Ts dan

$$C1 = -\frac{\left[1 + (R-1)\frac{T_s}{T_e}\right]}{R} \text{ untuk } Te < Ts$$

- C2 = koefisien untuk memperhitungkan efek "pinching" dari hubungan beban deformasi akibat degradasi kekakuan dan kekuatan, berdasarkan Tabel 3-3 dari FEMA 356.
- C3 = koefisien untuk memperhitungkan pembesaran lateral akibat adanya efek Pdelta. Untuk gedung dengan perilaku kekakuan pasca leleh bernilai positif maka C3 = 1,0. Sedangkan untuk gedung dengan perilaku kekakuan pasca-leleh negatif,

$$C_3 = 1,0 + \frac{|a|(R-1)^{3/2}}{T_e}$$

rasio kekakuan pasca leleh terhadap kekakuan elastis efektif.

- R = rasio"kuat elastis perlu" terhadap "koefisien kuat leleh terhitung".
- Sa = akselerasi respon spektrum yang bekerja sesuai dengan waktu getar alami efektif pada arak yang ditinjau.

Vy = gaya geser dasar pada saat leleh.

W = total beban mati dan beban hidup yang dapat direduksi.

- Cm = faktor massa efektif yang diambil dari Tabel 3-1 dari FEMA 356.
- g = percepatan gravitasi 9,81 m/det2.

Melakukan analisis respon struktur gedung saat menerima beban gempa, maka akan memikul *base shear*. *Base shear* tiap lantai merupakan fungsi dari massa (m) dan kekakuan (k) dari tiap lantai tersebut. *Base shear* mengakibatkan tiap lantai bergeser/*displacement* dari kedudukan semula. Saat gaya gempa bekerja, maka gedung akan merespon beban gempa tersebut dengan memberikan gaya-gaya dalam. Apabila gaya-gaya dalam tersebut melebihi kemampuan/kapasitas gedung, maka gedung akan berperilaku in-elastis jika sifat struktur cukup daktail, tetapi langsung hancur apabila kurang daktail.

Sesudah dilakukan analisis maka dapat melihat kemampuan gedung dalam menahan gaya-gaya dalam berdasarkan kurva yang dikeluarkan dalam analisa beban dorong. Kurva tersebut akan membentuk suatu gambaran antara gaya geser yang bekerja (V) versus simpangan yang terjadi berdasarkan tingkatan sendi plastis.

Gambar 2.11 : Kurva tingkatan sendi plastis.

Dalam kerusakan sendi plastis terdapat tingkat-tingkatannya, penjelasan untuk tingkat-tingkatannya dapat dilihat pada Tabel 2.18 sebagai berikut:

Keterangan	Simbol	Penjelasan
В	•	Menunjukan batas linear yang kemudian diikuti terjadinya pelelehan pertama pada struktur
10	•	Terjadinya kerusakan yang kecil atau tidak berarti pada struktur, kekakuan struktur hampir sama pada saat belum terjadi gempa
I.S	•	Terjadinya kerusakan mulai dari kecil hingga tingkat sedang. Kekakuan struktur berkurang tetapi masih mempunyai ambang yang cukup besar terhadap keruntuhan
СР	•	Terjadinya kerusakan yang parah pada struktur sehingga kekuatan dan kekakuannya berkurang banyak
С	•	Batas maksimum gaya geser yang masih mampu ditahan gedung
D		Terjadinya degradasi kekuatan struktur yang besar, sehingga kondisi struktur tidak stabil dan hampil <i>collapse</i>
E	•	Struktur sudah tidak mampu menahan gaya geser dan hancur

Tabel 2.18: Tingkat kerusakan Struktur.

BAB 3

METODOLOGI

3.1 Bagan Alir / Flow Chart Penelitian

Langkah kerja atau proses pengerjaan penelitian ini disajikan dalam bentuk bagan alir (*flow chart*) yang dijadikan sebagai acuan penelitian yang akan dilakuk an dalam penulisan ini. Bagan alir tersebut dapat dilihat pada Gambar 3.1.

Gambar 3.1: Bagan alir (flow chart) penelitian.
3.2 Deskripsi Model struktur

Bangunan yang akan direncanakan yaitu bangunan beton bertulang SPRMK 5 lantai dengan isolasi dasar dilantai 2, yang didefinisikan pada model sebagai berikut:

- 1. Model A = Gedung 2 lantai dengan perletakan jepit.
- 2. Model B = Gedung 3 lantai dengan perletakan jepit.
- 3. Model C = Gedung 3 lantai dengan isolasi dasar.
- 4. Model D = Model A dibebani gaya-gaya akibat Model C.
- 5. Model E = Model D ditambah dengan bresing.
- 6. Model F = Model A sekaligus dimodelkan dengan Model C diatasnya.
- 7. Model G = Model F ditambah dengan bresing.

Direncanakan fungsi bangunan adalah untuk sekolah yang terletak diatas tanah sedang yang terletak di wilayah Padang Sumatera Barat. Gambar denah dan tampak bisa dilihat pada Gambar 3.2 sampai Gambar 3.8.

Gambar 3.2: Denah rencana struktur bangunan.

Gambar 3.3: Tampak rencana gedung Model A dan D.

Gambar 3.4: Denah rencana gedung Model B.

Gambar 3.5: Denah rencana gedung Model C.

Gambar 3.6: Tampak rencana gedung Model E.

Gambar 3.7: Tampak rencana gedung Model F.

Gambar 3.8: Tampak rencana gedung Model G.

3.3 Data Penelitian: Data Desain Pada Software

Data penelitian yang digunakan adalah data material, data desain balok dan kolom, desain plat, dan pembebanan.

3.3.1 Data Material

- a) Beton
 - Kuat tekan beton fc = 30 MPa.
 - Modulus elastisitas beton = $4700 \sqrt{fc} = 25742,96$ MPa.
 - Berat jenis = 2400kg/m³.
 - *Poiton Ratio* = 0,2

b) Tulangan

- Tegangan leleh tulangan utama (Fy) BJ40 = 400 MPa.
- Tegangan leleh tulangan sengkang (Fys) BJ24 = 240 MPa.

3.3.2 Desain Balok dan Kolom

a)	Dimensi	balok	$= 0.30 \times 0$).50 m,	panjang	balok	= 3 m
----	---------	-------	-------------------	---------	---------	-------	--------

b) Dimensi kolom $= 0.50 \times 0.50 \text{ m}$, tinggi kolom = 3 m

3.3.3 Desain Breising

Breising dipasang secara silang dari kolom ke kolom hanya pada lantai 1 gedung dengan profil baja siku 200,200,15 dengan spesifikasi pada Tabel 3.1.

			Pusat	Momen inersia			Jari- jari inersia			Mod
AxBx			titik							ulus tamp
t1	Luas	Berat	berat				Ix			ang
	tamp		$C_{X} = C_{Y}$	Ix =	Max	Min.	=	Max	Min.	Zx =
	ang		Су	Iy	.Ix	Iy	Iy	.Ix	Iy	Zy
	cm ²	kg/m	cm	cm	cm ⁴	cm ⁴	cm	cm	cm	cm
200x200										
x15	57,7	45,3	5,47	2180	3470	891	6,1	7,75	3,93	150

Tabel 3.1: Spesifikasi profil baja siku 200, 200, 15 (Gunawan).

3.3.4 Desain Plat

- a) Selimut beton SNI 1727;2013 Pasal 7.7.1
 - Untuk plat yang tidak berhubungan langsung dengan cuaca = 40 mm.
 - Untuk plat yang berhubungan langsung dengan cuaca = 50 mm.
 - Untuk balok dan kolom = 40 mm.
- b) Tebal plat lantai

Asumsi plat lantai yang digunakan:

- Plat atap = 10 cm.
- Plat lantai = 12 cm.

3.3.5 Pembebanan

Berat sendiri struktur gedung sudah dihitung dengan menggunakan aplikasi SAP2000 berdasarkan input data dimensi bangunan dan karakteristik material yang direncanakan. Sedangkan untuk data beban hidup diperoleh data berdasarkan SNI 1727;2013 seperti pada Tabel 3.2.

Tabel 3.2: Beban hidup pada lantai gedung.

Hunian atau Penggunaan	Beban Merata (kg/m ²)
Sekolah	
Ruang kelas	195,785
Koridor di atas lantai pertama	390,551
Koridor lantai pertama	488,444
Atap datar	97,893

Nilai reduksi beban hidup menurut SNI 1727;2013 pasal 4.7.2 dengan menggunakan Pers 3.1.

$$L = L_o \left(0.25 + \frac{4.57}{\sqrt{K_{LL}A_T}} \right)$$

$$L = L_o \left(0.25 + \frac{4.57}{\sqrt{4 \times 225}} \right)$$

$$L = 0.40 L_o$$
(3.1)

Beban mati tambahan berdasarkan PPPURG 1987 Pasal 2.1.1 diperoleh data seperti pada Tabel 3.3.

Jenis Material	Berat Jenis Material
Keramik	24 kg/m^2
Plafond dan penggantung	18 kg/m^2
Water proofing	5 kg/m^2
Spesi/adukan, per cm tebal dari semen	21 kg/m^2
Dinding pasangan batako	300 kg/m^2

Tabel 3.3: Beban Mati tambahan pada lantai gedung.

Beban-beban gravitasi tersebut dapat dirangkum untuk masing-masing lantai sebagai berikut:

a) Untuk lantai:

Beban mati tambahan

• Dinding pasangan batako	$= 300 \text{ kg/m}^2$
• Spesi (tebal 3cm)	$= 63 \text{ kg/m}^2$
• Keramik	$= 24 \text{ kg/m}^2$

• Plafond dan penggantung $= \frac{18 \text{ kg/m}^2}{1000 \text{ kg/m}^2}$

Total beban mati tambahan $= 405 \text{ kg/m}^2$

b) Untuk lantai atap:

Beban mati tambahan

• Dinding pasangan batako	$= 300 \text{ kg/m}^2$
• Spesi (tebal 3cm)	$= 63 \text{ kg/m}^2$
• Plafond dan penggantung	$= 18 \text{ kg/m}^2$
• Water proofing	= <u>5 kg/m²</u>
Total beban mati tambahan $= 386 \text{ kg/m}^2$	

3.4 Metode Respon Spektrum Berdasarkan SNI 1726;2012

Berdasarkan SNI 1726;2012 tentang tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan non gedung, terlebih dahulu harus ditentukan kategori resiko bangunan yang akan direcanakan yaitu bangunan yang digunakan sebagai gedung sekolah, dengan kategori resiko IV dan faktor keutamaan gempa adalah 1,50. Bangunan direncanakan berada di kota Padang.

Penentuan kategori desain seismik dapat ditentukan dengan terlebih dahulu menentukan nilai spektral percepatan (S_s) dan spektral percepatan (S_1) untuk kota Padang yang dapat dilihat pada Peta zonasi gempa tahun 2012 yang dikeluarkan oleh Kementerian Pekerjaan Umum dibawah ini.

Berdasarkan Peta Zonasi Gempa 2012 maka:

- PGA = 0.515g
- $S_s = 1.398 \text{ g}$
- $S_1 = 0.600 \text{ g}$

Untuk kategori resiko bangunan adalah IV dan faktor keutamaan gempa I_e adalah 1,50. Karena tidak dilakukannya penyelidikan geoteknik, maka diasumsikan klasifikasi situs berada di SD (tanah sedang). Langkah-langkah yang dilakukan dalam membuat spektrum respon gempa rencana sebagai berikut :

• Penentuan faktor amplikasi terkait spektra percepatan untuk periode pendek (F_a) dan periode 1,0 detik (F_v)

Tabel 3.4: Interpolasi koefisien situs, F_a dan F_v SNI 1726;2012.

Koefisien situs F_a dan F_v , untuk kota Padang						
Kelas situs	$F_v (S_1 = 0,600)$					
SD-tanah sedang	1.00	1.50				

• Penentuan nilai spektra percepatan untuk periode pendek (S_{MS}) dan periode 1,0 detik (S_{MI})

 $S_{MS} = F_a \times S_s$ $S_{MS} = 1,00 \times 1.398 = 1.398$ $S_{M1} = F_v \times S_1$ $S_{M1} = 1.50 \times 0.600 = 0.900$ • Penentuan respon spektra percepatan desain untuk periode pendek (S_{DS}) dan periode 1,0 detik (S_{DI})

 $S_{DS} = \mu \times S_{MS}$ $S_{D1} = \mu \times S_{M1}$ dimensi

dimana:

 μ merupakan konstanta yang tergantung pada peraturan perencanaan bangunan yang digunakan, misalnya untuk IBC-2009 dan ASCE 7-10 dengan gempa 2500 tahun menggunakan nilai μ sebesar 2/3 tahun.

Tabel 3.5: Nilai S_{DS} dan S_{D1} untuk kota Padang.

Nilai S_{DS} , dan S_{D1} untuk kota Padang						
Kelas situs	$S_{DS} = 2/3 \times S_{MS}$	$S_{D1} = 2/3 \times S_{M1}$				
SD-tanah sedang	2/3 x 1.398 = 0.932	$2/3 \ge 0.900 = 0.600$				

Tabel 3.6: Kategori desain seismik berdasarkan parameter respons percepatan pada periode pendek.

Nilei Spa	Kategori resiko				
Nilai SDS	I atau II atau III	IV			
$S_{DS} > 0.167$	А	А			
$0,167 \le S_{DS} < 0,33$	В	С			
$0,33 \le S_{DS} < 0,50$	С	D			
$0,50 \le S_{DS}$	D	D			

Tabel 3.7: Kategori desain seismik berdasarkan parameter respons percepatan pada periode 1 detik.

Niloj S-	Kategori resiko				
Ivitat SD1	I atau II atau III	IV			
$S_{D1} > 0.167$	А	А			
$0,067 \le S_{D1} < 0,133$	В	С			
$0,133 \le S_{D1} < 0,20$	С	D			
$0,20 \leq S_{D1}$	D	D			

Berdasarkan tabel diatas untuk penentuan kategori desain seismik untuk kota Padang adalah kategori desain seismik D.

• Penentuan nilai T_0 dan T_s

$$T_s = \frac{S_{D1}}{S_{DS}}$$
$$T_s = \frac{0.600}{0.932} = 0.644$$
$$T_0 = 0.2 \times T_S$$

 $T_0 = 0.2 \times 0.644 = 0.129$

- Penentuan nilai S_a
 - Untuk periode lebih kecil dari T₀, respon spektrum percepatan desain (S_a) diperoleh dari persamaan berikut:

$$S_a = S_{DS}(0,4+0,6\frac{T}{T_0})$$
(3.2)

- Untuk periode yang lebih besar dari atau sama dengan T_0 dan lebih kecil atau sama dengan T_S , spektrum respon percepatan desain (S_a) sama dengan S_{DS}
- Untuk periode yang lebih besar dari T_s, spektrum respon percepatan desain (S_a) diperoleh dari persamaan berikut:

$$S_a = \frac{S_{D1}}{T} \tag{3.3}$$

Gambar 3.9: Grafik spektrum respon gempa rencana.

Kemudian untuk *Define Response Spektrum Function* data Tabel 3.8 di masukan ke dalam SAP.2000 dengan bantuaan *Notepad*, karena dalam SAP.2000. tidak bisa menerima data dalam format *Ms-Excel*.

Data yang Diperoleh					
T (detik)	Koefisien Gampa C				
0,000	0,373				
0,129	0,932				
0,200	0,932				
0,300	0,932				
0,400	0,932				
0,500	0,932				
0,600	0,932				
0,644	0,932				
0,700	0,857				
0,900	0,667				
1,000	0,600				
1,100	0,545				
1,200	0,500				
1,300	0,462				
1,400	0,429				
1,500	0,400				
1,600	0,375				
1,700	0,353				
1,800	0,333				
1,900	0,316				
2,000	0,300				
2,100	0,286				
2,200	0,273				
2,300	0,261				
2,400	0,250				
2,500	0,240				
2,600	0,231				
2,700	0,222				
2,800	0,214				
2,900	0,207				
3.000	0.200				

Tabel 3.8: Data spektrum respon berdasarkan SNI 1726;2012 Kota Padang untuk tanah sedang.

Nilai spektrum respon tersebut dikalikan dengan faktor skala yang besarnya ditentukan dengan persamaan berikut:

Faktor skala
$$= \frac{I}{R} \times g$$

$$= 1,5/8 \times 9.81 \text{ m/s}^2$$

$$= 1.839$$
(3.4)

3.5 Kombinasi Pembebanan

Г

Kombinasi pembebanan yang akan di *input* kedalam SAP 2000 menurut SNI 1727;2013 bisa dilihat pada Tabel 3.9 dan 3.10.

KOMBINASI PEMBEBANAN									
Kombinasi	Koefisien		Koefisien		Koefisien		Koefisien		
Kombinasi 1	1,4	DL							
Kombinasi 2	1,2	DL	1,6	LL					
Kombinasi 3	1,44	DL	1	LL	0,3	EX	1	EY	
Kombinasi 4	0,96	DL	1	LL	-0,3	EX	-1	EY	
Kombinasi 5	1,07	DL	1	LL	0,3	EX	-1	EY	
Kombinasi 6	1,33	DL	1	LL	-0,3	EX	1	EY	
Kombinasi 7	1,44	DL	1	LL	1	EX	0,3	EY	
Kombinasi 8	0,96	DL	1	LL	-1	EX	-0,3	EY	
Kombinasi 9	1,33	DL	1	LL	1	EX	-0,3	EY	
Kombinasi 10	1,07	DL	1	LL	-1	EX	0,3	EY	
Kombinasi 11	1,14	DL			0,3	EX	1	EY	
Kombinasi 12	0,66	DL			-0,3	EX	-1	EY	
Kombinasi 13	0,77	DL			0,3	EX	-1	EY	
Kombinasi 14	1,03	DL			-0,3	EX	1	EY	
Kombinasi 15	1,14	DL			1	EX	0,3	EY	
Kombinasi 16	0,66	DL			-1	EX	-0,3	EY	
Kombinasi 17	1,03	DL			1	EX	-0,3	EY	
Kombinasi 18	0,77	DL			-1	EX	0,3	EY	

Tabel 3.9: Tabel kombinasi pembebanan untuk $\rho = 1$ dan SDS = 0,932.

Tabel 3.10: Tabel kombinasi pembebanan untuk $\rho = 1.3$ dan SDS = 0,932.

KOMBINASI PEMBEBANAN					
Kombinasi	Koefisien Koefisien Koefisien				
Kombinasi 1	1,4	DL			

KOMBINASI PEMBEBANAN								
Kombinasi	Koef	isien	Koe	fisien	Koet	fisien	Koef	isien
Kombinasi 2	1,2	DL	1,6	LL				
Kombinasi 3	1,44	DL	1	LL	0,3	EX	1	EY
Kombinasi 4	0,96	DL	1	LL	-0,3	EX	-1	EY
Kombinasi 5	1,07	DL	1	LL	0,3	EX	-1	EY
Kombinasi 6	1,33	DL	1	LL	-0,3	EX	1	EY
Kombinasi 7	1,44	DL	1	LL	1	EX	0,3	EY
Kombinasi 8	0,96	DL	1	LL	-1	EX	-0,3	EY
Kombinasi 9	1,33	DL	1	LL	1	EX	-0,3	EY
Kombinasi 10	1,07	DL	1	LL	-1	EX	0,3	EY
Kombinasi 11	1,14	DL			0,3	EX	1	EY
Kombinasi 12	0,66	DL			-0,3	EX	-1	EY
Kombinasi 13	0,77	DL			0,3	EX	-1	EY
Kombinasi 14	1,03	DL			-0,3	EX	1	EY
Kombinasi 15	1,14	DL			1	EX	0,3	EY
Kombinasi 16	0,66	DL			-1	EX	-0,3	EY
Kombinasi 17	1,03	DL			1	EX	-0,3	EY
Kombinasi 18	0,77	DL			-1	EX	0,3	EY

Tabel 3.10: Lanjutan.

