TUGAS AKHIR

PENGARUH KARAKTER GERAKAN TANAH GEMPA DEKAT TERHADAP RASIO SIMPANGAN SISA STRUKTUR BAJA SRPMK

(Studi Literatur)

Diajukan Untuk Memenuhi Syarat-Syarat Memperoleh Gelar Sarjana Teknik Sipil Pada Fakultas Teknik Universitas Muhammadiyah Sumatera Utara

Disusun Oleh:

SYAFRIEDA INDAH 2007210062

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA MEDAN

2024

LEMBAR PERSETUJUAN PEMBIMBING

Tugas akhir ini diajukan oleh:

Nama	: Syafrieda Indah
Npm	: 2007210062
Program Studi	: Teknik Sipil
Judul Skripsi	: Pengaruh Karakter Gerakan Tanah Gempa Dekat Terhadap
	Rasio Simpangan Sisa Struktur Baja SRPMK
Bidang Ilmu	: Struktur

Telah berhasil dipertahankan dihadapan Tim Penguji dan diterima sebagai salah satu syarat yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

> Disetujui Untuk Disampaikan Kepada Panitia Ujian:

Medan, September 2024 **Dosen Pembimbing**

Assoc. Prof. Ir. Ade Faisal, S.T., M.Sc., Ph.D.

LEMBAR PENGESAHAN

Tugas akhir ini diajukan oleh:

Nama	: Syafrieda Indah
Npm	: 2007210062
Program Studi	: Teknik Sipil
Judul Skripsi	: Pengaruh Karakter Gerakan Tanah Gempa Dekat Terhadap
	Rasio Simpangan Sisa Struktur Baja SRPMK
Bidang Ilmu	: Struktur

Telah berhasil dipertahankan dihadapan Tim Penguji dan diterima sebagai salah satu syarat yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

> Medan, September 2024 Mengetahui dan Menyetujui Dosen Pembimbing

Assoc. Prof. Ir. Ade Faisal, S.T., M.Sc., Ph.D.

Dosen Pembanding 1

Dosen Pembanding 2

Assoc. Prof. Fahrizal Zulkarnain, S.T., M.Sc., Ph.D.

Rizki Efrida, S.T., M.T.

Ketua Program Studi Teknik Sipil

Assoc. Prof. Fahrizal Zulkarnain, S.T., M.Sc., Ph.D.

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Saya yang bertandatangan dibawah ini :Nama: Syafrieda IndahTempat, Tanggal Lahir : Kotanopan, 13 Februari 2002Npm: 2007210062Fakultas: TeknikProgram Studi: Teknik Sipil

Menyatakan dengan sesungguhnya dan sejujurnya, bahwa Laporan Tugas Akhir saya yang berjudul:

"Pengaruh Karakter Gerakan Tanah Gempa Dekat Terhadap Rasio Simpangan Sisa Struktur Baja SRPMK."

Bukan merupakan plagiarisme, pencurian hasil karya milik orang lain, hasil kerja orang lain untuk kepentingan saya karena hubungan material dan nonmaterial serta segala kemungkinan lain, yang pada hakekatnya merupakan karya tulis Tugas Akhir saya secara orisinil dan otentik.

Bila kemudian hari diduga kuat ada ketidaksesuaian antara fakta dengan kenyataan ini, saya bersedia diproses oleh Tim Fakultas yang di bentuk untuk melakukan verifikasi, dengan sanksi terberat berupa pembatalan kelulusan atau kesarjanaan saya.

Demikian Surat Pernyataan ini saya buat dengan kesadaran sendiri dan tidak atas tekanan ataupun pasksaan dari pihak manapun demi menegakkan integritas akademik di Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, September 2024 Saya yang menyatakan, X401172726 Syafrieda Indah

ABSTRAK

PENGARUH KARAKTER GERAKAN TANAH GEMPA DEKAT TERHADAP RASIO SIMPANGAN SISA STRUKTUR BAJA SRPMK (STUDI LITERATUR)

Syafrieda Indah 2007210062 Dr. Ade Faisal, S.T, M.Sc

Wilayah Indonesia merupakan wilayah yang tinggi terhadap terjadinya gempa bumi karena berada diantara 3 lempeng besar dunia yang aktif dan bergerak. Umumnya gerakan tanah terdiri dari gerakan tanah akibat gempa dekat dan gerakan tanah akibat gempa jauh. Gerakan tanah akibat gempa dekat juga memiliki gerakan tanah gempa dekat meengandung efek pulse dan gerakan tanah gempa dekat yang tidak mengandung efek pulse. Gerakan tanah akibat gempa dekat memiliki jarak sekitar 15 KM di bawah permukaan tanah. Hal ini dapat menyebabkan deformasi inelastis yang signifikan pada komponen struktur utama dan menghasilkan nilai simpangan sisa. Oleh karena itu perlu adanya perencanaan struktur baja dengan sistem yang tahan terhadap gempa dekat. Dalam tugas akhir ini digunakan 1 daerah sebagai perencanaan gempa yaitu Kota Makassar dengan Sistem Rangka Pemikul Momen Khusus (SRPMK) dengan 2 kategori model yaitu model 1(SRPMK 4 Lantai) dan Model 2(SRPMK 8 Lantai) dengan Spesifikasi material dan dimensi struktur berbeda- beda. Model 1 memiliki tinggi 16,6 m (4 lantai), Model 2 memiliki tinggi 32,6 m (8 lantai), Analisa yang digunakan adalah Respon Spektrum sebagai tahap kontrol desain dan Respon Riwayat Waktu Linear dan Nonlinear sebagai tahap evaluasi, dengan alat bantu software ETABS versi 16 dan OPENSEES. Pada struktur bangunan akan dikenakan respon gempa dekat. Hasilnya menunjukkan nilai simpangan sisa akibat gerakan tanah gempa dekat mengandung efek pulse lebih besar dibandingkan gerakan tanah gempa dekat yang tidak mengandung efek pulse pada Model 1 dan Model 2. Kemudian gerakan tanah gempa dekat yang mengandung efek pulse pada setiap batas kondisi IO, Collapse pada model 1 lebih besar dibanding Model 2, sedangkan batas LS serta CP pada model 2 lebih besar dibanding model 1. Sementara hasil untuk gempa dekat yang tidak mengandung efek pulse signifikan menaik sesuai urutan kondisi batas IO, LS, CP serta Collapse.

Kata kunci: Gempa bumi, gempa dekat, SRPMK, Simpangan sisa.

ABSTRACT

The Influence of Near-Earthquake Ground Motion Characteristics on the Residual Drift Ratio of MRF Steel Structures

(LITERATURE STUDY)

Syafrieda Indah 2007210062 Dr. Ade Faisal, S.T, M.Sc

Indonesia is highly prone to earthquakes as it lies between three large, active, and moving tectonic plates. Generally, ground motion is categorized into near-fault and far-fault earthquake-induced ground motion. Near-fault ground motion can either include pulse effects or not. The closest distance of earthquake-induced ground motion is typically around 15 kilometers below the earth's surface, which can cause significant inelastic deformation in key structural components and result in residual drift. Therefore, it is crucial to design steel structures with systems that are resistant to near-fault earthquakes. In this study, one region was selected for earthquake planning: the city of Makassar, using a Special Moment Resisting Frame (SRPMK) system with two model categories: Model 1 (SRPMK 4 floors) and Model 2 (SRPMK 8 floors). The material specifications and structural dimensions vary. Model 1 has a height of 16.6 meters (4 floors), and Model 2 has a height of 32.6 meters (8 floors). The analysis methods used include Response Spectrum for the design phase and Linear and Nonlinear Time History Response for the evaluation phase, with the aid of ETABS version 16 and OPENSEES software. The building structures will be subjected to near-fault earthquake response. The results show that the residual drift values due to near-fault ground motion with pulse effects are greater than those without pulse effects in both Model 1 and Model 2. Additionally, the near-fault ground motion with pulse effects at each IO and Collapse limit state in Model 1 is greater than in Model 2, while the LS and CP limit states in Model 2 are greater than in Model 1. Meanwhile, for near-fault earthquakes without pulse effects, the results significantly increase following the order of limit states IO, LS, CP, and Collapse.

Keywords: Earthquake, Near-Fault Earthquake, MRF, Residual Drift.

KATA PENGANTAR

Dengan nama Allah Yang Maha Pengasih lagi Maha Penyayang. Segala puji dan syukur penulis ucapkan kehadirat Allah SWT yang telah memberikan karunia dan nikmat yang tiada terkira. Salah satu dari nikmat tersebut penulis dapat menyelesaikan Tugas Akhir ini yang berjudul "Pengaruh Karakter Gerakan Tanah Gempa Dekat Terhadap Rasio Simpangan Sisa Struktur Baja SRPMK" sebagai syarat untuk meraih gelar akademik Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara (UMSU), Medan.

Banyak pihak telah membantu dalam menyelesaikan laporan Tugas Akhir ini, untuk itu penulis menghaturkan rasa terimakasih yang tulus dan dalam kepada:

- Bapak Dr. Ade Faisal S.T, Msc selaku Dosen Pembimbing yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Proposal Tugas Akhir ini.
- Bapak Dr. Fahrizal Zulkarnain S.T., Msc selaku Dosen Pembanding I sekaligus sebagai Ketua Program Studi Teknik Sipil yang telah banyak memberikan arahan dan masukan kepada penulis dalam menyelesaikan Propasl Tugas Akhir ini.
- Ibu Rizki Efrida S.T., M.T selaku Dosen Pembanding II sekaligus sebagai Sekretaris Program Studi Teknik Sipil yang telah banyak memberikan arahan dan masukan kepada penulis dalam menyelesaikan Tugas Akhir ini.
- Bapak Munawar Alfansury Siregar ST, MT selaku Dekan Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- Seluruh Bapak/Ibu Dosen di Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara yang telah banyak memberikan ilmu keteknik-sipilan kepada penulis.
- 6. Orang tua penulis: Bapak Sukri Rahmat dan ibu Rosmina Lubis, yang telah bersusah payah membesarkan dan membiayai studi penulis serta abang, kakak, dan adik- adik saya yang memotivasi saya selama ini
- Bapak/Ibu Staf Administrasi di Biro Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

- Sahabat-sahabat penulis: Sheren Denissa Aulia, Rizki Tamara, Sri Nadiah Alfianita Putri, Hadana Lihaza dan lainnya yang tidak mungkin namanya disebut satu per satu.
- 9. Kepada abang Afiful Anshari S.T, dan para Tim *Earthquake Engineering Research Group*.

Laporan Tugas Akhir ini tentunya masih jauh dari kesempurnaan, untuk itu penulis berharap kritik dan masukan yang konstruktif untuk menjadi bahan pembelajaran berkesinambungan penulis di masa depan. Semoga laporan Tugas Akhir ini dapat bermanfaat bagi dunia konstruksi teknik sipil.

Medan, September 2024

Syafrieda Indah

DAFTAR ISI

LEI	MBAR PERSETUJUAN PEMBIMBING	i
LEI	MBAR PENGESAHAN	ii
SUI	RAT PERNYATAAN KEASLIAN TUGAS AKHIR	iii
AB	STRAK	iv
ABS	STRACT	v
KA	TA PENGANTAR	vi
DA	FTAR ISI	viii
DA	FTAR TABEL	xi
DA	FTAR GAMBAR	xii
DA	FTAR NOTASI	xiv
DA	FTAR SINGKATAN	xvi
BA	B 1 PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	3
1.3	Tujuan Penulisan	3
1.4	Batasan Masalah	4
1.5	Manfaat Penelitian	5
1.6	Sistematika Penulisan	5
BA	B 2 TINJAUAN PUSTAKA	7
2.1	Umum	7
2.2	Pengertian Gempa Bumi	7
2.3	Groundmotion (Gerakan Tanah)	7
	2.3.1 Gempa Dekat (Near-field)	8
	2.3.2 Gempa Pulse	9
2.4	Respon Spektrum	10
2.5	Sistem Rangka Pemikul Momen Khusus (SRPMK)	10
2.6	Karakteristik Bangunan Tahan Gempa	11
2.7	Perencanaan Bangunan Tahan Gempa Berdasarkan SNI 03-1726-2019	12
	2.7.1 Gempa Rencana dan Faktor Keutamaan	12

2.7.2 Klasifikasi Situs dan Parameter	14
2.7.3 Parameter Percepatan Gempa	15
2.7.4 Perioda Alami Struktur	16
2.8 Simpangan (<i>drift</i>)	18
2.8.1 Simpangan Sisa Akibat Gaya Gempa	19
BAB 3 METODE PENELITIAN	20
3.1 Umum	20
3.2 Pemodelan Struktur	21
3.2.1 Data Perencanaan Struktur	21
3.2.2 Dimensi Kolom-Balok pada Struktur	23
3.3 Analisis Dinamik Struktur Linear	23
3.3.1 Pembeban	24
3.3.2 Kombinasi	24
3.3.3 Respon Spektrum Desain	25
3.3.4 Analisa Respon Spektrum Ragam	26
3.4 Analisa dinamik struktur nonlinear	26
3.4.1 Ground motion records (data rekaman gempa)	26
3.4.2 Analisis respon Riwayat waktu	28
3.4.3 Incremental dynamic analysis	29
3.4.4 Simpangan sisa	31
BAB 4 HASIL DAN PEMBAHASAN	32
4.1 Hasil Model Linear dan Non Linear	32
4.2 Hasil Analisi Linear	32
4.2.1 Respon Spektrum Ragam	32
4.2.2 Koreksi Gempa Dasar Nominal	34
4.2.3 Koreksi Faktor Redundasi	35
4.2.4 Koreksi Skala Simpangan Antar Tingkat	35
4.2.5 Nilai Simpangan Gedung	36
4.2.6 Kontrol Ketidakberaturan Kekakuan Tingkat Lunak	36
4.2.7 Pengaruh Efek P-Delta	36
4.3 Hasil Analisi Non Linear	36
4.3.1 Incremental dynamic Analysis (IDA)	38

ix

4.3.2 Interstory Drift Rasio	43
4.3.3 Simpangan Sisa	46
BAB 5 KESIMPULAN DAN SARAN	52
5.1 Kesimpulan	52
5.2 Saran	52
DAFTAR PUSTAKA	
LAMPIRAN	
DAFTAR RIWAYAT HIDUP	

DAFTAR TABEL

Tabel 2.1	Kategori Resiko Bangunan Menurut SNI 03-1726-2019	12
Tabel 2.2	Faktor Keutamaan Gempa	13
Tabel 2.3	Klasifikasi Situs berdasarkan SNI 1726:2019	14
Tabel 2.4	Koefisien Situs Fa	16
Tabel 2.5	Koefisien Situs Fv	16
Tabel 2.6	Nilai Parameter perioda Cs dan x berdasarkan SNI 1726:2019	17
Tabel 2.7	Koefisien untuk Batas atas perioda yang dihitung berdasarkan	
	SNI 1726:2019	18
Tabel 3.1	Komponen Struktural Bangunan	23
Tabel 3.2	Kombinasi	24
Tabel 3.3	Data gempa <i>pulse</i>	27
Tabel 3.4	Data Gempa No Pulse	27
Tabel 4.1	Hasil analisis CQC dan SRSS pada Model 1(SRPMK 4 Lantai)	33
Tabel 4.2	Hasil analisis CQC dan SRSS pada Model 2(SRPMK 8 Lantai)	34
Tabel 4.3	Nilai gaya geser dasar nominal analisa statik ekivalen (v1) dan nilai gaya geser dasar nominal analisa respon spektrum output program analisa struktur vt	35
Tabel 4.4	Nilai Vt yang diperoleh	35
Tabel 4.5	Simpangan sisa pada Model 1(SRPMK 4 Lantai) dengan gerakan tanah yang mengandung efek <i>pulse</i>	48
Tabel 4.6	Simpangan sisa pada Model 2(SRPMK 8 Lantai) dengan gerakan tanah yang mengandung efek <i>pulse</i>	49
Tabel 4.7	Simpangan sisa paling maksimum terhadap kondisi IO, LS, CP, dan <i>Collapse</i> pada Model 1 dengan gerakan tanah yang mengandung efek <i>pulse</i>	50
Tabel 4.8	Simpangan sisa paling maksimum terhadap kondisi IO, LS, CP, dan <i>Collapse</i> pada Model 2 dengan gerakan tanah yang mengandung efek <i>pulse</i> .	50
Tabel 4.9	Rasio Simpangan sisa pada Model 1 dengan gerakan tanah yang	
	tidak mengandung efek pulse	50
Tabel 4.10	Rasio Simpangan sisa pada Model 2 dengan gerakan tanah yang	
	tidak mengandung efek <i>pulse</i>	51

