TUGAS AKHIR

PENGARUH JENIS GEMPA TERHADAP PERILAKU SENDI PLASTIS BALOK DAN KOLOM STRUKTUR SRPMK BAJA *(Studi Literatur)*

Diajukan Untuk Memenuhi Syarat-Syarat Memperoleh Gelar Sarjana Teknik Sipil Pada Fakultas Teknik Universitas Muhammadiyah Sumatera Utara

Disusun Oleh:

SHEREN DENISSA AULIA 2007210076

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA MEDAN

2024

LEMBAR PERSETUJUAN PEMBIMBING

Tugas akhir ini diajukan oleh:

Nama	: Sheren Denissa Aulia
Npm	: 2007210076
Program Studi	: Teknik Sipil
Judul Skripsi	: Pengaruh Jenis Gempa Terhadap Perilaku Sendi Plastis Balok Dan Kolom Struktur SRPMK Baja
Bidang Ilmu	: Struktur

Telah berhasil dipertahankan dihadapan Tim Penguji dan diterima sebagai salah satu syarat yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

> Disetujui Untuk Disampaikan Kepada Panitia Ujian:

> > Medan, Oktober 2024 Dosen Pembimbing

alefaire

Assoc. Prof. Ir. Ade Faisal, S.T., M.Sc., Ph.D.

LEMBAR PENGESAHAN

Tugas akhir ini diajukan oleh:Nama: Sheren Denissa AuliaNpm: 2007210076Program Studi: Teknik SipilJudul Skripsi: Pengaruh Jenis Gempa Terhadap Perilaku Sendi Plastis Balok
Dan Kolom Struktur SRPMK BajaBidang Ilmu: Struktur

Telah berhasil dipertahankan dihadapan Tim Penguji dan diterima sebagai salah satu syarat yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

> Medan, Oktober 2024 Mengetahui dan Menyetujui: Dosen Pembimbing

Assoc. Prof. Ir. Ade Faisal, S.T., M.Sc., Ph.D.

Dosen Pembanding II

Ir. Tondi Amirayah Putera, S.T., M.T.

Dosen Pembahding I

Dr. Josef Hadipramana, S.T., M.Sc.

Ketua Program Studi Teknik Sipil

Hen

Assoc. Prof. Ir. Fahrizal Zulkarnain, S.T., M.Sc., Ph.D., IPM

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Saya yang bertandatangan dibawah ini:

Nama	: Sheren Denissa Aulia
Tempat, Tanggal Lahir	: Perawang, 31 Mei 2002
Npm	: 2007210076
Fakultas	: Teknik
Program Studi	: Teknik Sipil

Menyatakan dengan sesungguhnya dan sejujurnya, bahwa Laporan Tugas Akhir saya yang berjudul:

"Pengaruh Jenis Gempa Terhadap Perilaku Sendi Plastis Balok Dan Kolom Struktur SRPMK Baja".

Bukan merupakan plagiarisme, pencurian hasil karya milik orang lain, hasil kerja orang lain untuk kepentingan saya karena hubungan material dan nonmaterial serta segala kemungkinan lain, yang pada hakekatnya merupakan karya tulis Tugas Akhir saya secara orisinil dan otentik.

Bila kemudian hari diduga kuat ada ketidaksesuaian antara fakta dengan kenyataan ini, saya bersedia diproses oleh Tim Fakultas yang di bentuk untuk melakukan verifikasi, dengan sanksi terberat berupa pembatalan kelulusan atau kesarjanaan saya.

Demikian Surat Pernyataan ini saya buat dengan kesadaran sendiri dan tidak atas tekanan ataupun pasksaan dari pihak manapun demi menegakkan integritas akademik di Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

iii

ABSTRAK

PENGARUH JENIS GEMPA TERHADAP PERILAKU SENDI PLASTIS BALOK DAN KOLOM STRUKTUR SRPMK BAJA (STUDI LITERATUR)

Sheren Denissa Aulia 2007210076 Assoc. Prof. Ir. Ade Faisal, S.T., M.Sc., Ph.D.

Gempa bumi merupakan getaran yang bersifat alami, disebabkan oleh pelepasan energi dan menciptakan gelombang seismik. Kerusakan akibat gempa bumi juga berdampak pada struktur bangunan. Hal tersebut perlu diperhatikan dalam desain struktur tahan gempa dengan memaksimalkan kinerja struktur. Dengan adanya sendi plastis pada elemen struktur, terutama balok berfungsi untuk menyerap energi yang dihasilkan selama gempa, sehingga mencegah keruntuhan total struktur. Studi ini dibuat untuk mengetahui bagaimana perilaku sendi plastis balok dan kolom pada struktur rangka baja akibat gempa dekat. Model struktur menggunakan SRPMK baja 4 lantai dan 8 lantai yang dibangun di atas tanah kelas D dan didesain untuk kategori desain seismik D. Analisa dinamik tidak linear, memakai 10 rekaman gempa dilakukan untuk mendapatkan nilai median simpangan antar tingkat untuk kemudian ditentukan kurva kerapuhannya. Hal ini dilakukan untuk mengidentifikasi kapasitas pada kondisi batas LS, CP, dan Collapse yang dimiliki oleh model, yaitu deformasi lentur yang terjadi pada elemen balok dan kolom dominan terjadi pada tingkat bawah. Hasil yang diperoleh menunjukkan balok memiliki perilaku lentur yang lebih baik dan lebih terkontrol dalam siklus gempa karena tidak langsung menerima gaya lateral, sedangkan kolom menerima gaya lateral secara langsung dan acak yang menyebabkan perilaku lentur yang lebih kompleks.

Kata kunci: Gempa dekat, SRPMK, deformasi lentur, sendi plastis.

ABSTRACT

THE EFFECT OF EARTHQUAKE TYPE ON THE BEHAVIOR OF PLASTIC HINGES OF BEAM AND COLUMNS OF STEEL SRPMK STRUCTURES (LITERATURE STUDY)

Sheren Denissa Aulia 2007210076 Assoc. Prof. Ir. Ade Faisal, S.T., M.Sc., Ph.D.

Earthquakes are natural vibrations caused by the release of energy, creating seismic waves. The damage from earthquakes also impacts building structures. This needs to be considered in the design of earthquake-resistant structures by maximizing structural performance. The presence of plastic hinges in structural elements, particularly beams, serves to absorb energy generated during an earthquake, thus preventing total structural collapse. This study was conducted to understand the behavior of plastic hinges in beams and columns of steel frame structures subjected to near-field earthquakes. The structural model uses 4-story and 8-story SRPMK steel buildings built on Class D soil and designed for seismic design category D. A nonlinear dynamic analysis using 10 earthquake recordings was performed to obtain the median inter-story drift values, which were then used to determine the fragility curves. This was done to identify the capacity at limit states of LS, CP, and Collapse for the model, focusing on the bending deformation occurring in beam and column elements, which predominantly occurs at lower levels. The results indicate that beams exhibit better and more controlled bending behavior during earthquake cycles because they do not directly receive lateral forces, while columns experience lateral forces directly and randomly, leading to more complex bending behavior.

Keywords: Near-field earthquake, SRPMK, bending deformation, plastic hinge.

KATA PENGANTAR

Dengan nama Allah Yang Maha Pengasih lagi Maha Penyayang. Segala puji dan syukur penulis ucapkan kehadirat Allah SWT yang telah memberikan karunia dan nikmat yang tiada terkira. Salah satu dari nikmat tersebut adalah keberhasilan penulis dalam menyelesaikan laporan Tugas Akhir ini yang berjudul "Pengaruh Jenis Gempa Terhadap Perilaku Sendi Plastis Balok Dan Kolom Struktur SRPMK Baja" sebagai syarat untuk meraih gelar akademik Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara (UMSU), Medan.

Banyak pihak telah membantu dalam menyelesaikan laporan Tugas Akhir ini, untuk itu penulis menghaturkan rasa terimakasih yang tulus dan dalam kepada:

- Bapak Assoc. Prof. Ir. Ade Faisal, S.T., M.Sc., Ph.D. selaku Dosen Pembimbing yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- Bapak Ir. Tondi Amirsyah Putera, S.T., M.T. selaku Dosen Pembanding I yang telah banyak memberikan koreksi dan masukan kepada penulis dalam menyelesaikan Tugas Akhir ini.
- Bapak Dr. Josef Hadipramana, S.T., M.Sc. selaku Dosen Pembanding II yang telah banyak memberikan koreksi dan masukan kepada penulis dalam menyelesaikan Tugas Akhir ini.
- Bapak Munawar Alfansury Siregar, S.T., M.T. selaku Dekan Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- Seluruh Bapak/Ibu Dosen di Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara yang telah banyak memberikan ilmu ketekniksipilan kepada penulis.
- Orang tua penulis: Zunaedi dan Evarida, yang telah bersusah payah membesarkan dan membiayai studi penulis serta abang, dan adik saya yang memotivasi saya selama ini.
- Bapak/Ibu Staf Administrasi di Biro Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

 Bangda Afiful Anshari, S.T. dan para Tim Relawan Earthquake Engineering yang banyak membantu dan mengarahkan disetiap masalah yang ditemukan selama riset dan memberikan banyak ilmu dan pengalaman dalam penyelesaian Tugas Akhir ini.

Laporan Tugas Akhir ini tentunya masih jauh dari kesempurnaan, untuk itu penulis berharap kritik dan masukan yang konstruktif untuk menjadi bahan pembelajaran berkesinambungan penulis di masa depan. Semoga laporan Tugas Akhir ini dapat bermanfaat bagi dunia konstruksi teknik sipil.

Medan, Agustus 2024

Sheren Denissa Aulia

DAFTAR ISI

LEMBA	AR P	ERSETUJUAN PEMBIMBING	i
LEMBA	AR P	ENGESAHAN	ii
LEMBA	AR P	ERNYATAAN KEASLIAN TUGAS AKHIR	iii
ABSTR	AK		iv
ABSTR	4CT		V
KATA I	PENC	JANTAR	vi
DAFTA	R IS	I	viii
DAFTA	R TA	ABEL	xi
DAFTA	R G	AMBAR	xii
DAFTA	R NO	DTASI	xiii
DAFTA	R SI	NGKATAN	XV
BAB 1	PEN	JDAHULUAN	
	1.1	Latar Belakang	1
	1.2	Rumusan Masalah	2
	1.3	Tujuan Penelitian	3
	1.4	Manfaat Penelitian	3
	1.5	Batasan Masalah	3
	1.6	Sistematika Penulisan	4
BAB 2	TIN	JAUAN PUSTAKA	
	2.1	Umum	6
	2.2	Teori Gempa	6
		2.2.1 Ground Motion (Getaran Tanah)	6
		2.2.2 Gempa Dekat	7
	2.3	Respons Spektrum	7
	2.4	Sistem Rangka Pemikul Momen Khusus (SRPMK)	9
	2.5	Karakteristik Bangunan Tahan Gempa	10
	2.6	Perencanaan Bangunan Tahan Gempa Berdasarkan SNI	
		1726-2019	10
		2.6.1 Gempa Rencana dan Faktor Keutamaan	11
		2.6.2 Klasifikasi Situs dan Parameter	12

		2.6.3	Parameter Percepatan Gempa	13
		2.6.4	Perioda Alami Struktur	14
	2.7	Perila	ku Sendi Plastis	15
BAB 3	ME	TODE	PENELITIAN	
	3.1	Umur	n	17
	3.2	Pemo	delan Struktur	18
		3.2.1	Data Perencanaan Struktur	19
		3.2.2	Dimensi Kolom-Balok pada Struktur	19
		3.2.3	Pemodelan Sendi Plastis Elemen Balok dan Kolom	20
	3.3	Analis	sis Dinamik Struktur Linear	22
		3.3.1	Pembebanan	22
		3.3.2	Kombinasi	22
		3.3.3	Respon Spektrum Desain	23
		3.3.4	Analisis Respon Spektrum Ragam	23
	3.4	Analis	sis Dinamik Struktur Nonlinear	24
		3.4.1	Ground Motion Record (Rekaman Gerakan Tanah)	24
		3.4.2	Analisis Respon Riwayat Waktu	24
		3.4.3	Incremental Dynamic Analysis (IDA)	25
		3.4.4	Perilaku Sendi Plastis	27
BAB 4	HA	SIL DA	AN PEMBAHASAN	
	4.1	Hasil	Model Linear dan Nonlinear	28
	4.2	Hasil	Analisa Linear	28
		4.2.1	Respon Spektrum Ragam	28
		4.2.2	Koreksi Gempa Dasar Nominal	30
		4.2.3	Koreksi Faktor Redundansi	30
		4.2.4	Koreksi Skala Simpangan Antar Tingkat	30
		4.2.5	Nilai Simpangan Gedung	31
		4.2.6	Kontrol Ketidakberaturan Kekakuan Tingkat Lunak	31
		4.2.7	Pengaruh Efek P-Delta	31
	4.3	Hasil	Analisa Nonlinear	32
		4.3.1	Incremental Dynamic Analysis (IDA)	32
		4.3.2	Interstory Drift Ratio (IDR)	33

4.3.3 Perilaku Sendi Plastis pada Balok dan Kolom	35
BAB 5 KESIMPULAN DAN SARAN	
5.1 Kesimpulan	37
5.2 Saran	38
DAFTAR PUSTAKA	
LAMPIRAN	
DAFTAR RIWAYAT HIDUP	

DAFTAR TABEL

- Tabel 2.1Kategori resiko bangunan gedung dan struktur lainnya untuk beban
gempa berdasarkan SNI 1726:2019.
- Tabel 2.2Faktor keutamaan gempa berdasarkan SNI 1726:2019.
- Tabel 2.3Klasifikasi situs berdasarkan SNI 1726:2019.
- Tabel 2.4 Koefisien situs F_a
- Tabel 2.5 Koefisien situs F_v
- Tabel 2.6Nilai parameter perioda pendekatan Ct dan x berdasarkan SNI1726:2019.
- Tabel 2.7Koefisien untuk batas atas pada perioda yang dihitung berdasarkanSNI 1726:2019.
- Tabel 3.1Data profil balok dan kolom baja WF yang digunakan.
- Tabel 3.2Kombinasi pembebanan berdasarkan SNI 1726:2019 dengan $S_{DS} = 0.2368$.
- Tabel 3.3Rekaman gerakan tanah gempa dekat.
- Tabel 4.1Hasil analisis CQC dan SRSS pada Model 1 (SRPMK 4 Lantai).
- Tabel 4.2Hasil analisis CQC dan SRSS pada Model 2 (SRPMK 8 Lantai).
- Tabel 4.3Nilai gaya geser dasar nominal analisa statik ekivalen (V1) dan nilai
gaya geser dasar nominal analisa respon spektrum *output* program
analisa struktur (Vt).
- Tabel 4.4Nilai 0.85 Cs . W dan kontrol koreksi skala simpangan antar tingkat.