3.6 Desain Isolasi Dasar

Isolasi dasar yang digunakan adalah jenis HDRB (*High-Dumping Rubber Bearing*). Sesuai sub bab 2.17.3, nilai material yang dimaksud terdapat pada Tabel 3.11.

Tabel 3.11: Nilai dasar material isolasi HDRB (Farissi dan Budiono).

HDRB Material Properties		
Diameter	1100 mm	
Ketebalan karet	250 mm	
Ketebalan tiap lapis	10 mm	
Modulus Geser (G)	0.624 MPa	
Poition Ratio	0,49	
Berat jenis	1522 kg/m ³	
Berat isolasi dasar	361.747 kg	

Tabel 3.11: Lanjutan.

HDRB Material Properties		
K _{eff}	2359.10 kN/m	
Qy	217.05 kN	
K _d	1469.74 kN/m	
Ku	14697.42 kN/m	
Dy	0.02 m	
Qu	575.74 kN	
В	24.89%	

Sesuai sub bab 2.17.3, nilai-nilai parameter yang diambil dalam mendesain isolasi dasar terdapat pada Tabel 3.12.

Tabel 3.12: Nilai-nilai parameter desain isolasi dasar HDRB.

Isolasi dasar tanpa dinding bata dan dengan dinding bata				
Variabel yang dicari	Persamaan	Hasil		
Shape factor (S)	Pers. 2.23	27.5		
Kekakuan horizontal (K _H)	Pers. 2.24	2372.98 N/mm		
Kekakuan vertical (K _V)	Pers. 2.25	4077216 N/mm		
Modulus elastisitas (E _C)	Pers. 2.26	2831 Mpa		
Regangan geser maksimum (y)	Pers. 2.27	0.9277		

Pemodelan desain isolasi dasar HDRB pada software dapat dilihat pada Gambar 3.10.

Gambar 3.10: Pemodelan desain isolasi dasar yang akan diinput pada software.

3.7 Prosedur Gaya Lateral Ekivalen Sistem Isolasi Menurut SNI 1726;2012

Sesuai sub bab 2.18, nilai-nilai yang diperoleh dapat dilihat pada Tabel 3.12.

Tabel	3.13:	Nilai-nilai	prosedur	dalam	mencari	gaya	lateral	ekivalen	gedung
Model	C.								

Isolasi dasar gedung Model	С		
Variabel yang dicari	Persamaan	Н	asil
Kekakuan efektif minimum (K_{Dmin})	Pers. 2.29	726329,92	kg/m
Kekakuan efektif minimum saat perpindahan maksimum (K_{Mmin})	Pers. 2.31	504395,78	kg/m
Kekakuan efektif maksimum (K_{Dmax})	Sub bab 2.18.6	798962,92	kg/m
Kekakuan efektif maksimum saat perpindahan maksimum (K_{Mmax})	Sub bab 2.18.6	554835,362	kg/m
Perpindahan rencana total (D_{TD})	Pers. 2.32	0,26805654	m
Total perpindahan maksimum (D_{TM})	Pers. 2.33	0,32166785	m
Gaya lateral minimum yang berada dibawah sistem isolasi (V_b)	Pers. 2.34	186232,383	kg
Gaya lateral minimum diatas sistem isolasi (V_s)	Pers. 2.35	93116,1917	kg

Isolasi dasar gedung M	Iodel F dan G	
Variabel yang dicari	Persamaan	Hasil
Kekakuan efektif minimum (<i>K</i> _{Dmin})	Pers. 2.29	1272885,81 kg/m
Kekakuan efektif minimum saat perpindahan maksimum (K _{Mmin})	Pers. 2.31	883948,48 kg/m
Variabel yang dicari	Persamaan	Hasil
Kekakuan efektif maksimum (<i>K_{Dmax}</i>)	Sub bab 2.18.6	1400174,40 kg/m
Kekakuan efektif maksimum saat perpindahan maksimum (<i>K_{Mmax}</i>)	Sub bab 2.18.6	972343,333 kg/m
Perpindahan rencana total (D_{TD})	Pers. 2.32	0,26805655 m
Total perpindahan maksimum (D_{TM})	Pers. 2.33	0,32166786 m
Gaya lateral minimum yang berada dibawah sistem isolasi (V_b)	Pers. 2.34	326370,359 kg
Gaya lateral minimum diatas sistem isolasi (V _s)	Pers. 2.35	163185,179 kg

Tabel 3.14: Nilai-nilai prosedur dalam mencari gaya lateral ekivalen gedung Model F dan G.

3.8 Analisis Non-linear Beban Dorong

Analisis beban dorong statik (*static Pushover Analysis*) merupakan analisis perilaku keruntuhan suatu bangunan terhadap gempa dimana pengaruh gempa rencana terhadap struktur gedung dianggap sebagai beban-beban statik yang menangkap pada pusat massa masing-masing lantai, yang nilainya ditingkatkan secara berangsur-angsur sampai melampaui pembebanan yang menyebabkan terjadinya pelelehan disatu atau lebih lokasi di struktur tersebut, kemudian dengan peningkatan beban lebih lanjut mengalami perubahan bentuk elastoplastis yang besar sampai ambang posisi keruntuhan.

Adapun tahapan analisis beban dorong (*pushover*) dengan menggunakan *software* analisis struktur sebagai berikut :

1. Menentukan identitas analisis static PUSH.

Load Cases			Click to:
Load Case Name	Load Case Type		Add New Load Case
MODAL HIDUP	Modal Linear Static		Add Copy of Load Case
SDL EX	Linear Static Linear Static		Modify/Show Load Case
RSX	Linear Static Response Spectrum Response Spectrum		Delete Load Case
- KAKUAN	Linear Static	+	Display Load Cases
DEAD 2 PUSH OVER BI	Nonlinear Static Nonlinear Static		Show Load Case Tree
PUSH OVER BI	Nonlinear Static		Cancel

Gambar 3.11: Penentuan identitas analisis static PUSH.

- 2. Memasukan data gravitasi.
 - Input Pembebanan.
 - Mati = faktor pengali = 1
 - SDL (Super dead load) = faktor pengali = 1
 - Hidup = faktor pengali = 1

Load Case Data - Nonlinear Static		
Load Case Name Notes DEAD 2 Set Def Name Modify/Show	Load Case Type Static Design	
Initial Conditions Continue from State at End of Norninear Case Toroninue from State at End of Norninear Case Important Note: Loads from this previous case are included in the current case.	Analysis Type C Linear C Nonlinear C Nonlinear Staged Construction	
Model Load Case Al Model Load Applied Use Modes Iron Case Load Applied Load Type Load Type Load Pater MATI Load Pater MATI	Geometric Nonlinearity Parameters Rone Poelta Poelta plus Large Displacements	Define Load Cases
Load Patren HIUUP 1, A03 Load Patren SDL L. Modity Delete		Load Case: Load Case Name Motal HIDUP Lines Stato SDL Lines Stato SDL Lines Stato Did. to Add New Load Case Add New Load Case Add New Load Case Add Copy of Load Case Modal Did. to Modal Did. to Modal Did. to Modal Case Modal Case Modal Case
Other Parameters Full Load Modity/Show Load Application Full Load Modity/Show Results Saved Final State Drify Modity/Show Nonlinear Parameters Default Modity/Show	Cancel	RS × Response Spectrum RALUN Linear Static PUSH Sector Spectrum PUSH Sector Spectrum PUSH Sector Spectrum PUSH Sector Spectrum PUSH OVER BI Norimes Static PUSH OVER BI Norimes Static PUSH OVER BI Norimes Static

Gambar 3.12: Properti data gravitasi.

- 3. Distribusi beban dorong PUSH pada struktur gedung.
 - Distribusi beban dorong PUSH yang di input pada soft ware adalah 1kN.

Gambar 3.13: Distribusi beban dorong PUSH.

- 4. Menentukan properti sendi.
 - Properti sendi pada balok

Frame Hinge Assignments				
Frame Hinge Assignment Data Frame Hinge Assignment Data Hinge Property Auto I, Auto Auto M3 D, Auto M3 D, Modify	X Auto Hinge Assign	venent Data		×
Delete	Auto Hinge Type From Tables In FEI Foreit of TEMPLOR Faller 57 Encode Component Type	MA 256 Alfre B Brinds - Flexue) Nem i D Brind Th Prinkom	Y YADEYGII	•
Auto Hinge Assignment Data Type: From Tables In FEMA 356	I Piinay C Secondary	(* M2 (* M3	I Case/Combo C User Value	V2
Table: Table 6-7 (Concrete Beams - Flexure) Item i DDF: M3	Transverse Reinforci	ng texcing is Conforming	Reinforcing Ratio (p - p') / p (← From Current Design ← User Value	pbalanced
OK Cancel	Deformation Cantrole (C Drops Load Afte C Is Extrapolated A	nd Hinge Load Canying Capacity Point E dher Point E		
		OK	Cancel	

Gambar 3.14: Properti sendi pada balok.

Balok menggunakan Auto M3 balok efektif menahan momen pada sumbu-3, angka 0 dan 1 merupakan identitas dua titik nodal balok, *case/combo* di pilih *COMB 19*, kareana *COMB 19* merupakan penggabungan dari semua kombinasi menurut SNI 1726;2012.

• Properti sendi pada kolom

Gambar 3.15: Properti sendi pada kolom.

Kolom menggunakan kolom menggunakan Auto P-M2-M3 (hubungan aksial dengan momen), angka 0 dan 1 merupakan identitas dua titik nodal balok, *case/combo* di pilih *COMB 19*, kareana *COMB 19* merupakan penggabungan dari semua kombinasi menurut SNI 1726;2013.

5. Memasukan data static non-linier.

Load Case Name PUSH OVER FB Set Def	Notes Name Modify/Show	Load Case Type Static • Design.
Initial Conditions C Zero Initial Conditions - Start from C Continue from State at End of No Important Note: Loads from this p	Unstressed State nlinear Case DEAD 2	C Linear
Modal Load Case All Modal Loads Applied Use Modes Loads Applied	from Case MODAL	Geometric Nonlinearity Parameters Geometric Nonlinearity Parameters To None To Poeta C P Delta plus Large Displacements
Load Patter V PUSH VI	Add Modify	
Other Parameters Load Application Displ C Results Saved Multiple	ontrol Modify/Show States Modify/Show	

Gambar 3.16: Input data Pushover.

Gambar 3.16 menjelaskan analysis type yang dipilih non-linier, geometric nonliniearity di pilih none karena P-Delta diabaikan.

Load Application Control for Nonlinear Static Analysis					
C Full Load C Full Load C Displacement Control					
Control Displacement C Use Conjugate Displacement C Use Monitored Displacement Load to a Monitored Displacement Magnitude of 100,					
Monitored Displacement C DOF U1 at Joint 222					
Cancel					

Gambar 3.17: Pemilihan titik tinjau analisis Pushover.

Gambar 3.17 menjelaskan dimana titik tinjau *Pushover* di setiap gedung, adapun perletakan titik tinjau dari 7 gedung yang akan dianalisis segagai berikut:

- 1. Model A dengan titik tinjau di joint 3 yang terletak pada lantai 2 gedung.
- 2. Model B dengan titik tinjau di *joint* 114 yang terletak pada lantai 3 gedung.
- 3. Model C dengan 2 titik tinjau yaitu di *joint* 16 yang terletak di dasar gedung dan *joint* 114 yang terletak pada lantai 3 gedung.
- 4. Model D dengan titik tinjau di joint 3 yang terletak pada lantai 2 gedung.
- 5. Model E dengan titik tinjau di joint 3 yang terletak pada lantai 2 gedung.
- Model F dengan 3 titik tinjau yaitu di *joint* 156 yang terletak lantai 2 gedung, *joint* 16 yang terletak di atas lantai 2 gedung dan *joint* 114 yang terletak di atas lantai 5 gedung.
- Model G dengan 3 titik tinjau yaitu di *joint* 156 yang terletak lantai 2 gedung, *joint* 16 yang terletak di atas lantai 2 gedung dan *joint* 114 yang terletak di atas lantai 5 gedung.

Results Saved for Nonlinear Static Load Cases							
Results Saved C Final State Only Multiple States 							
For Each Stage Minimum Number of Saved States 10							
Maximum Number of Saved States 200							
Save positive Displacement Increments Only							
Cancel							

Gambar 3.18: Pemilihan Multiple states Pushover.

BAB 4

HASIL DAN PEMBAHASAN

4.1 Tinjauan Umum

Dalam bab ini akan membahas beberapa nilai hasil analisis oleh *software* analisis struktur bangunan 5 lantai dengan isolasi dasar di lantai 2, yang didefinisikan pada model sebagai berikut:

- 8. Model A = Gedung 2 lantai dengan perletakan jepit.
- 9. Model B = Gedung 3 lantai dengan perletakan jepit.
- 10. Model C = Gedung 3 lantai dengan isolasi dasar.
- 11. Model D = Model A dibebani gaya-gaya akibat Model C.
- 12. Model E = Model D ditambah dengan bresing.
- 13. Model F = Model A sekaligus dimodelkan dengan Model C diatasnya.
- 14. Model G = Model F ditambah dengan bresing.

Data yang hasil diperoleh diantaranya berat sendiri bangunan, berat total bangunan, perioda struktur alami, gaya geser seismik dasar, distribusi vertikal gaya gempa, kekakuan struktur, nilai simpangan, kurva kapasitas berdasarkan beban dorong, simpangan *non-linear*.

4.2 Hasil Analisis

Pada *software* berat sendiri per lantai dapat dihitung secara otomatis. Adapun hasil berat sendiri perlantai struktur bangunan yang dihitung otomatis oleh *software* dapat dilihat dari Tabel 4.1, 4.2, dan 4.3.

Tabel 4.1: Hasil berat sendiri bangunan per lantai struktur Model A, D, dan E.

Crown	SelfMass	SelfWeight	TotalMassX	TotalMassY	TotalMassZ
Group	Kg-s2/m	Kg	Kg-s2/m	Kg-s2/m	Kg-s2/m
All	39646,57	388800,00	39646,57	39646,57	39646,57
Lantai 2	19823,28	194400,00	19823,28	19823,28	19823,28
Lantai 1	19823,28	194400,00	19823,28	19823,28	19823,28

Group	SelfMass	SelfWeight	TotalMassX	TotalMassY	TotalMassZ
070 <i>up</i>	Kg-s2/m	Kg	Kg-s2/m	Kg-s2/m	Kg-s2/m
All	58368,55	572400,00	58368,55	58368,55	58368,55
Lantai 5	18721,99	183600,00	18721,99	18721,99	18721,99
Lantai 4	19823,28	194400,00	19823,28	19823,28	19823,28
Lantai 3	19823,28	194400,00	19823,28	19823,28	19823,28

Tabel 4.2: Hasil berat sendiri bangunan per lantai struktur Model B dan C.

Tabel 4.3: Hasil berat sendiri bangunan per lantai struktur Model F dan G.

Group	SelfMass	SelfWeight	TotalMassX	TotalMassY	TotalMassZ
	Kg-s2/m	Kg	Kg-s2/m	Kg-s2/m	Kg-s2/m
All	42950,45	421200,00	42950,45	42950,45	42950,45
Lantai 5	18721,99	183600,00	18721,99	18721,99	18721,99
Lantai 4	19823,28	194400,00	19823,28	19823,28	19823,28
Lantai 3	19823,28	194400,00	19823,28	19823,28	19823,28
Lantai 2	19823,28	194400,00	19823,28	19823,28	19823,28
Lantai 1	19823,28	194400,00	19823,28	19823,28	19823,28

4.3 Penentuan Berat Total per Lantai (Wt)

Untuk perhitungan analisis statik ekivalen dibutuhkan berat total per lantai, maka berat total perlantai bisa didapat dengan menjumlahkan antara berat sendiri, berat mati dan berat hidup. Adapun perhitungan berat total per lantai dapat dilihat pada lampiran. Rekapitulasi berat total per lantai struktur bangunan dapat dilihat pada Tabel 4.4, 4.5, dan 4.6.

Tabel 4.4: Rekapitulasi berat total per lantai struktur Model A, D, dan E.

	Beban	Beban mati	Beban	Total beban
Lantai	sendiri	tambahan	hidup	(Wt)
	Kg	Kg	Kg	Kg
Lantai 2	194400,00	185625,00	44051,63	424076,63
Lantai 1	194400,00	185625,00	44051,63	424076,63
Total				848153,25

Lantai	Beban sendiri	Beban mati tambahan	Beban hidup	Total beban (Wt)
	Kg	Kg	Kg	Kg
Lantai 5	183600,00	73350,00	22025,93	278975,93
Lantai 4	194400,00	185625,00	44051,63	424076,63
Lantai 3	194400,00	185625,00	44051,63	424076,63
Total				1127129,18

Tabel 4.5: Rekapitulasi berat total per lantai struktur Model B dan C.

Tabel 4.6: Rekapitulasi berat total per lantai struktur Model F dan G.

	Beban	Beban mati	Beban	Total beban
Lantai	sendiri	tambahan	hidup	(Wt)
	Kg	Kg	Kg	Kg
Lantai 5	183600,00	73350,00	22025,93	278975,93
Lantai 4	194400,00	185625,00	44051,63	424076,63
Lantai 3	194400,00	185625,00	44051,63	424076,63
Lantai 2	194400,00	185625,00	44051,63	424076,63
Lantai 1	194400,00	185625,00	44051,63	424076,63
Total				1975282,43

4.4 Penentuan Perioda Alami Stuktur (T1)

Dari model struktur pada *software* diperoleh waktu getar alami fundamental struktur gedung tersebut dapat dilihat pada Tabel 4.7 sampai dengan 4.12.

Tabel 4.7: Waktu getar alami struktur bangunan Model A dan D.

Mada	Period	SumUX	SumUY
Mode	Sec.	Unitless	Unitless
1	0,1188	0,0000791	0,91
2	0,1188	0,91	0,91
3	0,1098	0,91	0,91
4	0,0385	0,91	1
5	0,0385	1	1
6	0,0359	1	1
7	0,0167	1	1
8	0,0164	1	1
9	0,0164	1	1

Tabel 4.7: Lanjutan.

Mode	Period	SumUX	SumUY
	Sec.	Unitless	Unitless
10	0,0161	1	1
11	0,0159	1	1
12	0,0159	1	1

Dari Tabel 4.7 dapat dilihat bahwa gedung Model A dan Model D mengalami waktu getar alami yang sama, yaitu Model A (gedung 2 lantai dengan perletakan jepit) mengalami waktu getar alami sebesar 0,1188 *sec*, dan gedung Model D (bangunan Model A menerima gaya-gaya Model C) juga mengalami waktu getar alami sebesar 0,1188 *sec*.

Tabel 4.8: Waktu getar alami struktur bangunan Model B.

Mode	Period	SumUX	SumUY
	Sec.	Unitless	Unitless
1	0,1748	0,874	3,35E-07
2	0,1748	0,874	0,874
3	0,1620	0,874	0,874
4	0,0558	0,896	0,955
5	0,0558	0,977	0,977
6	0,0519	0,977	0,977
7	0,0330	0,996	0,981
8	0,0330	1	1
9	0,0308	1	1
10	0,0228	1	1
11	0,0221	1	1
12	0,0221	1	1

Tabel 4.9: Waktu getar alami struktur bangunan Model C.

Mode	Period	SumUX	SumUY
	Sec.	Unitless	Unitless
1	0,5779	0,996	0,000
2	0,5779	0,996	0,996

Mada	Period	SumUX	SumUY
Mode	Sec.	Unitless	Unitless
3	0,5432	0,996	0,996
4	0,0855	0,999	0,996
5	0,0855	0,999	0,999
6	0,0802	0,999	0,999
7	0,0497	0,999	0,999
8	0,0496	0,999	0,999
9	0,0496	0,999	0,999
10	0,0496	0,999	0,999
11	0,0496	0,999	0,999
12	0,0496	0,999	0,999

Tabel 4.9: Lanjutan.