DAFTAR GAMBAR

Gambar 1.1	Perbandingan rekaman gempa jauh dan dekat (Kalkan dan Kunnath, 2006).	2
Gambar 2.1	Respon Spektra 21 groundmotion dan rata-rata respon spektrum	8
Gambar 2.2	Rekaman Gempa Northridge dan Parkfield	9
Gambar 2.3	Rekaman Gempa Northridge dan Parkfield	9
Gambar 2.4	Posisi Simpangan Sisa	19
Gambar 3.1	Bagan alir penelitian	20
Gambar 3.2	Geometri Model struktur SRPMK baja yang ditinjau dari model Elkady dan Lignos (2019)	22
Gambar 3.3	Pemodelan Model 1(SRPMK 4 Lantai) menggunakan program	
	ETABS	22
Gambar 3.4	Pemodelan Model 2(SRPMK 8 Lantai) menggunakan program	
	ETABS	22
Gambar 3.5	Respon Spektrum Desain berdasarkan SNI di kota makassar	
	dengan jenis tanah sedang	25
Gambar 3.6	Rekaman Gempa Imperial Valley-06 Sebelum Diubah Menjadi	
	Respon Spektrum	28
Gambar 3.7	Rekaman Gempa Imperial Valley-06 Sesudah Diubah Menjadi	
	Respon Spektrum	29
Gambar 3.8	Analisis Respon Riwayat waktu menggunakan software	
	Opensees pada Model 1 dan Model 2	29
Gambar 3.9	Penentuan Collapse Prevention pada kurva IDA	30
Gambar 3.10	Kondisi batas (Limit State) pada kurva IDA	30
Gambar 4.1	Ilustrasi bangunan Model 1 ketika diberikan gerakan tanah	
	akibat gempa dekat	37
Gambar 4.2	Simpangan sisa pada Model 1 (SRPMK 4 Lantai)	37
Gambar 4.3	Ilustrasi Model 1 dan Model 2 baja SRPMK pada kondisi IO akibat gerakan tanah gempa dekat	38

Gambar 4.4	Ilustrasi Model 1 dan Model 2 baja SRPMK pada kondisi LS akibat gerakan tanah gempa dekat	39
Gambar 4.5	Ilustrasi Model 1 dan Model 2 baja SRPMK pada kondisi CP akibat gerakan tanah gempa dekat	40
Gambar 4.6	Ilustrasi Model 1 dan Model 2 baja SRPMK pada kondisi <i>Collapse</i> akibat gerakan tanah gempa dekat	40
Gambar 4.7	Kondisi Batas IO, LS CP, <i>Collapse</i> pada Kurva IDA untuk Model 1 akibat gempa mengandung <i>pulse</i>	41
Gambar 4.8	Kondisi Batas IO, LS CP, <i>Collapse</i> pada Kurva IDA untuk Model 2 akibat gempa mengandung <i>pulse</i>	41
Gambar 4.9	Kondisi Batas IO, LS CP, <i>Collapse</i> pada Kurva IDA untuk Model 1 akibat gempa yang tidak mengandung <i>pulse</i>	42
Gambar 4.10	Kondisi Batas IO, LS CP, <i>Collapse</i> pada Kurva IDA untuk Model 2 akibat gempa yang tidak mengandung <i>pulse</i>	42
Gambar 4.11	Rasio simpangan maksimum pada setiap batas IO, LS, CP serta <i>Collapse</i> pada model 1 akibat gempa <i>pulse</i>	44
Gambar 4.12	Rasio simpangan yang mendekati Median setiap batas IO, LS, CP serta <i>Collapse</i> pada Model 1 dan 2 akibat gerakan tanah yang tidak mengandung <i>pulse</i>	45
Gambar 4.13	Simpangan sisa di Roof pada batas IO, LS, CP serta Collapse akibat gempa <i>pulse</i>	46
Gambar 4.14	Simpangan sisa di Base pada batas IO, LS, CP serta Collapse akibat gempa <i>pulse</i>	47

DAFTAR NOTASI

DL	=	Beban mati, termasuk SIDL
E	=	Modulus elastisitas
Ex	=	Beban gempa arah x
Ey	=	Beban gempa arah y
F	=	Frekuensi Struktur
F_a	=	Koefisien perioda pendek
F_{v}	=	Koefisien perioda 1,0 detik
C_d	=	Faktor kuat lebih sistem
Ι	=	Momen Inersia kolom/balok
Ie	=	Faktor keutamaan gempa
k	=	Kekakuan struktur
1	=	Panjang kolom/balok
LL	=	Beban hidup
R	=	Faktor koefisien modifikasi respon
Ss	=	Nilai parameter respon spektrum percepatan gempa perioda pendek 0,2 detik di batuan dasar (S_B) mengacu pada Peta Gempa SNI 1726:2019
S_1	=	Nilai parameter respon spektrum percepatan gempa perioda 1,0detik di batuan dasar (S_B) mengacu pada Peta Gempa SNI 1726:2016
S _{DS}	=	Respon spektrum percepatan respon desain untuk perioda pendek
S_{D1}	=	Respon spektrum percepatan desain untuk perioda 1,0 detik
<i>S_{D1}</i> T _{a minimum}	=	Respon spektrum percepatan desain untuk perioda 1,0 detik Nilai batas bawah perioda bangunan
<i>S_{D1}</i> T _{a minimum} T _{a maksimum}	= =	Respon spektrum percepatan desain untuk perioda 1,0 detik Nilai batas bawah perioda bangunan Nilai batas atas perioda bangunan

ragam spektrum respon yang telah dilakukan

- V_1 = Gaya geser dasar prosedur gaya lateral statik ekivalen
- ρ = Faktor redudansi

DAFTAR SINGKATAN

СР	= Collapse Prevention
CQC	= Complete Quadratic Combination
IDA	= Incremental Dynamic Analysis
IDR	= Interstorydrift Ratio
ΙΟ	= Immediate Occupation
LS	= Limited Safety
PEER	= Pacific Earthquake Engineering Research
PPURG	= Pedoman Perencanaan Pembebanan untuk Rumah dan Gedung
RIDR	= Residual Interstory Drift Ratio
SRPMK	= Sistem Rangka Pemikul Momen Khusus
SRSS	= Square Root of the Sum of Square

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Wilayah Indonesia merupakan wilayah yang tinggi terhadap terjadinya gempa bumi dikarenakan letak geografis wilayah Indonesia yang berada diantara 3 lempeng besar dunia yang selalu aktif dan bergerak. Pergerakan ini yang dapat menyebabkan kerusakan bagi struktural bangunan dan berupaya membahayakan manusia yang ada didalamnya. Daniel menyebutkan bahwa gempa bumi juga dapat terjadi karena fenomena getaran dengan kejutan pada kerak bumi (Schodek, 1999). Rekaman getaran yang harus dipilih adalah rekaman gerakan tanah yang didapat di suatu lokasi yang mirip kondisi geologi, topografi dan seismotektoniknya (magnituda gempa, jarak lokasi ke sumber gempa, jenis sesar aktif) dengan lokasi tempat struktur bangunan gedung yang ditinjau berada (SNI 1726:2009). Umumnya rekaman gerakan tanah terdiri dari rekaman gempa dekat (*near-field earthquake*) dan rekaman gempa jauh (near-field earthquake). Getaran gempa dekat jelas sekali mengandung efek pulsa (pulse effect) yang cukup besar pada riwayat waktu kecepatannya (Gambar 1b dan 1c), sebuah efek yang tidak dimiliki oleh rekaman gempa jauh (Gambar 1a). Sedangkan dua rekaman gempa dekat dapat memiliki memiliki efek pulsa yang tidak sama (Gambar 1b dan 1c), dimana yang satu (Gambar 1c) mengandung efek simpangan permanen (*fling-step*) sedangkan yang lainnya tidak (Gambar 1b). Ketiga jenis rekaman gempa ini bila dipakai akan memberikan hasil respon bangunan gedung yang sangat berbeda (Faisal, 2013).

Faisal (2013) menyatakan bahwa rekaman gempa dekat yang berasal dari sesar terbalik dan sesar mendatar dapat mengandung efek pulsa (EP) atau efek simpangan permanen (ESP) atau bahkan keduanya. Sedangkan sesar normal umumnya tidak mampu memberikan rekaman yang mengandung kedua efek ini. EP pada rekaman riwayat waktu kecepatan dapat terjadi bila lokasi yang ditinjau terletak dekat dengan runtuhan sesar, arah runtuhan geser pada sesar menuju ke lokasi yang ditinjau (*forward directivity*), dan bila arah rayapan getaran ke lokasi yang ditinjau adalah tegak lurus terhadap arah runtuhan geser sesar, ini dapat terjadi pada sesar mendatar maupun sesar terbalik. Sedangkan ESP akan terjadi pada

rekaman riwayat waktu simpangan bila lokasi yang ditinjau terletak dekat dengan runtuhan geser sesar dan bila arah rayapan getaran ke lokasi yang ditinjau adalah tegak lurus terhadap arah runtuhan geser sesar terbalik. ESP juga terjadi bila lokasi yang ditinjau terletak pada arah yang paralel terhadap arah runtuhan geser sesar mendatar. Kondisi ini juga menunjukkan bahwa tidak semua rekaman gempa dekat memiliki EP dan ESP.

Gambar 1.1: Perbandingan rekaman gempa jauh dan dekat (Kalkan dan Kunnath, 2006).

Namun potensi dari rekaman gempa dekat yang dekat dengan sesar terlihat jelas setelah banyak gempa bumi yang terjadi seperti di Northridge, California (1994); Kobe, Jepang (1995); Chi–Chi, Taiwan (1999); dan L'Aquila, Italia (2009). Gempa bumi ini mengalami deformasi inelastis yang signifikan pada komponen struktur utama dan menghasilkan nilai simpangan sisa yang cukup besar. Hal ini dikenal sebagai indeks kinerja seismik yang berhubungan langsung dengan kemungkinan pembongkaran suatu bangunan (Tzimas, 2015). Menurut Erochko dkk (2011) Simpangan sisa (Residual drifts) adalah simpangan permanen suatu struktur yang tersisa pada akhir eksitasi seismik, dan disebabkan oleh perilaku nonlinier komponen leleh dalam sistem. Penelitian telah menunjukkan bahwa perlu mempertimbangkan penyimpangan untuk sisa ini untuk sepenuhnya mengkarakterisasi kinerja sistem struktural setelah eksitasi seismik dan potensi kerusakan yang diderita pada bangunan. Pada penelitian yang dilakukan McCormick dkk. (2008) menyimpulkan bahwa, di Jepang, pembongkaran dan pembangunan kembali bangunan baja secara umum lebih murah dibandingkan perbaikan ketika simpangan sisa lebih tinggi dari 0,5%. Dan dapat mengakibatkan. Struktur tidak bisa lagi di perbaiki. Dalam metodologi penilaian berbasis kinerja yang baru-baru ini diusulkan di Amerika Serikat (FEMA 356), kinerja struktural diperkirakan menggunakan tuntutan simpangan puncak (misalnya perpindahan atap puncak, rasio penyimpangan antar lantai puncak, simpangan sisa juga memiliki peran penting dalam menentukan kinerja serta konsekuensi yang penting pada suatu struktur. Secara khusus, simpangan sisa sangat penting dalam menentukan kelayakan teknis dan ekonomis perbaikan struktur yang rusak.

1.2 Rumusan Masalah

- Bagaimana rasio (perbandingan) simpangan sisa yang di akibatkan oleh gempa yang mengandung efek *pulse* dengan gempa yang tidak mengandung efek *pulse* pada Model 1 (SRPMK 4 Lantai) dan Model 2 (SRPMK 8 Lantai)?
- Bagaimana rasio (perbandingan) simpangan sisa pada kondisi batas (limit state) terhadap gempa yang mengandung efek *pulse* dengan gempa yang tidak mengandung efek *pulse* pada Model 1 (SRPMK 4 Lantai) dan Model 2 (SRPMK 8 Lantai)?
- 3. Bagaimana pengaruh perioda *pulse (Pulse Indicator)* pada riwayat waktu percepatan yang dimiliki rekaman gerakan tanah akibat gempa dekat terhadap perilaku nonlinear simpangan sisa pada struktur?

1.3 Tujuan Penulisan

- Untuk mengetahui bagaimana rasio (perbandingan) simpangan sisa yang di akibatkan oleh gempa yang mengandung efek *pulse* dengan gempa yang tidak mengandung efek *pulse* pada Model 1 (SRPMK 4 Lantai) dan Model 2 (SRPMK 8 Lantai).
- 2. Untuk mengetahui bagaimana simpangan sisa pada kondisi batas (limit

state) terhadap gempa yang mengandung efek *pulse* dengan gempa yang tidak mengandung efek *pulse* pada Model 1 (SRPMK 4 Lantai) dan Model 2 (SRPMK 8 Lantai).

3. Untuk mengetahui bagaimana pengaruh perioda *pulse (Pulse Indicator)* pada riwayat waktu percepatan akibat gempa dekat yang dimiliki rekaman gerakan tanah terhadap perilaku nonlinear simpangan sisa pada rangka baja SRPMK.

1.4 Batasan Masalah

Adapun batasan-batasan masalah yang ditetapkan pada Tugas Akhir ini adalah:

- 1. Struktur bangunan yang direncanakan merupakan:
 - Struktur baja dengan Sistem Rangka Pemikul Momen Khusus (SRPMK) yang merupakan sistem penahan gaya lateral yang di letakkan pada bagian perimeter terluar, sedangkan pada bagian lain merupakan sistem penahan gaya vertikal, dengan 2 Dimensi pada Model 1 (SRPMK 4 Lantai) dan Model 2 (SRPMK 8 Lantai) yang difungsikan sebagai bangunan perkantoran yang diasumsikan terdapat di daerah KDS D maksimum.
 - Struktur dengan dimensi kolom dan balok yang hanya dianalisa pada batas aman saja, tidak dianalisa sampai ekonomis.
- 2. Perencanaan struktur baja, pembebanan serta gedung direncanakan berdasarkan:
 - Tata cara perencanaan struktur baja menggunakan Persyaratan Baja Struktural untuk bangunan Gedung SNI 1729:2020.
 - Perencanaan pembebanan menggunakan SNI 1727:2013 dan Pedoman Perencanaan Pembebanan untuk Rumah dan Gedung (PPURG) 1987.
 - Beban gempa dan gedung direncanakan menggunakan Standar Perencanaan Tahan Gempa Untuk Struktur Bangunan Gedung SNI 1726:2019.
- Menggunakan penskalaan metode RSA (T1) yang diskalakan berdasarkan respon spektrum wilayah Indonesia.