DAFTAR GAMBAR

- Gambar 1.1 Rekaman gempa Northridge (1994) dan Parkfield (1997).
- Gambar 2.1 Respon spektra 21 rekaman *ground motion* dan rata-rata respons spectrum desain dengan $\zeta = 5\%$ (Shakeri dkk, 2018).
- Gambar 2.2 Spektrum respon desain.
- Gambar 2.3 Penentuan letak sendi plastis balok dan kolom (Nuraga dkk., 2021).
- Gambar 3.1 Diagram alir penelitian.
- Gambar 3.2 Diagram alir desain struktur secara umum.
- Gambar 3.3 Geometri model struktur SMF baja yang ditinjau mengacu ke model milik Elkady dan Lignos (2019).
- Gambar 3.4 Balok RBS yang dipakai sebagai model SRPMK.
- Gambar 3.5 Hubungan antara momen versus rotasi.
- Gambar 3.6 Kurva IDA.
- Gambar 3.7 Diagram alir metode IDA.
- Gambar 4.1 Ilustrasi struktur baja SRPMK akibat gerakan tanah gempa dekat pada kondisi (a) LS (*life safety*), (b) CP (*collapse prevention*), dan (c) *Collapse*.
- Gambar 4.2 Kondisi batas LS, CP, dan *Collapse* untuk SRPMK baja 4 lantai dan 8 lantai akibat sejumlah gerakan tanah berdasarkan IDA.
- Gambar 4.3 Rasio simpangan antar tingkat maksimum akibat gerakan tanah gempa dekat pada kondisi batas LS, CP, dan *Collapse* untuk Model 1 (4 Lantai).
- Gambar 4.4 Rasio simpangan antar tingkat maksimum akibat gerakan tanah gempa dekat pada kondisi batas LS, CP, dan *Collapse* untuk Model 2 (8 Lantai).
- Gambar 4.5 Perilaku lentur pada balok akibat gerakan tanah gempa dekat ketika mencapai kondisi LS, CP dan *Collapse*.
- Gambar 4.6 Perilaku lentur pada kolom akibat gerakan tanah gempa dekat ketika mencapai kondisi LS, CP dan *Collapse*.

DAFTAR NOTASI

Cd	= Faktor kuat lebih sistem
DL, SDL	= Beban mati
E	= Modulus elastisitas
Ex	= Beban gempa arah x
Ey	= Beban gempa arah y
F	= Frekuensi Struktur
Fa	= Koefisien perioda pendek
Fv	= Koefisien perioda 1,0 detik
Fpga	= Nilai koefisien situs untuk PGA
hn	= Ketinggian struktur di atas dasar sampai tingkat tertinggi
	struktur (meter).
Ι	= Momen inersia kolom/balok
Ie	= Faktor keutamaan gempa
ω	= Kecepatan sudut
k	= Kekakuan struktur
1	= Panjang kolom/balok
LL	= Beban hidup
Mc	= Momen maksimum
My	= Momen leleh
Mu	= Momen ultimit
PGA	= Nilai PGA di tanah sedang (SD) mengacu pada peta Gempa
	SNI 1726-2019.
R	 Faktor koefisien modifikasi respon
Ss	= Nilai parameter respon spektrum percepatan gempa perioda
	pendek 0,2 detik di tanah sedang (SD) mengacu pada Peta
	Gempa SNI 1726-2019.
S_1	= Nilai parameter respon spektrum percepatan gempa perioda
	1,0 detik di tanah sedang (SD) mengacu pada Peta Gempa
	SNI 1726-2019.

Sds	= Respon spektrum percepatan respon desain untuk perioda
	pendek.
S _{D1}	= Respon spektrum percepatan desain untuk perioda 1,0 detik
Ta minimum	 Nilai batas bawah perioda bangunan
Ta maksimum	 Nilai batas atas perioda bangunan
Vt	= Gaya geser dasar nominal yang didapat dari hasil analisis
	ragam spektrum respon yang telah dilakukan.
\mathbf{V}_1	= Gaya geser dasar prosedur gaya lateral statik ekivalen
θ_y	= Rotasi leleh
θ_{c}	= Rotasi saat momem maksimum
θ_u	= Rotasi batas
θ_p	= Rotasi plastis
θ_{pc}	= Rotasi pasca plastis
Ω	= Faktor pembesaran defleksi
ρ	= Faktor redudansi

DAFTAR SINGKATAN

СР	= Collapse Prevention
CQC	= Complete Quadratic Combination
ΙΟ	= Immediate Occupancy
LS	= Life Safety
MCER	= Maximum Considered Earthquake
PEER	= Pacific Earthquake Engineering Research
SRPMK	= Sistem Rangka Pemikul Momen Khusus
SRSS	= Square Root of the Sum of Square
IDA	= Incremental Dynamic Analysis
IDR	= Interstory Drfit Ratio

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Menurut Pawirodikromo (2012), gempa dekat umumnya memiliki percepatan tanah yang mengalami 1-2 kali siklus getaran kuat (*strong-vibration*) atau *pulse*. Siklus getaran tersebut terjadi karena kecepatan rambat patah Vr (*fault rupture velocity*) yang relatif dekat dengan kecepatan gelombang geser Vs. Meskipun tidak ada batasan jarak yang pasti, beberapa peneliti mengindikasikan bahwa gempa dekat terjadi dalam rentang beberapa sampai belasan kilometer saja.

Sebagai contoh, Kalkan, dkk (2006) memberikan batasan bahwa rekaman gempa *near-fault* adalah rekaman yang diambil dalam jarak 15 km dari patahan (*fault rupture*). Contoh rekaman gempa dekat dapat dilihat pada Gambar 1.1.

Gambar 1.1: Rekaman gempa Northridge (1994) dan Parkfield (1997) (Pawirodikromo, 2012).

Gambar 1.1 memperlihatkan rekaman gempa yang terjadi di Northridge pada tahun 1994 dan Parkfield pada tahun 1997. Dalam gambar tersebut terlihat dengan jelas adanya dua kali lonjakan percepatan yang sangat berbeda sebelum dan sesudahnya. Secara umum gempa dekat ini ditandai dengan munculnya pulsa yang kuat dalam rekaman gempanya.

Faisal (2013), mengatakan bahwa efek *pulse* pada rekaman gempa terjadi ketika terjadi perubahan tiba-tiba dan signifikan dalam percepatan di stasiun pemantau. Ketika ada keruntuhan batuan yang bergerak menuju stasiun pemantau, gelombang seismik yang dihasilkan oleh keruntuhan tersebut akan mencapai stasiun dengan amplitudo dan kecepatan yang tinggi, menyebabkan terjadinya efek

pulse yang terlihat pada rekaman gempa. Namun, jika keruntuhan batuan bergerak menjauhi stasiun pemantau, gelombang seismik yang dihasilkan akan merambat dalam arah yang berlawanan dengan stasiun dan akibatnya tidak akan mencapai stasiun dengan amplitudo yang tinggi. Sebagai hasilnya, tidak akan terjadi efek *pulse* yang terlihat pada rekaman gempa di stasiun tersebut.

Sistem rangka pemikul momen khusus (SRPMK) adalah sistem yang dirancang untuk memiliki tingkat daktilitas yang tinggi dan sangat disarankan untuk digunakan di daerah dengan risiko gempa bumi yang besar. Prinsip utama dari sistem ini adalah kolom kuat balok lemah, yang memastikan ketahanan terhadap gaya geser dan memerlukan detail konstruksi yang spesifik (Hirel dkk., 2018).

Ketika terjadi gempa, struktur bangunan yang memiliki daktilitas akan mengalami pembentukan sendi plastis secara bertahap di ujung-ujung elemen balok dan kolom. Sendi plastis ini berperan penting sebagai mekanisme pertahanan yang menyerap dan meredam energi gempa, sehingga membantu dalam meminimalisir kerusakan pada struktur tersebut. Hal itu karena sendi plastis merupakan kondisi dimana terjadi kerusakan pada material penampang elemen akibat rotasi yang terjadi secara terus menerus. Rotasi ini terjadi akibat adanya penambahan beban pada struktur tersebut dan pada kondisi ini nilai momen tidak mengalami perubahan (Syaiful dkk., 2020).

Sejumlah studi banyak membahas tentang perilaku struktur baja SRPMK, khususnya tentang perilaku global akibat gempa, seperti simpangan atap dan juga simpangan antar tingkat. Namun demikian, studi ini masih terbatas dalam mengevaluasi perilaku sendi plastis pada struktur SRPMK baja, terutama dalam konteks gaya versus deformasi pada elemen balok dan kolom ketika proses terjadinya dari batas kondisi *life safety* hingga *collapse prevention* (kerusakan yang mendekati runtuh) serta kondisi keruntuhan itu sendiri. Perilaku ini dikaji terhadap pengaruh jenis gempa dekat.

1.2 Rumusan Masalah

Berdasarkan uraian latar belakang diatas, terdapat beberapa masalah yang akan dibahas antara lain:

1. Bagaimana perilaku sendi plastis balok dan kolom bila struktur terkena gempa dekat?

1.3 Tujuan Penelitian

Tujuan dari penulisan Tugas Akhir ini adalah:

1. Untuk mengetahui perilaku sendi plastis balok dan kolom bila struktur terkena gempa dekat.

1.4 Manfaat Penelitian

Dari hasil perencanaan pada pemodelan struktur baja dengan sistem rangka pemikul momen khusus (SRPMK) maka diharapkan Tugas Akhir ini bermanfaat untuk memberikan pemahaman yang lebih baik tentang perilaku sendi plastis pada balok dan kolom ketika struktur terkena gempa dekat.

1.5 Batasan Masalah

Pada penelitian ini, permasalahan dibatasi pada pokok-pokok pembahasan sebagai berikut:

- 1. Struktur bangunan yang direncanakan merupakan:
 - Struktur sistem rangka pemikul momen khusus (SRPMK) baja dengan menggunakan dua model yaitu, 4 lantai dan 8 lantai yang difungsikan sebagai bangunan perkantoran yang berada pada kawasan dengan Kategori Desain Seismik (KDS) D maksimum.
 - Struktur dengan menggunakan baja profil IWF.
- 2. Perencanaan struktur SRPMK baja, kombinasi pembebanan serta gedung direncanakan berdasarkan:
 - Tata cara perencanaan ketahanan gempa menggunakan Standar Perencanaan Tahan Gempa untuk Struktur Bangunan Gedung SNI 1726:2019.
- 3. Analisis menggunakan alat bantu berupa program yaitu:
 - PEER NGA2, COSMOS untuk mendapatkan rekaman gempa.
 - SeismoLee untuk mengubah groundmotion menjadi respon spektrum.
 - MATLAB untuk menskalakan groundmotion.

- OpenSees untuk menganalisa tahap evaluasi (analisa riwayat waktu nonlinear) yang hanya ditinjau secara 2 dimensi.
- 4. Parameter yang ditinjau:
 - Linear adalah semua aspek yang harus di kontrol sesuai dengan SNI 1726:2019.
 - Nonlinear : sendi plastis pada balok
 - sendi plastis pada kolom
- 5. Pengaruh angin diabaikan pada studi ini.
- 6. Kriteria lain yang ditinjau dijelaskan dengan lengkap di bagian bab 3 metode penelitian.

1.6 Sistematika Penulisan

Adapun sistematika penulisan yang digunakan pada Tugas Akhir ini sebagai berikut:

BAB 1 PENDAHULUAN

Bab ini menguraikan penjelasan tentang latar belakang masalah, rumusan masalah, tujuan penelitian, manfaat penelitian, batasan masalah, dan sistematika penulisan.

BAB 2 TINJAUAN PUSTAKA

Bab ini akan berisikan penjelasan terkait mekanisme gempa, konsep perencanaan struktur bangunan baja, analisa struktur sistem rangka pemikul momen khusus (SRPMK), dan konsep tentang kekuatan bangunan terhadap gempa yang terjadi.

BAB 3 METODE PENELITIAN

Bab ini akan menguraikan tentang metodologi penelitian yang digunakan dari awal hingga akhir penelitian dan penjelasan mengenai cara memodelkan dan mendesain struktur bangunan baja dengan sistem rangka pemikul momen khusus (SRPMK) akibat gempa yang terjadi dengan menggunakan program analisa struktur diantaranya Etabs, dan OpenSees.