Dari Tabel 4.8 dan 4.9 dapat dilihat bahwa gedung Model B (gedung 3 lantai dengan perletakan jepit) mengalami waktu getar alami sebesar 0,1748 *sec*, sedangkan gedung Model C (gedung 3 lantai dengan isolasi dasar) mengalami waktu getar alami sebesar 0,5779 *sec*.

Tabel 4.10: Waktu getar alami struktur bangunan Model E.

Moda	Period	SumUX	SumUY
Moue	Sec.	Unitless	Unitless
1	0,1001	0,093	0,76
2	0,1001	0,852	0,852
3	0,0831	0,852	0,852
4	0,0359	0,855	0,995
5	0,0359	0,998	0,998
6	0,0312	0,998	0,998
7	0,0189	0,998	0,998
8	0,0189	0,998	0,998
9	0,0189	0,998	0,998
10	0,0189	0,998	0,998
11	0,0189	0,998	0,998
12	0,0189	0,998	0,998

Dari Tabel 4.10 dapat dilihat bahwa bangunan Model E (bangunan Model D ditambah dengan bresing) mengalami waktu getar alami 0,1001 sec.

Mada	Period	SumUX	SumUY
Mode	Sec.	Unitless	Unitless
1	0,1797	0,9330	0,0000
2	0,1797	0,9330	0,9330
3	0,1663	0,9330	0,9330
4	0,0673	0,9920	0,9330
5	0,0673	0,9920	0,9920
6	0,0627	0,9920	0,9920
7	0,0501	0,9920	0,9920
8	0,0501	0,9920	0,9920
9	0,0497	0,9920	0,9920
10	0,0497	0,9920	0,9920
11	0,0497	0,9920	0,9920
12	0,0497	0,9920	0,9920

Tabel 4.11: Waktu getar alami struktur bangunan Model F.

Tabel 4.12: Waktu getar alami struktur bangunan Model G.

Moda	Period	SumUX	SumUY
Mode	Sec.	Unitless	Unitless
1	0,1523	0,88	0,0003512
2	0,1523	0,88	0,88
3	0,1263	0,88	0,88
4	0,0639	0,983	0,88
5	0,0639	0,983	0,983
6	0,0574	0,983	0,983
7	0,0501	0,983	0,983
8	0,0501	0,983	0,983
9	0,0497	0,983	0,983
10	0,0497	0,983	0,983
11	0,0497	0,983	0,983
12	0,0497	0,983	0,983

Dari Tabel 4.11 dan 4.12 dapat dilihat bahwa bangunan Model F (bangunan Model A sekaligus dimodelkan dengan Model C diatasnya), mengalami waktu getar alami lebih besar yaitu 0,1797 s, sedangkan bangunan Model G (Model F ditambah dengan bresing) mengalami waktu getar alami lebih kecil yaitu 0,1523 s.

Dari tabel-tabel juga diatas dapat dilihat bahwa berbagai macam respon metode respon dan pastisipasi massa hasil respon total harus mencapai sekurangsekurangnya 90% (Budiono dan Supriatna 2011). Dari tabel-tabel tersebut pastisipasi massa mencapai 90% sehingga model tersebut memenuhi syarat.

4.5 Perioda Fundamental Pendekatan (Ta)

Menurut SNI 1726;2012 pasal 7.8.2, perioda (T) tidak boleh melebihi hasil koefisien batasan atas pada perioda yang dihitunng (C_u) dan perioda pendekatan fundamental (T_a), yang mana perioda fundamental dihitung pada Pers. 4.1 dan 4.2.

 $T_{\alpha} = 0.1N$

 $T_{\alpha}max = T_{\alpha}x C_{u}$

Dimana Pers. 4.1 dipakai dengan syarat gedung tidak melebihi 12 tingkat dimana sistem penahan gaya gempa terdiri dari rangka pemikul momen beton dan tinggi tingkat paling sedikit 3 meter, nilai C_u yang digunakan diambil dari Tabel 4.13.

Parameter Percepatan Respon	
Spektar Desain Pada 1 Detik, S _{D1}	Koefisien C _U
≥ 0.4	1.4
0.3	1.4
0.2	1.5
0.15	1.6
≤ 0.1	1.7

Tabel 4.13: Nilai koefisien batas atas (C_u).

Pengecekan nilai perioda yang dihitung oleh *software* dengan persyaratan maksimum nilai perioda dapat dilihat pada Lampiran.

4.6 Penentuan Gaya Geser seismic (V)

Menurut SNI-1726-2012 pasal 7.8.1, nilai gaya geser nominal statik ekivalen (v) masing-masing arah dapat ditentukan berdesarkan Pers. 4.3 dan dirangkum seperti pada Tabel 4.8.

 $V = C_s W$

Menurut SNI-1726-2012 pasal 7.8.1.1 dimana nilai C_s diambil dari Pers. 4.4.

$$C_s = \frac{S_{Ds}}{\left(\frac{R}{Ie}\right)} \tag{4.4}$$

 C_s yang dihitung pada Pers. 4.4 tidak boleh melebihi nilai yang dihitung menurut Pers. 4.5 dan tidak kurang dari nilai yang dihitung menurut Pers. 4.6 dan sebagai tambahan untuk struktur yang berlokasi didaerah dimana s_1 sama dengan atau lebih besar dari 0,6g maka C_s harus tidak kurang dari Pers. 4.7

$$C_s = \frac{S_{D1}}{T(\frac{R}{Ie})} \tag{4.5}$$

$$C_s = 0.044 \ S_{DS} I_e \ge 0.01 \tag{4.6}$$

$$C_s = \frac{0.5S_1}{\left(\frac{R}{Ie}\right)} \tag{4.7}$$

Hasil nilai C_s yang digunakan dapat dilihat pada Tabel 4.14 sampai dengan 4.19.

	Cs = SDS	CS Max = SD1 /	CS Min =	CS =	CS Yg
Arah	/ (R/I)	(T*(R/I)	0.044*SDS*I	0,5*S1/(R/I)	digunakan
T1	0,175	0,947	0,062	0,056	0,175
T2	0,175	0,947	0,062	0,056	0,175

Tabel 4.14: Nilai C_s yang digunakan bangunan Model A dan D.

Pada Tabel 4.14 dapat dilihat nilai Cs yang digunakan pada gedung Model A (gedung 2 lantai dengan perletakan jepit) dan Model D (gedung Model A dibebani gaya-gaya akibat Model C) adalah 0,175 yang didapatkan dari Pers. 4.4.

Arah	Cs = SDS / (R/I)	CS Max = SD1 / (T*(R/I)	CS Min = 0.044*SDS*I	CS = 0,5*S1/(R/I)	CS Yg digunakan
T1	0,175	0,644	0,062	0,056	0,175
T2	0,175	0,644	0,062	0,056	0,175

Tabel 4.15: Nilai C_s yang digunakan bangunan Model B.

Tabel 4.16: Nilai C_s yang digunakan bangunan Model C.

Arah	Cs = SDS / (R/I)	$\frac{\text{CS Max} = \text{SD1}}{(\text{T}^*(\text{R/I}))}$	CS Min = 0.044*SDS*I	CS = 0.5*S1/(R/I)	CS Yg digunakan
T1	0,175	0,195	0,062	0,056	0,175
T2	0,175	0,195	0,062	0,056	0,175

Pada Tabel 4.15 dan 4.16 dapat dilihat nilai Cs yang digunakan pada gedung Model B (gedung 3 lantai dengan perletakan jepit) dan Model C (gedung 3 lantai dengan isolasi dasar) adalah 0,175 yang didapatkan dari Pers. 4.4.

Tabel 4.17: Nilai C_s yang digunakan bangunan Model E.

	Cs = SDS	CS Max = SD1 /	CS Min =	CS =	CS Yg
Arah	/ (R/I)	(T*(R/I)	0.044*SDS*I	0,5*S1/(R/I)	digunakan
T1	0,175	1,124	0,062	0,056	0,175
T2	0,175	1,124	0,062	0,056	0,175

Pada Tabel 4.17 dapat dilihat nilai Cs yang digunakan pada gedung Model E (gedung Model D ditambah dengan breising) adalah 0,175 yang didapatkan dari Pers. 4.4.

Tabel 4.18: Nilai C_s yang digunakan bangunan Model F.

Arah	Cs = SDS / (R/I)	CS Max = SD1 / (T*(R/I)	CS Min = 0.044*SDS*I	CS = 0,5*S1/(R/I)	CS Yg digunakan
T1	0,175	0,626	0,062	0,056	0,175
T2	0,175	0,626	0,062	0,056	0,175

	Cs = SDS	CS Max = SD1 /	CS Min =	CS =	CS Yg
Arah	/ (R/I)	(T*(R/I)	0.044*SDS*I	0,5*S1/(R/I)	digunakan
T1	0,175	0,739	0,062	0,056	0,175
T2	0,175	0,739	0,062	0,056	0,175

Tabel 4.19: Nilai C_s yang digunakan bangunan Model G.

Dari Tabel 4.18 dan 4.19 dapat dilihat nilai Cs yang digunakan pada gedung Model F (Model A sekaligus dimodelkan dengan Model C diatasnya) dan Model G gedung (Model F ditambah dengan bresing) adalah 0,175 yang didapatkan dari Pers. 4.4.

Dari Tabel 4.14 sampai dengan 4.19 diatas telah disepakatkan nilai Cs yang dibutuhkan untuk mencari nilai gaya geser dasar struktur bangunan. Nilai gaya geser dasar (V) dapat dilihat pada Tabel 4.20 dan 4.21.

Tabel 4.20: Gaya geser nominal statik ekivalen (V) bangunan Model A,D dan E.

V _{arah x} (kg)	V _{arah y} (kg)	
148214,780	148214,780	

Dari Tabel 4.20 dapat dilihat gaya geser nominal ekivalen (V) gedung Model A (gedung 2 lantai dengan perletakan jepit), gedung Model D (gedung Model A dibebani gaya-gaya akibat Model C) dan bangunan Model E (bangunan Model D ditambah dengan bresing) adalah 148.214,78 kg.

Tabel 4.21: Gaya geser nominal statik ekivalen (V) bangunan Model B.

V _{arah x} (kg)	V _{arah y} (kg)
196.965,82	196965,82

Dari Tabel 4.21 dapat dilihat gaya geser nominal ekivalen (V) gedung Model B yaitu gedung 3 lantai dengan perletakan jepit adalah 196965,82 kg.

4.7 Penentuan Distribusi Vertikal Gaya Gempa (Fi)

Distribusi horizontal gaya gempa ditentukan berdasarkan Pers. 4.8 dan 4.9.

$$F_i = C_{vx}V$$

 $C_{vx} = \frac{w_x h_x^k}{\sum_{i=1}^n w_i h_i^k}$

- --

Dikarenakan nilai V arah x dan y pada sturuktur portal terbuka yang bernilai sama, maka nilai Fi pada arah x dan y bernilai sama pula. Pada sub bab 2.9, nilai k diambil dari nilai periode yang terjadi. Pada struktur ini diambil nilai k yaitu 1 karena perioda alami struktur kurang dari 0,5. Nilai Fi masing-masing arah pada struktur bangunan dapat dilihat pada Tabel 4.22 dan 4.23.

Tabel 4.22. Nilai F_{ix} dan F_{iy} per lantai gedung Model A, D, dan E.

Lantai (i)	Wi (kg)	hi (m)	wi.hi(kg.m)	Fi (kg)
Lantai 2	424076,63	6,00	2544459,75	98809,85
Lantai 1	424076,63	3,00	1272229,88	49404,93
Total	848153,25		3816689,63	148214,78

Tabel 4.23. Nilai F_{ix} dan F_{iy} per lantai gedung Model B.

Lantai (i)	Wi (kg)	hi (m)	wi . hi (kg.m)	Fi (kg)
Lantai 5	278975,93	9	2510783,33	78157,35
Lantai 4	424076,63	6	2544459,75	79205,65
Lantai 3	424076,63	3	1272229,88	39602,83
Total	1127129,18		6327472,95	196965,82

Gaya geser gedung tiap tingkat pada gedung dapat dilihat pada Tabel 4.24 dan 4.25.

Tabel 4.24: Gaya geser gedung tiap lantai gedung Model A, D, dan E.

Lantai (i)	Berat per lantai (kg)	Tinggi (m)	Fi (kg)	Story Shear / Vx (kg)
Lantai 2	424076,63	3	98809,85	98809,85
Lantai 1	424076,63	3	49404,93	148214,78
Total	848153,25	6	148214,78	

Lantai (i)	Berat per lantai (kg)	Tinggi (m)	Fi (kg)	Story Shear / Vx (kg)
Lantai 5	278975,93	3,00	78157,35	78157,35
Lantai 4	424076,63	3,00	79205,65	157363,00
Lantai 3	424076,63	3,00	39602,83	196965,82
Total	1127129,18	9,00	196965,82	

Tabel 4.25: Gaya geser gedung tiap lantai gedung Model B.

4.8 Spektrum Respons Ragam

Berdasarkan SNI 1726;2012 pasal 7.3.4, faktor redundansi (ρ) harus dikenakan pada sitem penahan gaya seismik dalam masing-masing kedua arah orthogonal. SNI 1726;2012 pasal 7.3.4.2 menyebutkan bahwa untuk katagori dasain seismic D, E atau F nilai ρ dapat diambil = 1 bila masing masing tingkat yang menahan lebih dari 35% gaya geser dasar pada arah yang ditinjau memenuhi persyaratan, selain dari persyaratan tersebut nilai ρ harus diambil = 1,3.

Untuk gedung Model A,B,C,D,E gaya geser gedung tiap lantai dengan pengecekan 35% V *base shear* dengan nilai redudansi (ρ) = 1 dan untuk bangunan Model F dan G gaya geser gedung tiap lantai dengan pengecekan 35% V *base shear* dengan nilai redudansi (ρ) = 1,3 dapat dilihat pada Lampiran.

4.9 Spektrum Respon Terkombinasi

Untuk penjumlahan respons ragam yang memiliki waktu-waktu getar alami yang berdekatan, harus dilakukan dengan metode Kombinasi Kuadrik Lengkap (*Complete Quadratic Combination* / CQC). Waktu getar alami harus dianggap berdekatan apabila selisihnya kurang dari 15%. Untuk struktur yang memiliki waktu getar alami yang berjauhan, penjumlahan respons ragam tersebut dapat dilakukan dengan metode Akar Kuadrat Jumlah Kuadrat (*Square Root Of The Sum Of Squares* / SRSS). Untuk gedung Model A sampai dengan G menggunakan metode Kombinasi Kuadrik Lengkap (*Complete Quadratic Combination* / CQC) yang dapat dilihat pada Lampiran.

4.10 Gaya Geser Analisis Respon Spektrum

Gaya geser analisis respon spektrum yang telah diproses pada *software* dapat dilihat pada Tabel 4.26 sampai dengan 4.31.

Tabel 4.26: Gaya geser respon spektrum stuktur Model A dan D.

OutputCase	StepType	GlobalFX	GlobalFY
Text	Text	Kg	Kg
GEMPA X	Max	54076,48	16231,76
GEMPA Y	Max	16231,76	54076,48

Tabel 4.27: Gaya geser respon spektrum stuktur Model B.

OutputCase	StepType	GlobalFX	GlobalFY
Text	Text	Kg	Kg
GEMPA X	Max	82769,64	24844,40
GEMPA Y	Max	24844,40	82769,64

Tabel 4.28: Gaya geser respon spektrum stuktur Model C.

OutputCase	StepType	GlobalFX	GlobalFY
Text	Text	Kg	Kg
GEMPA X	Max	99670,40	29917,36
GEMPA Y	Max	29917,36	99670,40

Tabel 4.29: Gaya geser respon spektrum stuktur Model E.

Struktur Fixed Base tanpa dinding bata				
OutputCase	StepType	GlobalFX	GlobalFY	
Text	Text	Kg	Kg	
GEMPA X	Max	46605,32	14020,68	
GEMPA Y	Max	14020,68	46605,32	

Tabel 4.30: Gaya geser respon spektrum stuktur Model F.

OutputCase	StepType	GlobalFX	GlobalFY
Text	Text	Kg	Kg
GEMPA X	Max	151715,92	45539,52
GEMPA Y	Max	45539,52	151715,92

OutputCase	StepType	GlobalFX	GlobalFY
Text	Text	Kg	Kg
GEMPA X	Max	143816,87	43322,56
GEMPA Y	Max	43322,56	143816,88

Tabel 4.31: Gaya geser respon spektrum stuktur Model G.

Menurut (Riza, 2010), sebelum mendapatkan data hasil gaya geser analisis respon spektrum dari *software* terdapat faktor skala gempa arah x 100% dan arah y 30% dari arah x, yaitu:

- Faktor skala gempa arah x = g x I / R = 9,81 x 1,5 / 8 = 1,839. Faktor skala gempa arah y = 30% arah x = 0,552.
- Skala diatas untuk gempa X, untuk gempa Y nilai diatas dibalik.

Menurut SNI 1726;2012 pasal 7.9.4 bahwa nilai akhir respon dinamik struktur gedung terhadap pembebanan gempa nominal akibat pengaruh Gempa Rencana dalam suatu arah tertentu, tidak boleh diambil kurang dari 85% nilai respon ragam yang pertama. Bila respon dinamik struktur gedung dinyatakan dalam gaya geser dasar nominal V, maka persyaratan tersebut dapat dinyatakan menurut Pers. 4.10.

 $0.85 \frac{V}{Vt}$

Dimana V adalah gaya geser dasar nominal sebagai respon ragam yang pertama terhadap pengaruh Gempa Rencana menurut Pers. 4.3 sebelumnya. Hasil pengecekan pada gaya respon spektrum dengan Pers. 4.10 dapat dilihat pada Lampiran.

Dari tabel yang ada dilampiran dapat dilihat bahwa pada struktur, pengecekan tidak sesuai syarat yang dianjurkan sesuai pasal 7.9.4 SNI 1726;2012. Oleh karena itu, untuk memenuhi persyaratan menurut pasal 7.9.4, maka gaya geser tingkat nominal akibat pengaruh Gempa Rencana sepanjang tinggi struktur gedung analisis ragam spektrum respons dalam suatu arah tertentu, harus dikalikan nilainya dengan suatu Faktor Skala dengan Pers. 4.11.