- 4. Analisis menggunakan alat bantu berupa program yaitu:
 - Program Analisa Struktur, untuk menganalisa tahap desain pada Analisa *pushover* dan analisa riwayat waktu.
 - PEER NGA, COSMOS untuk mendapatkan rekaman gempa.
 - SEISMOLEE, untuk mengubah groundmotion menjadi Respon Spektrum.
 - MATLAB versi R2014a, untuk menskalakan groundmotion.
 - OPENSEES, untuk menganalisa tahap evaluasi (Analisa Riwayat Waktu Nonlinear) yang hanya ditinjau secara 2 dimensi.
- 5. Parameter yang ditinjau:
 - Linear adalah semua aspek yang harus di kontrol sesuai dengan SNI 1726:2019
 - Nonlinear: Simpangan sisa
- 6. Pengaruh angin diabaikan
- 7. Kriteria lain yang di tinjau dijelaskan dengan lengkap di bagian metodologi.

1.5 Manfaat Penelitian

Dari hasil perencanaan pada pemodelan Struktur Baja dengan Sistem Rangka Pemikul Momen Khusus (SRPMK) maka diharapkan Tugas Akhir ini dapat memberikan manfaat untuk mengetahui bagaimana pengaruh gerakan tanah pada struktur gedung baja dengan Sistem Rangka Pemikul Momen Khusus (SRPMK) terhadap simpangan sisa akibat gempa dekat.

1.6 Sistematika Penulisan

Adapun sistematika penulisan yang digunakan pada Tugas Akhir ini sebagai berikut:

BAB 1 PENDAHULUAN

Didalam Bab ini akan menguraikan penjelasan tentang latar belakang masalah, rumusan masalah, ruang lingkup permasalahan, tujuan penelitian, manfaat penelitian, sistematika penulisan.

BAB 2 TINJAUAN PUSTAKA

Bab ini akan menguraikan penjelasan mengenai mekanisme gempa, konsep

perencanaan struktur bangunan baja, analisa struktur baja Sistem Rangka Pemikul Momen Khusus (SRPMK), dan konsep tentang kekuatan bangunan baja terhadap gempa yang terjadi.

BAB 3 PEMODELAN STRUKTUR

Bab ini akan menampilkan bagaimana metodologi penelitian yang digunakan dari awal sampai akhir penelitian dan penjelasan mengenai cara memodelkan dan mendesain struktur bangunan baja dengan Sistem Rangka Pemikul Momen Khusus (SRPMK) terhadap gempa yang terjadi dengan menggunakan Program Analisa Struktur dan OPENSEES.

BAB 4 ANALISIS DAN PEMBAHASAN

Bab ini akan menyajikan penjelasan mengenai perhitungan, analisis pemodelan bentuk gambar, grafik atau tabel serta pembahasannya.

BAB 5 KESIMPULAN DAN SARAN

Bab ini akan menyajikan penjelasan mengenai kesimpulan yang dapat diambil dari keseluruhan penulisan Tugas Akhir ini dan saran-saran yang dapat diterima penulis agar lebih baik lagi kedepannya

BAB 2

TINJAUAN PUSTAKA

2.1 Umum

Pada Bab ini akan dibahas mengenai teori-teori dasar dan syaratsyarat/ketentuan yang berhubungan dalam perencanaan struktur bangunan yang akan dianalisa, seperti struktur baja, teori gempa, parameter yang terkait dalam struktur tahan gempa rangka baja, tata cara perencanaan bangunan tahan gempa berdasarkan SNI 1726:2019, dan teori-teori terkait lainnya yang berhubungan dengan perhitungan atau analisa data yang dibutuhkan dalam Tugas Akhir ini.

2.2 Pengertian Gempa Bumi

Gempa bumi (*earthquake*) adalah suatu gejala fisik yang ditandai dengan bergetarnya bumi dengan berbagai intensitas (Siswanto dan Salim, 2018). Pergerakan dan getaran tanah yang terjadi akibat gempa bumi disebabkan oleh pelepasan timbunan energi yang tersimpan di dalam bumi secara tiba-tiba.

Getaran gempa juga dapat disebabkan oleh gerakan tektonik, yaitu guncangan tanah yang disebabkan oleh pergerakan dan tumbukan lempeng tektonik di permukaan bumi. Gempa bumi yang disebabkan oleh aktivitas tektonik disebut juga gempa tektonik.

2.3 Ground motion (Getaran Tanah)

Ground motion adalah pergerakan permukaan bumi akibat terjadinya gempa bumi atau ledakan. Dalam rekayasa gempa, *ground motion* juga biasa disebut dengan sebutan *strong motion* untuk menekankan percepatan tanah akibat gempa dibandingkan reaksi tanah lainnya. Secara umum pengertian gerak tanah akibat gempa bumi cenderung terfokus pada percepatan tanah. Khusus untuk keperluan teknis, percepatan tanah akibat gempa merupakan nilai data yang sangat penting (Pawirodikromo, 2012). Gambar 2.1 menunjukkan contoh dari 21 rekaman *ground motion* serta respons spektrum desain rata-rata.

Gambar 2.1: Respons spektra 21 rekaman *ground motion* dan rata-rata respons spectrum desain dengan $\zeta = 5\%$ (Shakeri dkk, 2018).

Respon gempa sensitif terhadap karakteristik getaran tanah, besar frekuensi gempa, pola *pulse*, durasi getaran, mekanisme *fault-rupture*, dan lainnya. Berdasarkan pola *pulse*nya, gempa dibagi menjadi 3, yaitu *near-field* (gempa dekat, yaitu gempa dengan *pulse*), *far field* (gempa jauh, yaitu gempa tanpa *pulse/no-pulse*), dan gempa berulang.

2.3.1 Gempa Dekat (Near-field)

Pawirodikromo (2012) mengatakan bahwa percepatan tanah akibat gempa dekat umumnya mempunyai 1-2 kali siklus getaran kuat (*strong-vibration cycles/pulse*). Siklus getaran kuat tersebut disebabkan karena adanya kecepatan rambat patah Vr (*fault rupture velocity*) yang relatif dekat dengan kecepatan gelombang geser Vs. Berapa batasan jarak gempa dekat tersebut tidaklah dapat ditentukan secara pasti. Namun, beberapa peneliti menunjukkan bahwa jaraknya hanya beberapa kilometer hingga beberapa puluh kilometer.

Kalkan, dkk. (2006) memberikan batasan bahwa rekaman gempa dekat *(near-fault)* adalah gempa yang direkam 15 km dari patahan (*fault rupture*). Contoh rekaman gempa dekat dapat dilihat pada Gambar 2.2

Gambar 2.2: Rekaman gempa Northridge (1994) dan Parkfield (1997) (Pawirodikromo, 2012).

2.3.2 Gempa pulse

Pawirodikromo (2012) menyebutkan bahwa getaran gempa dekat yang mengandung efek *pulse* dapat menyebabkan kerusakan pada bangunan yang tidak direncanakan dengan baik. Bangunan yang tidak simetris sebidang termasuk yang memiliki resiko rusak bila mengalami gempa dekat.

Gambar 2.3: Rekaman gempa Northridge (1994) dan Parkfield (1997) (Pawirodikromo, 2012).

Gambar 2.3 menunjukkan data rekaman gempa yang mengandung *pulse*, pada gambar bagian atas merupakan waktu dengan kecepatan, dapat dilihat bahwa pada waktu ±2.5 detik terjadi kenaikan yang drastis pada kecepatan rekaman gempa dan pada gambar bagian bawah merupakan waktu dengan perpindahan, dimana pada saat kenaikan kecepatan pada waktu ±2.5 detik, seketika terjadi juga kenaikan nilai pada perpindahan.

2.4 Respons Spektrum

Respons spektrum adalah suatu spektrum yang disajikan dalam bentuk grafik/plot antara periode getar stnrktur T, lawan respons-respons maksimumnya untuk suatu rasio redaman dan beban gempa terstentu. Respons maksimum dapat berupa sinrpangan maksimum (Spectral Displacement, SD), kecepatan maksimum (Spectral Velocity, SV) atau percepatan maksimum (Spectral Acceleration, SA) suatu massa struktur dengan derajat kebebasan tunggal (Single Degree of Freedom, SDOF). Terdapat dua macam respons spektrum yang ada yaitu Respons Speknum elastik dan Respons Spektum inelastik. Respons Spektrum elastik adalah suatu spektrum yang didasarkan atas respons elastik struktur dengan derajat kebebasan tunggal (SDOF) berdasarkan rasio redaman dan beban gempa tertentu. Inelastik Respons Spektum juga disebut desain Respons Spektrum, yaitu spektrum yang diturunkan berdasarkan elastik respons spektrum dengan tingkat daktilitas elemen tertentu (Pawirodikromo, 2012).

Menurut Bambang Budiono dan Lucky Supriatna (2011), Respons spektrum merupakan konsep pendekatan yang digunakan untuk keperluan perencanaan bangunan. Definisi respons spektra adalah respons maksimum dari suatu sistem struktur Single Degree of Freedom (SDOF) baik percepatan (a), kecepatan (v), dan perpindahan (d) dengan struktur tersebut dibebani oleh gaya luar tertentu. Absis dari respons spektra adalah periode alami sistem struktur dan ordinat dari respons spektra adalah respons maksimum.

2.5 Sistem Rangka Pemikul Momen Khusus (SRPMK)

Dalam penelitian Amrullah, dkk (2019) menyimpulkan bahwa sistem rangka pemikul momen khusus adalah komponen struktur yang mampu memikul gaya akibat beban gempa dan direncanakan untuk memikul lentur dengan faktor Reduksi Gempa (R) = 8,0.

2.6 Karakteristik Bangunan Tahan Gempa

Suatu bangunan yang baik pada daerah yang terletak berdekatan dengan daerah pertemuan lempengan benua seperti di Indonesia hendaknya didesain terhadap kemungkinan beban gempa yang akan terjadi di masa yang akan datang yang waktunya tidak dapat diketahu secara pasti. Berikut yang termasuk bangunan tahan gempa menurut Budiono dan Supriatna (2011) adalah:

- Apabila terjadi gempa ringan, bangunan tidak boleh mengalami kerusakan baik pada komponen non-struktural (dinding retak, genting dan langit-langit jatuh, kaca pecah dan sebagainya) maupun pada komponen strukturalnya (kolom dan balok retak, pondasi amblas, dan lainnya).
- Apabila terjadi gempa sedang, bangunan boleh mengalami kerusakan pada komponen non-strukturalnya akan tetapi komponen struktural tidak boleh rusak.
- 3. Apabila terjadi gempa kuat, bangunan boleh mengalami kerusakan baik komponen non-struktural maupun komponen strukturalnya, akan tetapi jiwa penghuni bangunan tetap selamat, artinya sebelum bangunan runtuh masih cukup waktu bagi penghuni bangunan untuk keluar/mengungsi ketempat aman.
- 4. Sulit untuk menghindari kerusakan bangunan akibat gempa, bila digunakan perencanaan konvensional, karena hanya bergantung pada kekuatan komponen struktur itu sendiri, serta perilaku respon pasca elastisnya. Seiring dengan perkembangan teknologi dalam perencanaan bangunan tahan gempa telah dikembangkan suatu pendekatan disain alternatif untuk mengurangi resiko kerusakan bangunan saat terjadi gempa, dan mampu mempertahankan integritas komponen struktural dan non-struktural terhadap gempa kuat.

2.7 Perencanaan Bangunan Tahan Gempa Berdasarkan SNI 03-1726-2019

Perencanaan suatu konstruksi gedung harus memperhatikan aspek kegempaan, terutama di Indonesia karena merupakan salah satu daerah dengan zona gempa yang tinggi. Aspek kegempaan tersebut dianalisis berdasarkan peraturan yang berlaku di negara tersebut dan Indonesia memiliki peraturan sendiri dan peta gempanya.Peraturan yang berlaku saat ini ialah SNI 03-1726- 2019.

2.7.1. Gempa Rencana dan Faktor Keutamaan

Tata cara ini menentukan pengaruh gempa rencana yang harus ditinjau dalam perencanaan dan evaluasi struktur bangunan gedung dan non gedung serta berbagai bagian dan peralatannya secara umum. Gempa rencana ditetapkan sebagai gempa dengan kemungkinan terlewati besarannya selama umur struktur bangunan 50 tahun adalah sebesar 2 persen.

Tabel 2.1: Kategori resiko bangunan	gedung dan	struktur	lainnya	untuk b	eban
gempa berdasarkan SNI 1726:2019.					

Jenis pemanfaatan	Katergori risiko
Gedung dan struktur lainnya yang memiliki risiko rendah	
terhadapjiwa manusia pada saat terjadi	
kegagalan, termasuk, tapi tidak dibatasi untuk:	т
- Fasilitas pertanian, perkebunan, perternakan,	I
danperikanan	
- Fasilitas sementara	
- Gudang penyimpanan	
- Rumah jaga dan struktur kecil lainnya	

Tabel 2.1: Lanjutan.

Jenis pemanfaatan	Kategori resiko
Semua gedung dan struktur lain, kecuali yang termasuk dalam	
kategori risiko I,III,IV, termasuk,	
tapi tidak dibatasi untuk:	
- Perumahan	
- Rumah toko dan rumah kantor	II
- Pasar	
- Gedung perkantoran	
- Gedung apartemen/ Rumah susun	
- Pusat perbelanjaan/ Mall	
- Bangunan industry	
- Fasilitas manufaktur	
- Pabrik	

Untuk berbagai kategori resiko struktur bangunan gedung dan non gedung sesuai Tabel 2.1 pengaruh gempa rencana terhadapnya harus dikalikan dengan suatu faktor keutamaan *Ie* menurut Tabel 2.2 khusus untuk struktur bangunan dengan kategori resiko IV, bila dibutuhkan pintu masuk untuk operasional dari struktur bangunan yang bersebelahan, maka struktur bangunan yang bersebelahan tersebut harus didesain sesuai dengan kategori resiko IV.

Tabel 2.2: Faktor keutaman gempa (SNI 03-1726-2019).

Kategori risiko	Faktor keutamaan gempa, <i>Ie</i>
I atau II	1,0
III	1,25
IV	1,5

2.7.2. Klasifikasi Situs dan Parameter

Prosedur untuk klasifikasi suatu situs untuk memberikan kriteria seismik adalah berupa faktor-faktor amplifikasi pada bangunan. Dalam perumusan kriteria seismik suatu bangunan di permukaan tanah atau penentuan amplifikasi besaran percepatan gempa puncak dari batuan dasar ke permukaan tanah untuk suatu situs, maka situs tersebut harus diklasifikasi terlebih dahulu. Profil tanah di situs harus diklasifikasikan berdasarkan profil tanah lapisan 30 m paling atas. Penetapan kelas situs harus melalui penyelidikan tanah di lapangan dan di laboratorium, yang dilakukan oleh otoritas yang berwenang atau ahli desain geoteknik bersertifikat, berikut disajikan dalam Tabel 2.3.