BAB 4 HASIL DAN PEMBAHASAN

Bab ini akan menyajikan pembahasan mendalam secara ilmiah terhadap apa yang sudah diperoleh dalam analisis data, pemodelan bentuk gambar, grafik dan tabel serta pembahasannya.

BAB 5 KESIMPULAN DAN SARAN

Bab ini akan menguraikan beberapa kesimpulan yang diperoleh dari hasil penelitian dan saran untuk pengembangan lebih lanjut dari penelitian ini.

BAB 2

TINJAUAN PUSTAKA

2.1 Umum

Pada Bab ini akan dibahas mengenai teori-teori dasar dan syaratsyarat/ketentuan yang berhubungan dalam perencanaan struktur bangunan yang akan dianalisa, seperti struktur baja, teori gempa, parameter yang terkait dalam struktur tahan gempa rangka baja, tata cara perencanaan bangunan tahan gempa berdasarkan SNI 1726:2019, dan teori-teori terkait lainnya yang berhubungan dengan perhitungan atau analisa data yang dibutuhkan dalam Tugas Akhir ini.

2.2 Teori Gempa

Gempa bumi adalah suatu akibat terjadinya pembebasan atau pelepasan energi yang menumpuk dan terkungkung di dalam kerak bumi ke permukaan. Energi yang dibebaskan itu berubah menjadi gelombang getaran atau goncangan yang kemudian dirasakan oleh manusia dan direkam oleh alat pencatat gempa bumi (Seismograf) (Tri Partuti, 2019).

2.2.1 Ground Motion (Getaran Tanah)

Ground motion adalah pergerakan permukaan bumi akibat terjadinya gempa bumi atau ledakan. Dalam rekayasa gempa, *ground motion* juga biasa disebut dengan sebutan *strong motion* untuk menekankan percepatan tanah akibat gempa dibandingkan reaksi tanah lainnya. Secara umum pengertian gerak tanah akibat gempa bumi cenderung terfokus pada percepatan tanah. Khusus untuk keperluan teknis, percepatan tanah akibat gempa merupakan nilai data yang sangat penting (Pawirodikromo, 2012). Gambar 2.1 menunjukkan contoh dari 21 rekaman *ground motion* serta respons spektrum desain rata-rata.

Gambar 2.1: Respons spektra 21 rekaman *ground motion* dan rata-rata respons spectrum desain dengan $\zeta = 5\%$ (Shakeri dkk., 2018).

2.2.2 Gempa Dekat

Menurut Pawirodikromo (2012), gempa dekat umumnya memiliki percepatan tanah yang mengalami 1-2 kali siklus getaran kuat (*strong-vibration*) atau *pulse*. Siklus getaran tersebut terjadi karena kecepatan rambat patah Vr (*fault rupture velocity*) yang relatif dekat dengan kecepatan gelombang geser Vs. Meskipun tidak ada batasan jarak yang pasti, beberapa peneliti mengindikasikan bahwa gempa dekat terjadi dalam rentang beberapa sampai belasan kilometer saja.

2.3 Respons Spektrum

Respon spektrum adalah grafik yang menunjukkan hubungan antara periode getar struktur dengan respon percepatan gempa. Dalam konteks perancangan bangunan tahan gempa, respon spektrum digunakan untuk menentukan bagaimana struktur akan bergetar dan merespons gaya lateral yang diinduksi oleh gempa.

Berikut adalah detail hubungan antara periode getar struktur dan respon percepatan gempa dalam respon spektrum:

- 1. Periode Getar Struktur (T): Merupakan waktu yang dibutuhkan oleh struktur untuk melakukan satu siklus getaran penuh.
- Respon Percepatan Gempa (S_a): Merupakan nilai percepatan maksimum yang diharapkan pada suatu struktur pada periode tertentu.

Respon spektrum desain sesuai dengan SNI 1726:2019 harus mengacu pada Gambar 2.2 dan mengikuti ketentuan sebagai berikut: untuk periode yang lebih kecil dari T₀, spektrum respon percepatan desain S_a diambil dari Persamaan 2.1.

$$S_a = S_{DS} \left(0.4 + 0.6 \frac{T}{T_0} \right)$$
 (2.1)

- b. Untuk periode yang lebih besar dari atau sama dengan T₀ dan lebih kecil dari atau sama dengan T_s, spektrum respon percepatan desain S_a, sama dengan S_{DS}.
- Untuk periode lebih besar dari T_s, spektrum respon percepatan desain diambil berdasarkan Persamaan 2.2 sampai 2.8.

$$S_a = \frac{S_{D1}}{T}$$
(2.2)

$$T_0 = 0.2 \ \frac{S_{D1}}{S_{DS}}$$
(2.3)

$$T_{\rm s} = \frac{S_{\rm D1}}{S_{\rm DS}} \tag{2.4}$$

$$S_{DS} = \frac{2}{3} S_{MS}$$
 (2.5)

$$S_{D1} = \frac{2}{3} S_{M1}$$
(2.6)

$$S_{MS} = F_a \cdot S_s \tag{2.7}$$

$$S_{M1} = F_v \cdot S_1 \tag{2.8}$$

Keterangan:

 S_{DS} = variabel respon spektrum percepatan desain pada periode pendek.

 S_{D1} = variabel respon spektrum percepatan desain pada periode 1 detik.

- T = periode getar fundamental struktur, yang didapatkan dari perumusan matematis atau dari rumus pendekatan.
- S_s = variabel respon spektrum percepatan gempa M_{CER} terpetakan untuk periode pendek.
- S_1 = variabel respon spektrum percepatan gempa M_{CER} terpetakan untuk periode 1,0 detik.
- F_a = koefisien situs untuk periode pendek.
- F_v = koefisien situs untuk periode panjang.

Gambar 2.2: Spektrum respon desain.

Dengan demikian, respon spektrum adalah alat penting dalam perancangan bangunan tahan gempa untuk memastikan bahwa struktur dapat berkinerja baik dan aman selama terjadi gempa.

2.4 Sistem Rangka Pemikul Momen Khusus (SRPMK)

Sistem Rangka Pemikul Momen Khusus (SRPMK) adalah suatu sistem struktur bangunan yang dirancang khusus untuk menahan gaya-gaya gempa yang sangat besar. Sistem ini merupakan pilihan yang sangat baik untuk bangunan yang terletak di daerah dengan tingkat kegempaan tinggi. SRPMK berbeda dengan sistem rangka lainnya karena komponen-komponen struktur dan sambungansambungannya dirancang untuk menahan gaya-gaya yang bekerja melalui aksi lentur, geser, dan aksial. Dengan kata lain, seluruh komponen struktur bekerja sama dalam memikul beban gempa. Dalam penelitian Amrullah dkk., (2019) menyimpulkan bahwa sistem rangka pemikul momen khusus adalah komponen struktur yang mampu memikul gaya akibat beban gempa dan direncanakan untuk memikul lentur.

2.5 Karakteristik Bangunan Tahan Gempa

Kriteria kinerja menurut FEMA 273 level kinerja (*performance levels*) dibagi menjadi beberapa tingkatan kerusakan akibat gempa yang meliputi angka kematian, kerusakan bangunan (*property loss*), dan status operasional (*operational state*). Target kinerja dalam desain yang menjadi kriteria penerimaan (*acceptance criteria*) melalui evaluasi kinerja untuk level sasaran kinerja yang diatur oleh FEMA 356. Dimana pengertian untuk level-level kinerjanya sebagai berikut:

- Operational: Kondisi dimana setelah gempa terjadi struktur dapat langsung digunakan kembali karena struktur utama tetap utuh dan elemen non-struktural hanya mengalami kerusakan yang sangat kecil.
- b. *Immediate Occupancy* (IO): Bila terjadi gempa struktur masih aman, hanya terjadi sedikit kerusakan minor dimana untuk memperbaikinya tidak mengganggu pengguna, kekuatan dan kekakuannya kira-kira hampir sama dengan kondisi sebelum gempa, sistem pemikul gaya vertikal dan lateral pada struktur masih mampu memikul gaya gempa yang terjadi.
- c. *Life Safety* (LS): Saat gempa terjadi, pada struktur timbul kerusakan yang cukup signifikan tetapi belum mengalami keruntuhan, komponen-komponen struktur utama tidak runtuh dan struktur masih stabil mampu menahan gempa kembali, bangunan masih dapat digunakan jika dilakukan perbaikan.
- d. *Collapse Prevention* (CP): Kondisi dimana merupakan batas kemampuan dari struktur dimana struktural dan nonstruktural sudah mengalami kerusakan yang parah, namun stuktur tetap berdiri dan tidak runtuh, struktur sudah tidak lagi mampu menahan gaya lateral.

2.6 Perencanaan Bangunan Tahan Gempa Berdasarkan SNI 1726:2019

Perencanaan suatu konstruksi gedung harus memperhatikan aspek kegempaan, terutama di Indonesia karena merupakan salah satu daerah dengan zona gempa yang tinggi. Aspek kegempaan tersebut dianalisis berdasarkan peraturan yang berlaku di negara tersebut dan Indonesia memiliki peraturan sendiri dan peta gempanya. Peraturan yang berlaku saat ini ialah SNI 1726:2019 yang merupakan revisi dari SNI 1726:2012 dimana parameter wilayah gempanya sudah tidak digunakan lagi dan diganti berdasarkan dari nilai S_s (parameter respons spectral percepatan gempa

pada periode pendek) dan nilai S_1 (parameter respons spectral percepatan gempa pada periode 1 detik) pada setiap daerah yang ditinjau. Dalam hal ini, tata cara perencanaan bangunan gedung tahan gempa menjadi lebih rasional dan akurat.

2.6.1 Gempa Rencana dan Faktor Keutamaan

Tata cara ini menentukan pengaruh gempa rencana yang harus ditinjau dalam perencanaan dan evaluasi struktur bangunan gedung dan non gedung serta berbagai bagian dan peralatannya secara umum. Gempa rencana ditetapkan sebagai gempa dengan kemungkinan terlewati besarannya selama umur struktur bangunan 50 tahun adalah sebesar 2 persen.

Tabel 2.1: Kategori resiko bangunan gedung dan struktur lainnya untuk beban gempa berdasarkan SNI 1726:2019.

Jenis pemanfaatan	Kategori risiko
Gedung dan struktur lainnya yang memiliki	
risiko rendah terhadap jiwa manusia pada saat	
terjadi kegagalan, termasuk, tapi tidak dibatasi	
untuk:	
- Fasilitas pertanian, perkebunan,	Т
perternakan, dan perikanan	1
- Fasilitas sementara	
- Gudang penyimpanan	
- Rumah jaga dan struktur kecil lainnya	
Semua gedung dan struktur lain, kecuali yang	
termasuk dalam kategori risiko I, III,IV,	
termasuk, tapi tidak dibatasi untuk:	
- Perumahan	
- Rumah took dan rumah kantor	
- Pasar	
- Gedung perkantoran	Π
- Gedung apartemen/ Rumah susun	
- Pusat perbelanjaan/ Mall	
- Bangunan industry	
- Fasilitas manufaktur	
- Pabrik	

Untuk berbagai kategori resiko struktur bangunan gedung dan non gedung sesuai Tabel 2.1 pengaruh gempa rencana terhadapnya harus dikalikan dengan suatu faktor keutamaan I_e menurut Tabel 2.2 khusus untuk struktur bangunan

dengan kategori resiko IV, bila dibutuhkan pintu masuk untuk operasional dari struktur bangunan yang bersebelahan, maka struktur bangunan yang bersebelahan tersebut harus didesain sesuai dengan kategori resiko IV.

Kategori risiko	Faktor keutamaan gempa, I _e
I atau II	1.0
III	1.25
IV	1.5

Tabel 2.2: Faktor keutamaan gempa berdasarkan SNI 1726:2019.

2.6.2 Klasifikasi Situs dan Parameter

Prosedur untuk klasifikasi suatu situs untuk memberikan kriteria seismik adalah berupa faktor-faktor amplifikasi pada bangunan. Dalam perumusan kriteria seismik suatu bangunan di permukaan tanah atau penentuan amplifikasi besaran percepatan gempa puncak dari batuan dasar ke permukaan tanah untuk suatu situs, maka situs tersebut harus diklasifikasi terlebih dahulu. Profil tanah di situs harus diklasifikasikan berdasarkan profil tanah lapisan 30 m paling atas. Penetapan kelas situs harus melalui penyelidikan tanah di lapangan dan di laboratorium, yang dilakukan oleh otoritas yang berwenang atau ahli desain geoteknik bersertifikat, berikut disajikan dalam Tabel 2.3.

Kelas situs	\bar{v}_s (m/detik)	\overline{N} atau \overline{N}_{ch}	\bar{S}_u (kPa)	
SA (batuan keras)	> 1500	N/A	N/A	
SB (batuan)	750 sampai 1500	N/A	N/A	
SC (tanah keras, sangat	350 sampai 750	> 50	> 100	
padat dan batuan lunak)	550 sampar 750	> 50	≥ 100	
SD (tanah sedang)	175 sampai 350	15 sampai 50	50 sampai 100	
SE (tanah lunak)	< 175	< 15	< 50	
	Atau setiap profil tana	h yang mengandung lebi	h dari 3 m tanah dengan	
	karakteristik sebagai berikut:			
	1. Indeks plastisitas, $PI > 20$,			
	2. Kadar air, $w \ge 40\%$,			
	3. Kuat geser niralir	$\bar{S}_u < 25$ kPa.		
SF (tanah khusus, yang	Setiap profil lapisan	tanah yang memiliki sal	ah satu atau lebih dari	
membutuhkan	karakteristik berikut:			
investigasi geoteknik				

Tabel 2.3: Klasifikasi situs berdasarkan SNI 1726:2019.

spesifik dan analisis	-	Rawan dan berpotensi gagal atau runtuh akibat beban gempa
		in the second se
respons spesifik-situs		seperti mudah likuifaksi, lempung sangat sensitif, tanah
yang mengikuti 0)		tersementasi lemah.
	-	Lempung sangat organik dan/atau gambut (ketebalan $H > 3$ m).
	-	Lempung berplastisitas sangat tinggi (ketebalan $H > 7.5$ m dengan
		indeks plastisitas $PI > 75$)
	-	Lapisan lempung lunak/setengah teguh dengan ketebalan $H > 35$
		m dengan $\bar{S}_u < 50$ kPa.