Faktor Skala = $0.85V_1/V \ge 1$ (4.11)

Dengan menggunakan Pers. 4.11, mencari faktor skala untuk memenuhi persyaratan dengan hasil faktor skala sebagai berikut:

- 1. Gempa X gedung Model A dan D.
 - Fx => U1 = (0,85 x 148214,78) / 54076,48 = 2,330
 - Fy => U2 = (0,85 x 148214,78) / 16231,76 = 7,761
- 2. Gempa Y gedung Model A dan D.
 - $Fx \Rightarrow U1 = (0.85 \times 148214,78) / 16231,76 = 7,761$
 - Fy => U2 = (0.85 x 148214.78) / 54076.48 = 2.330
- 3. Gempa X gedung Model B.
 - $Fx \Rightarrow U1 = (0.85 \times 196965, 82) / 82769, 64 = 2,023$
 - $Fy => U2 = (0.85 \times 196965, 82) / 24844, 40 = 6,739$
- 4. Gempa Y gedung Model B.
 - $Fx => U1 = (0.85 \times 196965.82) / 24844.40 = 6.739$
 - $Fy => U2 = (0.85 \times 196965, 82) / 82769, 64 = 2,023$
- 5. Gempa X gedung Model C.
 - $Fx \implies U1 = (0.85 \times 196965.82) / 99670.40 = 1.680$
 - $Fy => U2 = (0.85 \times 196965, 82) / 29917, 36 = 5,596$
- 6. Gempa Y gedung Model C.
 - Fx => U1 = (0,85 x 196965,82) / 29917,36 = 5,596
 - $Fy => U2 = (0.85 \times 196965.82) / 99670.40 = 1.680$
- 7. Gempa X gedung Model E.
 - $Fx => U1 = (0.85 \times 148214,78) / 46605,32 = 2,703$
 - Fy => U2 = (0,85 x 148214,78) / 14020,68 = 8,985
- 8. Gempa Y gedung Model E.
 - $Fx => U1 = (0.85 \times 148214,78) / 14020,68 = 8,985$
 - $Fy => U2 = (0.85 \times 148214,78) / 46605,32 = 2,703$
- 9. Gempa X gedung Model F.
 - $Fx \Rightarrow U1 = (0.85 \times 345180, 60) / 151715, 92 = 1.934$

- Fy => U2 = (0,85 x 345180,60) / 45539,52 = 6,443
- 10. Gempa Y gedung Model F.
 - $Fx => U1 = (0,85 \times 345180,60) / 45539,52 = 6,443$
 - Fy => U2 = (0,85 x 345180,60) / 151715,92 = 1,934
- 11. Gempa X gedung Model G.
 - Fx => U1 = (0,85 x 345180,60) / 143816,87 = 2,040
 - Fy => U2 = (0,85 x 345180,60) / 43322,56 = 6,773
- 12. Gempa Y gedung Model G.
 - Fx => U1 = (0,85 x 345180,60) / 43322,56 = 6,773
 - Fy => U2 = (0,85 x 345180,60) / 143816,87 = 2,040

Dari hasil faktor skala diatas dikalikan dengan faktor skala gempa arah x dan y pada *software*, adapun pengaliannya sebagai berikut:

- 1. Gempa X gedung Model A dan D.
 - Fx => U1 = 1,839 x 2,330 = 4,285 (≥ *l*)
 - Fy => U2 = 0,552 x 7,761 = 4,283 ($\geq l$)
- 2. Gempa Y gedung Model A dan D.
 - $Fx \Rightarrow U1 = 0,552 \times 7,761 = 4,283 (\ge 1)$
 - Fy => U2 = 1,839 x 2,330 = 4,285 (≥ 1)
- 3. Gempa X gedung Model B.
 - $Fx \Rightarrow U1 = 1,839 \times 2,023 = 3,721 (\geq 1)$
 - Fy => U2 = 0,552 x 6,739 = 3,719 (≥ 1)
- 4. Gempa Y gedung Model B.
 - Fx => U1 = 0,552 x 6,739 = 3,719 (≥ 1)
 - Fy => U2 = 1,839 x 2,023 = 3,721 (≥ 1)
- 5. Gempa X gedung Model C.
 - $Fx \Rightarrow U1 = 1,839 \times 1,680 = 3,090 (\geq l)$
 - Fy => U2 = 0,552 x 5,596 = 3,088 (≥ 1)
- 6. Gempa Y gedung Model C.
 - $Fx \Rightarrow U1 = 0,552 \times 5,596 = 3,088 (\ge 1)$
 - Fy => U2 = 1,839 x 1,680 = 3,090 (≥ 1)
- 7. Gempa X gedung Model E.
 - $Fx \Rightarrow U1 = 1,839 \times 2,703 = 4,972 (\geq l)$
 - Fy => U2 = 0,552 x 8,985 = 4,958 (≥ 1)
- 8. Gempa Y gedung Model E.
 - $Fx \Rightarrow U1 = 0,552 \times 8,985 = 4,958 (\geq 1)$
 - Fy => U2 = 1,839 x 2,703 = 4,972 (≥ 1)
- 9. Gempa X gedung Model F.
 - $Fx \Rightarrow U1 = 1,839 \times 1,934 = 3,557 (\geq 1)$
 - Fy => U2 = 0,552 x 6,443 = 3,555 (≥ 1)
- 10. Gempa Y gedung Model F.
 - $Fx \Rightarrow U1 = 0,552 \times 6,443 = 3,555 (\geq 1)$
 - Fy => U2 = 1,839 x 1,934 = 3,557 (≥ 1)
- 11. Gempa X gedung Model G.
 - $Fx \Rightarrow U1 = 1,839 \times 2,040 = 3,753 (\geq 1)$
 - Fy => U2 = 0,552 x 6,773 = 3,737 (≥ 1)
- 12. Gempa Y gedung Model G.
 - Fx => U1 = 0,552 x 6,773 = 3,737 (≥ 1)
 - Fy => U2 = 1,839 x 2,040 = 3,753 (≥ 1)

Gempa di arah X dan Y di kalikan dengan faktor skala sehingga didapatkan hasil gaya geser respon spektrum yang berbeda sehingga memenuhi persyaratan yang ditentukan menurut SNI 1726;2012 pasal 7.9.4. Hasil dapat dilihat pada Tabel 4.32 sampai dengan 4.37 dan dan pengecekannya dapat dilihat pada Lampiran.

OutputCase	StepType	GlobalFX	GlobalFY
Text	Text	Kg	Kg
GEMPA X	Max	126002,00	125943,16
GEMPA Y	Max	125943,16	126002,00

Tabel 4.32: Hasil gaya geser respon spektrum setelah dikalikan faktor skala gedung Model A dan D.

Tabel 4.33: Hasil gaya geser respon spektrum setelah dikalikan faktor skala gedung Model B.

OutputCase	StepType	GlobalFX	GlobalFY
Text	Text	Kg	Kg
GEMPA X	Max	167474,76	167384,76
GEMPA Y	Max	167384,76	167474,76

Tabel 4.34: Hasil gaya geser respon spektrum setelah dikalikan faktor skala gedung Model C.

OutputCase	StepType	GlobalFX	GlobalFY
Text	Text	Kg	Kg
GEMPA X	Max	167472,12	167363,80
GEMPA Y	Max	167363,80	167472,12

Tabel 4.35: Hasil gaya geser respon spektrum setelah dikalikan faktor skala gedung Model E.

OutputCase	StepType	GlobalFX	GlobalFY
Text	Text	Kg	Kg
GEMPA X	Max	126027,64	125673,11
GEMPA Y	Max	125673,07	126027,64

Tabel 4.36: Hasil gaya geser respon spektrum setelah dikalikan faktor skala gedung Model F.

OutputCase	StepType	GlobalFX	GlobalFY
Text	Text	Kg	Kg
GEMPA X	Max	293449,56	293284,60
GEMPA Y	Max	293284,60	293449,56

OutputCase	StepType	GlobalFX	GlobalFY
Text	Text	Kg	Kg
GEMPA X	Max	293585,02	292335,02
GEMPA Y	Max	292335,02	293585,03

Tabel 4.37: Hasil gaya geser respon spektrum setelah dikalikan faktor skala gedung Model G.

4.11 Nilai Simpangan Gedung (Nilai Respon Bangunan)

Berdasarkan peraturan SNI-1726-2012, kontrol simpangan antar lantai hanya terdapat satu kinerja batas, yaitu kinerja batas ultimate. Nilai simpangan antar lantai yang diperbesar didapat berdasarkan rumus Pers. 4.12.

Story drift
$$=\frac{\delta i.C_d}{I_e}$$
 (4.12)

Keterangan :

 δi = Simpangan antar tingkat

 C_d = Faktor pembesaran defleksi

 I_e = Faktor keutamaan gedung

Nilai simpangan antara arah x dan y memiliki nilai yang sama dikarenakan bentuk bangunan yang simetris. Nilai simpangan dan pengecekan *story drift* terdapat pada Tabel 4.38 dan 4.41.

Tabel 4.38: Nilai simpangan gedung arah x dan y pada kinerja batas ultimit gedung Model A.

Ting oi	Lant	Perpind ahan	Simpangan yang diperbesar	Syarat (Λa)	Cek	
ged	ai ged	Arah x dan y	Arah x dan y	<i>Story drift</i> =(δi*Cd)/Ie	0,015 *hi	Story drift <
(hi)	ung	cm	Cm	Arah x dan y	(cm)	Δa
0	0	0	0	0	0	OK
300	1	0,1052	0,1052	0,3856	4,5	OK
300	2	0,2034	0,0982	0,3601	4,5	OK

Nilai simpangan yang terjadi pada gedung Model A (gedung 2 lantai dengan perletakan jepit) yaitu 0,1052 cm pada lantai 1 dan 0,2034 cm pada lantai 2.

Ting	Lant	Perpind ahan	Perpindahan antar tingkat (δi)	Simpangan yang diperbesar	Syarat	Cek	
gı ged	ai ged	Arah x dan y	Arah x dan y	<i>Story drift</i> =(δi*Cd)/Ie	(∆a) 0,015 *h;	Story	
ung (hi)	ung	cm	Cm	Arah x dan y	(cm)	Δa	
0	0	0	0	0	0	OK	
300	3	0,146	0,146	0,534	4,5	OK	
300	4	0,306	0,161	0,589	4,5	OK	
300	5	0,399	0,093	0,341	4,5	OK	

Tabel 4.39: Nilai simpangan gedung arah x dan y pada kinerja batas ultimit gedung Model B.

Nilai simpangan yang terjadi pada gedung Model B (gedung 3 lantai dengan perletakan jepit) yaitu 0,146 cm pada lantai 3 dan 0,306 cm pada lantai 4 dan 0,399 cm pada lantai 5.

Tabel 4.40: Nilai simpangan gedung arah x dan y pada kinerja batas ultimit gedung Model D.

Ting	Lant	Perpind ahan	Perpindahan antar tingkat (δi)	Simpangan yang diperbesar	Syarat	Cek	
ged	ai	Arah x		Story drift	(Δa) 0.015	Story	
ung	ged	dan y	Arah x dan y	$=(\delta 1^*Cd)/le$	*hi	drift <	
(hi)	ung	cm	Cm	Arah x dan y	(cm)	Δa	
0	0	0	0	0	0	OK	
300	1	0,2098	0,2098	0,7694	4,5	OK	
300	2	0,4327	0,2229	0,8173	4,5	OK	

Nilai simpangan yang terjadi pada gedung Model D (gedung Model A dibebani gaya-gaya akibat Model C). Gaya-gaya yang dimasksud adalah beban mati, beban mati tambahan, beban hidup, dan beban maksimum yang didapat dari

perhitungan gedung Model C yang dapat dilihat pada lampiran. Simpangan yang terjadi yaitu 0,2098 cm pada lantai 1 dan 0,4327 cm pada lantai 2.

Ting gi	Lant	Perpind ahan	Perpindahan antar tingkat (δi)	Simpangan yang diperbesar	Syarat (∆a)	Cek
ged ung	ai ged	Arah x dan y	Arah x dan y	<i>Story drift</i> =(δi*Cd)/Ie	0,015 *hi	Story drift <
(hi)	ung	cm	Cm	Arah x dan y	(cm)	Δa
0	0	0	0	0	0	OK
300	1	0,129	0,129	0,472	4,5	OK
300	2	0,328	0,199	0,731	4,5	OK

Tabel 4.41: Nilai simpangan gedung arah x dan y pada kinerja batas ultimit gedung Model E.

Nilai simpangan yang terjadi pada gedung Model E (gedung Model D ditambah dengan bresing) yaitu 0,129 cm pada lantai 1 dan 0,328 cm pada lantai 2. Lebih kecil dibandingkan jika tidak memakai breising.

4.12 Kekakuan Struktur

Berdasarkan SNI 1726;2012, didapatkan nilai kekakuan struktur pada Tabel 4.42 sampai dengan 4.44.

										Extr	eme				
		Gaya						Soft	Story	Soft	Story				
No	Lantai	geser	Simpangan	Selisih	Kekakuan	Rasio	Rasio	Tipe	1.A	Tipe	1.B	Batas	Batas	Batas	Batas
												Soft		Soft	
		(Vx,y)	$(\Delta x,y)$	(Δ ₁)	$(Vx,y/\Delta_1)$	Kekakuan	Kekakuan	Cek	Cek	Cek	Cek	Story	Extreme	Story	Extreme
				, ,							R2				
								$R_1 <$	R2<	$R_1 <$	<		Soft		Soft
						\mathbf{R}_1	R_2	70%	80%	60%	70%		story		story
		(<i>KN</i>)	(mm)	(mm)	(KN/mm)	(%)	(%)					(%)	(%)	(%)	(%)
1	2	1,00	0,01494	0,00661	151,400	74,152	74,152	OK	OK	OK	OK	70	60	80	70
2	1	1,00	0,00833	0,00833	120,005	74,152	74,152	OK	OK	OK	OK	70	60	80	70
Т	OTAL	2,00	0,02327	0,01494	271,41										

Tabel 4.42: Kekakuan Struktur Model A dan D.

Tabel 4.43: Kekakuan Struktur Model B.

										Extr	reme				
		Gaya						Soft	Soft Story		Story				
No	Lantai	geser	Simpangan	Selisih	Kekakuan	Rasio	Rasio	Tipe	1.A	Tipe	1.B	Batas	Batas	Batas	Batas
		-										Soft		Soft	
		(Vx,y)	(Δx,y)	(Δ ₁)	$(Vx,y/\Delta_1)$	Kekakuan	Kekakuan	Cek	Cek	Cek	Cek	Story	Extreme	Story	Extreme
									R2		R2	-		-	
								$R_1 <$	<	$R_1 <$	<		Soft		Soft
						R_1	\mathbf{R}_2	70%	80%	60%	70%		story		story
		(KN)	(mm)	(mm)	(KN/mm)	(%)	(%)					(%)	(%)	(%)	(%)
1	5	1,00	0,03348	0,00734	136,277	56,403	56,403					70	60	80	70
2	4	1,00	0,02614	0,01301	76,864	56,403	56,403	OK	OK	OK	OK	70	60	80	70
3	3	1,00	0,01313	0,01313	76,161	99,086	52,524	OK	OK	OK	OK	70	60	80	70
Т	OTAL	3,00	0,0727	0,0335	289,3023										

										Extr	eme				
		Gaya	Simpanga		Kekakua			Soft	Story	Soft	Story	Bata			
No	Lantai	geser	n	Selisih	n	Rasio	Rasio	Tipe	1.Å	Tipe	1.B	s	Batas	Batas	Batas
												Soft	Extrem	Soft	Extrem
		(Vx,y)	(Δx,y)	(Δ_1)	$(Vx,y/\Delta_1)$	Kekakuan	Kekakuan	Cek	Cek	Cek	Cek	Story	e	Story	e
									R2		R2				
								$R_1 <$	<	$R_1 <$	<				
								70	80	60	70		Soft		Soft
						\mathbf{R}_1	R_2	%	%	%	%		story		story
		(KN)	(mm)	(mm)	(KN/mm)	(%)	(%)					(%)	(%)	(%)	(%)
1	2	1,00	0,01079	0,00567	176,274	110,974	110,974	OK	OK	OK	OK	70	60	80	70
2	1	1,00	0,00511	0,00511	195,618	110,974	110,974	OK	OK	OK	OK	70	60	80	70
Т	OTAL	2,00	0,01590	0,01079	371,89										

Tabel 4.44: Kekakuan Struktur Model E.

4.13 Analisa isolasi dasar

Dalam analisa isolasi dasar struktur bangunan tidak berbeda dengan struktur bangunan yang menggunakan perletakan jepit, maka berat bangunan juga sama nilainya. Untuk waktu getar alami menggalami perubahan yang sudah diperlihatkan pada Tabel 4.9, 4.11 dan 4.12.

Dari tabel tersebut terlihat perbedaan antara gedung Model B (gedung 3 lantai dengan perletakan jepit) memiliki waktu getar alami 0,1748 *sec*, sedangkan Model C (gedung 3 lantai dengan isolasi dasar) memiliki waktu getar alami 0,5779 *sec*. dan untuk Model F (gedung Model A sekaligus dimodelkan dengan Model C diatasnya) memiliki waktu getar alami 0,1797 *sec*, sedangkan Model G (gedung Model F ditambah dengan bresing) memiliki waktu getar alami 0,1523 *sec*.

Dalam perencanaan penggunaan isolasi dasar memerlukan syarat berdasarkan SNI 1726;2012, perhitungan untuk persyaratan bisa dilihat pada lampiran.

4.13.1 Gaya Lateral Minumum

Berdasarkan SNI 1726;2012 pasal 12.5.4 terdapat dua gempa gaya lateral minimum yang bekerja pada struktur isolasi, yaitu gaya lateral minimum yang berada dibawah sistem isolasi (V_b) dan gaya lateral minimum diatas sistem isolasi (V_s). Dalam perencanaan nilai gaya lateral minimum yang berada dibawah sistem isolasi (V_b) didapat dari persamaan berikut:

1. Untuk gedung Model C (gedung 3 lantai dengan isolasi dasar).

 $V_b = K_{Dmax} D_D$ $V_b = 798962,921 \ge 0.23$ $V_b = 186232,3834 \ge 0.23$

Nilai gaya lateral minimum diatas sistem isolasi (V_s). didapat dari persamaan berikut;

$$V_s = \frac{V_b}{R_I}$$

$$V_s = \frac{186232,3834}{2}$$
$$V_s = 93116,1917 \text{ kg.}$$

 Untuk gedung Model F (gedung Model A sekaligus dimodelkan dengan Model C diatasnya) dan Model G (gedung Model F ditambah dengan bresing).

$$V_b = K_{Dmax} D_D$$

 $V_b = 1400174,40 \ge 0,233$
 $V_b = 326370,3594 \ge 0$

Nilai gaya lateral minimum diatas sistem isolasi (V_s). didapat dari persamaan berikut;

$$V_{s} = \frac{V_{b}}{R_{I}}$$
$$V_{s} = \frac{326370,359}{2}$$
$$V_{s} = 163185,1797 \text{ kg.}$$

4.13.2 Penentuan Distribusi Vertikal Gaya Gempa (Fi)

Nilai distribusi gaya vertikal sistem isolasi dapat dilihat pada Tabel 4.45, dan 4.46.

Tabel 4.45: Distribusi gaya vertikal sistem isolasi dasar gedung Model C.

Lantai (i)	Wi (kg)	hi (m)	wi . hi (kg.m)	Fi (kg)
Lantai 5	278975,93	9,00	2510783,33	36949,12
Lantai 4	424076,63	6,00	2544459,75	37444,71
Lantai 3	424076,63	3,00	1272229,88	18722,36
Total	1127129,18		6327472,95	93116,19

Nilai total F_{ix} dan F_{iy} gedung Model C (gedung 3 lantai dengan isolasi dasar) adalah 93116,19 kg didapat dari persamaan nilai gaya lateral minimum diatas isolasi dasar (V_s).

Nilai Fix da	Nilai Fix dan Fiy di atas isolasi dasar (Vs)											
Lantai (i) Wi (kg) hi (m) wi . hi (kg.m) Fi (kg)												
Lantai 5 300575,93 9 2705183,33 65727,80												
Lantai 4 445676,63 6 2674059,75 64971,59												
Lantai 3	Lantai 3 445676,63 3 1337029,88 32485,79											
			6716272,95	163185,18								
Nilai Fix da	n Fiy di bawah iso	olasi dasar (Vb)									
Lantai 2	Lantai 2 424076,63 6 2544459,75 217580,24											
Lantai 1	Lantai 1 424076,63 3 1272229,88 108790,12											
	3816689,63 326370,36											

Tabel 4.46: Distribusi gaya vertikal sistem isolasi dasar gedung Model F dan G.

Nilai total F_{ix} dan F_{iy} gedung Model F (gedung Model A sekaligus dimodelkan dengan Model C diatasnya) dan (gedung Model G yaitu Model F ditambah dengan bresing) adalah 163185,18 kg didapat dari persamaan nilai gaya lateral minimum diatas isolasi dasar (Vs) dan 326370,36 kg didapat dari persamaan nilai gaya lateral minimum dibawah isolasi dasar (Vb).