Kelas Situs	♥ (m/detik)	N atau \overline{N}_{ch}	S _u (kPa)
SA(batuan keras)	> 1500	N/A	N/A
SB (batuan)	750 sampai 1500	N/A	N/A
SC (tanah keras, sangat padat dan batuan lunak)	350 sampai 750	>50	> 100
SD (tanah sedang)	175 sampai 350	15 sampai 50	50 sampai 100
SE (tanah lunak)	175	15	50
	 Atau setiap profil tanah yang mengandung lebih dari 3 m tanah dengan karakteristik sebagai berikut: 1. Indeks plastisitas, PI > 20, 2. Kadar air, W 40 %, dan 3. Kuat geser niralir S < 25 kPa 		
SF (tanah khusus, yang membutuhkan investigasi geoteknik spesifik dan analisa respon spesifik situs yang mengikuti Pasal 6.10.1 tentang Analisa Respon Situs berdasarkan SNI 1726:2012	 S. Kuat geset main Su< 25 KFa. Setiap profil lapisan tanah yang memiliki salah satu atau lebih dari karakteristik berikut: Rawan dan berpotensi gagal atau runtuh akibat beban gempa seperti mudah likuifaksi, lempung sangat sensitif, tanah tersementasi lemah. Lempung sangat organik dan/atau gambut (ketebalan H > 3 m Lempung berplastisitas sangat tinggi (ketebalan H > 7.5 dengan Indeks PlastisitasPI > 7.5) 		

Tabel 2.3: Klasifikasi situs berdasarkan SNI 1726:2019.

Catatan : N/A = tidak dapat dipakai

2.7.3. Parameter Percepatan Gempa

Parameter *Ss* (percepatan batuan dasar pada perioda pendek) dan *S1* (percepatan batuandasar pada perioda 1 detik) harus ditetapkan masing-masing dari respons spectral percepatan 0,2 detik dan 1 detik dalam peta gerak tanah seismic pada Bab 14 yang tertera dalam SNI 03-1726-2019 dengan kemungkinan2 persen terlampaui dalam 50 tahun (MCER, 2 persen dalam 50 tahun), dan dinyatakan dalam bilangan desimal terhadap percepatan gravitasi.

Untuk penentuan respons spectral percepatan gempa MCER di permukaan tanah, diperlukan suatu faktor amplifikasi seismic pada perioda 0,2 detik dan perioda 1 detik. Faktor amplifikasi meliputi faktor amplifikasi getaran terkait percepatan pada getaran perioda pendek (Fa) dan factor amplifikasi terkait percepatan yang mewakili getaran perioda 1 detik (Fv).Parameter spectrum respons percepatan pada perioda pendek (SMS) dan perioda 1 detik (SMI) yang disesuaikan dengan pengaruh klasifikasi situs, harus ditentukan dengan menggunakan Pers. (2.1) dan (2.2).

$$SM_S = Fa \cdot SS \tag{2.1}$$

$$SMI = F_{\mathcal{V}} \cdot SI \tag{2.2}$$

dimana:

- S_S = Nilai parameter respon spektrum percepatan gempa perioda pendek 0,2 detik di batuan dasar (S_B) mengacu pada Peta Gempa SNI 1726:2019
- S_1 = Nilai parameter respon spektrum percepatan gempa perioda 1,0 detik di batuan dasar (S_B) mengacu pada peta Gempa SNI 1726:2019

 F_a = Koefisien perioda pendek

 F_V = Koefisien perioda 1,0 detik

Klasifikasi Situs			PGA		
(sesuai Tabel 2.)	$S_s < 0,25$	$S_s = 0,5$	$S_s = 0,75$	$S_s = 1,25$	$S_{s>}$ 1,5
SA	0,8	0,8	0,8	0,8	0,8
SB	0,9	0,9	0,9	0,9	1,0
SC	1,3	1,3	1,2	1,2	1,0
SD	1,6	1,4	1,2	1,0	1,0
SE	2,4	1,7	1,3	0,9	0,9
SF		•	SS ^(a)		

Tabel 2.4: Koefisien Situs Fa.

CATATAN: SS= Situs yang memerlukan investigasi geoteknik spesifik dan analisis respons situs-spesifik, lihat 0.

Tabel 2.5:Koefisien Situs Fv.

Kelas Situs	PGA					
	S ₁ < 0,1	S ₁ =0,2	$S_1 = 0,3$	$S_1 = 0,4$	$S_1 = 0,5$	$S_1 > 0,6$
SA	0,8	0,8	0,8	0,8	0,8	0,8
SB	0,8	0,8	0,8	0,8	0,8	0,8
SC	1,5	1,5	1,5	1,5	1,5	1,4
SD	2,4	2,2	2,0	1,9	1,8	1,7
SE	4,2	3,3	2,8	2,4	2,2	2,0
SF	SS ^(a)					

CATATAN: (a) SS= Situs yang memerlukan investigasi geoteknik spesifik dan analisis respons situs-spesifik, lihat 0.

2.7.4. Perioda Alami Struktur

Perioda adalah besarnya waktu yang diperlukan untuk mencapai satu getaran. Berdasarkan SNI 1726:2019 Pasal 7.8.2 tentang Penentuan Perioda, perioda struktur fundamental (T) dalam arah yang ditinjau harus diperoleh dengan menggunakan properti struktur dan karakteristik deformasi elemen penahan dalam analisa yang teruji. Perioda struktur fundamental memiliki nilai batas minimum dan batas maksimum. Nilai-nilai tersebut ditentukan dalam Pers. 2.3 dan Pers. 2.4.

• Perioda fundamental pendekatan minimum (*Ta* minimum):

$$T_a \min = Ct hn^x$$
(2.3)

• Perioda fundamental pendekatan maksimum (*Ta* maksimum):

$$Ta$$
 maksimum = Cu Ta minimum (2.4)

dimana:

T_a minimum	= Nilai batas bawah perioda bangunan
$T_{a \text{ maksimum}}$	= Nilai batas atas perioda bangunan
H_n	= Ketinggian struktur dalam m di atas dasar sampai tingkat
	tertinggi struktur (m)
Χ	= Ditentukan dari Tabel 2.6
C_t	= Ditentukan dari Tabel 2.6
C_u	= Ditentukan dari Tabel 2.7

Tabel 2.6: Nilai parameter perioda pendekatan C_t dan x berdasarkan SNI 1726:2019.

Tipe Struktur	C_t	x
Sistem rangka pemikul momen di mana rangka		
memikul 100 % gaya seismik yang disyaratkan dan		
tidak dilingkupi atau dihubungkan dengan komponen		
yang lebih kaku dan akan mencegah rangka dari		
defleksi jika dikenai gaya seismik:		
Rangka baja pemikul momen	0,0724	0,8
• Rangka beton pemikul momen	0,0466	0,9
Rangka baja dengan bresing eksentris	0,0731	0,75
Rangka baja dengan bresing terkekang terhadap tekuk	0,0731	0,75

Parameter Percepatan Respon Spektrum Desain pada 1 Detik S _{D1}	Koefisien (CU)
> 0,4	1,4
0,3	1,4
0,2	1,5
0,15	1,6
0,1	1,7

Tabel 2.7: Koefisien untuk batas atas pada perioda yang dihitung berdasarkan SNI 1726:2019.

2.8 Simpangan (Drift) Akibat Gaya Gempa

Simpangan (drift) adalah sebagai perpindahan lateral relatif antara dua tingkat bangunan yang berdekatan atau dapat dikatakan simpangan mendatar tiaptiap tingkat bangunan (horizontal story to story deflection). Simpangan lateral dari suatu sistem struktur akibat beban gempa adalah sangat penting yang dilihat dari tiga pandangan yang berbeda, menurut Farzat Naeim (1989):

- 1. Kestabilan struktur (structural stability)
- 2. Kesempurnaan arsitektural *(architectural integrity)* dan potensi kerusakan bermacam-macam komponen non-struktur
- 3. Kenyaman manusia *(human comfort)*, sewaktu terjadi gempa bumi dan sesudah bangunan mengalami gerakan gempa

Sementara itu Richard N. White (1987) berpendapat bahwa dalam perencanaan bangunan tinggi selalu dipengaruhi oleh pertimbangan lenturan (deflection), bukannya oleh kekuatan (strength). Simpangan antar tingkat dari suatu titik pada suatu lantai harus ditentukan sebagai simpangan horizontal titik itu, relatif terhadap titik yang sesuai pada lantai yang berada dibawahnya.Untuk menjamin agar kenyamanan para penghuni gedung tidak terganggu maka dilakukan pembatasan- pembatasan terhadap simpangan antar tingkat pada bangunan. Pembatasan ini juga bertujuan untuk mengurangi momen-momen sekunder yang terjadi akibat penyimpangan garis kerja gaya aksial di dalam kolom-kolom (yang lebih dikenal dengan P-delta).

2.8.1 Simpangan Sisa (Residual Drift) Akibat Gaya Gempa

Residual drifts adalah deformasi permanen suatu struktur yang tersisa pada akhir eksitasi seismik, dan disebabkan oleh perilaku nonlinier komponen leleh dalam sistem (Erochko, 2011).

Gambar 2.4: Posisi simpangan sisa.
BAB 3

METODE PENELITIAN

3.1 Umum

Secara umum metode penelitian yang akan dipakai adalah metode kuantitatif komparatif dengan memakai data primer yang bersumber dari hasil metode analitis. Metode penelitian yang akan dipakai ini masuk ke dalam metode penelitian terapan yang berbasis kepada studi literatur. Diagram alir langkah-langkah yang akan ditempuh dalam penelitian ini ditunjukkan pada Gambar 3.1

Berdasarkan Gambar 3.1 dapat dijelaskan bahwa dalam Tugas Akhir ini analisis dilakukan terhadap 2 model struktur dengan sistem rangka pemikul momen khusus (SRPMK). Model bangunan tersebut dianalisa dengan menggunakan metode Analisa Respon Spektrum serta Analisa Riwayat Waktu (*Time History Analysis*) dengan menggunakan software OPENSEES, untuk mendapatkan nilai simpangan sisa (*Residual drift*) ketika bangunan telah dikenakan gempa tunggal. Kemudian nilai simpangan tersebut akan dibandingkan untuk setiap modelnya.

3.2 Pemodelan Struktur

Dalam Tugas Akhir ini dibuat Pemodelan struktur menggunakan baja dengan sistem SRPMK (Sistem Rangka Pemikul Momen Khusus).

3.2.1 Data Perencanaan Struktur

Adapun data perencanaan struktur yang digunakan pada kedua pemodelan dalam Program Analisa Struktur, yaitu:

- 1. Jenis pemanfaatan gedung perkantoran.
- Gedung di asumsikan terletak di kawasan kegempaan yang tinggi yaitu memiliki Kategori Desain Seismik (KDS) D maksimum.
- Pada tugas akhir ini, direncanakan struktur bangunan dengan material baja dengan Sistem Rangka Pemikul Momen Khusus (SRPMK). Model 4 dan 8 lantai ini pertama kali dikembangkan dan dipakai di NIST GCR 10-917-8(NIST,2010). Model ini juga dipakai oleh Elkady dan Lignos (2014, 2015).
- 4. Jarak bentang tipikal sebesar 6,10 m pada rangka gravitasi di bagian tengah dan juga 12, 2 m pada rangka pemikul momen bagian perimeter luar.
- Tinggi lantai semua tipikal sebesar 4,0 m kecuali lantai dasar sebesar 4,60 m.
- Mutu elemen balok dan kolom yang dipakai adalah ASTM A992 = 50 ksi.

- Kuat leleh minimum (*fy*): 345 Mpa.
- Kuat Tarik minimum (*fu*): 450 Mpa.

Gambar 3.2: Geometri model struktur SRPMK baja yang ditinjau mengacu ke model milik Elkady dan Lignos (2019).

Gambar 3.3: Pemodelan Model 1 (SRPMK 4 Lantai) menggunakan Program Etabs.

Gambar 3.4: Pemodelan Model 2 (SRPMK 8 Lantai) menggunakan Program Etabs.

3.2.2. Dimensi Kolom-Balok pada Struktur

Bangunan yang direncanakan adalah struktur beraturan, Struktur gedung direncanakan dengan dimensi penampang yang berbeda namun pada Tugas Akhir ini balok dan kolom memakai jenis WF profil USA. Untuk memastikan kebenaran hasil desain, maka hasil desain akan mengacu kepada profil pada Tabel 3.1. Tabel ini merupakan hasil studi yang telah diakui kebenarannya dan dipublikasi secara luas (NIST GCR10-917-8; 2010).

Model	Level	Elevasi dari lantai dasar (mm)	Profil Balok	Profil Kolom Eksterior	Profil Kolom Interior
4 tingkat	1	4.600	W21X73	W24X103	W24X103
	2	8.600	W21X73	W24X103	W24X103
	3	12.600	W21X57	W24X62	W24X62
	4	16.600	W21X57	W24X62	W24X62
8 tingkat	8 tingkat 1 4.600		W30x108	W24x146	W24x192
	2	8.600	W30x116	W24x146	W24x192
	3	12.600	W30x116	W24x146	W24x192
	4	16.600	W27x94	W24x131	W24x176
	5	20.600	W27x94	W24x131	W24x176
	6	24.600	W24x84	W24x131	W24x131
	7	28.600	W24x84	W24x131	W24x131
	8	32,600	W21x68	W24x94	W24x94

Tabel 3.1: Komponen Struktural Bangunan.

3.3 Analisis Dinamik Struktur linear

Analisis ini menggunakan Metode Respon Spektrum. Pada analisis ini, alat bantu *software* yang digunakan adalah Program ETABS.

3.3.1 Pembebanan

Pembebanan yang bekerja pada struktur bangunan diambil dari NIST GCR 10-917- 8(NIST,2010). Beban-beban tersebut adalah beban hidup dan beban mati yang berhubungan dengan struktur bangunan. Berikut merupakan pembebanan yang digunakan:

- 1. Beban mati = 90 psf = 4.310 kn/m2 untuk semua lantai.
- 2. Beban hidup di setiap Lantai = 50 psf = 2.404 kn/m2.
- 3. Beban hidup di lantai atap = 20 psf = 0.958 kn/m2.

3.3.2 Kombinasi

Kombinasi pembebanan yang digunakan dihitung berdasarkan ketentuan yang ditetapkan dalam SNI 1726:2019 tentang standar perencanaan bangunan tahan gempa.

0.2308.									
Kombinasi	Koefisien	Koefisien	Koefisien	Koefisien					
Komomasi	(DL)	(LL)	(EX)	(EY)					
Kombinasi 1	1.4								
Kombinasi 2	1.2	1.6							
Kombinasi 3	1.262	1	0.3	1					
Kombinasi 4	1.1386	1	-0.3	-1					
Kombinasi 5	1.167	1	0.3	-1					
Kombinasi 6	1.233	1	-0.3	+1					
Kombinasi 7	1.261	1	1	0.3					
Kombinasi 8	1.1386	1	-1	-0.3					
Kombinasi 9	1.233	1	1	-0.3					
Kombinasi 10	1.167	1	-1	0.3					
Kombinasi 11	0.8386		0.3	1					
Kombinasi 12	0.9614		-0.3	-1					
Kombinasi 13	0.933		0.3	-1					
Kombinasi 14	0.867		-0.3	1					
Kombinasi 15	0.8386		1	0.3					
Kombinasi 16	0.9614		-1	-0.3					
Kombinasi 17	0.867		1	-0.3					
Kombinasi 18	0.933		-1	0.3					
Envelope		Nilai absolute dari seluruh kombinasi							

Tabel 3.2: Kombinasi pembebanan berdasarkan SNI 1726:2019 dengan SDS = 0.2368.

Keterangan:

DL = Dead Load. LL = Live Load. EX =Earthquake arah X. EY = Earthquake arah Y

3.3.3 Respons Spektrum Desain

Berdasarkan SNI 1726:2019, respon spektrum gempa didesain pada kondisi tanah Sedang yang terletak di Kota Makassar, kemudian dianalisis dengan datadata Ss = 0.222 g dan SI = 0.112 g. Maka akan didapatkan koefisien atau nilai-nilai yang diperlukan dalam pembuatan respon spektrum desain. Nilai-nilai tersebut yaitu:

-	Nilai <i>Fa</i>	= 1.6
-	Nilai <i>Fv</i>	= 2.376
-	SDS	= 0.2368
-	SD1	= 0.1774
-	Τ0	= 0.1498
-	Ts	= 0.7492

Respon spektrum diplot ke dalam grafik seperti yang ditampilkan pada Gambar 3.5.