Catatan: N/A = tidak dapat dipakai

2.6.3 Parameter Percepatan Gempa

Parameter S_s (percepatan batuan dasar pada perioda pendek) dan S_1 (percepatan batuan dasar pada perioda 1 detik) harus ditetapkan masing-masing dari respons spectral percepatan 0.2 detik dan 1 detik dalam peta gerak tanah seismic pada Bab 14 yang tertera dalam SNI 1726:2019 dengan kemungkinan 2 persen terlampaui dalam 50 tahun (MCER, 2 persen dalam 50 tahun), dan dinyatakan dalam bilangan desimal terhadap percepatan gravitasi.

Untuk penentuan respons spectral percepatan gempa M_{CER} di permukaan tanah, diperlukan suatu faktor amplifikasi seismic pada perioda 0.2 detik dan perioda 1 detik. Faktor amplifikasi meliputi faktor amplifikasi getaran terkait percepatan pada getaran perioda pendek (F_a) dan factor amplifikasi terkait percepatan yang mewakili getaran perioda 1 detik (F_v). Parameter spectrum respons percepatan pada pendek (S_{MS}) dan perioda 1 detik (S_{M1}) yang disesuaikan dengan pengaruh klasifikasi situs, harus ditentukan dengan menggunakan Persamaan (2.9) dan (2.10).

$$S_{MS} = F_a \cdot S_s \tag{2.9}$$

$$S_{M1} = F_v \cdot S_1$$
 (2.10)

Dimana:

- S_s = Nilai parameter respon spektrum percepatan gempa perioda pendek 0.2 detik di batuan dasar (*SB*) mengacu pada Peta Gempa SNI 1726:2019.
- S_1 = Nilai parameter respon spektrum percepatan gempa perioda pendek 1.0 detik di batuan dasar (*SB*) mengacu pada Peta Gempa SNI 1726:2019.

 $F_a = Koefisien perioda pendek$

 F_v = Koefisien perioda 1.0 detik

Kelas situs		PGA				
(sesuai Tabel 2.3)	<i>S_s</i> < 0.25	$S_{s} = 0.5$	$S_s = 0.75$	$S_s = 1.25$	$S_s > 1.5$	
SA	0.8	0.8	0.8	0.8	0.8	
SB	0.9	0.9	0.9	0.9	1.0	
SC	1.3	1.3	1.2	1.2	1.0	
SD	1.6	1.4	1.2	1.0	1.0	
SE	2.4	1.7	1.3	0.9	0.9	
SF	SS ^(a)					

Tabel 2.4: Koefisien situs F_a

Catatan: SS = Situs yang memerlukan investigasi geoteknik spesifik dan analisis respons situs-spesifik, lihat 0.

Kelas situs		PGA						
(sesuai Tabel 2.3)	<i>S</i> ₁ < 0.1	$S_1 = 0.2$	$S_1 = 0.3$	$S_1 = 0.4$	$S_1 = 0.5$	$S_1 > 0.6$		
SA	0.8	0.8	0.8	0.8	0.8	0.8		
SB	0.8	0.8	0.8	0.8	0.8	0.8		
SC	1.5	1.5	1.5	1.5	1.5	1.4		
SD	2.4	2.2	2.0	1.9	1.8	1.7		
SE	4.2	3.3	2.8	2.4	2.2	2.0		
SF	SS ^(a)							

Tabel 2.5: Koefisien situs F_v

Catatan: SS = Situs yang memerlukan investigasi geoteknik spesifik dan analisis respons situs-spesifik, lihat 0.

2.6.4 Perioda Alami Struktur

Perioda adalah besarnya waktu yang diperlukan untuk mencapai satu getaran. Berdasarkan SNI 1726:2019 tentang Penentuan Perioda, perioda struktur fundamental (T) dalam arah yang ditinjau harus diperoleh dengan menggunakan properti struktur dan karakteristik deformasi elemen penahan dalam analisa yang teruji. Perioda struktur fundamental memiliki nilai batas minimum dan batas maksimum. Nilai-nilai tersebut ditentukan dalam Persamaan 2.11 dan Persamaan 2.12.

Perioda fundamental pendekatan minimum (T_a minimum):

$$T_a \min = Ct \ln^x$$
(2.11)

Perioda fundamental pendekatan maksimum (T_a maksimum):

 $T_a maksimum = Cu \cdot T_a minimum$ (2.12)

Dimana:

T _a minimum	=	Nilai batas bawah perioda bangunan
T _a maksimum	=	Nilai batas atas perioda bangunan
Hn	=	Ketinggian struktur dalam m di atas dasar sampai tingkat
		tertinggi struktur (m)
Х	=	Ditentukan dari Tabel 2.6
Ct	=	Ditentukan dari Tabel 2.6
Cu	=	Ditentukan dari Tabel 2.7

Tabel 2.6: Nilai parameter perioda pendekatan Ct dan x berdasarkan SNI 1726:2019.

Tipe struktur	Ct	x
Sistem rangka pemikul momen di mana		
rangka memikul 100% gaya seismik yang		
disyaratkan dan tidak dilingkupi atau		
dihubungkan dengan komponen yang lebih		
kaku dan akan mencegah rangka dari defleksi		
jika dikenai gaya seismik:		
- Rangka baja pemikul momen	0.0724	0.8
- Rangka beton pemikul momen	0.0466	0.9
Rangka baja dengan bresing eksentris	0.0731	0.75
Rangka baja dengan bresing terkekang terhadap tekuk	0.0731	0.75

Tabel 2.7: Koefisien untuk batas atas pada perioda yang dihitung berdasarkan SNI 1726:2019.

Parameter Percepatan Respon Spektrum	Koefisien
Desain pada 1 detik, S_{D1}	(<i>Cu</i>)
> 0.4	1.4
0.3	1.4
0.2	1.5
0.15	1.6
0.1	1.7

2.7 Perilaku Sendi Plastis

Perilaku sendi plastis adalah kondisi di mana elemen struktur, seperti balok dan kolom, mengalami deformasi permanen akibat beban yang melebihi kapasitas elastisnya. Dalam konteks bangunan tahan gempa, sendi plastis berfungsi sebagai mekanisme untuk menyerap energi yang dihasilkan oleh gerakan tanah, sehingga mengurangi risiko keruntuhan total. Ketika struktur menerima beban, elemenelemen seperti balok dan kolom berfungsi dalam batas elastis. Namun, saat beban, terutama dari gempa, melebihi kapasitas elastis, elemen-elemen tersebut mulai mengalami deformasi plastis (Nuraga dkk., 2021).

Sendi plastis biasanya terbentuk di ujung-ujung balok. Ini terjadi karena bagian tersebut menerima momen dan gaya geser terbesar. Dalam desain struktur, prinsip "*Strong Column Weak Beam*" diterapkan, di mana kolom dirancang lebih kuat dibandingkan balok. Hal ini memastikan bahwa kerusakan terjadi pada balok terlebih dahulu, sehingga kolom tetap berfungsi sebagai penyangga utama. Sendi plastis berfungsi untuk menyerap energi kinetik yang dihasilkan oleh gerakan tanah. Dengan terbentuknya sendi plastis, struktur dapat mengalami deformasi yang besar tanpa runtuh, memberikan waktu untuk evakuasi dan mengurangi risiko cedera. Dengan merencanakan lokasi sendi plastis, insinyur dapat mengontrol di mana kerusakan akan terjadi. Ini memungkinkan struktur untuk "rusak" tanpa "runtuh", menjaga keselamatan pengguna bangunan (Nuraga dkk., 2021).

Gambar 2.3: Penentuan letak sendi plastis balok dan kolom (Nuraga dkk., 2021).

BAB 3

METODE PENELITIAN

3.1 Umum

Secara umum dalam penelitian ini akan digunakan metode kuantitatif komparatif yang menggunakan data primer yang diperoleh melalui metode analitis. Penelitian ini termasuk dalam metode penelitian terapan yang berfokus pada studi literatur. Diagram alir langkah-langkah yang akan diikuti dalam penelitian ini ditunjukkan dalam Gambar 3.1.

Gambar 3.1: Diagram alir penelitian.

Berdasarkan Gambar 3.1 dapat menggambarkan bahwa dalam Tugas Akhir ini penelitian dilakukan terhadap dua model 4 lantai dan 8 lantai struktur dengan sistem rangka pemikul momen khusus (SRPMK). Analisis dilakukan secara linear dan nonlinear menggunakan metode analisa respon spektrum dan analisa riwayat waktu (*time history analysis*) dengan menggunakan software OpenSees. Tujuan dari analisis ini adalah untuk mengetahui perilaku sendi plastis balok dan kolom pada struktur akibat terkena gempa dekat.

3.2 Pemodelan Struktur

Pada Tugas Akhir ini dilakukan pemodelan struktur menggunakan baja SRPMK. Pemodelan tersebut dijelaskan dalam suatu diagram alir desain struktur secara umum yang dapat dilihat pada Gambar 3.2.

Gambar 3.2: Diagram alir desain struktur secara umum.

3.2.1 Data Perencanaan Struktur

Adapun data perencanaan struktur yang digunakan pada kedua pemodelan dalam program analisa struktur mengacu ke model milik Elkady dan Lignos (2019), sebagai berikut:

- 1. Kategori risiko: II (Gedung Perkantoran)
- 2. Faktor keutamaan gempa, I_e: 1.0
- 3. Kategori desain seismik: D_{max}
- 4. Kelas tanah: D (tanah sedang)
- 5. Sistem struktur gaya lateral: Menggunakan SMF/SRPMK
- 6. Model: Struktur rangka baja 4 dan 8 tingkat
- 7. Jarak bentang tipikal: 6.1 m
- 8. Tinggi lantai semua tipikal: 4.0 m, kecuali lantai dasar sebesar 4.6 m
- 9. Mutu elemen balok dan kolom: ASTM A992 steel

Gambar 3.3: Geometri model struktur SMF baja yang ditinjau mengacu ke model milik Elkady dan Lignos (2019).

3.2.2 Dimensi Kolom-Balok pada Struktur

Bangunan yang direncanakan adalah struktur beraturan, struktur gedung direncanakan dengan dimensi penampang yang berbeda. Elemen-elemen pada struktur baja SRPMK pada penelitian ini memakai jenis WF profil USA. Desain profil penampang balok dan kolom akan mengacu kepada Tabel 3.1.

Model	Level	Elevasi dari lantai dasar (m)	Profil Balok	Profil Kolom Eksterior	Profil Kolom Interior
	1	4.6	W21×73	W24×103	W24×103
4	2	8.6	W21×73	W24×103	W24×103
Tingkat	3	12.6	W21×57	W24×103	W24×103
	4	16.6	W21×57	W24×62	W24×62
	1	4.6	W30×108	W24×146	W24×192
	2	8.6	W30×116	W24×146	W24×192
	3	12.6	W30×116	W24×146	W24×192
8	4	16.6	W27×94	W24×131	W24×176
Tingkat	5	20.6	W27×94	W24×131	W24×176
	6	24.6	W24×84	W24×131	W24×131
	7	28.6	W24×84	W24×131	W24×131
	8	32.6	W21×68	W24×94	W24×94

Tabel 3.1: Data profil balok dan kolom baja WF yang digunakan.

3.2.3 Pemodelan Sendi Plastis Elemen Balok dan Kolom

Elemen kolom pada struktur baja SRPMK pada penelitian ini memakai jenis WF profil USA dan untuk balok memakai jenis WF yang penampangnya dikurangi (*reduced beam section*, disingkat RBS). Balok RBS ditunjukkan pada Gambar 3.4 dimana menurut AISC 358-05 besaran coakan pada sayap balok adalah a = $0.625b_f$, b = $0.75d_b$, c = $0.250b_f$; dengan radius = $(4c^2 + b^2)/8c$ dan panjang dari pusat coakan RBS ke tepi kolom, L_{RBS} = a + b/2. Di sini b_f dan d_b masing-masing adalah lebar flens penampang balok dan tinggi penampang balok.

Gambar 3.4: Balok RBS yang dipakai sebagai model SRPMK.

Pemodelan sendi plastis pada elemen balok dan kolom menggunakan metode yang diusulkan oleh Lignos dan Krawinkler (2011) seperti ditunjukkan pada Gambar 3.5 dimana momen leleh (M_y) dihitung dari momen plastisnya, momen maksimum Mc, dihitung berdasarkan rasio M_c/M_y dan rotasi leleh diperoleh dari θ_y = M_y/(6EI/L). Besaran rotasi saat momen maksimum, θ_c , dan rotasi batas, θ_u , dapat diketahui setelah mencari besaran kapasitas rotasi plastis, θ_p , dan kapasitas rotasi pasca plastis, θ_{pc} .

Gambar 3.5: Hubungan antara momen versus rotasi.