Mensimulasikan arah pengaruh gempa rencana yang sembarang terhadap struktur gedung, pengaruh pembebanan gempa dalam arah utama harus dianggap efektif 100% dan harus dianggap terjadi bersamaan dengan pengaruh pembebanan gempa dalam arah tegak lurus pada arah utama pembebanan tadi, tetapi dengan efektifitas hanya 30%. Nilai F_{ix} dan F_{iy} yang akan dimasukkan menjadi beban gempa rencana per total menggunakan Pers. 4.13.

$$F_{ix} = F_{iy} = F_i \frac{p_i}{Total \ Panjang \ Bentang}$$
(4.13)

Dengan menggunakan Pers. 4.13 diatas, maka nilai $F_{ix} dan F_{iy}$ tiap lantai dengan panjang bentang pada arah x dan y adalah 15 meter, dapat dilihat pada Tabel 4.47 dan 4.48.

Lantai	Fx,Fy (kg)	Gaya Perportal Fx,Fy									
		1	2	3	4	5	6	Total			
5	36949,12	3695	7390	7390	7390	7390	3695	36949,12			
4	37444,71	3744	7489	7489	7489	7489	3744	37444,71			
3	18722,36	1872	3744	3744	3744	3744	1872	18722,36			
								93116,19			

Tabel 4.47: Nilai F_{ix} dan F_{iy} tiap lantai pada struktur gedung Model C.

Tabel 4.47 dapat dilihat Nilai $F_{ix} dan F_{iy}$ gedung Model C didistribusikan pada tiap lantai pada setiap join struktur gedung.

Lan	Fx,y		Gaya Perportal Fx,Fy									
tai	(kg)	1	2	3	4	5	6	Total				
5	65727,8	6573	13146	13146	13146	13146	6573	65727,8				
4	64971,5	6497	12994	12994	12994	12994	6497	64971,5				
3	32485,7	3249	6497	6497	6497	6497	3249	32485,7				
								163185,1				
2	217580,2	21758	43516	43516	43516	43516	21758	217580,2				
1	108790,1	10879	21758	21758	21758	21758	10879	108790,1				
								326370,3				

Tabel 4.48: Nilai F_{ix} dan F_{iy} tiap lantai pada struktur gedung Model F dan G.

Tabel 4.48 dapat dilihat nilai $F_{ix} dan F_{iy}$ gedung Model F dan G didistribusikan pada tiap lantai pada setiap join struktur gedung.

4.13.3 Nilai Simpangan Gedung Dengan Isolasi Dasar (Nilai Respon Bangunan)

Berdasarkan peraturan SNI-1726-2012, kontrol simpangan antara lantai hanya terdapat satu kinerja batas ultimate. Nilai simpangan dan pengecekkan *story drift* terdapat pada Tabel 4.49 sampai dengan 4.51.

Tinggi gedun	Lantai	Perpindah an	Perpinda han antar tingkat (δi)	Simpangan yang diperbesar	Syarat (Δa)	Cek
g (hi)	gedung	Arah x dan y cm	Arah x dan y cm	Story drift =(\delta i*Cd)/Ie Arah x dan y	0,015*hi (cm)	Story drift < Δa
	0	1,089	1,089	3,99		
300	3	1,320	0,231	0,85	4,5	OK
300	4	1,417	0,097	0,36	4,5	OK
300	5	1,465	0,05	0,17	4,5	OK

Tabel 4.49: Nilai simpangan gedung isolasi dasar gedung Model C.

Nilai simpangan yang terjadi pada gedung Model C (gedung 3 lantai dengan isolasi dasar) yaitu 1,089 cm pada isolasi dasar, 1,320 cm pada lantai 3, 1,417 cm pada lantai 4 dan 1,465 cm pada lantai 5.

Tinggi gedung	Lantai	Perpindah an	Perpinda han antar tingkat (δi)	Simpangan yang diperbesar	Syarat (∆a) 0.015*hi	Cek
(hi)	geating	Arah x dan y	Arah x dan y	Story drift =(δi*Cd)/Ie	(cm)	Story drift <
		cm	cm	Arah x dan y		Δa
0	0	0	0,000	0	0	OK
300	1	0,4055	0,405	1,487	4,5	OK
300	2	0,6270	0,222	0,812	4,5	OK
0,25	2,25	0,3633	-0,264	-0,967	0,00375	OK
300	3	0,4055	0,042	0,155	4,5	OK
300	4	0,6270	0,222	0,812	4,5	OK
300	5	0,7526	0,126	0,460	4,5	OK

Tabel 4.50: Nilai simpangan gedung gedung Model F.

Nilai simpangan yang terjadi pada gedung Model F (gedung Model A sekaligus dimodelkan dengan Model C diatasnya), yaitu 0,4055 cm pada lantai 1, 0,6270cm pada lantai 2, 0,3633 cm pada isolasi dasar, 0,4055 cm pada lantai 3, 0,6270 cm pada lantai 4 dan 0,7526 cm pada lantai 5.

Tinggi gedung	Lantai	Perpindah an	Perpinda han antar tingkat (δi)	Simpangan yang diperbesar	Syarat (Δa)	Cek
(hi)	gedung	Arah x dan y	Arah x dan y	Story drift –(&i*Cd)/Ie	(cm)	Story drift <
		cm	cm	Arah x dan y		Δa
0	0	0	0,000	0	0	OK
300	1	0,2518	0,252	0,923	4,5	OK
300	2	0,4511	0,199	0,731	4,5	OK
0,25	2,25	0,2159	-0,235	-0,862	0,00375	OK
300	3	0,2518	0,036	0,131	4,5	OK
300	4	0,4511	0,199	0,731	4,5	OK
300	5	0,5700	0,119	0,436	4,5	OK

Tabel 4.51: Nilai simpangan gedung gedung Model G.

Nilai simpangan yang terjadi pada gedung Model G gedung Model F ditambah dengan bresing , yaitu 0,25 cm pada lantai 1, 0,4511 cm pada lantai 2, 0,2159 cm pada isolasi dasar, 0,2518 cm pada lantai 3, 0,4511cm pada lantai 4 dan 0,5700 cm pada lantai 5.

Total simpangan arah x dan y antar tingkat terhadap ketinggian gedung dan rasio simpangan antar tingkat ditampilkan dalam bentuk diagram dapat dilihat pada Gambar 4.1 dan 4.6.

Gambar 4.1: Grafik simpangan struktur gedung terhadap ketinggian gedung Model A, D, dan E.

Gambar 4.2: Grafik rasio simpangan antar tingkat struktur gedung Model A, D, dan E.

Gambar 4.1 dan 4.2 terlihat bahwa simpangan gedung 2 lantai dibebani gaya – gaya akibat gedung model C diatasnya terjadi perubahan simpangan yang awal nya 0,2034 cm berubah menjadi 0,4327 cm kemuadian gedung itu ditambah breising dan terjadi perubahan simpangan menjadi 0,328 cm.

Gambar 4.3: Grafik Simpangan struktur gedung terhadap ketinggian gedung Model B dan C.

Gambar 4.4: Grafik rasio simpangan antar tingkat struktur gedung Model B dan C.

Gambar 4.3 dan 4.4 terlihat bahwa rasio simpangan gedung Model C lebih kecil dibandingkan dengan Model B. Gambar tersebut menunjukan bahwa simpangan pada stuktur terisolasi dasar lebih kecil dari pada struktur perletakan jepit meskipun pada bagian perletakan yang menggunakan isolasi lebih besar dikarenakan isolasi flexible mengikuti arah gempa dan tidak kaku, namun pada tiap tingkat diatas isolasi memiliki simpangannya cenderung lebih rendah.

Gambar 4.5: Grafik Simpangan struktur gedung terhadap ketinggian gedung Model F dan G.

Gambar 4.6: Grafik rasio simpangan antar tingkat struktur gedung Model F dan G

Gambar 4.5 dan 4.6 terlihat bahwa simpangan gedung Model F (gedung Model A sekaligus dimodelkan dengan Model C diatasnya) mengalami simpangan 0,7526 cm lalu gedung tersebut ditambah dengan breising pada lantai satu bangunan dan mengalami perubahan simpangan menjadi 0,570 cm.

4.14 Analisa Non-Linear Beban Dorong

Pembahasan analisa beban dorong pada sub bab ini yaitu untuk mengetahui perbandingan simpangan yang terjadi pada tiap lantai bangunan dan kurva kapasitas berdasarkan analisa beban dorong. Perbandingan yang akan dilakukan adalah membandingkan antara 7 model respon bangunan beton bertulang terhadap gempa dengan metode *non-linear*.

4.14.1 Analisa Non-Linear Beban Dorong Gedung Model A

Nilai kapasitas simpangan yang terjadi pada beban dorong Model A (gedung 2 lantai dengan perletakan jepit) dengan titik pantauan dijoin 3 yang berada di atap gedung terdapat pada Tabel 4.52 dan kurva kapasitas berdasarkan analisa beban dorong yang didapat dari *software* dapat dilihat pada Gambar 4.7.

TAB	TABLE: Pushover Curve - atap										
Stop	Displacement	BaseForce	AtoR	Rto IO	IOtoIS	IStoCP	CPtoC	Cto			
Slep	Mm	Kgf	THOD	Diolo	Ююш	LSIOCI	CLIDE	D			
0	0	0,00	384	0	0	0	0	0			
1	4,0720	707543,71	380	4	0	0	0	0			
2	4,8270	816930,20	316	68	0	0	0	0			
3	5,2030	841510,62	230	154	0	0	0	0			
4	13,2050	1065908,82	189	195	0	0	0	0			
5	14,6980	1089638,26	155	229	0	0	0	0			
6	36,7270	1282761,83	97	226	61	0	0	0			
7	39,8370	1304338,99	94	219	71	0	0	0			

Tabel 4.52: Kemampuan simpangan titik pantau di atap gedung Model A.

Gambar 4.7: Kurva berdasarkan kapasitas analisa beban dorong gedung Model A.

Kurva diatas menunjukan hubungan antara gaya geser dasar terhadap perpindahan yang terjadi akibat beban gempa pada struktur bangunan. Untuk melihat hasil yang labih detail bisa dilihat pada Tabel 4.52. Dengan target perpidahan $\delta T = 45$ mm yang di dapat dari terlihat bahwa perpindahan belum sampai mencapai target perpindahan 39,8 mm < δT , kinerja yang diperlihatkan oleh struktur adalah *Immediate Occupancy (IO)*, Terjadinya kerusakan yang kecil atau tidak berarti pada struktur, kekakuan struktur hampir sama pada saat belum terjadi gempa.

4.14.2 Analisa Non-Linear Beban Dorong Gedung Model B

Nilai kapasitas simpangan yang terjadi pada beban dorong Model B (gedung 3 lantai dengan perletakan jepit) dengan titik pantauan dijoin 114 yang berada di atap gedung terdapat pada Tabel 4.53 dan kurva kapasitas berdasarkan analisa beban dorong yang didapat dari *software* dapat dilihat pada Gambar 4.8.

TAB	TABLE: Pushover curve - atap										
Stan	Displacement	BaseForce	AtoR	RtoIO	IOtoIS	LStoCP	CPtoC	Cto			
Step	Mm	Kgf	AIOD	Dioio	101015	LSIUCI	CI IOC	D			
0	0	`	576	0	0	0	0	0			
1	5,362	415779,68	572	4	0	0	0	0			
2	6,652	500318,35	447	129	0	0	0	0			
3	8,365	558449,81	421	155	0	0	0	0			
4	12,25	617686,42	300	276	0	0	0	0			
5	24,017	726284,16	241	335	0	0	0	0			
6	57,131	887189,59	220	296	60	0	0	0			
7	61,758	914858,78	210	301	44	0	0	19			
8	64,682	924260,64	200	306	37	0	0	24			
9	71,552	933744,27	195	309	36	0	0	16			

Tabel 4.53: Kemampuan simpangan gedung titik pantau di atap Model B.

Gambar 4.8: Kurva berdasarkan kapasitas analisa beban dorong gedung Model B.

Kurva diatas menunjukan hubungan antara gaya geser dasar terhadap perpindahan yang terjadi akibat beban gempa pada struktur bangunan. Untuk melihat hasil yang labih detail bisa dilihat pada Tabel.4.53. Dengan target perpidahan $\delta T = 45$ mm yang di dapat dari terlihat bahwa dalam step 6 dimana perpindahan mencapai 57,131 mm > δT , kinerja yang diperlihatkan oleh struktur adalah *Immediate Occupancy (IO)*, Terjadinya kerusakan yang kecil atau tidak berarti pada struktur, kekakuan struktur hampir sama pada saat belum terjadi gempa.

4.14.3 Analisa Non-Linear Beban Dorong Gedung Model C

Dalam menganalisa simpangan yang terjadi pada gedung Model C (gedung 3 lantai dengan isolasi dasar) dilakukan dengan 2 cara untuk mencari perbandingan respon, yaitu:

- 1. Analisa simpangan dengan titik pantau join 16 pada bagian base (dasar).
- 2. Analisa simpangan dengan titik pantau join 114 pada bagian atap.

Nilai kemampuan simpangan yang terjadi pada perletakan *base* dan atap terdapat pada Tabel 4.54 dan Tabel 4.55.

TAB	LE: Pushover	curve - base						
Stop	Displacement	BaseForce	AtoR	Rto IO	IOto IS	IStoCP	CPtoC	Cto
Step	Mm	Kgf	AIOD	Diolo	101013	LSIOCI	CINC	D
0	0	0,00	576	0	0	0	0	0
1	18,265	229338,38	572	4	0	0	0	0
2	29,462	356185,64	440	136	0	0	0	0
3	30,433	362680,98	431	145	0	0	0	0
4	31,148	365495,74	429	147	0	0	0	0
5	31,088	368289,12	421	155	0	0	0	0
6	32,541	372574,48	420	153	3	0	0	0
7	31,668	375688,53	420	140	16	0	0	0
8	32,566	377626,09	420	121	35	0	0	0
9	31,109	384295,26	420	120	35	0	0	1
10	32,96	389070,66	420	120	11	0	0	25
11	33,115	389318,19	420	120	7	0	0	29
12	33,167	389369,02	420	120	4	0	0	32
13	33,614	389443,34	420	120	2	0	0	34
14	33,608	389463,57	420	120	1	0	0	35
15	33,212	382085,48	420	120	0	0	0	31

Tabel 4.54: Kemampuan simpangan gedung titik pantau di base Model C.

TAB	TABLE: Pushover curve - atap (Lantai 3)												
Stop	Displacement	BaseForce	AtoR	RtoIO	IOtoLS	LStoCP	CPtoC	CtoD					
Siep	Mm	Kgf	mob	Diolo	TOTOLD	Loioei	01100	CIOD					
0	0	0,00	576	0	0	0	0	0					
1	25,015	229338,38	572	4	0	0	0	0					
2	43,559	356185,64	440	136	0	0	0	0					
3	45,12	362680,98	431	145	0	0	0	0					
4	47,224	368289,12	421	155	0	0	0	0					
5	86,23	389318,19	420	120	7	0	0	29					
6	86,386	389369,02	420	120	4	0	0	32					
7	88,166	389460,04	420	120	1	0	0	35					
8	133,737	384477,83	420	120	0	0	0	36					

Tabel 4.55: Kemampuan simpangan gedung titik pantau di atap Model C.

Gambar 4.9: Kurva berdasarkan kapasitas analisa beban dorong gedung Model C

Kurva diatas menunjukan perbandingan hubungan antara gaya geser dasar terhadap perpindahan yang terjadi akibat beban gempa pada struktur bangunan pada titik tinjau di dasar dan titik tinjau di atap. Pada titik tinjau di dasar dan di atap kinerja yang diperlihatkan oleh struktur adalah terdapat 3 sendi *Immediate Occupancy (IO)*, Terjadinya kerusakan yang kecil atau tidak berarti pada struktur, kekakuan struktur hampir sama pada saat belum terjadi gempa. namum pada titik tinjau di atap sendi plastis mengalami 29 sendi tingkat *C to D* yang artinya batas maksimum gaya geser yang masih mampu ditahan gedung.

4.14.4 Analisa Non-Linear Beban Dorong Gedung Model D

Nilai kapasitas simpangan yang terjadi pada beban dorong Model D (gedung Model A dibebani gaya-gaya akibat Model C) dengan titik pantauan dijoin 3 yang berada di atap gedung terdapat pada Tabel 4.56 dan kurva kapasitas berdasarkan analisa beban dorong yang didapat dari *software* dapat dilihat pada Gambar 4.10.

St	Displacement	BaseForce	AtoR	Rto IO	IOto IS	IStoCP	CPtoC	Cto
ер	Mm	Kgf	AIOD	Diolo	101013	LSIDCI	CINC	D
0	0	0,00	384	0	0	0	0	0
1	4,605	527299,35	376	8	0	0	0	0
2	4,839	561265,43	272	112	0	0	0	0
3	7,82	808076,22	176	208	0	0	0	0
4	8,141	822355,98	121	263	0	0	0	0
5	8,274	826159,40	109	275	0	0	0	0
6	36,957	1273991,40	59	289	36	0	0	0
7	58,564	1372778,18	48	264	46	0	0	26
8	64,543	1380703,95	42	270	36	0	0	36

Tabel 4.56: Kemampuan simpangan gedung titik pantau di atap Model D.

Gambar 4.10: Kurva berdasarkan kapasitas analisa beban dorong gedung Model D

Kurva diatas menunjukan hubungan antara gaya geser dasar terhadap perpindahan yang terjadi akibat beban gempa pada struktur bangunan. Untuk melihat hasil yang labih detail bisa dilihat pada Tabel.4.56. Dengan target perpidahan $\delta T = 45$ mm yang di dapat dari terlihat bahwa dalam step 7 dimana perpindahan mencapai 58,564 mm > δT , kinerja yang diperlihatkan oleh struktur adalah *Immediate Occupancy (IO)*, Terjadinya kerusakan yang kecil atau tidak berarti pada struktur, kekakuan struktur hampir sama pada saat belum terjadi gempa.

4.14.5 Analisa Non-Linear Beban Dorong Gedung Model E

Nilai kapasitas simpangan yang terjadi pada beban dorong Model E (gedung Model D ditambah dengan breising) dengan titik pantauan dijoin 3 yang berada di atap gedung terdapat pada Tabel 4.57 dan kurva kapasitas berdasarkan analisa beban dorong yang didapat dari *software* dapat dilihat pada Gambar 4.11.

TABLE: Pushover Curve - atap										
Ctore	Displacement	BaseForce	AtoR	Rto IO	IOto IS	I Sto CD	CPtoC	CtoD		
Siep	Mm	Kgf	ЛЮД	Diolo	ююш	LSIUCI	CIIOC	CIOD		
0	0	0,00	384	0	0	0	0	0		
1	4,233	726898,50	380	4	0	0	0	0		
2	6,123	1043206,63	164	220	0	0	0	0		
3	23,243	2406717,22	64	320	0	0	0	0		
4	27,212	2565878,63	48	336	0	0	0	0		
5	33,522	2668153,87	33	351	0	0	0	0		
6	36,909	2699239,16	32	349	3	0	0	0		

Tabel 4.57: Kemampuan simpangan gedung titik pantau di atap Model E.

Gambar 4.11: Kurva berdasarkan kapasitas analisa beban dorong gedung Model E

Kurva diatas menunjukan hubungan antara gaya geser dasar terhadap perpindahan yang terjadi akibat beban gempa pada struktur bangunan. Untuk melihat hasil yang labih detail bisa dilihat pada Tabel 4.57. Dengan target perpidahan $\delta T = 45$ mm yang di dapat dari terlihat bahwa perpindahan belum sampai mencapai target perpindahan 36,909 mm < δT , kinerja yang diperlihatkan oleh struktur adalah *Immediate Occupancy (IO)*, Terjadinya kerusakan yang kecil atau tidak berarti pada struktur, kekakuan struktur hampir sama pada saat belum terjadi gempa.