Gambar 3.5: Respon spektrum desain berdasarkan SNI 1726:2019 Kota Makassar dengan jenis tanah sedang.

Selanjutnya nilai respon spektrum desain yang didapatkan tersebut digunakan dalam Analisis Dinamik Struktur Linier dengan Metode Respon Spektrum pada pemodelan menggunakan Progam Analisa Struktur.

3.3.4 Analisis Respon Spektrum Ragam

Nilai untuk masing-masing parameter yang ditinjau, yang dihitung untuk berbagai ragam, telah dikombinasikan menggunakan metode akar kuadrat jumlah kuadrat (*Square Root of the Sum of Squares/SRSS*) atau metode kombinasi kuadrat lengkap (*Complete Quadratic Combination/CQC*). Metode akar kuadrat jumlah kuadrat diperoleh dari hasil selisih nilai perioda yang lebih dari 15%, sementara metode kombinasi kuadrat lengkap diperoleh dari hasil selisih nilai perioda yang kurang dari 15%. Perhitungan mendetail pemilihan metode yang digunakan dalam pemodelan struktur dapat dilihat pada Bab 4.

3.4 Analisa Dinamik Struktur Nonlinear

3.4.1. Ground motion Records (Data rekaman gempa)

Data rekaman gempa diperoleh dari website resmi *Pacific Earthquake Engineering Research (PEER) Next Generation Attenuation (NGA)*. Dalam pengambilan data rekaman gempa, di perlukan data station Date, dan magnitude agar terdapat korelasi antara data gempa yang diambil dengan data gempa bangunan yang direncanakan.

Pemilihan data rekaman gempa diambil sebanyak 10 data rekaman gempa dekat yang mengandung efek *Pulse* dan 10 data rekaman gempa dekat yang tidak mengandung efek *Pulse*. Untuk tipe tanpa *Pulse* (gempa biasa) data rekaman gempa diperoleh dari PEER NGA seperti terlihat pada Tabel 3.3 dan untuk tipe *Pulse* data rekaman gempa diperoleh dari PEER NGA dan COSMOS seperti terlihat pada Tabel 3.4.

Gempa	Nama Gempa	Tahun	Nama Stasiun Gempa	Mag
1	Imperial Valley-06	1979	El Centro Array #6	6.5
2	Imperial Valley-06	1979	El Centro Array #7	6.5
3	Irpina, Italy	1980	Sturno	6.9
4	Supersitition Hills-02	1987	Parachute Test Site	6,5
5	Loma Prieta	1989	Saratoga – Aloha	6.9
6	Erzican, Turkey	1992	Erzincan	6.7
7	Cape Mendocino	1992	Petrolia	7.0
8	Landers	1992	Lucerne	7.3
9	Northridge-01	1994	Rinaldi Receiving Sta	6.7
10	Northridge-01	1994	Sylmar – Olive View	6.7

Tabel 3.3: Data gempa pulse.

Tabel 3.4: Data gempa tidak mengandung pulse.

Gempa	Nama Gempa	Tahun	Nama Stasiun Gempa	Mag
1	Gazli	1968	Karakyr	6.8
2	Imperial Valley-06	1979	Bonds Corner	6.5
3	Imperial Valley-06	1979	CHIHUAHUA	6.5
4	Nahanni, Canada	1985	Site 1	6,8
5	Nahanni, Canada	1985	Site 2	6.8
6	Loma Prieta	1989	Bran	6.9
7	Loma Prieta	1989	Corralitos	6.9
8	Cape Mendocino	1992	Cape Mendocino	7.0
9	Northridge	1994	Beverly Hills-Mulhol	6.7
10	Northridge	1994	Canyon Country-WLC	6.7

Setiap data rekaman gempa terdiri dari 2 data gempa horizontal (arah X dan Y) dan 1 data gempa vertikal (arah Z), namun dalam Tugas Akhir ini data rekaman gempa yang digunakan hanya gempa horizontal arah X, sementara gempa horizontal arah Y tidak digunakan karena bangunan yang direncanakan dalam bentuk 2 dimensi (2D) pada sumbu X dan gempa vertikal arah Z karena dalam

analisis karena data relatif sangat kecil (atau dianggap sama dengan 0.

Selanjutnya data rekaman gempa yang diperoleh tersebut diskalakan terhadap respon spektrum desain saat perioda sama dengan perioda alami struktur yang ditinjau. Kemudian data rekaman gempa yang telah diskalakan digunakan sebagai *input* pada *software* OPENSEES. untuk Analisis Dinamik Non Linier Inelastis dengan Metode Analisa Riwayat Waktu.

3.4.2 Analisis Respon Riwayat Waktu

Pada Metode Respon Riwayat Waktu ini dianalisis secara dua dimensi. Alat bantu *software* yang digunakan adalah OPENSEES. Sebelum dianalisis dengan OPSENSEES terdapat beberapa tahapan sebagai berikut :

- a. Pengambilan rekaman gempa dari PEER NGA dan COSMOS. Daerahdaerah rekaman yang diambil tertera pada tabel 3.3 dan 3.4.
- b. Mengubah rekaman gempa menjadi respon spektrum dengan bantuan *software Seismosignal*. Hal ini dilakukan untuk memudahkan proses penskalaan.
- c. Kemudian rekaman gempa diskalakan dengan menggunakan software MATLAB, rekaman gempa akan dijadikan gempa tunggal dan gempa berulang.
- Kemudian rekaman gempa akan di analisis dengan menggunakan program
 OPENSEES untuk menghasilkan simpangan sisa yang di inginkan

Gambar 3.6: Rekaman Gempa Imperial Valley-06 sebelum diubah menjadi respon spektrum.

Gambar 3.7: Rekaman Gempa Imperial Valley setelah diubah menjadi respon spektrum.

Gambar 3.8: (a) Analisis Respon Riwayat Waktu menggunakan software OPENSEES pada Model 1 (SRPMK 4 Lantai). (b) Analisis Respon Riwayat Waktu menggunakan software OPENSEES pada Model 2 (SRPMK 8 Lantai).

3.4.3 Incremental Dynamic Analysis

Incremental Dynamic Analysis (IDA) adalah metode analisis parametrik yang dikembangkan oleh Vamvatsikos dan Cornell (2000) muncul dalam beberapa bentuk berbeda untuk memperkirakan kinerja struktural yang lebih menyeluruh di bawah beban seismik Baker, (2015). Incrementl dynamic analysis (IDA) juga merupakan suatu analisis komputasi beban gempa untuk melakukan penilaian menyeluruh terhadap perilaku struktur dibawah beban gempa. Dalam metode analisis IDA, serangkaian nonlinier analisis dinamis dilakukan untuk setiap rekaman seismik secara akurat untuk memperkirakan rentang respon lengkap (dari fase elastis ke keadaan leleh dan kemudian fasse nonlinier dan akhirnya ke struktur keseluruhan ketidakstabilan). Yang dapat dilihat pada gambar 3.6 dibawah ini.

Gambar 3.9: Penentuan Collapse Prevention pada kurva IDA.

Metode ini digunakan untuk membangun analisis bahaya pada seismic probabilistik untuk dapat memperkirakan resiko seismik yang akan dihadapi oleh struktur (Faisal & Darsono, 2019). Pada Tugas akhir ini akan diuraikan bagan alir metode IDA seperti gambar 3.7. Dalam metode analisis IDA ini juga, serangkaian analisis nonlinier dilakukan untuk setiap rekaman seismik secara akurat untuk memperkirakan rentang respon lengkap (dari fase elastis ke keadaan leleh dan kemudian fasse nonlinier dan akhirnya ke struktur keseluruhan ketidakstabilan). Pada saat ini juga terdapat kondisi batas (*Limit State*) yaitu IO, LS, CP, dan *Collapse* yang letak pada kurva IDA dapat di lihat seperti gambar dibawah ini .

Gambar 3.10: Kondisi Batas (Limit State) pada kurva IDA.

Kondisi batas IO (*immediate occupancy*), LS (*limit safety*) dan kondisi batas CP (*Collapse prevention*) dicari melalui analisa bertahap respon riwayat waktu nonlinear (*incremental dynamic analysis*, disingkat IDA). Batas kondisi IO adalah kondisi yang ditandai dengan pencapaian IDRmax = 0.007. Batas kondisi LS adalah kondisi dimana elemen struktur sudah mengalami kerusakan yang banyak pasca terjadinya gempa bumi tetapi kerusakan masih dapat diperbaiki dengan biaya yang relative mahal, dimana kondisi ini terjadi pada struktur SRPMK baja yang ditandai dengan pencapaian IDRmax = 0.025. Kondisi batas CP adalah kondisi dimana struktur kehilangan kemampuan menahan gaya lateral dan kehilangan kestabilan ditandai dengan banyaknya elemen struktur yang mengalami kerusakan dengan tercapainya IDRmax = 0.05. Sedangkan kondisi batas runtuh (*Collapse*) adalah kondisi dimana nilai IDRmax = 0.1.

3.5 Simpangan Sisa (Residual Drift)

Simpangan sisa merupakan suatu indeks yang sangat penting, untuk melakukan evaluasi kinerja bangunan setelah terjadi sebuah gempa. Hal ini juga sangat penting dalam pengambilan keputusan terhadap perbaikan bangunan setelah terjadi gempa (Hong dkk, 2017). Melakukan penyelidikan mengenai simpangan sisa struktur antar lantai adalah untuk mengukur dan mengklasifikasikan kerusakan akibat seismik yang terjadi di suatu bangunan.

Jika terjadinya gerakan tanah yang kuat dan nilai simpangan sisa dari suatu bangunan tersebut besar dari batas yang telah ditentukan, maka perbaikan bangunan tersebut tidak layak jika dilihat dari sisi ekonomi. Nakashima. (2008), melakukan penelitian terhadap dampak simpangan sisa pada bangunan di Jepang, dan mengusulkan nilai dari rasio simpangan sisa yang diizinkan (IDR) sebesar 0,5%. Menurut Miranda.(2012), mengusulkan untuk memperhitungkan dari pengaruh simpangan sisa dalam estimasi kerugian ekonomi bangunan akibat dari terjadinya gempa bumi. Hal ini menjadi salah satu faktor pertimbangan untuk melakukan pembongkaran dari suatu bangunan

BAB 4

HASIL DAN PEMBAHASAN

4.1 Hasil Model Linear Dan Non Linear

Bab ini membahas hasil analisa linier dan non linier oleh program analisa struktur diantaranya, perioda getar, nilai simpangan, serta gaya – gaya yang ada pada struktur gedung. Berdasarkan model yang didesain dengan Sistem Rangka Pemikul Momen Khusus (SRPMK), yaitu Model 1 untuk SRPMK 4 Lantai dan Model 2 untuk SRPMK 8 Lantai. Semua input pembebanan serta kombinasi, zona gempa dan konfigurasi bangunan adalah sama. Serta perbandingan metode analisa pada tiap pemodelan, yaitu analisa respon spektrum ragam dan analisa respon riwayat waktu.

4.2 Hasil Analisa Linier

4.2.1 Respon Spektrum Ragam

Berdasarkan SNI 1726:2019, analisa harus dilakukan untuk menentukan ragam getar alami untuk struktur. Analisa harus menyertakan jumlah ragam yang cukup untuk mendapatkan partisipasi massa ragam terkombinasi sebesar paling sedikit 90 persen dari massa aktual dalam masing-masing arah horizontal ortogonal dari respon yang ditinjau oleh model. persentase nilai perioda yang menentukan jenis perhitungan menggunakan CQC atau SRSS.

Syarat: SRSS > 15%, CQC < 15%

Analisa menggunakan metode CQC (Complete Quadratic Combination), hasil persentase perioda rata-rata yang didapat lebih kecil dari 15% dan SRSS (Square Root of the Sum of Square) lebih besar dari 15%. Dapat dilihat pada tabel 4.1 dan 4.2 untuk Model 1 dan Model 2 pada tugas akhir ini:

Moda (Perioda)	Selisih Persentase (%)	CQC < 15%	SRSS > 15%
T1 - T2	29%	NOT OK	OK
T2 - T3	14%	OK	NOT OK
T3 - T4	44%	NOT OK	OK
T4 - T5	35%	NOT OK	OK
T5 - T6	12%	OK	NOT OK
T6 - T7	6%	OK	NOT OK
T7 - T8	36%	NOT OK	OK
T8 - T9	3%	OK	NOT OK
T9 - T10	11%	OK	NOT OK
T10 - T11	31%	NOT OK	OK
T11 - T12	10%	OK	NOT OK

Tabel 4.1: Hasil analisis CQC dan SRSS pada Model 1(SRPMK 4 Lantai).

Dari tabel 4.1 diperoleh hasil :

- a. Model 1: untuk nilai R = 8, didapat 6 mode dan hasil persentase nilai perioda dibawah 15 %.
- b. Model 1: untuk nilai R = 8, didapat 5 mode dan hasil persentase nilai Perioda diatas 15 %.

	SYARAT									
Moda (Perioda)	Selisih Persentase (%)	CQC < 15%	SRSS > 15%							
T1 - T2	5%	OK	NOT OK							
T2 - T3	29%	NOT OK	OK							
T3 - T4	48%	NOT OK	OK							
T4 - T5	7%	ОК	NOT OK							
T5 - T6	25%	NOT OK	OK							
T6 - T7	18%	NOT OK	OK							
T7 - T8	11%	OK	NOT OK							
T8 - T9	19%	NOT OK	OK							
T9 - T10	7%	OK	NOT OK							
T10 - T11	19%	NOT OK	OK							
T11 - T12	11%	OK	NOT OK							

Tabel 4.2: Hasil analisis CQC dan SRSS pada Model 2 (SRPMK 8 Lantai).

Dari tabel 4.2 diperoleh hasil :

- a. Model 2: untuk nilai R = 8, didapat 5 mode dan hasil persentase nilai perioda dibawah 15 %.
- b. Model 2: untuk nilai R = 8, didapat 6 mode dan hasil persentase nilai
 Perioda diatas 15 %.

4.2.2 Koreksi Gempa Dasar Nominal

Berdasarkan SNI 1726:2019 Pasal 7.9.4.1, kombinasi respon untuk geser dasar ragam (Vt) lebih kecil 85 persen dari geser dasar yang dihitung (V1) menggunakan prosedur gaya lateral ekivalen, maka gaya dan simpangan antar lantai harus dikalikan dengan faktor skala pada persamaan 4.1.

$$0,85 \frac{V1}{Vt} \ge 1 \tag{4.1}$$

Dimana:

 $V_1 = Gaya$ geser dasar nominal statik ekivalen

 V_t = Gaya geser dasar kombinasi ragam

Tabel 4.3: Nilai gaya geser dasar nominal analisa statik ekivalen (V1) dan Nilai gaya geser dasar nominal analisa respon spektrum output Program Analisa Struktur Vt.

Struktur	Arah Gempa	V ₁ (KN)	V _t (KN)	Cek
MODEL 1	Gempa X (R=8)	1639.41	1639.4	OK
MODEL 2	Gempa X (R=8)	1188.47	1188.5	OK

Untuk memenuhi syarat berdasarkan SNI 1726:2019, maka nilai faktor skala harus lebih kecil atau sama dengan 1.