Untuk kapasitas rotasi plastis, θ_p , pada kolom dihitung berdasarkan persamaan berikut:

$$\theta_p = 0.0865 \cdot \left(\frac{h}{t_w}\right)^{-0.365} \cdot \left(\frac{b_f}{2 \cdot t_f}\right)^{-0.140} \cdot \left(\frac{L}{d}\right)^{0.340} \cdot \left(\frac{c_{\text{unit}}^1 \cdot d}{533}\right)^{-0.721} \cdot \left(\frac{c_{\text{unit}}^2 \cdot F_y}{355}\right)^{-0.230}$$
(3.1)

Sedangkan untuk balok RBS, kapasitas rotasi plastisnya adalah

$$\theta_p = 0.19 \cdot \left(\frac{h}{t_w}\right)^{-0.314} \cdot \left(\frac{b_f}{2 \cdot t_f}\right)^{-0.100} \cdot \left(\frac{L_b}{r_y}\right)^{-0.185} \cdot \left(\frac{L}{d}\right)^{0.113} \cdot \left(\frac{c_{\text{unit}}^1 \cdot d}{533}\right)^{-0.760} \cdot \left(\frac{c_{\text{unit}}^2 \cdot F_y}{355}\right)^{-0.0700}$$
(3.2)

Untuk kapasitas rotasi pasca plastis, θ_{pc} , pada kolom dihitung dengan

$$\theta_{pc} = 5.63 \cdot \left(\frac{h}{t_w}\right)^{-0.565} \cdot \left(\frac{b_f}{2 \cdot t_f}\right)^{-0.800} \cdot \left(\frac{c_{\text{unit}}^1 \cdot d}{533}\right)^{-0.280} \cdot \left(\frac{c_{\text{unit}}^2 \cdot F_y}{355}\right)^{-0.430}$$
(3.3)

Sedangkan untuk balok kapsitas rotasi pasca plastisnya dicari dengan

$$\theta_{pc} = 9.52 \cdot \left(\frac{h}{t_w}\right)^{-0.513} \cdot \left(\frac{b_f}{2 \cdot t_f}\right)^{-0.863} \cdot \left(\frac{L_b}{r_y}\right)^{-0.108} \cdot \left(\frac{c_{\text{unit}}^2 \cdot F_y}{355}\right)^{-0.360}$$
(3.4)

3.3 Analisis Dinamik Struktur Linear

Analisis ini menggunakan metode respon spektrum. Alat bantu software yang digunakan untuk analisis dinamik linear ini adalah program Etabs.

3.3.1 Pembebanan

Beban-beban yang bekerja pada struktur bangunan diambil dari NIST GCR 10-917-8 (NIST, 2010). Beban-beban tersebut ialah beban mati dan beban hidup yang berhubungam dengan komponen material bangunan. Nilai beban mati dan beban hidup yang digunakan dalam perencanaan dapat dilihat sebagai berikut:

- 1. Beban mati = 90 psf = 4.309 kN/m^2 untuk semua lantai.
- 2. Beban hidup di setiap lantai = $50 \text{ psf} = 2.394 \text{ kN/m}^2$.
- 3. Beban hidup di lantai atap = $20 \text{ psf} = 0.958 \text{ kN/m}^2$.

3.3.2 Kombinasi

Kombinasi pembebanan yang digunakan berdasarkan ketentuan yang ditetapkan dalam SNI 1726:2019 tentang standar perencanaan bangunan tahan gempa.

17 1 ' '	Koefisien	Koefisien	Koefisien	Koefisien
Kombinasi	(DL)	(LL)	(EX)	(EY)
Kombinasi 1	1.4			
Kombinasi 2	1.2	1.6		
Kombinasi 3	1.262	1	0.3	1
Kombinasi 4	1.138	1	-0.3	-1
Kombinasi 5	1.167	1	0.3	-1
Kombinasi 6	1.233	1	-0.3	1
Kombinasi 7	1.261	1	1	0.3
Kombinasi 8	1.138	1	-1	-0.3
Kombinasi 9	1.233	1	1	-0.3
Kombinasi 10	1.167	1	-1	0.3
Kombinasi 11	0.838		0.3	1
Kombinasi 12	0.961		-0.3	-1
Kombinasi 13	0.933		0.3	-1
Kombinasi 14	0.867		-0.3	1
Kombinasi 15	0.838		1	0.3
Kombinasi 16	0.961		-1	-0.3

Tabel 3.2: Kombinasi pembebanan berdasarkan SNI 1726:2019 dengan $S_{DS} = 0.2368$.

Tabel 3.2: lanjutan

Kombinasi	Koefisien (DL)	Koefisien (LL)	Koefisien (EX)	Koefisien (EY)	
Kombinasi 17	0.867		1	-0.3	
Kombinasi 18	0.933		-1	0.3	
Envelope	Nilai absolute dari seluruh kombinasi				

Keterangan:

- DL = Dead Load
- LL = Live Load
- EX = Earthquake arah X
- EY = Earthquake arah Y

3.3.3 Respon Spektrum Desain

Berdasarkan SNI 1726:2019, respon spektrum gempa didesain pada kondisi tanah sedang yang terletak di kota Makassar, kemudian dianalisis dengan data nilai $S_s = 0.222$ g dan $S_1 = 0.112$ g. Maka akan didapatkan koefisien atau nilai-nilai yang diperlukan dalam pembuatan respon spektrum desain. Nilai-nilai tersebut yaitu:

- Nilai
$$F_a = 1.6$$

- Nilai
$$F_{v} = 2.376$$

$$-S_{\rm DS} = 0.2368$$

$$-S_{D1} = 0.1774$$

- $T_0 = 0.1498$
- $T_s = 0.7492$

3.3.4 Analisis Respon Spektrum Ragam

Nilai untuk masing-masing parameter yang ditinjau, yang dihitung untuk berbagai ragam, telah dikombinasikan menggunakan metode akar kuadrat jumlah kuadrat (*Square Root of the Sum of Squares*/SRSS) atau metode kombinasi kuadrat lengkap (*Complete Quadratic Combination*/CQC). Metode akar kuadrat jumlah kuadrat diperoleh dari hasil selisih nilai perioda yang lebih dari 15%, sementara metode kombinasi kuadrat lengkap diperoleh dari hasil selisih nilai perioda yang

kurang dari 15%. Perhitungan mendetail pemilihan metode yang digunakan dalam pemodelan struktur dapat dilihat pada Bab 4.

3.4 Analisis Dinamik Struktur Nonlinear

3.4.1 Ground Motion Record (Rekaman Gerakan Tanah)

Model gerakan tanah yang digunakan berjumlah total 10 rekaman getaran gempa, yang terdiri dari 5 rekaman gerakan tanah tanpa efek detak (*pulse*) dan 5 rekaman gerakan tanah mengandung efek detak. Rekaman gerakan tanah ini dipilih dan diambil dari PEER NGA2 database berdasarkan hasil studi Baker (2007). Daftar rekaman gempa ditampilkan pada Tabel 3.3.

No.	Nama Gempa	Tahun	Stasiun Pencatat Gempa	Magnitude
1	Gazli, USSR	1979	Karakyr	6.8
2	Imperial Valley-06	1979	Bonds Corner	6.5
3	Imperial Valley-06	1979	Chihuahua	6.5
4	Nahanni, Canada	1985	Site 1	6.8
5	Nahanni, Canada	1985	Site 2	6.8
6	Imperial Valley-06	1979	El Centro Array #6	6.5
7	Imperial Valley-06	1979	El Centro Array #7	6.5
8	Irpinia, Italy-01	1980	Sturno	6.9
9	Superstition Hills-02	1987	Parachute Test Site	6.5
10	Loma Prieta	1989	Saratoga - Aloha	6.9

Tabel 3.3: Rekaman gerakan tanah gempa dekat.

Selanjutnya data rekaman gempa yang diperoleh tersebut diskalakan terhadap respon spektrum desain saat perioda sama dengan perioda alami struktur yang ditinjau. Kemudian data rekaman gempa yang telah diskalakan digunakan sebagai *input* pada software OpenSees untuk Analisis Dinamik Non Linier Inelastis dengan metode analisa riwayat waktu.

3.4.2 Analisis Respon Riwayat Waktu

Dalam metode respon riwayat waktu, analisis dilakukan dalam dua dimensi menggunakan alat bantu software OpenSees. Sebelum menggunakan OpenSees untuk menganalisis, ada beberapa tahapan yang perlu dilakukan seperti yang dijelaskan berikut ini:

- Pengambilan rekaman gempa dari PEER NGA2. Daerah-daerah rekaman yang dipakai terdapat pada Tabel 3.3.
- Mengubah rekaman gempa menjadi respon spektrum dengan bantuan software SeismoLee. Hal ini dilakukan untuk memudahkan proses penskalaan.
- 3. Kemudian respon spektrum yang didapat dari 10 daerah gempa dekat tersebut diskalakan terhadap respon spektrum yang direncanakan untuk kota Makassar.
- Setelah itu menskalakan rekaman gempa dengan menggunakan software Matlab, rekaman gempa akan dijadikan gempa tunggal dan gempa berulang.
- Kemudian rekaman gempa akan di analisis dengan menggunakan program OpenSees untuk menghasilkan *output* yang ingin ditinjau.

3.4.3 Incremental Dynamic Analysis (IDA)

IDA adalah metode analisis yang digunakan untuk mengevaluasi perilaku struktur di bawah beban gempa dengan meningkatkan intensitas gerakan tanah secara bertahap. Dalam IDA, rekaman gerakan tanah diubah skalanya untuk menciptakan berbagai tingkat intensitas, mulai dari kondisi elastis hingga menuju keruntuhan. Hasil analisis disajikan dalam bentuk kurva IDA yang menunjukkan hubungan antara ukuran intensitas gempa dan respons struktur.

Dari Gambar 3.6 dapat digunakan untuk mengidentifikasi kapan struktur mencapai batas kondisi LS (*life safety*), CP (*collapse prevention*), dan *Collapse* berdasarkan respons strukturnya akibat gerakan tanah. Analisis IDA memungkinkan identifikasi kapan struktur mencapai batas kondisi LS, CP, dan *Collapse* dengan meningkatkan intensitas gerakan tanah secara bertahap.

Gambar 3.6: Kurva IDA.

Kondisi batas LS (*life safety*), kondisi batas CP (*collapse prevention*), dan *Collapse* dicari melalui analisa bertahap respon riwayat waktu nonlinear (*incremental dynamic analysis*, disingkat IDA). Batas kondisi LS adalah kondisi dimana elemen struktur sudah mengalami kerusakan yang banyak pasca terjadinya gempa bumi tetapi kerusakan masih dapat diperbaiki dengan biaya yang relative mahal, yang ditandai dengan pencapaian IDRmax = 0.025. Batas kondisi CP adalah kondsisi dimana struktur kehilangan kemampuan menahan gaya lateral dan kehilangan kestabilan ditandai dengan banyaknya elemen struktur yang mengalami kerusakan, dengan tercapainya IDRmax = 0.05. Sedangkan kondisi batas runtuh, *Collapse* adalah kondisi dimana nilai IDRmax mencapai 0.1.

Dalam metode ini terdapat langkah-langkah proses untuk menyelesaikannya, sehingga disajikan dalam bentuk diagram alir metode IDA seperti pada Gambar 3.7.

Gambar 3.7: Diagram alir metode IDA.

3.4.4 Perilaku Sendi Plastis

Analisis riwayat waktu adalah metode analisis dinamik nonlinear yang digunakan untuk mengevaluasi respons struktur terhadap rekaman gerakan tanah tertentu. Dalam konteks perilaku sendi plastis, analisis ini dapat memberikan informasi mengenai besarnya deformasi plastis yang terjadi pada elemen struktur, termasuk rotasi sendi plastis. Perilaku sendi plastis pada balok dan kolom adalah aspek penting dalam desain struktur bangunan, terutama dalam konteks ketahanan terhadap gempa. Evaluasi dilakukan pada titik yang berpotensi mengalami sendi plastis, dengan fokus pada lokasi di mana sendi plastis terbentuk. Hal ini membantu dalam memahami bagaimana balok dan kolom akan berperilaku di bawah beban seismik.

Elemen struktur kolom dan balok mengalami deformasi plastis yang dapat menyerap energi gempa ketika beban melampaui kapasitasnya. Ini disebut sendi plastis. Agar struktur tidak roboh saat gempa, kolom harus memiliki kekuatan lebih besar daripada balok. Jika kolom lebih lemah daripada balok, struktur akan ambruk seketika ketika kolom runtuh. Namun, jika balok lebih lemah daripada kolom, struktur masih dapat bertahan ketika balok runtuh. Oleh karena itu, dalam merancang struktur bangunan, hal yang utama adalah membuat kolom lebih kuat daripada balok. Salah satu cara untuk mengetahui perilaku struktur saat terkena gempa adalah dengan menggunakan analisis plastis. Analisis plastis adalah metode yang mengasumsikan bahwa struktur memiliki sifat elastis-plastis, yaitu dapat mengalami deformasi elastis dan plastis. Deformasi elastis adalah deformasi yang dapat kembali ke bentuk semula setelah beban dilepas, sedangkan deformasi plastis adalah deformasi yang bersifat permanen dan tidak dapat kembali ke bentuk semula. Deformasi plastis dapat menyerap energi gempa dan mencegah keruntuhan struktur. Deformasi plastis terjadi ketika beban yang bekerja pada struktur melebihi kapasitas elemen struktur, yaitu momen leleh. Momen leleh adalah momen maksimum yang dapat ditahan oleh elemen struktur sebelum mengalami deformasi plastis. Ketika momen leleh tercapai, maka elemen struktur akan membentuk sendi plastis. Sendi plastis menunjukkan bahwa elemen struktur telah mencapai kapasitas plastisnya (Rau dkk., 2023).