4.14.6 Analisa Non-Linear Beban Dorong Gedung Model F.

Dalam menganalisa simpangan yang terjadi pada gedung Model F (gedung Model A sekaligus dimodelkan dengan Model C diatasnya) dilakukan dengan 3 cara untuk mencari perbandingan respon, yaitu:

- 1. Analisa simpangan dengan titik pantau join 156 pada bagian atap lantai 2.
- 2. Analisa simpangan dengan titik pantau join 16 pada bagian isolasi dasar atau pada bagian atas lantai 2.
- 3. Analisa simpangan dengan titik pantau join 114 pada bagian atap lantai 5.

Nilai kemampuan simpangan yang terjadi pada perletakan base dan atap terdapat pada Tabel 4.58 sampai dengan 4.60.

Tabel 4.58: Kemampuan simpangan gedung titik pantau di atap lantai 2 gedung Model F.

TABLE: Pushover Curve atap (Lantai 2)										
C4 am	Displacement	BaseForce	AtoR	Rto IO	IOtoIS	LStoCP	CPtoC	Cto		
Slep	Mm	Kgf	TIOD	Diolo	TOTOLD	LSIUCI	CI 10C	D		
0	0	0,00	960	0	0	0	0	0		
1	3,564	577230,41	959	1	0	0	0	0		
2	4,298	678401,60	918	42	0	0	0	0		
3	5,404	730930,43	799	161	0	0	0	0		
4	7,603	793839,20	769	191	0	0	0	0		
5	8,576	808685,61	760	200	0	0	0	0		
6	9,548	814412,76	757	203	0	0	0	0		
7	13,991	832857,05	757	203	0	0	0	0		

TAB	TABLE: Pushover Curve isolasi dasar (Atas lantai 2)											
Step	Displacement	BaseForce	AtoB	BtoIO	IOtoLS	LStoCP	CPtoC	CtoD				
	MM	лgj										
0	0,061	0,00	960	0	0	0	0	0				
1	6,42	577230,41	959	1	0	0	0	0				
2	7,731	685108,89	910	50	0	0	0	0				
3	7,887	692400,73	900	60	0	0	0	0				
4	16,056	806661,64	764	196	0	0	0	0				
5	16,279	808685,61	760	200	0	0	0	0				
6	21,666	831269,29	757	203	0	0	0	0				

Tabel 4.59: Kemampuan simpangan gedung titik pantau di atas atap lantai 2 gedung Model F.

Tabel 4.60: Kemampuan simpangan gedung titik pantau di atap lantai 5 Model F.

TABLE: Pushover Curve isolasi dasar (Lantai 5)											
Step	Displacement Mm	BaseForce Kgf	AtoB	BtoIO	IOtoLS	LStoCP	CPtoC	Cto D			
0	0	0,00	960	0	0	0	0	0			
1	4,386	577230,41	959	1	0	0	0	0			
2	5,274	678401,60	918	42	0	0	0	0			
3	6,508	730930,43	799	161	0	0	0	0			
4	8,927	793839,20	769	191	0	0	0	0			
5	9,96	808685,61	760	200	0	0	0	0			
6	10,959	814412,76	757	203	0	0	0	0			
7	14,551	829725,56	757	203	0	0	0	0			

Gambar 4.12: Kurva berdasarkan kapasitas analisa beban dorong gedung Model F

Kurva diatas menunjukan perbandingan hubungan antara gaya geser dasar terhadap perpindahan yang terjadi akibat beban gempa pada struktur bangunan pada titik tinjau di bagian atap lantai 2, di atas atap lantai 2 dan di atap lantai 5. Dari setiap titik pantau sendi plastis hanya sampai pada tingkat *B to 10* menunjukan kondisi yang menjelaskan bahwa setelah terjadinya gempa, kerusakan struktur sangat terbatas. Sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan.

4.14.7 Analisa Non-Linear Beban Dorong Gedung Model G

Dalam menganalisa simpangan yang terjadi pada gedung Model G (gedung Model F ditambah dengan breising) dilakukan dengan 3 cara untuk mencari perbandingan respon, yaitu:

- 1. Analisa simpangan dengan titik pantau join 156 pada bagian atap lantai 2.
- 2. Analisa simpangan dengan titik pantau join 16 pada bagian isolasi dasar atau pada bagian atas lantai 2.
- 3. Analisa simpangan dengan titik pantau join 114 pada bagian atap lantai 5.

Nilai kemampuan simpangan yang terjadi pada perletakan base dan atap terdapat pada Tabel 4.61 sampai dengan 4.63.

Tabel 4.61: Kemampuan simpangan gedung titik pantau di atap lantai 2 gedung Model G.

TABLE: Pushover Curve atap (Lantai 2)										
Stop	Displacement	BaseForce	AtoR	PtoIO	IOto IS	IStoCP	CPtoC	Cto		
Step	Mm	Kgf	ЛЮД	Diolo	101013	LSIUCI	CI IOC	D		
0	0	0,00	960	0	0	0	0	0		
1	2,948	687766,00	959	1	0	0	0	0		
2	13,319	1842975,49	557	392	0	0	0	11		
3	22,459	2354132,74	328	621	0	0	0	11		

TAB	TABLE: Pushover Curve isolasi dasar (Atas lantai 2)										
Stan	Displacement	BaseForce	AtoR	Rto IO	1 Into IS	IStoCP	P CPtoC	Cto			
Siep	Mm	Kgf	mob	Diolo	1010110	LSIOCI		D			
0	0,059	0,00	960	0	0	0	0	0			
1	6,589	687766,00	959	1	0	0	0	0			
2	6,778	707681,06	951	9	0	0	0	0			
3	102,078	2354132,74	328	621	0	0	0	11			

Tabel 4.62: Kemampuan simpangan gedung titik pantau di atap lantai 2 gedung Model G.

Tabel 4.63: Kemampuan simpangan gedung titik pantau di atap lantai 5 Model G.

TABLE: Pushover Curve isolasi dasar (Lantai 5)											
Ste	Displacement	BaseForce	A to D	P PtoIO	to IO IOto IS	I Sto CD	CPtoC	Cto			
р	Mm	Kgf	ЛЮД	DioIO	101013	LSIUCI	CINC	D			
0	0	0,00	960	0	0	0	0	0			
1	3,879	687766,00	959	1	0	0	0	0			
2	17,488	1846892,87	552	397	0	0	0	11			
3	29,858	2354132,74	328	621	0	0	0	11			

Gambar 4.13: Kurva berdasarkan kapasitas analisa beban dorong gedung Model G

Kurva diatas menunjukan perbandingan hubungan antara gaya geser dasar terhadap perpindahan yang terjadi akibat beban gempa pada struktur bangunan pada titik tinjau di bagian atap lantai 2, di atas atap lantai 2 dan di atap lantai 5. Dari titik tinjau di bagian atap lantai 2 di atap lantai 5. Dari ketiga titik tinjau kinerja yang diperlihatkan strukutur adalah IO (*Immediate Occupancy*) kerusakan struktur sangat terbatas, sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan.

4.15 Perbandingan Respon Bangunan Dengan Analisa Non-Linear

Perbandingan respon bangunan ini ditinjau dalam perbandingan kurva kapasitas berdasarkan analisa beban dorong yang terjadi pada struktur perletakan jepit dan isolasi.

4.15.1 Perbandingan Respon Bangunan Dengan Analisa Non-Linear Gedung Model B dan C

Dalam kurva kapasitas berdasarkan analisa beban dorong pada gedung Model B (gedung 3 lantai dengan perletakan jepit) dengan 1 titik pantauan dijoin 114 yang berada di atap gedung dan Model C (gedung 3 lantai dengan isolasi dasar) dilakukan dengan 2 titik pantauan join 16 pada bagian *base* (dasar) dan titik pantau join 114 pada bagian atap.

Perbandingan kurva kapasitas berdasarkan analisa beban dorong yang didapat dari *software* dapat dilihat pada Gambar 4.14.

Gambar 4.14: Perbandingan kurva kapasitas analisa beban dorong Model B dan C

Gambar 4.14 menjelaskan bahwa bangunan Model B (gedung 3 lantai dengan perletakan jepit) dengan 1 titik pantauan dijoin 114 yang berada di atap gedung mampu menahan gaya lebih besar yaitu 933744,27 kg dan terjadi simpangan 71,552 mm dan kinerja yang di perlihatkan oleh gedung adalah IO (*Immediate Occupancy*) kerusakan struktur sangat terbatas, sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan.

Sedangkan Model C (gedung 3 lantai dengan isolasi dasar) dengan 2 titik pantauan join 16 pada bagian *base* (dasar) mampu menahan gaya 382085,48 kg dan terjadi simpangan 33,212 mm dan titik pantau join 114 pada bagian atap mampu menahan gaya 384477,83 kg dan terjadi simpangan 133,737 mm dan kinerja yang diperlihatkan didua titik pantau ini adalah IO (Immediate Occupancy) kerusakan struktur sangat terbatas, sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan, namun pada titik pantau join 114 pada bagian atap mengalami 29 sendi plastis tingkat *C to D* yang artinya batas maksimum gaya geser yang masih mampu ditahan gedung.

4.15.2 Perbandingan Respon Bangunan Dengan Analisa Non-Linear Gedung Model D dan E

Dalam kurva kapasitas berdasarkan analisa beban dorong pada gedung Model D (gedung Model A dibebani gaya-gaya akibat Model C) dengan titik pantauan dijoin 3 yang berada di atap gedung dan Model E (gedung Model D ditambah dengan breising) dengan titik pantauan dijoin 3 yang berada di atap gedung.

Perbandingan kurva kapasitas berdasarkan analisa beban dorong yang didapat dari software dapat dilihat pada Gambar 4.15 yang menjelaskan bahwa gedung Model D (gedung Model A dibebani gaya-gaya akibat Model C) mampu menahan gaya sebesar 1380703,95 kg dan terjadi simpangan sebesar 64,543 mm dan kinerja yang diperlihatkan terdapat 36 sendi plastis di tingkat *Immediate Occupancy (IO)* kerusakan struktur sangat terbatas, sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan dan mengalami 36

sendi plastis di tingkat Collapse (C) yang artinya batas maksimum gaya geser yang masih mampu ditahan gedung namun bangunan akan runtuh.

Pada gedung Model E (gedung Model D ditambah dengan breising) mampu menahan gaya lebih besar yaitu 2699239,16 kg dan mengalami simpangan 36,909 mm dan kinerja yang diperlihatkan *Immediate Occupancy (IO)* kerusakan struktur sangat terbatas, sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan.

Gambar 4.15: Perbandingan kurva kapasitas analisa beban dorong Model D dan E.

4.15.3 Perbandingan Respon Bangunan Dengan Analisa Non-Linear Gedung Model D dan F

Dalam kurva kapasitas berdasarkan analisa beban dorong pada gedung Model D (gedung Model A dibebani gaya-gaya akibat Model C) dengan titik pantauan dijoin 3 yang berada di atap gedung dan Model F (gedung Model A sekaligus dimodelkan dengan Model C diatasnya) dilakukan dengan 3 cara untuk mencari perbandingan respon, yaitu titik pantau join 156 pada bagian atap lantai 2,titik pantau join 16 pada bagian isolasi dasar atau pada bagian atas lantai 2 dan titik pantau join 114 pada bagian atap lantai 5.

Gambar 4.16: Perbandingan kurva kapasitas analisa beban dorong Model D dan F.

Perbandingan kurva kapasitas berdasarkan analisa beban dorong yang didapat dari software dapat dilihat pada Gambar 4.16 yang menjelaskan bahwa gedung Model D (gedung Model A dibebani gaya-gaya akibat Model C) mampu menahan gaya sebesar 1380703,95 kg dan terjadi simpangan sebesar 64,543 mm dan kinerja yang diperlihatkan *Immediate Occupancy (IO)* kerusakan struktur sangat terbatas, sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan dan mengalami 36 sendi plastis di tingkat *Collapse (C)* yang artinya batas maksimum gaya geser yang masih mampu ditahan gedung namun bangunan akan runtuh.

Gedung Model F (gedung Model A sekaligus dimodelkan dengan Model C diatasnya) mampu menahan gaya lebih kecil 832857,05 kg dan terjadi simpangan yang beragam di setiap titik pantau namun dari setiap titik pantau sendi plastis hanya sampai pada tingkat *Immediate Occupancy (IO)* menunjukan kondisi yang menjelaskan bahwa setelah terjadinya gempa, kerusakan struktur sangat terbatas. Sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan.

4.15.4 Perbandingan Respon Bangunan Dengan Analisa Non-Linear Gedung Model E dan G

Dalam kurva kapasitas berdasarkan analisa beban dorong pada gedung Model E (gedung Model D ditambah dengan breising) dengan titik pantauan dijoin 3 yang berada di atap gedung dan Model G (gedung Model F ditambah dengan breising) dilakukan dengan 3 cara untuk mencari perbandingan respon, yaitu titik pantau join 156 pada bagian atap lantai 2, titik pantau join 16 pada bagian isolasi dasar atau pada bagian atas lantai 2 dan titik pantau join 114 pada bagian atap lantai 5.

Gambar 4.17: Perbandingan kurva kapasitas analisa beban dorong Model E dan G.

Perbandingan kurva kapasitas berdasarkan analisa beban dorong yang didapat dari software dapat dilihat pada Gambar 4.17 yang menjelaskan bahwa gedung Model E (gedung Model D ditambah dengan breising) mampu menahan gaya sebesar 2699239,16 kg dan terjadi simpangan sebesar 36,909 mm dan kinerja yang diperlihatkan terdapat 156 sendi plastis di tingkat *Immediate Occupancy* (*IO*) menunjukan kondisi yang menjelaskan bahwa setelah terjadinya gempa, kerusakan struktur sangat terbatas. Sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan.

Model G (gedung Model F ditambah dengan breising) mampu menahan gaya lebih kecil 2354132,74 kg dan terjadi simpangan yang beragam di setiap titik pantau nya. kinerja yang diperlihatkan oleh struktur adalah kinerja yang diperlihatkan terdapat 156 sendi plastis di tingkat *Immediate Occupancy (IO)* menunjukan kondisi yang menjelaskan bahwa setelah terjadinya gempa, kerusakan struktur sangat terbatas. Sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan.

4.15.5 Perbandingan Respon Bangunan Dengan Analisa Non-Linear Gedung Model F dan G

Dalam kurva kapasitas berdasarkan analisa beban dorong pada gedung Model F (gedung Model A sekaligus dimodelkan dengan Model C diatasnya) dan Model G (gedung Model F ditambah dengan breising) dilakukan dengan 3 cara untuk mencari perbandingan respon, yaitu titik pantau join 156 pada bagian atap lantai 2,titik pantau join 16 pada bagian isolasi dasar atau pada bagian atas lantai 2 dan titik pantau join 114 pada bagian atap lantai 5 dan gedung Model .

Gambar 4.18: Perbandingan kurva kapasitas analisa beban dorong Model F dan G.

Gedung Model F (gedung Model A sekaligus dimodelkan dengan Model C diatasnya) mampu menahan gaya lebih kecil 832857,05 kg dan terjadi simpangan

yang beragam di setiap titik pantau namun dari setiap titik pantau sendi plastis hanya sampai pada tingkat *Immediate Occupancy (IO)* menunjukan kondisi yang menjelaskan bahwa setelah terjadinya gempa, kerusakan struktur sangat terbatas. Sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan.

Model G (gedung Model F ditambah dengan breising) mampu menahan gaya lebih kecil 2354132,74 kg dan terjadi simpangan yang beragam di setiap titik pantau nya. kinerja yang diperlihatkan oleh struktur adalah kinerja yang diperlihatkan terdapat 156 sendi plastis di tingkat *Immediate Occupancy (IO)* menunjukan kondisi yang menjelaskan bahwa setelah terjadinya gempa, kerusakan struktur sangat terbatas. Sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan.

BAB 5

KESIMPULAN DAN SARAN

4.14Kesimpulan

Berdasarkan perbandingan dari hasil perencanaan struktur perletakan jepit dan isolasi dasar baik dengan metode linear maupun metode non-linear analisa beban dorong, diperoleh beberapa kesimpulan sebagai berikut:

- Nilai simpangan gedung akibat respon spektrum :
 - 1. Gedung Model A = gedung 2 lantai dengan perletakan jepit sebesar = 0,2034cm.
 - 2. Gedung Model B = gedung 3 lantai dengan perletakan jepit sebesar = 0,399 cm.
 - 3. Gedung Model C = gedung 3 lantai dengan isolasi dasar sebesar = 1,465 cm.
 - Gedung Model D = gedung Model A dibebani gaya-gaya akibat Model C sebesar = 0,4327 cm.
 - 5. Gedung Model E = gedung Model D ditambah dengan bresing sebesar = 0,328 cm.
 - Gedung Model F = gedung Model A sekaligus dimodelkan dengan Model C diatasnya sebesar = 0,7526 cm.
 - 7. Gedung Model G = gedung Model F ditambah dengan bresing sebesar = 0,5700 cm.
- Perletakkan Isolasi dasar dapat meningkatkan kekakuan dan menahan gaya lateral dan merupakan suatu komponen reduksi lateral serta mengambil sifat fleksibel bangunan.
- Material breising dapat meningkatkan kekakuan dan menahan gaya lateral.
- Nilai simpangan kurva kapasitas berdasarkan analisa beban dorong linear yaitu sebagai berikut:

- 1. Gedung Model A = gedung 2 lantai dengan perletakan jepit mampu menahan gaya sebesar 1304338,99 kg, dan terjadi simpangan 39,837 mm.
- 2. Gedung Model B = gedung 3 lantai dengan perletakan jepit mampu menahan gaya sebesar 933744,27 kg, dan terjadi simpangan 71,552 mm.
- 3. Gedung Model C = gedung 3 lantai dengan isolasi dasar mampu menahan gaya sebesar 384477,83 kg, dan terjadi simpangan 133,737 mm.
- Gedung Model D = gedung Model A dibebani gaya-gaya akibat Model C mampu menahan gaya sebesar 1380703,95 kg, dan terjadi simpangan 64,543 mm.
- 5. Gedung Model E = gedung Model D ditambah dengan bresing mampu menahan gaya sebesar 2699239,16 kg, dan terjadi simpangan 36,909 mm.
- Gedung Model F = gedung Model A sekaligus dimodelkan dengan Model C diatasnya mampu menahan gaya sebesar 829725,56 kg, dan terjadi simpangan 14,551 mm.
- 7. Gedung Model G = gedung Model F ditambah dengan bresing mampu menahan gaya sebesar 2354132,74 kg, dan terjadi simpangan 29,858 mm.

5.2 Saran

Penelitian ini belum sempurna hanya menganalisa pengaruh penggunaan isolasi dasar jenis *High-Damping Rubber Bearing* terhadap bangunan SRPMK dengan analisa statik ekivalen, dinamik respon spektrum dan analisa beban dorong *(pushover)*. Respon struktur bangunan yang dikaji berupa simpangan antar lantai yang berbentuk simetris 5 lantai dengan isolasi dasar di lantai 2 yang terletak di kota Padang dengan klasifikasi tanah sedang.

Pada struktur, hanya ditambahkan pengaku berupa breising dilantai dasar. Seharusnya pengaku berupa breising dapat ditambahkan di lantai 2. Analisa nonlinear beban dorong tidak menganalisa sampai bangunan runtuh, hanya menganalisa sampai bangunan tersebut mengalami perubahan dari simpangan yang berbentuk linear menjadi non-linear.

Oleh karenanya disarankan untuk studi selanjutnya dilakukan analisis titik jenuh bangunan tersebut sampai runtuh.