Syarat :
$$0.85 \frac{V1}{Vt} \le 1$$

Untuk perhitungan tertera pada Lampiran L4.

4.2.3 Koreksi Faktor Redundansi

Nilai gaya geser dengan redundansi 1 per lantainya harus dikoreksi dengan 35 persen gaya geser dasar dengan redundansi 1. Jika persyaratan tersebut tidak terpenuhi, maka nilai faktor redundansi 1 harus diganti dengan redundansi 1.3. Dari hasil koreksi untuk setiap gaya geser diperoleh beberapa lantai yang tidak memenuhi syarat 35 persen gaya geser dasar. Untuk hasil perhitungan terdapat pada Lampiran L5.

4.2.4 Koreksi Skala Simpangan Antar Tingkat

Nilai V1 dan gaya geser dasar nominal analisis respon spektrum (Vt) dapat dilihat pada Tabel 4.3. Kontrol Koreksi skala simpangan antar tingkat, yaitu:

Syarat : $Vt \ge 0.85$ Cs.W

Berdasarakan Tabel 4.4 nilai Vt diperoleh:

Struktur	Arah Gempa	Vt (KN)	0,85 Cs.W	Cek
MODEL 1	Gempa X (R=8)	1639.4	1393.4	ОК
MODEL 2	Gempa X (R=8)	1188.5	1010,2	ОК

4.2.5 Nilai Simpangan Gedung

Berdasarkan peraturan SNI 1726:2019, kontrol simpangan antar lantai hanya terdapat satu kinerja batas, yaitu kinerja batas ultimit. Simpangan antar tingkat yang didesain untuk kategori desain seismik D,E dan F tidak boleh melebihi yang diizinkan yaitu 0,02 dikali tinggi lantai, nilai simpangan tidak boleh melebihi $\frac{\Delta a}{\rho}$ di kali tinggi tingkat untuk semua tingkat, dimana nilai tersebut dihasilkan sebesar 0.0154 di kali tinggi tingkatnya. Pada hasil yang diperoleh, nilai simpangan antar lantai tidak melebihi batas izin atau memenuhi syarat tersebut. Untuk hasil perhitungan terdapat pada Lampiran L6.

4.2.6 Kontrol Ketidakberaturan Kekakuan Tingkat Lunak (Soft Story)

Berdasarkan SNI 1726:2019, kekakuan tingkat lunak (soft story) didefinisikan ada jika terdapat suatu tingkat dimana kekakuan lateralnya kurang dari 70 persen kekakuan lateral tingkat diatasnya atau kurang dari 80 persen kekakuan rata-rata tiga tingkat diatasnya. Pada hasil kontrol ketidakberaturan kekakuan tingkat lunak pada arah x untuk semua model, diperoleh nilai persentase kekakuan diatas batas yang ditentukan atau struktur yang direncanakan tidak mengalami Soft Story. Untuk hasil perhitungan terdapat pada Lampiran A7.

4.2.7 Pengaruh Efek P-Delta

Berdasarkan SNI 1726:2019, efek P-delta dapat diabaikan jika nilai stability ratio lebih kecil dari 1. Pada hasil perhitungan, nilai stability ratio dibawah nilai 1 untuk semua model atau dapat dikatakan kontrolnya memenuhi syarat yang ditentukan. Pada dasarnya efek p-delta dapat diabaikan jika syarat stability ratio sudah terpenuhi. Untuk hasil perhitungan terdapat pada Lampiran A8.

4.3 Hasil Analisa Non Linier

Tahap ini adalah bagian dari evaluasi struktrur baja yang telah didesain terhadap beban gempa yang telah direncanakan, dalam hal ini respon struktur akan ditinjau terhadap perbedaan jenis gempa, faktor R pada gedung, dan perioda struktur bangunan. Jenis gempa yang diberikan pada struktur baja adalah gempa dekat mengandung *pulse*, serta gempa dekat *no pulse*. Faktor R pada gedung merupakan faktor reduksi gedung yang telah didesain dengan perbedaan sistem struktur baja. Perbedaan nilai perioda didapat dari kedua jenis model yang telah didesain. Setiap model struktur akan diambil data *interstory drift* dan *top displacement* setelah dianalisis, nilai tersebut dibandingkan terhadap faktor - faktor yang telah disebutkan diatas. Pada Gambar 4.1 menunjukkan tujuan penelitian ini, yaitu untuk memperoleh nilai simpangan yang terjadi di lantai 4 (Δ_4) dan simpangan yang terjadi di lantai 1 (Δ_1). Begitu juga untuk model 2 (baja SRPMK 8 lantai) yang di fokuskan pada lantai 8 (Δ_4) dan simpangan yang terjadi di lantai 1 (Δ_1).

Gambar 4.1: Ilustrasi bangunan Model 1 (SRPMK 4 Lantai) ketika diberikan gerakan tanah akibat gempa dekat yang menyebabkan terjadinya simpangan sisa.

Gambar 4.2: Simpangan Sisa pada Model 1 (SRPMK Lantai 4).

4.3.1 Incremental Dynamic Analysis (IDA)

Dalam menentukan besaran intensitas (*intensity measure*) sebuah gempa yang dapat menghasilkan suatu kondisi batas, seperti kondisi batas IO (*immediate occupancy*), LS (*limit safety*) dan kondisi batas CP (*Collapse prevention*) dicari melalui analisa bertahap respon riwayat waktu nonlinear (*incremental dynamic analysis*, disingkat IDA).

Ada 4 kategori batas dalam grafik IDA:

1. Immediate Occupancy (IO)

Salah satu dari beberapa kategori yang digunakan untuk menilai seberapa baik sebuah bangunan dapat bertahan dan tetap fungsional setelah gempa bumi. Dalam kurva IDA, IO biasanya ditandai pada tingkat drift yang sangat rendah, menunjukkan bahwa struktur masih dalam kondisi yang sangat baik meskipun telah mengalami gempa. Batas kondisi IO adalah kondisi yang ditandai dengan pencapaian IDRmax = 0.007.

Gambar 4.3: (a) Ilustrasi model 1 struktur baja SRPMK 4 lantai pada kondisi IO (*immediate occupancy*) ketika diberikan gerakan tanah akibat gempa dekat *Pulse*.
(b) Ilustrasi model 2 struktur baja SRPMK 8 lantai pada kondisi IO (*immediate occupancy*) ketika diberikan gerakan tanah akibat gempa dekat *Pulse*.

2. Life Safety (LS)

Salah satu tingkat kinerja yang digunakan untuk menilai seberapa baik sebuah bangunan dapat melindungi penghuninya selama dan setelah gempa. Dalam kurva *IDA*, *LS* biasanya ditandai pada tingkat drift yang lebih tinggi dibandingkan dengan immediate occupancy, menunjukkan bahwa struktur masih mampu melindungi penghuninya meskipun mengalami kerusakan. Batas kondisi LS adalah kondisi yang ditandai dengan pencapaian IDRmax = 0.025.

Gambar 4.4: (a) Ilustrasi model 1 struktur baja SRPMK 4 lantai pada kondisi LS (*limit safety*) ketika diberikan gerakan tanah akibat gempa dekat *Pulse*. (b) Ilustrasi model 2 struktur baja SRPMK 8 lantai pada kondisi LS (*limit safety*) ketika diberikan gerakan tanah akibat gempa dekat *Pulse*.

3. *Collapse Prevention* (CP)

Salah satu tingkat kinerja yang digunakan untuk menilai seberapa baik sebuah bangunan dapat bertahan tanpa runtuh selama gempa yang kuat. Dalam kurva IDA, CP biasanya ditandai pada tingkat drift yang sangat tinggi, menunjukkan bahwa struktur masih berdiri meskipun mengalami kerusakan besar. Batas kondisi CP adalah kondisi yang ditandai dengan pencapaian IDRmax = 0.05.

Gambar 4.5: (a) Ilustrasi model 1 struktur baja SRPMK 4 lantai pada kondisi CP (*Collapse prevention*) ketika diberikan gerakan tanah akibat gempa dekat *Pulse*.
(b) Ilustrasi model 2 struktur baja SRPMK 8 lantai pada kondisi CP (*Collapse*)

prevention) ketika diberikan gerakan tanah akibat gempa dekat Pulse.

4. Collapse

Collapse atau runtuh mengacu pada kondisi di mana struktur mengalami ketidakstabilan dinamis global, yang berarti struktur tersebut tidak lagi mampu menahan beban dan mengalami keruntuhan total. Batas kondisi CP adalah kondisi yang ditandai dengan pencapaian IDRmax = 0.1

Gambar 4.6: (a) Ilustrasi model 1 struktur baja SRPMK 4 lantai pada kondisi CP (*Collapse prevention*) ketika diberikan gerakan tanah akibat gempa dekat *Pulse*.
(b) Ilustrasi model 2 struktur baja SRPMK 8 lantai pada kondisi CP (*Collapse*)

prevention) ketika diberikan gerakan tanah akibat gempa dekat Pulse.

Gambar 4.7: Menunjukkan Kondisi batas IO, LS, CP dan *Collapse* pada kurva IDA untuk Model 1 (baja SRPMK 4 tingkat) akibat sejumlah gerakan tanah gempa bumi yang mengandung efek *pulse*.

Gambar 4.8: Menunjukkan Kondisi batas IO, LS, CP dan *Collapse* untuk SRPMK baja 8 tingkat akibat sejumlah gerakan tanah gempa bumi yang mengandung efek *pulse*.

Gambar 4.9: Menunjukkan Kondisi batas IO, LS, CP dan *Collapse* untuk SRPMK baja 4 tingkat akibat sejumlah gerakan tanah gempa bumi yang tidak mengandung efek *pulse*.

Gambar 4.10: Menunjukkan Kondisi batas IO, LS, CP dan *Collapse* untuk SRPMK baja 8 tingkat akibat sejumlah gerakan tanah gempa bumi yang tidak mengandung efek *pulse*.

Pada Gambar 4.7 dan 4.8 di analisis berdasarkan semua jenis groundmotion yaitu 10 gerakan tanah gempa pulse untuk menunjukkan pengaruh pulse indicator yang dimiliki gempa dekat yang mengandung efek pulse. Sedangkan untuk Gambar 4.9 dan 4.10 dianalisis berdasarkan hasil median keseluruhan groundmotion yaitu 10 gerakan tanah yang tidak mengandung efek pulse yang diperoleh dari hasil median keseluruhan gempa. Nilai median ini dijelaskan oleh garis hitam tebal pada grafik IDA pada Gambar 4.7, 4.8, 4.9, serta 4.10. Hasil pada Gambar tersebut jelas sekali menggambarkan bahwa kondisi CP pada model 1 dan model 2 baja SRPMK banyak dicapai akibat gerakan tanah sebelum respon deformasi struktur mencapai kondisi IDRmax = 0.05. Sehingga hasil tersebut juga menjelaskan kondisi ketidakstabilan terjadi ketika respon deformasi jauh sebelum mencapai IDRmax = 0.1, bahkan sebelum kondisi CP, yang ditunjukkan oleh terjadinya lebih dahulu 80% perubahan kemiringan garis kekakuan elastis (Vamvatsikos dan Cornell, 2002, 2004). Untuk itu pada penelitian ini dihasilkan nilai kemungkinan yang memberikan deformasi global SRPMK baja mencapai kondisi batas IO, LS, CP, dan Collapse, yaitu masing-masing secara berurutan Northridge01(1004), Northridge01(1004), Imperial Vally06 serta Loma Prieta (741) dengan RSA(T1) = 0.09 g, 0.34 g, 0.59 g, dan 0.834 g untuk struktur Gedung lantai 4 dan RSA(T1) = 0.07 g, 0.33 g, 0.45 g, dan 0.554 g untuk struktur Gedung lantai 8 pada gempa yang tidak mengandung efek pulse.

4.3.2 Interstory Drift Ratio (IDR)

Seiring dengan target kondisi batas yang ingin dicapai (IO, LS, CP dan *Collapse*). Gambar 4.7 sampai 4.10 juga menjelaskan perjalanan deformasi global dari kondisi linear elastis menuju kondisi tidak elastis, serta menjelaskan perubahan respon maksimum yang sebelumnya terjadi di tingkat atas yang kemudian berubah ke tingkat bawah ketika kondisi batas melewati LS (IDRmax> 5%). Perubahan respon tingkat maksimum menuju ke tingkat bawah juga ditunjukkan pada hasil evaluasi terhadap SRPMK baja bertingkat 4 – 18 (Erochko dkk., 2011; Bojorquez dkk., 2017).

Gambar 4.11 : Rasio simpangan maksimum pada setiap batas kondisi IO, LS. CP dan *Collapse* saat terjadi gerakan tanah yang mengandung efek *Pulse* lantai 4 .

Gambar 4.11 (a) menunjukkan rasio simpangan maksimum yang dipilih dari 10 *Groundmotion Pulse* pada kondisi IO yang terjadi akibat gerakan tanah Landers dengan *Pulse Indicator* 1.0, sedangkan Gambar 4.11 (b) menunjukkan rasio simpangan maksimum pada kondisi LS terjadi akibat gerakan tanah Imperial Valley-07 dengan *Pulse Indicator* 1.0, Gambar 4.11 (c) menunjukkan rasio simpangan maksimum pada kondisi CP terjadi akibat gerakan tanah Imperial Valley-07 dengan *Pulse Indicator* 1.0, serta Gambar 4.11 (d) menunjukkan rasio simpangan maksimum pada kondisi *Collapse* terjadi akibat gerakan tanah Imperial Valley-07 dengan *Pulse Indicator* 1.0, serta Gambar 4.11 (d) menunjukkan rasio simpangan maksimum pada kondisi *Collapse* terjadi akibat gerakan tanah Imperial Valley-07 dengan *Pulse Indicator* 1.0, yang terjadi pada gedung SRPMK lantai 4 akibat gempa dekat mengandung efek *Pulse*. Sedangkan pada gedung SRPMK 8 lantai akibat gempa dekat mengandung efek *Pulse*. Rasio simpangan maksimum yang terjadi pada kondisi IO dan CP akibat gerakan tanah gempa Chi-Chi Taiwan dengan *Pulse Indicator* 1.0, sedangkan yang menunjukkan rasio simpangan maksimum pada kondisi LS dan *Collapse* terjadi akibat gerakan tanah gempa Irpinia, Italy-01 dengan *Pulse Indicator* 0.94.

Gambar 4.12 : Rasio simpangan yang mendekati median berdasarkan batas kondisi IO, LS. CP dan *Collapse* pada kondisi gerakan tanah yang tidak mengandung efek *Pulse*

Gambar 4.12 (a) menunjukkan rasio simpangan maksimum pada lantai 4 baja SRPMK yang dipilih berdasarkan nilai yang mendekati median pada kurva IDA, pada kondisi IO nilai yang mendekati median terjadi pada gerakan tanah gempa Loma Prieta(741) sedangkan pada kondisi LS nilai yang mendekati median terjadi pada gerakan tanah gempa Cape Mendocino, dan pada kondisi CP nilai yang mendekati median terjadi pada gerakan tanah gempa Imperial Valley06, serta pada kondisi *Collapse* terjadi akibat gerakan tanah gempa Loma Prieta (753). Gambar 4.12 (b) menunjukkan rasio simpangan maksimum pada lantai 8 baja SRPMK yang dipilih berdasarkan nilai yang mendekati median pada kurva IDA, pada kondisi IO nilai yang mendekati median terjadi pada gerakan tanah gempa Imperial Valley06, sedangkan pada kondisi LS dan *Collapse* nilai yang mendekati median terjadi pada gerakan tanah gempa Gazli, dan pada kondisi CP nilai yang mendekati median terjadi pada gerakan tanah gempa Cape Mendocino.