BAB 4

HASIL DAN PEMBAHASAN

4.1 Hasil Model Linear dan Nonlinear

Pada Bab ini akan membahas hasil analisa linear dan non linear dengan program analisa struktur diantaranya, perioda getar, perilaku sendi plastis dan gayagaya pada struktur gedung. Berdasarkan dua model yang di desain dengan sistem rangka pemikul momen khusus (SRPMK), yaitu Model 1 (4 lantai) dan Model 2 (8 lantai). Serta perbandingan metode analisa respon spektrum ragam dan analisa respon riwayat waktu pada tiap pemodelan.

4.2 Hasil Analisa Linear

4.2.1 Respon Spektrum Ragam

Berdasarkan SNI 1726:2019, analisa harus dilakukan untuk menentukan ragam getar alami untuk struktur. Analisa harus menyertakan jumlah ragam yang cukup untuk mendapatkan partisipasi massa ragam terkombinasi sebesar paling sedikit 90 persen dari massa aktual dalam masing-masing arah horizontal ortogonal dari respon yang ditinjau oleh model. Persentase nilai perioda yang menentukan jenis perhitungan menggunakan CQC atau SRSS.

Syarat: SRSS > 15%, CQC < 15%

Analisa menggunakan metode CQC (*Complete Quadratic Combination*), hasil persentase perioda rata-rata yang didapat lebih kecil dari 15% dan SRSS (*Square Root of the Sum of Square*) lebih besar dari 15%. Pada Tabel 4.1 dan 4.2 hasil analisis CQC dan SRSS diperoleh:

- Model 1: untuk nilai R = 8, didapat 6 mode dan hasil persentase nilai perioda dibawah 15%.
- Model 1: untuk nilai R = 8, didapat 5 mode dan hasil persentase nilai perioda diatas 15%.

- Model 2: untuk nilai R = 8, didapat 5 mode dan hasil persentase nilai perioda dibawah 15%.
- Model 2: untuk nilai R = 8, didapat 6 mode dan hasil persentase nilai perioda diatas 15%.

Moda (Perioda)	Selisih Persentase (%)	CQC < 15%	SRSS > 15%
T1 - T2	29%	NOT OK	ОК
T2 - T3	14%	OK	NOT OK
T3 - T4	44%	NOT OK	ОК
T4 - T5	35%	NOT OK	ОК
T5 - T6	12%	OK	NOT OK
T6 - T7	6%	OK	NOT OK
T7 - T8	36%	NOT OK	ОК
Т8 - Т9	3%	OK	NOT OK
T9 - T10	11%	OK	NOT OK
T10 - T11	31%	NOT OK	ОК
T11 - T12	10%	OK	NOT OK

Tabel 4.1: Hasil analisis CQC dan SRSS pada Model 1 (SRPMK 4 Lantai).

Tabel 4.2: Hasil analisis CQC dan SRSS pada Model 2 (SRPMK 8 Lantai).

Moda (Perioda)	Selisih Persentase (%)	CQC < 15%	SRSS > 15%
T1 - T2	5%	ОК	NOT OK
T2 - T3	29%	NOT OK	ОК
T3 - T4	48%	NOT OK	ОК
T4 - T5	7%	OK	NOT OK
T5 - T6	25%	NOT OK	ОК
T6 - T7	18%	NOT OK	ОК
T7 - T8	11%	OK	NOT OK
T8 - T9	19%	NOT OK	ОК
T9 - T10	7%	OK	NOT OK
T10 - T11	19%	NOT OK	ОК
T11 - T12	11%	ОК	NOT OK

4.2.2 Koreksi Gempa Dasar Nominal

Berdasarkan SNI 1726:2019, kombinasi respon untuk gaya geser dasar ragam (Vt) yang kurang dari 85 persen dari gaya geser dasar yang dihitung (V1) menggunakan prosedur gaya lateral ekivalen, maka diizinkan untuk mengalikan gaya tersebut dengan persamaan 4.1.

$$0.85 . \frac{V_1}{Vt} \le 1 \tag{4.1}$$

Dimana:

 V_1 = Gaya geser dasar nominal statik ekivalen

V_t = Gaya geser dasar kombinasi ragam

Tabel 4.3: Nilai gaya geser dasar nominal analisa statik ekivalen (V1) dan nilai gaya geser dasar nominal analisa respon spektrum *output* program analisa struktur (Vt).

Struktur	Arah Gempa	V1 (kN)	Vt (kN)	Cek
Model 1	Arah X (R=8)	1639.41	1639.4	OK
Model 2	Arah X (R=8)	1188.47	1188.5	ОК

Untuk memenuhi syarat berdasarkan SNI 1726:2019, maka nilai faktor skala harus lebih kecil atau sama dengan 1.

4.2.3 Koreksi Faktor Redundansi

Nilai gaya geser dengan redundansi 1 per lantainya harus dikoreksi dengan 35 persen gaya geser dasar dengan redundansi 1. Jika persyaratan tersebut tidak terpenuhi, maka nilai faktor redundansi 1 harus diganti dengan redundansi 1.3. Dari hasil koreksi untuk setiap gaya geser diperoleh beberapa lantai yang tidak memenuhi syarat 35 persen gaya geser dasar. Untuk hasil perhitungan terdapat pada lampiran L5.

4.2.4 Koreksi Skala Simpangan Antar Tingkat

Nilai V1 dan gaya geser dasar nominal analisis respon spektrum (Vt) dapat dilihat pada Tabel 4.4. kontrol koreksi skala simpangan antar tingkat, yaitu:

Syarat: Vt ≥ 0.85 Cs . W

Struktur	Arah Gempa	Vt (kN)	0.85 . Cs.W	Cek
Model 1	Arah X (R=8)	1639.4	1393.4	OK
Model 2	Arah X (R=8)	1188.5	1010.2	OK

Tabel 4.4: Nilai 0.85 Cs . W dan kontrol koreksi skala simpangan antar tingkat.

4.2.5 Nilai Simpangan Gedung

Berdasarkan peraturan SNI 1726:2019, kontrol simpangan antar lantai hanya terdapat satu kinerja batas, yaitu kinerja batas ultimit. Simpangan antar tingkat yang didesain untuk kategori desain seismik D, E dan F tidak boleh melebihi yang diizinkan yaitu 0.02 dikali tinggi lantai, nilai simpangan tidak boleh melebihi $\frac{\Delta a}{\rho}$ di kali tinggi tingkat untuk semua tingkat, dimana nilai tersebut diperoleh sebesar 0.0154 di kali tinggi tingkatnya. Hasil yang didapat, nilai simpangan antar lantai tidak melebihi batas izin atau memenuhi syarat tersebut. Untuk hasil perhitungan terdapat pada lampiran L6.

4.2.6 Kontrol Ketidakberaturan Kekakuan Tingkat Lunak (Soft Story)

Berdasarkan SNI 1726:2019, kekakuan tingkat lunak (*soft story*) didefinisikan ada jika terdapat suatu tingkat dimana kekakuan lateralnya kurang dari 70 persen kekakuan lateral tingkat diatasnya atau kurang dari 80 persen kekakuan rata-rata tiga tingkat diatasnya. Pada hasil kontrol ketidakberaturan kekakuan tingkat lunak pada arah x untuk semua model, diperoleh nilai persentase kekakuan diatas batas yang ditentukan atau struktur yang direncanakan tidak mengalami *soft story*. Untuk hasil perhitungan terdapat pada lampiran L7.

4.2.7 Pengaruh Efek P-Delta

Berdasarkan SNI 1726:2019, efek P-delta dapat diabaikan jika nilai *stability ratio* lebih kecil dari 1. Pada hasil perhitungan, nilai *stability ratio* dibawah nilai 1 untuk semua model atau dapat dikatakan kontrolnya memenuhi syarat yang ditentukan. Pada dasarnya efek P-delta dapat diabaikan jika syarat *stability ratio* sudah terpenuhi. Untuk hasil perhitungan terdapat pada lampiran L8.

4.3 Hasil Analisa Nonlinear

Tahap ini adalah bagian dari evaluasi struktrur baja yang telah didesain terhadap beban gempa yang telah direncanakan, dalam hal ini respon struktur akan ditinjau terhadap jenis gempa dekat, faktor R pada gedung, dan perioda struktur bangunan. Perbedaan nilai perioda didapat dari kedua jenis model yang telah didesain. Setiap model struktur akan diambil data *interstory drift* dan nilai deformasi lentur.

4.3.1 Incremental Dynamic Analysis (IDA)

Dalam menentukan besaran intensitas (*intensity measure*) sebuah gempa yang dapat menghasilkan suatu kondisi batas, seperti kondisi batas LS (*limit safety*), CP (*collapse prevention*) dan *Collapse*, dicari melalui analisa bertahap respon riwayat waktu nonlinear (*incremental dynamic analysis*, disingkat IDA). Batas kondisi LS adalah kondisi dimana elemen struktur sudah mengalami kerusakan yang banyak pasca terjadinya gempa bumi tetapi kerusakan masih dapat diperbaiki dengan biaya yang relative mahal, dimana pada struktur SRPMK baja yang ditandai dengan pencapaian IDRmax = 0.025. Kondisi batas CP adalah kondsisi dimana struktur kehilangan kemampuan menahan gaya lateral dan kehilangan kestabilan ditandai dengan banyaknya elemen struktur yang mengalami kerusakan dengan tercapainya IDRmax = 0.05. Sedangkan kondisi batas runtuh (*Collapse*) adalah kondisi dimana nilai IDRmax = 0.1.

Gambar 4.1: Ilustrasi struktur baja SRPMK akibat gerakan tanah gempa dekat pada kondisi (a) LS (*life safety*), (b) CP (*collapse prevention*), dan (c) *Collapse*.

Gambar 4.2 menjelaskan respon IDRmax yang diplot terhadap nilai respon spektrum percepatan gerakan tanah saat perioda alami struktur, RSA(T1). Fokus hasil penelitian ini akan ditekankan pada kondisi ketika batas linear elastis telah terlewati dimana telah terjadi proses sendi plastis, yaitu pada kondisi batas LS dan CP saja.

Gambar 4.2: Kondisi batas LS, CP dan *Collapse* untuk SRPMK baja 4 lantai dan 8 lantai akibat sejumlah gerakan tanah berdasarkan IDA.

Untuk mendapatkan perilaku yang sesuai seperti yang diinginkan, maka untuk meninjau perilaku deformasi tidak linear elemen balok dan kolom akan didasarkan pada kurva IDA dari kondisi LS (IDRmax = 0.025) ke kondisi CP (IDRmax = 0.05). Dengan memilih rekaman gempa untuk mewakili seluruh rekaman gerakan tanah yang dipakai, karena dilihat dari perilaku respon IDRmax nya terletak pada garis yang paling mendekati nilai LS, CP dan *Collapse* pada garis median di kurva IDA (Gambar 4.2).

4.3.2 Interstory Drift Ratio (IDR)

Respon simpangan lateral maksimum di setiap tingkat dari analisa struktur respon riwayat waktu tidak linear dan tidak elastis dibuat ke dalam bentuk simpangan antar tingkat, IDR (*interstory drift ratio*) seperti yang ditunjukkan pada Gambar 4.3 dan 4.4. Pada gambar tersebut diilustrasikan peningkatan nilai IDRmax akibat gerakan tanah gempa dekat seiring dengan target kondisi batas yang ingin dicapai (LS, CP dan *Collapse*). Gambar 4.3 dan 4.4 juga menjelaskan proses deformasi global dari kondisi linear elastis menuju kondisi tidak elastis, serta

menjelaskan respon maksimum struktur akibat gerakan tanah untuk Model 1 pada kondisi LS dan CP terjadi di tingkat 2 dan pada kondisi *Collapse* terjadi di tingkat 1 atau dasar. Dan untuk Model 2, respon maksimum struktur akibat gerakan tanah pada kondisi LS terjadi di tingkat 2, kondisi CP terjadi di tingkat 5 dan pada kondisi *Collapse* terjadi di tingkat 1 atau dasar.

Gambar 4.3: Rasio simpangan antar tingkat maksimum akibat gerakan tanah gempa dekat pada kondisi batas LS, CP dan *Collapse* untuk Model 1 (4 Lantai).

Gambar 4.4: Rasio simpangan antar tingkat maksimum akibat gerakan tanah gempa dekat pada kondisi batas LS, CP dan *Collapse* untuk Model 2 (8 Lantai).

4.3.3 Perilaku Sendi Plastis pada Balok dan Kolom

Perilaku pada elemen balok dan kolom disajikan dalam grafik momen lentur versus rotasi, seperti ditunjukkan pada Gambar 4.5 dan 4.6. Pada gambar ini ditunjukkan perilakunya dalam bentuk grafik hysteresis yang terdampak akibat siklus bolak balik dari gerakan tanah gempa dekat yang ditinjau pada tiap level-level kinerja yaitu, kondisi LS, CP, dan *Collapse*.

Pada Gambar 4.5 (a) dan (b) ditunjukkan perilaku lentur pada balok dengan perolehan rotasi pertama kali yang dicapai Model 1 untuk kondisi LS, CP dan *Collapse* yaitu $\theta_{LS} = 0.0036$, $\theta_{CP} = 0.0044$, dan $\theta_{COLLAPSE} = 0.0051$ radian dan perolehan rotasi pertama kali yang dicapai Model 2 untuk kondisi LS, CP dan *Collapse* yaitu $\theta_{LS} = 0.0063$, $\theta_{CP} = 0.0125$, dan $\theta_{COLLAPSE} = 0.0479$ radian akibat gempa dekat.