DAFTAR PUSTAKA

- Adiyanto, D.J. dan Andreas, N.J (2008) *Pengaruh Dinding Pengisi Terhadap Perilaku Pushover Stuktur Beton Bertulang*. Bandung: Institusi Teknologi Bandung.
- Ahmad, H. dan Octaviana, R. Perencanaan Struktur Rangka baja Bresing Konsentrik Biasa dan Struktur Rangka Baja Bresing Konsentrik Khusus Tipe-X. Laporan Tugas Akhir. Bandung: Program Studi Teknik Sipil, Institut Teknologi Bandung.
- Aryanto, A. (2008) Kinerja Portal Beton Bertulang dengan Dinding Pengisi Bata Ringan terhadap Beban Gempa. *Tesis Magister*. Bandung: Institusi Teknologi Bandung.
- Asteris, P.G. (2003) Lateral Stiffness of Brick Masonary Infilled Planed Frame. Journal of Struktural Engineering, ASCE, 129(8), 1071-1079.
- Arief, A. (2016) Analisis Respon Bangunan Gedung Lima Lantai Menggunakan Base Isolator Di Kota Padang. Medan: Universitas Muhammadiyah Sumatera Utara.
- Badan Standarisasi Nasional (2012) Tata Cara Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung (SNI-1726-2012). Jakarta: BSN.
- Badan Standarisasi Nasional (2013) Beban Minimum Untuk Perancangan Bangunan Gedung dan Struktur Lain (SNI-1727-2013). Jakarta: BSN.
- Badan Standarisasi Nasional (2013) Persyaratan Beton Struktural untuk bangunan gedung (SNI-2847-2013). Jakarta: BSN.
- Badan Standarisasi Nasional (2015) Spesifikasi Untuk Bangunan Gedung Baja Struktural (SNI-1729-2015). Jakarta: BSN.
- Budiono, B. dan Setiawan, A. (2014) Studi Komparasi Sistem Isolasi Dasar *High-Damping Rubber Bearing* dan *Friction Pendulum System* pada Bangunan Beton Bertulang. *Jurnal Teknik Sipil*. Vol.21 (3), hal.180-181.
- Budiono, B. dan Supriatna, L. (2011) *Studi Komparasi Desain Bangunan Tahan Gempa*. Bandung: Institut Teknologi Bandung.
- Day, R.W. (1999) *Geothechnical and Fondation Engineering Design and Construction*. United State of America: The McGraw-Hill Companies, Inc.
- Departemen Pekerjaan Umum (1987) Pedoman Perencanaan Pembebanan Untuk Rumah dan Gedung(PPPURG). Jakarta: Yayasan Penerbit Pekerjaan Umum.
- Farisi, M.A. dan Budiono, R.B. (____) Design And Analysis of Base Isolated Structures. Bandung: Institute Teknologi Bandung.
- Gifars, F. (2014) Pengertian dan Penjelasan Gempa Bumi. Ilmu sains.
- Gunawan. R. (1987) Tabel Profil Konstruksi Baja, Yogyakarta : Yayasan Sarana Cipta.
- Hart, G.C. dan Wong, K. (2000) *Structural Dynamics for Structural Engineers*. United State of America: John Wiley & Sons, Inc.
- Mayes, R.L. dan Naeim, F. (2000) Design of Structures with Seismic Isolation. California (LA).
- Muliadi, & Arifuddin, M., & Aulia, T.B. (2014) Analisi Respon Bangunan Menggunakan Isolasi Dasar Sebagai Pereduksi Beban Gempa Di Wilayah Gempa Kuat. *Jurnal Teknik Sipil*, Vol.3 (2), hal.109-118.
- Noroadityo (2012) Alasan sering terjadinya Gempa Bumi di Indonesia. noroadityo.wordpress.com, diakses 30 oktober 2015.
- Parinduri, B.S.M. (2013) Evalusi Daktalitas Pada Bangunan Rumah Toko di Kota Medan Terkait dengan Peraturan Gempa 2012. Laporan Tugas Akhir. Medan: Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara.
- Riza, M.M. (2010) Aplikasi Perencanaan Struktur Gedung dengan ETABS. ARS GROUP
- Strein, T. (2014) Base isolation system of lead-rubber bearings. *https://prezi.com*, diakses 9 oktober 2015.
- Sudarman, H. (2014) Analisis Pushover Pada Struktur Gedung Bertingkat Tipe Podium. Jurnal Sipil Statik. Vol.2 No.4. https://www.neliti.com . diakses 29 agustus 2018.
- Teruna, D.R. dan Singarimbun, H. (2010) Analisis Respon Bangunan ICT Universitas Syiah Kuala Yang Memakai Slider Isolator Akibat Gaya Gempa. Seminar dan Pameran Haki: Perkembangan dan Kemajuan Konstruksi Indonesia.
- Tumilar, S. (2015) Contoh Analisis Gedung 4 Lantai di Banda Aceh. Medan.
- Widjanarko, A. (2006) *Pedoman Teknis Rumah dan Bangunan Gedung Tahan Gempa dilengkapi dengan Metode dan Cara Perbaikan Kerusakan*. Jakarta: Direktorat Jenderal Cipta Karya Departemen Pekerjaan Umum.
- Young, K. (1975) *Geology The Paredox of Earth and Man*. United State of America: Houghton Mifflin Company.

LAMPIRAN

Perioda Fundamental Pendekatan (Ta)

Tabel 1: Pengece	ekan nilai	perioda	bangunan	Model A dan D.
------------------	------------	---------	----------	----------------

SYARAT PERIODA						
Arah	ArahTa =0.1*NTa Max = Cu*TaT hasil dari softwareCEK					
Х	0.200	0.280	0.1188	OK		
Y 0.200 0.280 0.1188						

Tabel 2: Pengecekan nilai perioda bangunan Model B.

SYARAT PERIODA						
Arah	ArahTa =0.1*NTa Max = Cu*TaT hasil dari softwareCEK					
Х	0.300	0.420	0.1748	OK		
Y	0.300	0.420	0.1748	OK		

Tabel 3: Pengecekan nilai perioda bangunan Model C.

SYARAT PERIODA					
Arah	ArahTa =0.1*NTa Max = Cu*TaT hasil dari ETABSCEK				
Х	0,300	0,420	0,5779	NOT OK	
Y	0,300	0,420	0,5779	NOT OK	

Tabel 4: Pengecekan nilai perioda bangunan Model E.

SYARAT PERIODA					
ArahTa =0.1*NTa Max = Cu*TaT hasil dari ETABSCEK					
X	0,200	0,280	0,1001	OK	
Y	0,200	0,280	0,1001	OK	

Tabel 5: Pengecekan nilai perioda bangunan Model F.

	SYARAT PERIODA					
Arah	Arah Ta =0.1*N Ta Max = Cu*Ta T hasil dari ETABS CEK					
X	0,500	0,700	0,1797	OK		
Y	0,500	0,700	0,1797	OK		

SYARAT PERIODA					
Arah	Arah Ta =0.1*N Ta Max = Cu*Ta T hasil dari ETABS CEK				
Х	0,500	0,700	0,1523	OK	
Y	0,500	0,700	0,1523	OK	

Tabel 6: Pengecekan nilai perioda bangunan Model G.

Pengecekan story shear dengan 35% gaya geser dasar.

Tabel 7: Pengecekan *story shear* dengan 35% gaya geser dasar redundansi 1 (ρ =1) gedung Model A, D, dan E.

			Cek		
No	Lantai	Story	Base		35% V Base
INU	Lainai	Shear	Shear	35% V Base Shear	Shear
		(V_X) (kg)	(V_X) (kg)	ρ=1 (kg)	$\langle Story\ Shear\ (V_x)$
1	2	98809,85	148214,78	51875,17	OK
2	1	148214,78	148214,78	51875,17	OK

Tabel 8: Pengecekan *story shear* dengan 35% gaya geser dasar redundansi 1 (ρ =1) gedung Model B dan C.

			Cek		
No	Lontoi	Story	Base		35% V Base
INU	Lainai	Shear	Shear	35% V Base Shear	Shear
		(V_X) (kg)	(V_X) (kg)	ρ=1 (kg)	$\langle Story\ Shear\ (V_x)$
1	5	78157,35	196965,82	68938,04	OK
2	4	157363,00	196965,82	68938,04	OK
3	3	196965,82	196965,82	68938,04	OK

Tabel 9: Pengecekan *story shear* dengan 35% gaya geser dasar redundansi 1 (ρ =1) gedung Model F dan G.

			Cek		
No	Lantai	Story Shear	Base Shear	35% V Base Shear	35% V Base Shear
		(V_X) (kg)	(V_X) (kg)	ρ=1 (kg)	$\langle Story Shear(V_x)$
1	5	85435,71	345180,60	120813,21	NOT OK
2	4	189333,67	345180,60	120813,21	OK
3	3	267257,13	345180,60	120813,21	OK
4	2	319206,11	345180,60	120813,21	OK
5	1	345180,60	345180,60	120813,21	OK

		Arah X,Y			Cek
No	Lantai	Story Shear	Base Shear	35% V Base Shear	35% V Base Shear
		(V_X) (kg)	(V_X) (kg)	ρ=1 (kg)	$<$ <i>Story Shear</i> (V_x)
1	5	122173,06	345180,60	120813,21	OK
2	4	246133,77	345180,60	120813,21	OK
3	3	347434,28	345180,60	120813,21	OK
4	2	414967,95	345180,60	120813,21	OK
5	1	448734,78	345180,60	120813,21	OK

Tabel 10: Pengecekan *story shear* dengan 35% gaya geser dasar redundansi 1,3 (ρ =1,3) gedung Model F dan G.

Hasil persentase nilai periode

Tabel 11: Hasil persentase nilai periode gedung Model A dan D.

Mode	Persentase (%)	CQC < 15%	SRSS > 15%
T1-T2	0,0	OK	NO OK
T2-T3	7,5	OK	NO OK
T3-T4	64,9	NO OK	OK
T4-T5	0,0	OK	NO OK
T5-T6	6,7	OK	NO OK
T6-T7	53,5	NO OK	OK
T7-T8	1,9	OK	NO OK
Т8-Т9	0,0	OK	NO OK
T9-T10	1,8	OK	NO OK
T10-T12	1,3	OK	NO OK
T11-T12	0,0	OK	NO OK

Tabel 11: Hasil persentase nilai periode gedung Model B.

Mode	Persentase (%)	CQC < 15%	SRSS > 15%
T1-T2	0,0	OK	NO OK
T2-T3	7,3	ОК	NO OK
T3-T4	65,5	NO OK	ОК
T4-T5	0,0	OK	NO OK
T5-T6	7,1	OK	NO OK
T6-T7	36,5	NO OK	ОК
T7-T8	0,0	OK	NO OK
Т8-Т9	6,5	OK	NO OK

Tabel 11: Lanjutan.

Mode	Persentase (%)	CQC < 15%	SRSS > 15%
T9-T10	26,0	NO OK	OK
T10-T12	3,2	OK	NO OK
T11-T12	0,0	OK	NO OK

Hasil persentase nilai periode

Mode	Persentase (%)	CQC < 15%	SRSS > 15%
T1-T2	0,0	OK	NO OK
T2-T3	6,0	OK	NO OK
T3-T4	84,3	NO OK	OK
T4-T5	0,0	OK	NO OK
T5-T6	6,2	OK	NO OK
T6-T7	38,1	NO OK	OK
T7-T8	0,0	OK	NO OK
T8-T9	0,0	OK	NO OK
T9-T10	0,0	OK	NO OK
T10-T12	0,0	OK	NO OK
T11-T12	0,1	ОК	NO OK

Tabel 12: Hasil persentase nilai periode gedung Model C.

Tabel 13: Hasil persentase nilai periode gedung Model E.

Mode	Persentase (%)	CQC < 15%	SRSS > 15%
T1-T2	0,0	OK	NO OK
T2-T3	17,0	NO OK	OK
T3-T4	56,8	NO OK	OK
T4-T5	0,0	OK	NO OK
T5-T6	13,1	OK	NO OK
T6-T7	39,5	NO OK	OK
T7-T8	0,0	OK	NO OK
Т8-Т9	0,0	OK	NO OK
T9-T10	0,0	OK	NO OK
T10-T12	0,0	OK	NO OK
T11-T12	0,0	OK	NO OK

Mode	Persentase (%)	CQC < 15%	SRSS > 15%
T1-T2	0,0	OK	NO OK
T2-T3	7,5	OK	NO OK
T3-T4	59,5	NO OK	OK
T4-T5	0,0	OK	NO OK
T5-T6	6,9	OK	NO OK
T6-T7	20,0	NO OK	OK
T7-T8	0,0	OK	NO OK
Т8-Т9	0,8	OK	NO OK
T9-T10	0,0	OK	NO OK
T10-T12	0,0	OK	NO OK
T11-T12	0,0	OK	NO OK

Tabel 14: Hasil persentase nilai periode gedung Model F.

Tabel 14: Hasil persentase nilai periode gedung Model G.

Mode	Persentase (%)	CQC < 15%	SRSS > 15%
T1-T2	0,0	OK	NO OK
T2-T3	17,0	NO OK	OK
T3-T4	49,4	NO OK	OK
T4-T5	0,0	OK	NO OK
T5-T6	10,2	OK	NO OK
T6-T7	12,6	OK	NO OK
T7-T8	0,0	OK	NO OK
Т8-Т9	0,8	OK	NO OK
T9-T10	0,0	OK	NO OK
T10-T12	0,0	OK	NO OK
T11-T12	0,0	OK	NO OK

Pengecekan gaya geser respon spektrum

Tabel 15: Pengecekan gaya geser respon spektrum gedung Model A dan D.

Arah	V	V_1	$0.85*V_1$	Cek V \geq 0.8 V ₁
Х	54076,48	148214,78	125982,56	NOT OK
Y	54076,48	148214,78	125982,56	NOT OK

Arah	V	V ₁	$0.85*V_1$	$Cek \ V \ge 0.8 \ V_1$
Х	82769,64	196965,82	167420,95	NOT OK
Y	82769,64	196965,82	167420,95	NOT OK

Tabel 16: Pengecekan gaya geser respon spektrum gedung Model B.

Tabel 17: Pengecekan gaya geser respon spektrum gedung Model C.

Arah	V	V_1	$0.85*V_1$	Cek V \geq 0.8 V ₁
Х	99670,40	196965,82	167420,95	NOT OK
Y	99670,40	196965,82	167420,95	NOT OK

Tabel 18: Pengecekan gaya geser respon spektrum gedung Model E.

Arah	V	V_1	$0.85*V_1$	Cek V \geq 0.8 V ₁
Х	46605,32	148214,78	125982,56	NOT OK
Y	46605,32	148214,78	125982,56	NOT OK

Tabel 19: Pengecekan gaya geser respon spektrum gedung Model F.

Arah	V	V_1	$0.85*V_1$	Cek V \geq 0.8 V ₁
X	151715,92	345180,60	293403,51	NOT OK
Y	151715,92	345180,60	293403,51	NOT OK

Tabel 20: Pengecekan gaya geser respon spektrum gedung Model G.

Arah	V	V_1	$0.85*V_1$	$Cek \ V \ge 0.8 \ V_1$
Х	143816,87	345180,60	293403,51	NOT OK
Y	143816,88	345180,60	293403,51	NOT OK

Tabel 21: Pengecekan gaya geser respon spektrum gedung Model A dan D setelah dikali faktor skala.

Arah	V	V_1	$0.85*V_1$	Cek V \geq 0.8 V ₁	
Х	126002,00	148214,78	125982,56	OK	
Y	126002,00	148214,78	125982,56	OK	

Tabel 22: Pengecekan gaya geser respon spektrum gedung Model B setelah dikali faktor skala.

Arah	V	V_1	$0.85*V_1$	Cek V \geq 0.8 V ₁	
Х	167474,76	196965,82	167420,95	ОК	
Y	167474,76	196965,82	167420,95	OK	

Tabel 23: Pengecekan gaya geser respon spektrum gedung Model C setelah dikali faktor skala.

Arah	V	V_1	$0.85*V_1$	Cek V \geq 0.8 V ₁	
Х	167472,12	196965,82	167420,95	OK	
Y	167472,12	196965,82	167420,95	ОК	

Tabel 24: Pengecekan gaya geser respon spektrum gedung Model E setelah dikali faktor skala.

Arah	V	V_1	$0.85*V_1$	$Cek \ V \ge 0.8 \ V_1$
Х	126027,64	148214,78	125982,56	OK
Y	126027,64	148214,78	125982,56	OK

Tabel 25: Pengecekan gaya geser respon spektrum gedung Model F setelah dikali faktor skala.

Arah V		V_1	$0.85*V_1$	$Cek \ V \ge 0.8 \ V_1$	
Х	293449,56	345180,60	293403,51	ОК	
Y	293449,56	345180,60	293403,51	OK	

Tabel 26: Pengecekan gaya geser respon spektrum gedung Model G setelah dikali faktor skala.

Arah	Arah V		$0.85*V_1$	$Cek \ V \ge 0.8 \ V_1$
Х	293585,02	345180,60	293403,51	ОК
Y	293585,03	345180,60	293403,51	ОК

Lantai	Beban sendiri	Beban mati tambahan	Beban hidup	Beban maksimum gedung 3 lantai
Total berat gedung 3 lantai	572400,00	444600,00	110129,18	1423537,83

Tabel 27. total beban – beban gedung Model C atau gedung 3 lantai dengan isolasi dasar.

DAFTAR RIWAYAT HIDUP

: KIKI SULAIMAN
: LAKI - LAKI
: TEMBUNG, 04 FEBRUARI 1995
: JL. AMAL DUSUN X TEMBUNG
: ISLAM
: DARSO

• IBU : SULIAH

JENJANG PENDIDIKAN

*	SD Swasta Permata Sari	: Berijazah	Tahun	2007
*	SMP Swasta Sabilina	: Berijazah	Tahun	2010
*	SMK Negeri 1 Percut Sei Tuan	: Berijazah	Tahun	2013

Melanjutkan kuliah di Fakultas Teknik Program Studi Sipil di Universitas Muhammadiyah Sumatera Utara tahun 2014 hingga selesai.

KINERJA STRUKTUR BETON BERTULANG 5 LANTAI MENGGUNAKAN *BASE ISOLATOR* PADA LANTAI 2 DENGAN ANALISA BEBAN DORONG (PUSH OVER) (STUDI LITERATUR)

Ade Faisal¹, Kiki Sulaiman^{1,2}, Josef Hadipramana¹

¹Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara, Medan ²Email: <u>kikisulaiman84@gmail.com</u>

Abstrak. Gempa bumi merupakan suatu fenomena alam yang tidak dapat dielakkan oleh manusia yang mana kejadian itu mengakibatkan kerugian material dan korban jiwa. Akibat yang ditimbulkan tersebut kebanyakan terjadi oleh kerusakan dan runtuhnya suatu bangunan. Teknologi yang dikembangkan pada pondasi belakangan ini sangat berpengaruh untuk meminimalisir keruntuhan suatu struktur bangunan akibat gempa bumi. Isolasi dasar merupakan inovasi teknologi yang diletakkan pada pondasi yang berfungsi mengurangi efek dari gempa bumi. Kekakuan pada struktur juga mempengaruhi ketahanan bangunan dari kerusakan dan keruntuhan. Material breising juga mampu menahan gaya lateral akibat gempa bumi. Tugas akhir ini bertujuan untuk mengetahui respon struktur gedung yang menggunakan teknologi isolasi dasar di lantai 2. Gedung didesain awal 2 lantai dengan dibebani gaya-gaya yang ada pada bangunan 3 lantai diatasnya dan gedung 5 lantai dengan isolasi dasar di lantai 2. Analisis yang dipakai adalah analisis statik ekiyalen, analisis respon spektrum dan analisis beban dorong (push over). Hasil yang didapatkan dari analisis beban dorong gedung 2 lantai dengan dibebani gaya-gaya yang ada pada bangunan 3 lantai diatasnya mampu menahan gaya sebesar 2.699.239,16 kg dan terjadi simpangan 0,0369 m dan gedung 5 lantai dengan isolasi dasar di lantai 2 mampu menahan gaya sebesar 2.354.132,74 kg terjadi simpangan 0,0299 m.

Kata kunci: Isolasi dasar, teknologi, gempa bumi, kekakuan, breising.