4.3.3 Simpangan sisa

Untuk mendapatkan perilaku yang sesuai seperti yang diinginkan, maka pembahasan hasil deformasi tidak linear akan didasarkan kepada respon riwayat waktu dari deformasi global IDR seperti yang disajikan pada Gambar 4.13 dan 4.14 di bawah ini

Gambar 4.13: Rasio simpangan sisa di lantai 4(*Roof*) pada saat kondisi IO (IDRmax \geq 0.007), LS (IDRmax \geq 0.025), CP (IDRmax \geq 0.05), dan *Collapse* (IDRmax \geq 0,10).

Gambar 4.14. Rasio simpangan sisa di lantai dasar (*Base*) pada saat kondisi IO (IDRmax \geq 0.007), LS (IDRmax \geq 0.025), CP (IDRmax \geq 0.05), dan *Collapse* (IDRmax \geq 0,10).

Gambar di atas sebagai contoh yang menunjukkan besarnya rasio simpangan sisa yang terdapat pada lantai 4 (Δ_4) dan lantai 1 (Δ_1) yang terlewati pertama kali akibat gerakan tanah yang menghasikan nilai maksimun di antara 10 *groundmotion* pada gempa yang mengandung efek *pulse*. dari Gambar 4.10 dan 4.11 dapat di simpulkan bahwa rasio simpangan sisa yang terjadi di lantai 4 (Δ_4) mengakibatkan rasio simpangan sisa lebih besar di bandingkan lantai 1 (Δ_1). Namun hal ini sudah umum di ketahui, maka pada tabel di bawah ini akan menunjukkan nilai simpangan sisa yang terjadi akibat gempa yang megandung efek *Pulse* dengan mamperhatikan besaran nilai *Pulse indicator* pada bangunan baja SRPMK lantai 4 dan lantai 8.

			Immediate Ocupancy			Limit Safety			Collapse Prevention			Collapse		
No.	Event	Pulse	RSA	2	Δ	RSA	4	1	RSA	2	1	RSA	L	7
		Indikator	(T1) g	Δ4 (m)	Δ1 (m)	(T1) g	Δ4 (m)	Δ1 (m)	(T1) g	Δ4 (m)	Δ1 (m)	(T1) g	Δ4 (m)	Δ1 (m)
1	Loma Prieta	0.86	0.17	0.00	0.00	0.61	-0.19	-0.07	0.92	0.22	0.08	0.96	1.83	0.67
2	Cape Mendocino	0.92	0.15	-0.02	0.00	0.33	-0.15	-0.03	0.43	-0.76	-0.20	0.44	1.99	0.70
3	Irpinia, Italy-01	0.94	0.11	0.00	0.00	0.33	0.18	0.06	0.43	0.58	0.21	0.45	1.78	0.66
4	Superstition Hills-02	1.00	0.11	0.00	0.00	0.67	-0.06	-0.05	0.91	0.61	0.21	0.95	1.85	0.69
5	Imperial Valley-06	1.00	0.12	0.00	0.00	0.30	0.21	0.08	0.38	0.64	0.24	0.59	1.78	0.66
6	Erzican, Turkey	1.00	0.10	0.00	0.00	0.32	-0.15	-0.06	0.48	-0.55	-0.20	0.54	-1.80	-0.69
7	Imperial Valley-07	1.00	0.20	-0.03	-0.01	0.46	0.21	0.08	0.64	0.57	0.20	0.68	1.83	0.69
8	Landers	1.00	0.22	0.03	0.01	0.32	0.20	0.08	0.44	0.58	0.23	0.46	1.77	0.68
9	chi-chi Taiwan	1.00	0.09	-0.01	0.00	0.31	0.13	0.06	0.48	0.51	0.20	0.49	1.75	0.68
10	Duzce, Turkey	1.00	0.06	0.00	0.00	0.35	0.13	-0.04	0.45	0.56	0.20	0.46	1.81	0.69
11	Median		0.10	0.00	0.00	0.35	0.13	-0.04	0.48	-0.55	-0.20	0.54	-1.80	-0.69

Tabel 4.5: Simpangan sisa pada Model 1(SRPMK 4 Lantai) dengan gerakan tanah yang mengandung efek pulse.

Note: Urutan event disesuaikan dari urutan terkecil pulse indikator Tanda +/- menunjukkan arah

			Immediate Ocupancy		Limit Safety			Collapse Prevention			Collapse			
No.	Event	Pulse	RSA	L	1	RSA		Δ	RSA	4	1	RSA	L	1
		Indikator	(T1) g	Δ4 (m)	Δ1 (m)	(T1) g	Δ4 (m)	Δ1 (m)	(T1) g	Δ4 (m)	Δ1 (m)	(T1) g	Δ4 (m)	Δ1 (m)
1	Loma Prieta	0.86	0.17	0	0	0.61	0.43	0.07	0.92	-0.36	-0.06	0.96	1.44	0.68
2	Cape Mendocino	0.92	0.15	0	0	0.33	-0.36	-0.06	0.43	-0.81	-0.16	0.44	1.54	0.69
3	Irpinia, Italy-01	0.94	0.108	0	0	0.33	0.43	0.08	0.43	0.99	0.23	0.45	1.70	0.68
4	Superstition Hills-02	1.00	0.11	0	0	0.67	0.38	0.05	0.91	0.58	0.15	0.95	1.63	0.67
5	Imperial Valley-06	1.00	0.12	0	0	0.30	-0.20	-0.07	0.38	-0.71	-0.18	0.59	1.41	0.69
6	Erzican, Turkey	1.00	0.1	0	0	0.32	-0.25	-0.03	0.48	0.13	0.06	0.54	1.27	0.69
7	Imperial Valley-07	1.00	0.195	0	0	0.46	0.38	0.07	0.64	0.79	0.22	0.68	-1.54	-0.69
8	Landers	1.00	0.217	0	0	0.32	0.15	0.02	0.44	0.61	0.16	0.46	1.54	0.69
9	chi-chi Taiwan	1.00	0.09	0	0	0.31	-0.33	-0.08	0.48	-1.07	0.22	0.49	1.47	0.69
10	Duzce, Turkey	1.00	0.06	0	0	0.35	0.36	0.11	0.45	0.69	0.25	0.46	1.39	0.69
11	Median		0.10	0.00	0.00	0.33	-0.36	-0.06	0.48	-1.07	0.22	0.95	1.63	0.67

Tabel 4.6: Simpangan sisa pada Model 2 (SRPMK 8 Lantai) dengan gerakan tanah yang mengandung efek pulse.

Note: Urutan event disesuaikan dari urutan terkecil pulse indikator

Tanda +/- menunjukkan arah

Pada tabel 4.5 dan 4.6 terlihat bahwa urutan gempa telah diurutkan berdasarkan *Pulse indicator* dari urutan yang terkecil hingga terbesar, dan dapat disimpulkan bahwa *Pulse Indicator* dalam gempa yang mengandung efek *Pulse* tidak terlalu berpengaruh terhadap rasio simpangan sisa pada Model 1 dan model 2.

Tabel 4.7 Simpangan sisa paling maksimum terhadap kondisi IO, LS, CP, dan COLLAPSE pada Model 1 dengan gerakan tanah yang mengandung efek pulse.

VONDISI	RSA (T1)	Δ					
KUNDISI	g	Δ4 (m)	Δ1 (m)				
IO	0.217	0.03	0.01				
LS	0.46	0.21	0.08				
СР	0.59	-0.76	-0.20				
COLLAPSE	0.44	1.99	0.70				

Tabel 4.8 Simpangan sisa paling maksimum terhadap kondisi IO, LS, CP, dan COLLAPSE pada Model 2 dengan gerakan tanah yang mengandung efek pulse.

KONDISI	RSA (T1)	Δ	
	g	Δ4 (m)	Δ1 (m)
ΙΟ	0.09	0	0
LS	0.328	0.43	0.08
СР	0.475	-1.07	0.22
COLLAPSE	0.45	1.70	0.68

Tabel 4.9 Rasio Simpangan sisa pada Model 1 dengan gerakan tanah yang tidak mengandung efek pulse.

KONDISI	RSA (T1)	Δ	
	g	Δ4 (m)	Δ1 (m)
ΙΟ	0.09	0	0
LS	0.34	0.198	0.04826
СР	0.59	-0.6604	-0.20828
COLLAPSE	0.8339	1.778	0.635

KONDISI	RSA (T1)	Δ	
	g	Δ4 (m)	Δ1 (m)
IO	0.07	0	0
LS	0.33	-0.3048	-0.0508
СР	0.45	0.7874	0.18034
COLLAPSE	0.554	1.905	0.6858

Tabel 4.10 Rasio Simpangan sisa pada Model 2 dengan gerakan tanah yang tidak mengandung efek pulse.

Pada tabel 4.9 dan 4.10 dapat di lihat bahwa rasio simpangan sisa pada lantai 8 signifikan menaik di bandingkan lantai 4 pada gerakan tanah yang tidak mengandung efek *Pulse*. Padahal nilai RSA(T1) lantai 8 dominan lebih kecil di bandingkan Lantai 4 baja SRPMK.

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan penelitian yang telah dilakukan, didapatkan hasil berikut ini:

- Nilai simpangan akibat gerakan tanah mengandung efek *pulse* lebih besar dibandingkan gerakan tanah yang tidak mengandung efek *pulse* pada struktur baja SRPMK 4 dan 8 lantai.
- 2. Simpangan sisa pada gerakan tanah yang mengandung efek *pulse* dengan kondisi batas IO dan Collapse di Model 1 lebih besar dibandingkan Model 2, sedangkan batas LS dan CP di Model 2 lebih besar di bandingkan Model 1, yang menyimpulkan bahwa efek detakan pada gerakan tanah mengandung *pulse* kemungkinan berpengaruh pada struktur bangunan baja SRPMK. Sedangkan untuk gerakan tanah yang tidak mengandung efek *pulse* signifikat menaik sesuai urutan batas IO, LS, CP, serta Collapse pada Model 1 dan Model 2.
- Pulse Indicator dalam gempa yang mengandung efek Pulse tidak terlalu berpengaruh terhadap rasio simpangan sisa pada struktur bangunan baja SRPMK lantai 4 dan 8 lantai.

5.2 Saran

- Pengambilan gerakan tanah pada tugas akhir ini masih cenderung terbatas, diharapkan untuk menambah jenis gerakan tanah untuk penelitian selanjutnya.
- Dalam Tugas Akhir ini, jika terdapat hasil yang kurang sesuai pada Analisa linier dan non linier diharapkan agar dapat diskusi dengan penulis. Apabila nilai yang didapatkan jauh dari hasil yang ada.
- 3. Diharapkan tugas akhir ini dapat diteruskan atau dievaluasi kembali dalam rangka mendapatkan hasil yang optimal dan dapat dilakukan perbandingan.

DAFTAR PUSTAKA

- Amrullah, W., Tony H. B., Julistyana T. (2019). Desain perencanaan struktur Gedung 38 lantai dengan sistem Rangka pemikul momen khusus (SRPMK), 1 (April 2019). 18-23.
- Badan Standarisasi Nasional. (2019). Persyaratan Beton Struktural Untuk Bangunan Gedung Dan Penjelasan (SNI 2847:2019). Jakarta: Departemen Pekerjaan Umum.
- Badan Standarisasi Nasional. (2020). Spesifikasi untuk bangunan gedung baja struktural (SNI 1729:2020). Jakarta: Departemen Pekerjaan Umum.
- Basyir, M., Amir, F., Maricar, S., & Oka, I. G. M. (2022). Perancangan Struktur Rangka Pemikul Momen Khusus (SRPMK) Ruko 4 Lantai Berdasarkan SNI 2847-2019 dan SNI 1726-2019. REKONSTRUKSI TADULAKO: Civil Engineering Journal on Research and Development, 59-66.
- Budiono, B., dan Supriatna, L. (2011). Studi Komparasi Desain Bangunan Tahan Gempa dengan Menggunakan SNI 03-1726-2002 dan RSNI 03-1726-201x. Bandung: Institut Teknologi Bandung.
- Christopoulos, C., Pampanin, S., and Priestley, M. J. N. (2003). "Performancebased seismic response of frame structures including residual deformations. Part I: Single degree of freedom systems." J. Earthquake Eng., 7(1), 97–118.
- Elkady, A., & Lignos, D. G. (2015). Effect of gravity framing on the overstrength and collapse capacity of steel frame buildings with perimeter special moment frames. Earthquake Engineering & Structural Dynamics, 44(8), 1289-1307.
- Erochko, J., Christopoulos, C., Tremblay, R., & Choi, H. (2011). Residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE 7-05. Journal of Structural Engineering, 137(5), 589-599.
- Faisal, A. (2020). Pemodelan getaran gempa dan struktur beton untuk analisa tidak linear. Kumpulan Berkas Kepangkatan Dosen.

Http://peer.berkeley.edu/, diakses Juni 2024.

Http://puskim.pu.go.id/, diakses Juni 2024.

- Kalkan, E., dan Kunnath, K. (2006). Effects of Fling Step and Forward Directivity on Seismic Response of Buildings. Earthquake Spectra, 22(2), 367–390.
- Mahendra, A. A. B. (2023). PERENCANAAN KONSTRUKSI BANGUNAN GEDUNG ENAM LANTAI. Akselerasi: Jurnal Ilmiah Teknik Sipil, 5(1).
- McCormick, J., Aburano, H., Ikenaga, M., and Nakashima, M. (2008). "Permissible residual deformation levels for building structures considering both safety and human elements." Proc. 14th World Conf.Earthquake Engineering, Seismological Press of China, Beijing,Paper ID 05-06-0071.
- NIST. Evaluation of the FEMA P695 methodology for quantification of building seismic performance factors. NIST GCR 10-917-8, NEHRP consultants Joint Venture, 2010.
- Pawirodikromo, W. (2012). Seismologi Teknik & Rekayasa Kegempaan. Yogyakarta : Pustaka Pelajar.
- Putra, Z. A. (2021). Daya Keruntuhan Terhadap Gempa Berulang Pada Srpm Baja (Literatur). Jurnal Ilmiah Mahasiswa Teknik [JIMT], 1(3).
- Ruiz-García, J., & Miranda, E. (2006). Residual displacement ratios for assessment of existing structures. *Earthquake engineering & structural dynamics*, 35(3), 315-336.
- Siswanto, A. B., & Salim, M. A. (2018). Kriteria Dasar Perencanaan Struktur Bangunan Tahan Gempa.
- Skiadopoulos, A., Elkady, A., & Lignos, D. G. (2021). Proposed panel zone model for seismic design of steel moment-resisting frames. Journal of Structural Engineering, 147(4), 04021006.
- Tzimas, A. S., Kamaris, G. S., Karavasilis, T. L., & Galasso, C. (2016). Collapse risk and residual drift performance of steel buildings using posttensioned MRFs and viscous dampers in near-fault regions. Bulletin of Earthquake Engineering, 14, 1643-1662,

LAMPIRAN

L.1. Syarat Perioda Struktur

Penentuan perioda yang akan digunakan untuk perhitungan gaya geser dasar dan gaya lateral statik ekivalen adalah berdasarkan SNI 1726:2019.