Pada Gambar 4.6 (a) dan (b) ditunjukkan perilaku lentur pada kolom dengan perolehan rotasi pertama kali yang dicapai Model 1 untuk kondisi LS, CP dan *Collapse* yaitu $\theta_{LS} = 0.0231$, $\theta_{CP} = 0.0449$, dan $\theta_{COLLAPSE} = 0.1492$ radian dan perolehan rotasi pertama kali yang dicapai Model 2 untuk kondisi LS, CP dan *Collapse* yaitu $\theta_{LS} = 0.0091$, $\theta_{CP} = 0.0151$, dan $\theta_{COLLAPSE} = 0.0187$ radian akibat gempa dekat.

Gambar 4.5 (a) dan (b) menunjukkan bentuk grafik hysteresis perilaku lentur pada balok akibat gerakan tanah lebih rapi atau teratur dibandingkan bentuk grafik hysteresis perilaku lentur pada kolom (Gambar 4.6 a dan b). Sebab di balok relatif bisa terkontrol karena tidak langsung menerima gaya lateral itu, sedangkan kolom saat gaya lateral terjadi mulai dari bawah terus naik dan kolom lah yang lebih awal menerima gaya tersebut dengan acak, lalu di salurkannya ke balok dan acak nya itu sudah di redam oleh kolom sehingga saat meneruskan ke balok, balok hanya menerima rotasi. Namun hal tersebut bukan lagi gangguan alami dari bawah tetapi sudah di salurkan kolom, maka bentuk perilaku lentur pada balok relatif bagus dibandingkan dengan bentuk perilaku lentur pada kolom.

(a) Akibat gerakan tanah gempa dekat untuk Model 1

(b) Akibat gerakan tanah gempa dekat untuk Model 2

Gambar 4.5: Perilaku lentur pada balok akibat gerakan tanah gempa dekat ketika mencapai kondisi LS, CP dan *Collapse*.

(a) Akibat gerakan tanah gempa dekat untuk Model 1

(b) Akibat gerakan tanah gempa dekat untuk Model 2

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Perilaku elemen balok dan kolom dalam siklus gempa dapat dijelaskan melalui grafik momen lentur versus rotasi. Berikut adalah kesimpulan yang rinci dan lengkap berdasarkan pernyataan tersebut:

- a. Perilaku balok:
 - Menunjukkan perilaku lentur pada balok dalam bentuk grafik hysteresis.
 Perilaku ini terdampak oleh siklus bolak-balik dari gerakan tanah gempa dekat.
 - Pada balok, perolehan rotasi pertama kali yang dicapai Model 1 untuk kondisi LS (*life safety*), CP (*collapse prevention*), dan *Collapse* adalah θ_{LS} = 0.0036, θ_{CP} = 0.0044, dan $\theta_{COLLAPSE}$ = 0.0051 radian. Dan untuk Model 2 menunjukkan perolehan rotasi pertama kali yang lebih besar, yaitu θ_{LS} = 0.0063, θ_{CP} = 0.0125, dan $\theta_{COLLAPSE}$ = 0.0479 radian.
 - Balok relatif bisa terkontrol karena tidak langsung menerima gaya lateral.
 Hal ini menyebabkan bentuk grafik hysteresis perilaku lentur pada balok lebih rapi atau teratur dibandingkan dengan kolom.
- b. Perilaku kolom:
 - Menunjukkan perilaku lentur pada kolom dalam bentuk grafik hysteresis.
 Perilaku ini juga terdampak oleh siklus bolak-balik dari gerakan tanah gempa dekat.
 - Pada kolom, perolehan rotasi pertama kali yang dicapai Model 1 untuk kondisi LS (*life safety*), CP (*collapse prevention*), dan *Collapse* adalah θ_{LS} = 0.0231, θ_{CP} = 0.0449, dan θ_{COLLAPSE} = 0.1492 radian. Dan untuk Model 2 menunjukkan perolehan rotasi pertama kali yang lebih kecil, yaitu θ_{LS} = 0.0091, θ_{CP} = 0.0151, dan θ_{COLLAPSE} = 0.0187 radian.
 - Kolom menerima gaya lateral secara langsung dan acak, sehingga perilaku lentur pada kolom lebih kompleks dan tidak sebaik balok. Gaya lateral

yang diterima oleh kolom kemudian disalurkan ke balok, tetapi sudah diredam oleh kolom sebelum mencapai balok.

Dengan demikian, kesimpulan yang dapat diambil adalah bahwa balok memiliki perilaku lentur yang lebih baik dan lebih terkontrol dalam siklus gempa karena tidak langsung menerima gaya lateral, sedangkan kolom menerima gaya lateral secara langsung dan acak yang menyebabkan perilaku lentur yang lebih kompleks.

5.2 Saran

- Pengambilan rekaman gerakan tanah pada tugas akhir ini masih cenderung terbatas, diharapkan dalam penambahan jenis gerakan tanah untuk penelitian selanjutnya.
- 2. Diharapkan tugas akhir ini dapat diteruskan atau dievaluasi kembali dalam rangka mendapatkan hasil yang optimal dan dapat dilakukan perbandingan.

DAFTAR PUSTAKA

- Pawirodikromo, W. (2012). Seismologi Teknik & Rekayasa Kegempaan. Yogyakarta: Universitas Islam Indonesia.
- Kalkan, E., & Kunnath, S. K. (2006). Effects of fling step and forward directivity on seismic response of buildings. *Earthquake spectra*, 22(2), 367-390.
- Faisal, A. (2013). Pemodelan getaran gempa dan struktur beton untuk analisa tidak linear. *Kumpulan Berkas Kepangkatan Dosen*.
- Hirel, P., Servie, K., Dapas, O., & Pandaleke, R. (2018). Perencanaan Struktur Gedung Beton Bertulang Dengan Sistem Rangka Pemikul Momen Khusus. Jurnal Sipil Statik, 6(Juni), 361–372.
- Anam Syaiful, Sutriono Bantot, & Trimurtiningrum Retno. (2020). Studi
 Perbandingan Kinerja Gedung Beton Bertulang Srpmk 6 Lantai
 Dengan Menggunakan Metode Pushover Dan Nonlinear Time History
 Analysis. Jurnal "MITSU" Media Informasi Teknik Sipil UNIJA, 8, 33–41.
- Partuti, T., & Umyati, A. (2019). Pengenalan upaya mitigasi bencana gempa bumi untuk siswa sekolah dasar di Kota Serang. Jurnal Pengabdian Dinamika, 6(1).
- Amrullah, W., Bagio, T. H., & Tistogondo, J. (2019). Desain perencanaan struktur Gedung 38 lantai dengan sistem Rangka pemikul momen khusus (SRPMK). Jurnal Ilmiah MITSU (Media Informasi Teknik Sipil Universitas Wiraraja), 7(1), 18-23.
- Nuraga, K., Putri, D. A. P. A. G., Antriksa, K., & Ficher, J. (2021). Analisis Daktilitas Struktur Gedung Rangka Beton Bertulang Dengan Metode Analisis Pushover: (Studi: Gedung Tugu Reasuransi Indonesia Jakarta). Jurnal Ilmiah Telsinas Elektro, Sipil dan Teknik Informasi, 4(2), 98-105.
- Rau, F., Made Sastra Wibawa, I., Ketut Diartama Kubon Tubuh, I., & Made Nada,
 I. (2023). Analisis Kinerja Struktur Gedung Dengan Ketidakberaturan Horizontal. Jurnal Ilmiah Teknik UNMAS, 3(1).

- Elkady, A., & Lignos, D. G. (2019). Two-dimensional OpenSEES numerical models for archetype steel buildings with special moment frames. *San Francisco: GitHub*.
- Lignos, D. G., & Krawinkler, H. (2011). Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading. *Journal of Structural Engineering*, 137(11), 1291-1302.
- NIST. Evaluation of the FEMA P695 methodology for quantification of building seismic performance factors. NIST GCR 10-917-8, NEHRP consultants Joint Venture, 2010.
- Baker, J. W. (2007). Quantitative classification of near-fault ground motions using wavelet analysis. *Bulletin of the seismological society of America*, 97(5), 1486-1501.
- Vamvatsikos, D., & Cornell, C. A. (2002). Incremental dynamic analysis. *Earthquake engineering & structural dynamics*, *31*(3), 491-514.
- Badan Standarisasi Nasional. (2019). Tata Cara Perencanaan Ketahanan Gempa untuk Bangunan Gedung (SNI 1726-2019). Jakarta: Departemen Pekerjaan Umum.

LAMPIRAN

L.1. Syarat Perioda Struktur

Penentuan perioda yang akan digunakan untuk perhitungan gaya geser dasar dan gaya lateral statik ekivalen adalah berdasarkan SNI 1726:2019.

a. Model 1 data struktur:

-	Tinggi lantai bawah	: 4.6 m
-	Tinggi lantai tipikal	: 4 m
-	Hn	: 16.6 m
-	Cu	: 1.5
-	Ct	: 0.0724
-	Х	: 0.8
-	T min	$: C_t h_n^x$
-	T max	: $Cu \times T$ min

Tabel L.1: Perioda struktur Model 1 untuk arah X dan Y

Kontrol Periode Arah X						
Tmin Tmax Tprogram Tdip						
0.685212121 1.027818181		2.206	1.028			
Kontrol Periode Arah Y						
Tmin	Tmax	Tprogram	Tdipakai			
0.685212121	1.027818181	1.572	1.028			

b. Model 2 data struktur:

-	Tinggi lantai bawah	: 4.6 m
-	Tinggi lantai tipikal	: 4 m
-	Hn	: 32.6 m
-	Cu	: 1.5
-	Ct	: 0.0724
-	Х	: 0.8
-	T min	: $C_t h_n^x$
-	T max	: Cu \times T min

Kontrol Periode Arah X						
Tmin	Tmax	Tprogram	Tdipakai			
1.175743662	1.763615493	2.584	1.764			
Kontrol Periode Arah Y						
Tmin	Tmax	Tprogram	Tdipakai			
1.175743662	1.763615493	2.462	1.764			

Tabel L.2: Perioda struktur Model 2 untuk arah X dan Y

L.2. Modal Participating Mass Ratios

L.2.1. Modal Participating Mass Ratios Model 1

Tabel L.3: Hasil output *Modal Participating Mass Ratios* struktur pemodelan dengan Program Analisa Struktur (Model 1).

SYARAT							
Moda (Perioda)	Selisih Persentase (%)	CQC < 15%	SRSS > 15%				
T1 - T2	29%	NOT OK	OK				
T2 - T3	14%	OK	NOT OK				
T3 - T4	44%	NOT OK	OK				
T4 - T5	35%	NOT OK	ОК				
T5 - T6	12%	OK	NOT OK				
T6 - T7	6%	OK	NOT OK				
T7 - T8	36%	NOT OK	OK				
T8 - T9	3%	OK	NOT OK				
T9 - T10	11%	OK	NOT OK				
T10 - T11	31%	NOT OK	ОК				
T11 - T12	10%	ОК	NOT OK				

SYARAT							
Moda (Perioda)	Selisih Persentase (%)	CQC < 15%	SRSS > 15%				
T1 - T2	5%	ОК	NOT OK				
T2 - T3	29%	NOT OK	OK				
T3 - T4	48%	NOT OK	OK				
T4 - T5	7%	ОК	NOT OK				
T5 - T6	25%	NOT OK	OK				
T6 - T7	18%	NOT OK	OK				
T7 - T8	11%	ОК	NOT OK				
T8 - T9	19%	NOT OK	OK				
T9 - T10	7%	ОК	NOT OK				
T10 - T11	19%	NOT OK	OK				
T11 - T12	11%	ОК	NOT OK				

Tabel L.4: Hasil output *Modal Participating Mass Ratios* struktur pemodelan dengan Program Analisa Struktur (Model 2).

L.3. Berat Sendiri Struktur

L.3.1. Berat Sendiri Struktur (Model 1)

Tabel L.5: Hasil output berat sendiri struktur pemodelan dengan Program Analisa Struktur.

Story	Self Weight (kN)
4	1.885186
3	1.944083
2	1.958588
1	1.960308
TOTAL	7.748

Dapat dilihat pada tabel di atas bahwa berat total struktur untuk tersebut adalah 7.748 kN.

L.3.2. Berat Sendiri Struktur (Model 2)

Story	Self Weight (kN)
8	1.115481
7	1.202102
6	1.213938
5	1.184578
4	1.223929
3	1.239287
2	1.240929
1	1.21777
TOTAL	9.638

Tabel L.6: Hasil output berat sendiri struktur pemodelan dengan Program Analisa Struktur.

Dapat dilihat pada tabel di atas bahwa berat total struktur untuk tersebut adalah 9.638 kN.

L.4. Perhitungan Gaya Geser Dasar dan Gaya Lateral Statik Ekivalen

Gaya geser dasar yang digunakan untuk menghitung gaya lateral statik ekivalen ditentukan berdasarkan SNI 1726:2019.

Model 1

Data struktur:

- S_{D1} : 0.1774
- S_{Ds} : 0.236
- R : 8
- I_e : 1
- S_1 : 0.112

Cs minimum	Cs hitungan	Cs maksimum	CsX digunakan	CsY digunakan
0.007	0.0296	0.021576	0.0216	0.0216

Tabel L.7: Nilai Cs yang digunakan untuk Model 1 (R=8).