Abstract. Earthquake is a natural phenomenon that cannot be avoided by humans, which has resulted in material losses and loss of life. The resulting consequences mostly occur by damage and collapse of a building. The technology developed in recent foundations is very influential to minimize the collapse of a building structure due to an earthquake. Basic isolation is a technological innovation that is placed on a foundation that serves to reduce the effects of an earthquake. Stiffnes in the structure also affects the resistance of the building from damage and collapse. Breeding materials are also able to withstand lateral forces due to earthquakes. This final project aims to determine the response of the building structure using basic isolation technology on the 2nd floor. The building was originally designed 2 floors with the existing styles on the building 3 floors above and 5-story building with basic insulation on the 2nd floor. The analysis used was equivalent static analysis, spectrum response analysis and push over analysis. The results obtained from the analysis of the thrust load of the 2-story building with the existing styles on the 3-storey building above are able to withstand a force of 2,699,239.16 kg and a deviation of 0.0369 m and a 5-story building with basic insulation on the 2nd floor. withstand a force of 2,354,132.74 kg and a deviation of 0.0299 m.

Keywords: Base Isolator, technology, earthquakes, stiffnes, bracing.

1. PENDAHULUAN

Sumatera Barat khusus nya kota Padang merupakan suatu daerah di Indonesia yang rawan terjadi gempa. Akibat peristiwa ini banyak bangunan yang mengalami kerusakan serta banyaknya korban jiwa. Hal ini yang harus menyadarkan kita tentang penting nya merencanakan bangunan dengan konsep tahan dengan gempa.

Untuk mengurangi resiko bangunan terhadap gempa, penulis memilih isolasi dasar sebagai topik penelitian karena isolasi dasar merupakan salah satu teknologi tinggi

gedung penahan gempa yang dimulai dan diteliti tahun 1991 di Uniform Building Code (UBC) (Gary dkk., 2000) Isolasi dasar direncanakan pada lantai 2 gedung 5 lantai karena berdasarkan SNI 1726;2012 pasal 12.4.1. Tinggi struktur dengan isolasi dasar kurang atau sama dengan 4 lantai atau 19,8 m dari tinggi struktur *hn*. Oleh karena itu penulis merencanakan gedung didesain awal 2 lantai dengan dibebani gaya-gaya yang ada pada gedung 3 lantai di atas nya agar dapat diketahui perilaku gedung 2 lantai jika dibebani gaya-gaya akibat gedung 3 lantai di atas nya dan juga penulis merencanakan langsung bangunan 5 lantai dengan isolasi dasar di lantai 2.

2. TINJAUAN PUSTAKA

Studi pustaka digunakan untuk memecahkan masalah yang ada, baik untuk menganalisis faktor-faktor dan data pendukung maupun untuk merencanakan suatu konstruksi, dalam hal ini digunakan pada perencanaan kinerja struktur beton bertulang 5 Lantai menggunakan *base isolator* pada lantai 2 dengan analisa beban dorong (*Pushover*). Dalam bab ini secara garis besar dibagi menjadi dua yaitu landasan teori, standar perencanaan.

2.1 Landasan Teori

Isolasi dasar merupakan teknologi yang digunakan untuk meredam kekuatan seismik, meminimalisir terjadinya kerusakan bangunan dan jumlah jatuhnya korban jiwa akibat terjadinya gempa bumi.Isolasi dasar di letakkan diantara kolom dan pondasi bangunan seperti yang diperlihatkan pada Gambar 1.

Gambar 1: Letak isolasi dasar pada struktur bangunan gedung.

Prinsip isolasi dasar adalah membedakan struktur bawah dengan struktur atas agar gaya gempa yang diterima struktur bawah (pondasi) tidak masuk ke struktur atas bangunan. untuk mencegah terjadinya gaya gempa, struktur bangunan dibuat tidak mengikuti percepatan gempa (Muliadi dkk., 2014).

2.2 Standar Perencanaan

Standar perencanaan struktur bangunan yang direncanakan mampu menahan gaya lateral akibat gempa sesuai dengan Tata Cara Perencanaan Bangunan Tahan Gempa Berdasarkan SNI 1726;2012, Persyaratan Beton struktural Untuk Bangunan Gedung Berdasarkan SNI 2847;2013, Spesifikasi Untuk Bangunan Gedung Baja Struktural Berdasarkan SNI 1729;2015, Beban Minimum Untuk Perancangan Bangunan Gedung dan Struktur Lain Berdasarkan SNI 1727;2013 dan Pembebanan Struktur Berdasarkan Peraturan Pembebanan Indonesia Untuk Rumah dan Gedung (1987).

3. HASIL DAN PEMBAHASAN

3.1 Permodelan Struktur Gedung

Bangunan yang akan direncanakan yaitu bangunan beton bertulang SPRMK 5 lantai dengan isolasi dasar dilantai 2, yang didefinisikan pada model sebagai berikut:

- 15. Model A = Gedung 2 lantai dengan perletakan jepit.
- 16. Model B = Gedung 3 lantai dengan perletakan jepit.
- 17. Model C = Gedung 3 lantai dengan isolasi dasar.
- 18. Model D = Model A dibebani gaya-gaya akibat Model C.
- 19. Model E = Model D ditambah dengan breising.
- 20. Model F = Model A sekaligus dimodelkan dengan Model C diatasnya.
- 21. Model G = Model F ditambah dengan breising.

3.2 Hasil Analisa

3.2.1 Hasil Analisa Linier

Nilai simpangan/displacement hasil dari analisa linier pada masing-masing pemodelan disajikan pada Gambar 3 sampai dengan Gambar 5.

Gambar 2: Grafik Simpangan model perletakan jepit struktur gedung terhadap ketinggian gedung Model A, D, dan E.

Dari Gambar 2 dapat dilihat simpangan awal gedung Model A adalah 0,2034 cm, setelah itu gedung dibebani gaya-gaya akibat Model C simpangan yang terjadi 0,4327 cm, lalu gedung itu di tambah breising dan terjadi simpangan yang lebih kecil 0,328 cm.

Gambar 3: Grafik Simpangan model perletakan jepit struktur gedung terhadap ketinggian gedung Model B, dan C.

Dari Gambar 3 dapat dilihat simpangan awal gedung Model B mengalami simpangan 0,399 cm dan simpangan yang terjadi pada gedung Model C mengami simpangan 1,465 cm.

Gambar 4: Grafik Simpangan model perletakan jepit struktur gedung terhadap ketinggian gedung Model F, dan G.

Dari Gambar 4 dapat dilihat simpangan awal gedung Model F mengalami simpangan 0,7526 cm dan simpangan yang terjadi pada gedung Model G mengami simpangan 0,570 cm.

3.2.2 Hasil Analisa Non-Linier

Perbandingan respon bangunan ini ditinjau dalam perbandingan kurva kapasitas berdasarkan analisa beban dorong yang terjadi pada struktur perletakan jepit dan isolasi dasar yang disajikan pada Gambar.

Gambar 5: Perbandingan kurva kapasitas analisa beban dorong Model B dan C.

Pada Gambar 5 dapat dilihat bangunan Model B (gedung 3 lantai dengan perletakan jepit) dengan 1 titik pantauan dijoin 114 yang berada di atap gedung mampu menahan gaya lebih besar yaitu 933744,27 kg dan terjadi simpangan 71,552 mm dan kinerja yang di perlihatkan oleh gedung adalah IO (*Immediate Occupancy*) kerusakan struktur sangat terbatas, sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan.

Sedangkan Model C (gedung 3 lantai dengan isolasi dasar) dengan 2 titik pantauan join 16 pada bagian *base* (dasar) mampu menahan gaya 382085,48 kg dan terjadi simpangan 33,212 mm dan titik pantau join 114 pada bagian atap mampu menahan gaya 384477,83 kg dan terjadi simpangan 133,737 mm dan kinerja yang diperlihatkan didua titik pantau ini adalah IO (Immediate Occupancy) kerusakan struktur sangat terbatas, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan, namun pada titik pantau

join 114 pada bagian atap mengalami 29 sendi plastis tingkat C to D yang artinya batas maksimum gaya geser yang masih mampu ditahan gedung.

Gambar 6: Perbandingan kurva kapasitas analisa beban dorong Model D dan E.

Perbandingan kurva kapasitas berdasarkan analisa beban dorong yang didapat dari software dapat dilihat pada Gambar 6 yang menjelaskan bahwa gedung Model D (gedung Model A dibebani gaya-gaya akibat Model C) mampu menahan gaya sebesar 1380703,95 kg dan terjadi simpangan sebesar 64,543 mm dan kinerja yang diperlihatkan terdapat 36 sendi plastis di tingkat *Immediate Occupancy (IO)* resiko korban jiwa akibat keruntuhan struktur dapat diabaikan dan mengalami 36 sendi plastis di tingkat *Collapse (C)* yang artinya batas maksimum gaya geser yang masih mampu ditahan gedung namun bangunan akan runtuh.

Pada gedung Model E (gedung Model D ditambah dengan breising) mampu menahan gaya lebih besar yaitu 2699239,16 kg dan mengalami simpangan 36,909 mm dan kinerja yang diperlihatkan *Immediate Occupancy (IO)* kerusakan struktur sangat terbatas, sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan.

Gambar 7: Perbandingan kurva kapasitas analisa beban dorong Model D dan F.

Perbandingan kurva kapasitas berdasarkan analisa beban dorong yang didapat dari software dapat dilihat pada Gambar 7 yang menjelaskan bahwa gedung Model D (gedung Model A dibebani gaya-gaya akibat Model C) mampu menahan gaya sebesar 1380703,95 kg dan terjadi simpangan sebesar 64,543 mm dan kinerja yang diperlihatkan *Immediate Occupancy (IO)* kerusakan struktur sangat terbatas, sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan dan mengalami 36 sendi plastis di tingkat *Collapse (C)* yang artinya batas maksimum gaya geser yang masih mampu ditahan gedung namun bangunan akan runtuh.

Gedung Model F (gedung Model A sekaligus dimodelkan dengan Model C diatasnya) mampu menahan gaya lebih kecil 832857,05 kg dan terjadi simpangan yang

beragam di setiap titik pantau namun dari setiap titik pantau sendi plastis hanya sampai pada tingkat *Immediate Occupancy (IO)* menunjukan kondisi yang menjelaskan bahwa setelah terjadinya gempa, kerusakan struktur sangat terbatas. Sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan.

Gambar 8: Perbandingan kurva kapasitas analisa beban dorong Model E dan G.

Perbandingan kurva kapasitas berdasarkan analisa beban dorong yang didapat dari software dapat dilihat pada Gambar 8 yang menjelaskan bahwa gedung Model E (gedung Model D ditambah dengan breising) mampu menahan gaya sebesar 2699239,16 kg dan terjadi simpangan sebesar 36,909 mm dan kinerja yang diperlihatkan terdapat 156 sendi plastis di tingkat *Immediate Occupancy (IO)* menunjukan kondisi yang menjelaskan bahwa setelah terjadinya gempa, kerusakan struktur sangat terbatas. Sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan.

Model G (gedung Model F ditambah dengan breising) mampu menahan gaya lebih kecil 2354132,74 kg dan terjadi simpangan yang beragam di setiap titik pantau nya. kinerja yang diperlihatkan oleh struktur adalah kinerja yang diperlihatkan terdapat 156 sendi plastis di tingkat *Immediate Occupancy (IO)* menunjukan kondisi yang menjelaskan bahwa setelah terjadinya gempa, kerusakan struktur sangat terbatas. Sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan.

Gambar 9: Perbandingan kurva kapasitas analisa beban dorong Model F dan G.

Gambar 9 menunjukan Gedung Model F (gedung Model A sekaligus dimodelkan dengan Model C diatasnya) mampu menahan gaya lebih kecil 832857,05 kg dan terjadi simpangan yang beragam di setiap titik pantau namun dari setiap titik pantau sendi plastis hanya sampai pada tingkat *Immediate Occupancy (IO)* menunjukan kondisi yang menjelaskan bahwa setelah terjadinya gempa, kerusakan struktur sangat terbatas. Sistem

penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan.

Model G (gedung Model F ditambah dengan breising) mampu menahan gaya lebih kecil 2354132,74 kg dan terjadi simpangan yang beragam di setiap titik pantau nya. kinerja yang diperlihatkan oleh struktur adalah kinerja yang diperlihatkan terdapat 156 sendi plastis di tingkat *Immediate Occupancy (IO)* menunjukan kondisi yang menjelaskan bahwa setelah terjadinya gempa, kerusakan struktur sangat terbatas. Sistem penahan beban vertikal dan lateral bangunan hampir sama dengan kondisi sebelum terjadinya gempa, dan resiko korban jiwa akibat keruntuhan struktur dapat diabaikan.

4. KESIMPULAN

Berdasarkan perbandingan dari hasil perencanaan struktur perletakan jepit dan isolasi dasar baik dengan metode linear maupun metode non-linear analisa beban dorong, diperoleh beberapa kesimpulan sebagai berikut:

- Nilai simpangan gedung akibat respon spektrum :
 - 1. Gedung Model A = gedung 2 lantai dengan perletakan jepit sebesar = 0,2034 cm.
 - 2. Gedung Model B = gedung 3 lantai dengan perletakan jepit sebesar = 0,399 cm.
 - 3. Gedung Model C = gedung 3 lantai dengan isolasi dasar sebesar = 1,465 cm.
 - 4. Gedung Model D = gedung Model A dibebani gaya-gaya akibat Model C sebesar = 0,4327 cm.
 - 5. Gedung Model E = gedung Model D ditambah dengan bresing sebesar = 0,328 cm.
 - 6. Gedung Model F = gedung Model A sekaligus dimodelkan dengan Model C diatasnya sebesar = 0,7526 cm.
 - 7. Gedung Model = gedung Model F ditambah dengan bresing sebesar = 0,570 cm.
- Perletakkan Isolasi dasar dapat meningkatkan kekakuan dan menahan gaya lateral dan merupakan suatu komponen reduksi lateral serta mengambil sifat fleksibel bangunan.
- Material breising dapat meningkatkan kekakuan dan menahan gaya lateral.
- Nilai simpangan kurva kapasitas berdasarkan analisa beban dorong linear yaitu sebagai berikut:
 - 1. Gedung Model A = gedung 2 lantai dengan perletakan jepit mampu menahan gaya sebesar 1304338,99 kg, dan terjadi simpangan 39,837 mm.
 - 2. Gedung Model B = gedung 3 lantai dengan perletakan jepit mampu menahan gaya sebesar 933744,27 kg, dan terjadi simpangan 71,552 mm.
 - 3. Gedung Model C = gedung 3 lantai dengan isolasi dasar mampu menahan gaya sebesar 384477,83 kg, dan terjadi simpangan 133,737 mm.
 - 4. Gedung Model D = gedung Model A dibebani gaya-gaya akibat Model C mampu menahan gaya sebesar 1380703,95 kg, dan terjadi simpangan 64,543 mm.
 - 5. Gedung Model E = gedung Model D ditambah dengan bresing mampu menahan gaya sebesar 2699239,16 kg, dan terjadi simpangan 36,909 mm.
 - Gedung Model F = gedung Model A sekaligus dimodelkan dengan Model C diatasnya mampu menahan gaya sebesar 829725,56 kg, dan terjadi simpangan 14,551 mm.
 - 7. Gedung Model G = gedung Model F ditambah dengan bresing mampu menahan gaya sebesar 2354132,74 kg, dan terjadi simpangan 29,858 mm.

DAFTAR PUSTAKA

- Adiyanto, D.J. dan Andreas, N.J (2008) *Pengaruh Dinding Pengisi Terhadap Perilaku Pushover Stuktur Beton Bertulang*. Bandung: Institusi Teknologi Bandung.
- Ahmad, H. dan Octaviana, R. Perencanaan Struktur Rangka baja Bresing Konsentrik Biasa dan Struktur Rangka Baja Bresing Konsentrik Khusus Tipe-X. *Laporan Tugas Akhir*. Bandung: Program Studi Teknik Sipil, Institut Teknologi Bandung.
- Aryanto, A. (2008) Kinerja Portal Beton Bertulang dengan Dinding Pengisi Bata Ringan terhadap Beban Gempa. *Tesis Magister*. Bandung: Institusi Teknologi Bandung.
- Arief, A. (2016) Analisis Respon Bangunan Gedung Lima Lantai Menggunakan Base Isolator Di Kota Padang. Medan: Universitas Muhammadiyah Sumatera Utara.
- Badan Standarisasi Nasional (2012) Tata Cara Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung (SNI-1726-2012). Jakarta: BSN.
- Badan Standarisasi Nasional (2013) Beban Minimum Untuk Perancangan Bangunan Gedung dan Struktur Lain (SNI-1727-2013). Jakarta: BSN.
- Badan Standarisasi Nasional (2013) Persyaratan Beton Struktural untuk bangunan gedung (SNI-2847-2013). Jakarta: BSN.
- Badan Standarisasi Nasional (2015) Spesifikasi Untuk Bangunan Gedung Baja Struktural (SNI-1729-2015). Jakarta: BSN.
- Budiono, B. dan Setiawan, A. (2014) Studi Komparasi Sistem Isolasi Dasar High-Damping Rubber Bearing dan Friction Pendulum System pada Bangunan Beton Bertulang. Jurnal Teknik Sipil. Vol.21 (3), hal.180-181.
- Budiono, B. dan Supriatna, L. (2011) *Studi Komparasi Desain Bangunan Tahan Gempa*. Bandung: Institut Teknologi Bandung.
- Departemen Pekerjaan Umum (1987) *Pedoman Perencanaan Pembebanan Untuk Rumah dan Gedung(PPPURG)*. Jakarta: Yayasan Penerbit Pekerjaan Umum.
- Farisi, M.A. dan Budiono, R.B. (____) *Design And Analysis of Base Isolated Structures*. Bandung: Institute Teknologi Bandung.
- Gifars, F. (2014) Pengertian dan Penjelasan Gempa Bumi. Ilmu sains.
- Gunawan. R. (1987) Tabel Profil Konstruksi Baja, Yogyakarta : Yayasan Sarana Cipta.
- Hart, G.C. dan Wong, K. (2000) *Structural Dynamics for Structural Engineers*. United State of America: John Wiley & Sons, Inc.
- Mayes, R.L. dan Naeim, F. (2000) *Design of Structures with Seismic Isolation*. California (LA).
- Muliadi, & Arifuddin, M., & Aulia, T.B. (2014) Analisi Respon Bangunan Menggunakan Isolasi Dasar Sebagai Pereduksi Beban Gempa Di Wilayah Gempa Kuat. *Jurnal Teknik Sipil*, Vol.3 (2), hal.109-118.
- Noroadityo (2012) Alasan sering terjadinya Gempa Bumi di Indonesia. noroadityo.wordpress.com, diakses 30 oktober 2015.
- Riza, M.M. (2010) Aplikasi Perencanaan Struktur Gedung dengan ETABS. ARS GROUP
- Strein, T. (2014) Base isolation system of lead-rubber bearings. *https://prezi.com*, diakses 9 oktober 2015.
- Sudarman, H. (2014) Analisis *Pushover* Pada Struktur Gedung Bertingkat Tipe Podium. *Jurnal Sipil Statik*. Vol.2 No.4. *https://www.neliti.com* . diakses 29 agustus 2018.
- Teruna, D.R. dan Singarimbun, H. (2010) Analisis Respon Bangunan ICT Universitas Syiah Kuala Yang Memakai Slider Isolator Akibat Gaya Gempa. Seminar dan Pameran Haki: Perkembangan dan Kemajuan Konstruksi Indonesia.
- Tumilar, S. (2015) Contoh Analisis Gedung 4 Lantai di Banda Aceh. Medan.
- Widjanarko, A. (2006) *Pedoman Teknis Rumah dan Bangunan Gedung Tahan Gempa dilengkapi dengan Metode dan Cara Perbaikan Kerusakan*. Jakarta: Direktorat Jenderal Cipta Karya Departemen Pekerjaan Umum.
- Young, K. (1975) *Geology The Paredox of Earth and Man*. United State of America: Houghton Mifflin Company.