Maka gaya geser dasar struktur gedung adalah:

 $\mathbf{V} = \mathbf{C}\mathbf{s} \times \mathbf{W}\mathbf{t}$

 $= 0.0216 \times 75984$

V = 1639.41 kN

- ✓ Penentuan nilai k berdasarkan SNI 1726:2019, k adalah eksponen yang terkait dengan perioda struktur sebagai berikut:
 - Untuk struktur yg mempunyai perioda sebesar 0.5 detik atau kurang, k = 1.
 - Untuk struktur yg mempunyai perioda sebesar 2.5 detik atau lebih, k = 2.
 - Untuk struktur yg mempunyai perioda antara 0.5 dan 2.5 detik, k harus sebesar 2 atau harus ditentukan dengan interpolasi linear antara 1 dan 2.

Story	Berat Wx	h (mm)	Wx.hx^k (X)	Wx.hx^k (Y)	Force (x)	Force (y)	Story Shear (x)	Story Shear (y)
4	1.885186	4000	67302.4	67302.4	495.1	495.1	495.1	495.1
3	1.944083	4000	69405.1	69405.1	510.6	510.6	1005.8	1005.8
2	1.958588	4000	69922.9	69922.9	514.4	514.4	1520.2	1520.2
1	1.960308	4600	83505.9	83505.9	614.4	614.4	2134.6	2134.6
TOTAL			222833.9	222833.9	1639.4	1639.4	4660.5	4660.5

Tabel L.8: Nilai story shear untuk gaya lateral statik ekivalen Model 1.

Berdasarkan Tabel L.8, dapat diketahui nilai gaya geser pada model 1 arah X yang merupakan nilai gaya geser dasar untuk struktur tersebut adalah 1639.4 kN. Dan diketahui nilai gaya geser pada model 1 arah Y yang merupakan nilai gaya geser dasar untuk struktur tersebut adalah 1639.4 kN.

Model 2

Data struktur:

Tabel L.9: Nilai Cs yang digunakan untuk Model 2 (R=8).

Cs minimum	Cs hitungan	Cs maksimum	CsX digunakan	CsY digunakan
0.007	0.0296	0.0126	0.0126	0.0126

Maka gaya geser dasar struktur gedung adalah:

$$\mathbf{V} = \mathbf{C}\mathbf{s} \times \mathbf{W}\mathbf{t}$$

$$= 0.0126 \times 94517$$

$$V = 1188.47 \text{ kN}$$

- ✓ Penentuan nilai k berdasarkan SNI 1726:2019, k adalah eksponen yang terkait dengan perioda struktur sebagai berikut:
 - Untuk struktur yg mempunyai perioda sebesar 0.5 detik atau kurang, k = 1.
 - Untuk struktur yg mempunyai perioda sebesar 2.5 detik atau lebih, k = 2.
 - Untuk struktur yg mempunyai perioda antara 0.5 dan 2.5 detik, k harus sebesar 2 atau harus ditentukan dengan interpolasi linear antara 1 dan 2.

Tabel L.10: Nilai story shear untuk gaya lateral statik ekivalen Model 2.

Story	Berat Wx	h (mm)	Wx.hx^k (X)	Wx.hx^k (Y)	Force (x)	Force (y)	Story Shear (x)	Story Shear (y)
8	1.115481	4000	842037.8	842037.8	330.6	330.6	330.6	330.6

Story	Berat Wx	h (mm)	Wx.hx^k (X)	Wx.hx^k (Y)	Force (x)	Force (y)	Story Shear (x)	Story Shear (y)
7	1.202102	4000	907425.0	907425.0	356.3	356.3	356.3	356.3
6	1.213938	4000	916359.5	916359.5	359.8	359.8	359.8	359.8
5	1.184578	4000	894196.7	894196.7	351.1	351.1	351.1	351.1
4	1.223929	4000	923901.4	923901.4	362.7	362.7	362.7	362.7
3	1.239287	4000	935494.6	935494.6	367.3	367.3	730.0	730.0
2	1.240929	4000	936734.1	936734.1	367.8	367.8	1097.8	1097.8
1	1.21777	4600	1154733.8	1154733.8	453.4	453.4	1551.2	1551.2
TOTAL			3026962.5	3026962.5	1188.5	1188.5	3379.1	3379.1

Berdasarkan Tabel L.10, dapat diketahui nilai gaya geser pada model 2 arah X yang merupakan nilai gaya geser dasar untuk struktur tersebut adalah 1188.5 kN. Dan diketahui nilai gaya geser pada model 2 arah Y yang merupakan nilai gaya geser dasar untuk struktur tersebut adalah 1188.5 kN.

L.5. Koreksi story shear dengan 35% base shear

Tabel L.11: Hasil analisa Koreksi *story shear* dengan 35% *base shear* dengan redundansi 1, R = 8, untuk Model 1.

Struktur Fixed Base									
Lantai Ke-	Story Shear (V) (kg)	Base Shear (V) (kg)	Cek 35% V Base Shear < Story Shear V						
4	79158.8	573.7920118	ОК						
3	113257.45	573.7920118	ОК						
2	141461.66	573.7920118	ОК						
1	167234.19	573.7920118	ОК						

Struktur Fixed Base								
Lantai Ke-	Story Shear (V) (kg)	Base Shear (V) (kg)	Cek 35% V Base Shear < Story Shear V					
8	8220.43	415.9638415	OK					
7	12735.42	415.9638415	OK					
6	15027.13	415.9638415	OK					
5	17064.39	415.9638415	OK					
4	17802.35	415.9638415	OK					
3	19659.04	415.9638415	OK					
2	21896.19	415.9638415	ОК					
1	24387.87	415.9638415	ОК					

Tabel L.12: Hasil analisa Koreksi *story shear* dengan 35% *base shear* dengan redundansi 1, R = 8, untuk Model 2.

L.6. Nilai Simpangan Gedung

Tabel L.13: Hasil analisa nilai Simpangan Gedung pada (Model 1).

	Displacement		ElasticDrift		h	Inelastic Drift		Drift Limit	Cek
Story	δex	беү	бех	δey		ΔX	Ду		
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
4	0.613	0.048	0.171	0.015	4000	0.941	0.083	61.538	OK
3	0.442	0.033	0.182	0.014	4000	1.001	0.077	61.538	OK
2	0.26	0.019	0.164	0.012	4000	0.902	0.066	61.538	OK
1	0.096	0.007	0.096	0.007	4600	0.528	0.039	70.769	OK

Tabel L.14: Hasil analisa nilai Simpangan Gedung pada (Model 2).

	Displac	ement	Elas	tic Drift	h	Inelast	ic Drift	Drift Limit	Cek
Story	δex	беу	δex	беу		ΔX	Δγ		
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
8	30.613	7.713	2.567	0.493	4000	14.119	2.711	61.538	OK
7	28.046	7.220	3.144	0.710	4000	17.292	3.907	61.538	OK
6	24.902	6.510	3.710	0.940	4000	20.405	5.169	61.538	OK
5	21.192	5.570	4.003	1.054	4000	22.017	5.796	61.538	OK
4	17.189	4.516	4.253	1.128	4000	23.392	6.202	61.538	OK

Tabel L.14: lanjutan

	Displac	ement	Elas	tic Drift	h	Inelast	ic Drift	Drift Limit	Cek
Story	δex	беү	δex	δey		ΔX	Δy		
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
3	12.936	3.388	4.185	1.129	4000	23.018	6.210	61.538	OK
2	8.751	2.259	4.494	1.203	4000	24.717	6.614	61.538	OK
1	4.257	1.057	4.257	1.057	4600	23.414	5.811	70.769	OK

L.7. Kontrol Ketidakberaturan Kekakuan Tingkat Lunak (Soft Story)

Tabel L.15: Kontrol ketidakberaturan kekauan tingkat lunak pada arah X (Model 1).

C.	Story	Story Stiffness >	1	1.4 (0())	Story Stiffness <
Story	Stiffness (kN/m)	70% Story Stiffness	kr	k1/kr (%)	80% Story Stiffness
		above			above
4	102139.262				
3	142422.321	ОК	133494.81		
2	155922.86	ОК	158467.93	116.8006868	OK
1	177058.609	ОК		111.7315087	OK

Tabel L.16: Kontrol ketidakberaturan kekakuan tingkat lunak pada arah Y (Model 1).

Story	Story Stiffness (kN/m)	Story Stiffness > 70% Story Stiffness above	kr	ki/kr (%)	Story Stiffness < 80% Story Stiffness above
4	193787.872				
3	236954.415	ОК	232362.75		
2	266345.976	ОК	287804.36	114.6250727	OK
1	360112.684	ОК		125.1241246	OK

Story	Story Stiffness (kN/m)	Story Stiffness > 70% Story Stiffness above	kr	ki/kr (%)	Story Stiffness < 80% Story Stiffness above
8	105664.853				
7	142143.971	OK	134037.22		
6	154302.844	OK	156149.52		
5	172001.755	OK	171618.01	128.3238727	OK
4	188549.424	OK	193461.35	120.7492793	OK
3	219832.86	OK	212651.33	128.0942851	OK
2	229571.715	OK		118.6654178	OK
1	261535.409	OK		122.9879001	OK

Tabel L.17: Kontrol ketidakberaturan kekauan tingkat lunak pada arah X (Model 2).

Tabel L.18: Kontrol ketidakberaturan kekauan tingkat lunak pada arah Y (Model 2).

Story	Story Stiffness (kN/m)	Story Stiffness > 70% Story Stiffness above	kr	ki/kr (%)	Story Stiffness < 80% Story Stiffness above
8	88129.003				
7	142381.673	OK	131203.6497		
6	163100.273	OK	161132.7013		
5	177916.158	OK	179185.0627	135.6030556	OK
4	196538.757	OK	199986.8007	121.9732279	OK
3	225505.487	OK	227858.4127	125.8506059	OK
2	261530.994	OK		130.7741277	OK
1	383657.767	OK		168.3755111	OK

L.8. Pengaruh Efek P-Delta

Tabel L.19: Hasil analisa P-Delta struktur Model 1 (R=8).

	Inelastic Drift		Story Forces			h	Koefisien		Batas	Batas	
Lt	Δx	Ду	Р	Vx	V_y	n	Stabilitas		Pengar uh P-	Stabiltas Struktur,	Cek
	(mm)	(mm)	(kN)	(kN)	(kN)	(mm)	θХ	θΥ	Delta	$ heta_{max}$	
4	0.941	0.083	332.6	776.3	721	4000	0.0000	0.0000	0.1	0.1	ОК

Tabel L.19: lanjutan

Lt	Inelastic Drift		Story Forces			h	Koefisien		Batas	Batas	
	Δx	Ду	Р	V_x	V_y	n	Stab	ilitas Pengar uh P-		Stabiltas Struktur,	Cek
	(mm)	(mm)	(kN)	(kN)	(kN)	(mm)	θХ	θΥ	Delta	$ heta_{max}$	
3	1.001	0.077	687.2	1110.7	1,122	4000	0.0000	0.0000	0.1	0.1	ОК
2	0.902	0.066	104655.3	1387.3	1,426	4000	0.0031	0.0002	0.1	0.1	ОК
1	0.528	0.039	140594.2	1640.0	1,640	4600	0.0018	0.0001	0.1	0.1	ОК

Tabel L.20: Hasil analisa P-Delta struktur Model 2 (R=8).

Lt	Inelastic Drift		Story Forces			L	Koefisien		Batas	Batas	
	Δ_X	Δγ	Р	V_x	Vy	n	Stabi	ilitas	Pengar uh P-	Stabiltas Struktur, θ _{max}	Cek
	(mm)	(mm)	(kN)	(kN)	(kN)	(mm)	θX	θΥ	Delta		
8	14.1	2.7	14191.0	1228.8	3186.7	4000	0.007	0.001	0.1	0.1	OK
7	17.3	3.9	31604.7	1973.8	4708.6	4000	0.013	0.001	0.1	0.1	OK
6	20.4	5.2	49173.5	2487.7	5826.6	4000	0.018	0.002	0.1	0.1	OK
5	22.0	5.8	66142.7	2866.2	6663.9	4000	0.023	0.003	0.1	0.1	OK
4	23.4	6.2	83831.5	3216.8	7506.2	4000	0.028	0.003	0.1	0.1	OK
3	23.0	6.2	101686.9	3576.3	8361.1	4000	0.030	0.003	0.1	0.1	OK
2	24.7	6.6	119580.9	3939.1	9233.1	4000	0.034	0.004	0.1	0.1	OK
1	23.4	5.8	137410.1	4212.0	9802.3	4600	0.030	0.003	0.1	0.1	OK

L.9. Model Denah Struktur

Untuk model denah struktur Model 1 dapat dilihat seperti gambar dibawah:

Untuk model denah struktur Model 2 dapat dilihat seperti gambar dibawah:

L.10 Rekaman Gempa

Terdapat dua tipe *ground motion* yang digunakan dalam tugas akhir ini yaitu *ground motion* tanpa efek *pulse* dan *ground motion* mengandung efek *pulse*.

a. Rekaman gempa tanpa mengandung efek pulse

Nahanni - Canada, Site 2

Loma Prieta, Saratoga-Aloha

DAFTAR RIWAYAT HIDUP

DATA PRIBADI

Nama	: Sheren Denissa Aulia
Tempat, Tanggal Lahir	: Perawang, 31 Mei 2002
Jenis Kelamin	: Perempuan
Kewarganegaraan	: Indonesia
Agama	: Islam
Alamat	: Jl. Bukit Siguntang, Glugur Darat II, Kec. Medan
	Timur, Kota Medan, Sumatera Utara.
Telepon	: 082297456282
Email	: denissasheren19@gmail.com

RIWAYAT PENDIDIKAN

SD Swasta YPPI Perawang	Tahun Lulus 2014
SMP Swasta YPPI Perawang	Tahun Lulus 2017
SMA Negeri 5 Tualang	Tahun Lulus 2020
Universitas Muhammadiyah Sumatera Utara	2020 - Selesai