➤ Model 1 Data struktur:

- Tinggi lantai bawah	1:4,6 m
- Tinggi lantai tipikal	l:4 m
- Hn	:16,6 m
- Cu	: 1,5
- Ct	: 0,0724
- X	: 0,8
T min	$T_a = C_t h_n^x$
T max	: Cu x T min

Tabel L.1: Perioda struktur Model 1 untuk arah X dan Y

Kontrol Periode Arah X			
Tmin	Tmax	Tprogram	Tdipakai
0.685212121	1.027818181	2.206	1.028
Kontrol Periode Arah Y			
Tmin	Tmax	Tprogram	Tdipakai
0.685212121	1.027818181	1.572	1.028

➢ Model 2 Data struktur:

- Tinggi lantai bawah : 4,6 m

- Tinggi lantai tipikal : 4 m

- Hn	:32,6 m			
- Cu	: 1,5			
- Ct	: 0,0724			
- X	: 0,8			
T min	$T_a = C_t h_n^x$			
T max	: Cu x T min			
Kontrol Periode Arah X				
-----------------------------	-------------	-------	-------	--
Tmin Tmax Tprogram Tdipakai				
1.175743662	1.763615493	2.584	1.764	

Tabel	L.2:	Perioda	struktur	Model 2	untuk	arah X	dan Y	
I uooi	L.Z.	I Chloud	Suurun	1110001 2	untur	urun 25	cuun r.	

arah y				
Tmin	Tmax	Tprogram	Tdipakai	
1.175743662	1.763615493	2.462	1.764	

L.2. Modal Participating Mass Ratios

L.2.1. Modal Participating Mass Ratios Model 1

Tabel L.3: Hasil output *Modal Participating Mass Ratios* struktur pemodelan dengan Program Analisa Struktur (Model 1).

SYARAT							
Moda (Perioda)	Selisih Persentase (%)	CQC < 15%	SRSS > 15%				
T1 - T2	29%	NOT OK	OK				
T2 - T3	14%	OK	NOT OK				
T3 - T4	44%	NOT OK	OK				
T4 - T5	35%	NOT OK	OK				
T5 - T6	12%	OK	NOT OK				
T6 - T7	6%	OK	NOT OK				
T7 - T8	36%	NOT OK	OK				
T8 - T9	3%	OK	NOT OK				
T9 - T10	11%	OK	NOT OK				
T10 - T11	31%	NOT OK	OK				
T11 - T12	10%	OK	NOT OK				

SYARAT							
Moda (Perioda)	Selisih Persentase (%)	CQC < 15%	SRSS > 15%				
T1 - T2	5%	ОК	NOT OK				
T2 - T3	29%	NOT OK	ОК				
T3 - T4	48%	NOT OK	ОК				
T4 - T5	7%	OK	NOT OK				
T5 - T6	25%	NOT OK	ОК				
T6 - T7	18%	NOT OK	ОК				
T7 - T8	11%	ОК	NOT OK				
T8 - T9	19%	NOT OK	ОК				
T9 - T10	7%	OK	NOT OK				
T10 - T11	19%	NOT OK	ОК				
T11 - T12	11%	OK	NOT OK				

Tabel L.4: Hasil output *Modal Participating Mass Ratios* struktur pemodelan dengan Program Analisa Struktur (Model 2).

L.3. Berat Sendiri Struktur

L.3.1. Berat Sendiri Struktur (Model 1)

Tabel L.5: Hasil output berat sendiri struktur pemodelan dengan Program Analisa Struktur.

Story	Self Weight (KN)
4	1.885186
3	1.944083
2	1.958588
1	1.960308
TOTAL	7.748

Dapat dilihat pada tabel di atas bahwa berat total struktur untuk tersebut adalah 7.748 KN.

L.3.2. Berat Sendiri Struktur (Model 2)

Story	Self Weight (KN)
8	1.115481
7	1.202102
6	1.213938
5	1.184578
4	1.223929
3	1.239287
2	1.240929
1	1.21777
TOTAL	9.638

Tabel L.6: : Hasil output berat sendiri struktur pemodelan dengan Program Analisa Struktur.

Dapat dilihat pada tabel di atas bahwa berat total struktur untuk tersebut adalah 9.638 KN.

L.4. Perhitungan Gaya Geser Dasar dan Gaya Lateral Statik Ekivalen

Gaya geser dasar yang digunakan untuk menghitung gaya lateral statik ekivalen ditentukan berdasarkan SNI 1726:2019.

➢ Model 1

Data Struktur:

0	SD1	: 0,1774
0	SDS	: 0,236
0	R	8
0	Ie	1
0	S 1	: 0,112

 Cs
 Cs

 minimum
 hitungan

 Cs
 CsX digunakan

Tabel L.7: Nilai Cs yang digunakan untuk Model 1 (R=8)

 Infinitiani
 Infinitiani
 C3 finaksiniani
 C3 fi digunakan
 C3 fi digunakan

 0.007
 0.0296
 0.021576
 0.0216
 0.0216

Maka gaya geser dasar struktur gedung adalah V = Cs x Wt

V = 0.0216 x 75984

V = 1639.41 KN

✓ Penentuan nilai k Berdasarkan SNI 1726:2019 Pasal 7.8.3, k adalah eksponen yg terkait dengan perioda struktur sebagai berikut :

- Untuk struktur yg mempunyai perioda sebesar 0,5 detik atau kurang, k = 1
- Untuk struktur yg mempunyai perioda sebesar 2,5 detik atau lebih, k=2
- Untuk struktur yg mempunyai perioda antara 0,5 dan 2,5 detik, k harus sebesar 2 atau harus ditentukan dengan interpolasi linear antara 1 dan 2.

Tabel L.8: Nilai story shear untuk gaya lateral statik ekivalen Model 1.

Story	Berat Wx	h (mm)	Wx.hx^k (X)	Wx.hx^k (Y)	Force (x)	Force (y)	Story Shear (x)	Story Shear (y)
4	1.885186	4000	67302.4	67302.4	495.1	495.1	495.1	495.1
3	1.944083	4000	69405.1	69405.1	510.6	510.6	1005.8	1005.8
2	1.958588	4000	69922.9	69922.9	514.4	514.4	1520.2	1520.2
1	1.960308	4600	83505.9	83505.9	614.4	614.4	2134.6	2134.6
TOTAL			222833.9	222833.9	1639.4	1639.4	4660.5	4660.5

Berdasarkan Tabel L.8, dapat diketahui nilai gaya geser pada model 1 arah X yang merupakan nilai gaya geser dasar untuk struktur tersebut adalah 1639.4 KN. Dan diketahui nilai gaya geser pada model 1 arah Y yang merupakan nilai gaya geser dasar untuk struktur tersebut adalah 1639.4 KN.

➤ <u>Model 2</u>

Data Struktur:

0	SD1	: 0,1774
0	SDS	: 0,236
0	R	8
0	Ie	1
0	S1	: 0,112

Tabel L.9: Nilai Cs yang digunakan untuk Model 2 (R=8).

Cs minimum	Cs hitungan	Cs maksimum	CsX digunakan	CsY digunakan
0.007	0.0296	0.0126	0.0126	0.0126

Maka gaya geser dasar struktur gedung adalah

 $V = Cs \times Wt$

V = 0.0126 x 94517

V = 1188.47 KN

✓ Penentuan nilai k

Berdasarkan SNI 1726:2019 Pasal 7.8.3, k adalah eksponen yg terkait dengan perioda struktur sebagai berikut :

- Untuk struktur yg mempunyai perioda sebesar 0,5 detik atau kurang, k = 1
- Untuk struktur yg mempunyai perioda sebesar 2,5 detik atau lebih, k = 2
- Untuk struktur yg mempunyai perioda antara 0,5 dan 2,5 detik, k harus sebesar 2 atau harus ditentukan dengan interpolasi linear antara 1 dan 2.

Story	Berat Wx	h (mm)	Wx.hx^k (X)	Wx.hx^k (Y)	Force (x)	Force (y)	Story Shear (x)	Story Shear (y)
8	1.115481	4000	842037.8	842037.8	330.6	330.6	330.6	330.6
7	1.202102	4000	907425.0	907425.0	356.3	356.3	356.3	356.3
6	1.213938	4000	916359.5	916359.5	359.8	359.8	359.8	359.8
5	1.184578	4000	894196.7	894196.7	351.1	351.1	351.1	351.1
4	1.223929	4000	923901.4	923901.4	362.7	362.7	362.7	362.7
3	1.239287	4000	935494.6	935494.6	367.3	367.3	730.0	730.0
2	1.240929	4000	936734.1	936734.1	367.8	367.8	1097.8	1097.8
1	1.21777	4600	1154733.8	1154733.8	453.4	453.4	1551.2	1551.2
TOTAL			3026962.5	3026962.5	1188.5	1188.5	3379.1	3379.1

Tabel L.10: Nilai story shear untuk gaya lateral statik ekivalen Model 2.

Berdasarkan Tabel L.10, dapat diketahui nilai gaya geser pada model 2 arah X yang merupakan nilai gaya geser dasar untuk struktur tersebut adalah 1188.5 KN. Dan diketahui nilai gaya geser pada model 2 arah Y yang merupakan nilai gaya geser dasar untuk struktur tersebut adalah 1188.5 KN.

L.5. Koreksi story shear dengan 35% base shear

Tabel L.11: Hasil analisa Koreksi *story shear* dengan 35% *base shear* dengan redundansi 1, R = 8, untuk Model 1 arah X.

	Struktur Fixed Base									
Lantai Ke-	Story Shear (V) (kg)	Base Shear (V) (kg)	Cek 35% V Base Shear < Story Shear V							
4	79158.8	573.7920118	ОК							
3	113257.45	573.7920118	ОК							
2	141461.66	573.7920118	ОК							
1	167234.19	573.7920118	ОК							

	Struktur Fixed Base arah								
Lantai Ke-	Story Shear (V) (kg)	Base Shear (V) (kg)	Cek 35% V Base Shear < Story Shear V						
8	8220.43	415.9638415	ОК						
7	12735.42	415.9638415	ОК						
6	15027.13	415.9638415	ОК						
5	17064.39	415.9638415	ОК						
4	17802.35	415.9638415	ОК						
3	19659.04	415.9638415	ОК						
2	21896.19	415.9638415	ОК						
1	24387.87	415.9638415	ОК						

Tabel L.12: Hasil analisa Koreksi *story shear* dengan 35% *base shear* dengan redundansi 1, R = 8, untuk Model 2.

L.6. Nilai simpangan Gedung

Tabel L.13: Hasil Analisa nilai simpangan Gedung pada (Model 1).

	Displacement		ElasticDrift		h	Inelastic Drift		Drift Limit	Cek
Story	δe_X	δe_Y	δe_X	δe_Y		Δ_X	\varDelta_Y		
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
4	0.613	0.048	0.171	0.015	4000	0.941	0.083	61.538	OK
3	0.442	0.033	0.182	0.014	4000	1.001	0.077	61.538	OK
2	0.26	0.019	0.164	0.012	4000	0.902	0.066	61.538	OK
1	0.096	0.007	0.096	0.007	4600	0.528	0.039	70.769	OK

Tabel L.14: Hasil Analisa nilai simpangan Gedung pada (Model 2).

	Displacement		Elastic Drift		h	Inelastic Drift		Drift Limit	Cek
Story	δe_X	δe_Y	δe_X	δe_Y		\varDelta_X	Δ_Y		
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
8	30.613	7.713	2.567	0.493	4000	14.119	2.711	61.538	OK
7	28.046	7.220	3.144	0.710	4000	17.292	3.907	61.538	OK
6	24.902	6.510	3.710	0.940	4000	20.405	5.169	61.538	OK
5	21.192	5.570	4.003	1.054	4000	22.017	5.796	61.538	OK
4	17.189	4.516	4.253	1.128	4000	23.392	6.202	61.538	OK
3	12.936	3.388	4.185	1.129	4000	23.018	6.210	61.538	OK
2	8.751	2.259	4.494	1.203	4000	24.717	6.614	61.538	OK
1	4.257	1.057	4.257	1.057	4600	23.414	5.811	70.769	OK

L.7. Kontrol Ketidakberaturan Kekakuan Tingkat Lunak (Soft Story)

(
Story	Story Stiffness (kN/m)	Story Stiffness > 70% Story Stiffness above	kr	ki/kr (%)	Story Stiffness < 80% Story Stiffness above
4	102139.262				
3	142422.321	OK	133494.81		
2	155922.86	OK	158467.93	116.8006868	OK
1	177058.609	OK		111.7315087	OK

Tabel L.15: Kontrol ketidakberaturan kekauan tingkat lunak pada arah X (Model 1).

Tabel L.16: Kontrol ketidakberaturan kekakuan tingkat lunak pada arah Y (Model 1).

Story	Story Stiffness (kN/m)	Story Stiffness > 70% Story Stiffness above	kr	ki/kr (%)	Story Stiffness < 80% Story Stiffness above
4	193787.872				
3	236954.415	OK	232362.75		
2	266345.976	OK	287804.36	114.6250727	OK
1	360112.684	OK		125.1241246	OK

Tabel L.17: Kontrol ketidakberaturan kekauan tingkat lunak pada ara	h X
(Model 2).	

Story	Story Stiffness (kN/m)	Story Stiffness > 70% Story Stiffness above	kr	ki/kr (%)	Story Stiffness < 80% Story Stiffness above
8	105664.853				
7	142143.971	OK	134037.22		
6	154302.844	OK	156149.52		
5	172001.755	OK	171618.01	128.3238727	OK
4	188549.424	OK	193461.35	120.7492793	OK
3	219832.86	OK	212651.33	128.0942851	OK
2	229571.715	OK		118.6654178	OK
1	261535.409	OK		122.9879001	OK

Story	Story Stiffness (kN/m)	Story Stiffness > 70% Story Stiffness above	kr	ki/kr (%)	Story Stiffness < 80% Story Stiffness above
8	88129.003				
7	142381.673	OK	131203.6497		
6	163100.273	OK	161132.7013		
5	177916.158	OK	179185.0627	135.6030556	OK
4	196538.757	OK	199986.8007	121.9732279	OK
3	225505.487	OK	227858.4127	125.8506059	OK
2	261530.994	OK		130.7741277	OK
1	383657.767	OK		168.3755111	OK

Tabel L.18: Kontrol ketidakberaturan kekauan tingkat lunak pada arah X (Model 2).

L.8. Pengaruh Efek P-Delta

	Inelas	tic Drift	Story Forces			h	h Koefisien Stabilitas		Batas	Batas Stabiltas	
Lt	ΔX	ΔY	Р	V_x	V_y				Pengaruh P-Delta	Struktur,	Cek
	(mm)	(mm)	(kN)	(kN)	(kN)	(mm)	θX	θY	I -Della	$ heta_{max}$	
4	0.941	0.083	332.6	776.3	721	4000	0.0000	0.0000	0.1	0.1	ОК
3	1.001	0.077	687.2	1110.7	1,122	4000	0.0000	0.0000	0.1	0.1	OK
2	0.902	0.066	104655.3	1387.3	1,426	4000	0.0031	0.0002	0.1	0.1	OK
1	0.528	0.039	140594.2	1640.0	1,640	4600	0.0018	0.0001	0.1	0.1	OK

Tabel L.19: Hasil analisa P-Delta struktur Model 1 (R=8).

Lt	Inelast	ic Drift	St	ory Forces		h	Koefisien Stabilitas		Batas Pengaruh P-Delta	Batas Stabiltas Struktur. θmax	Cek
	ΔX	ΔY	Р	V_x	V_y						
	(mm)	(mm)	(kN)	(kN)	(kN)	(mm)	θX	θY			
8	14.1	2.7	14191.0	1228.8	3186.7	4000	0.007	0.001	0.1	0.1	OK
7	17.3	3.9	31604.7	1973.8	4708.6	4000	0.013	0.001	0.1	0.1	OK
6	20.4	5.2	49173.5	2487.7	5826.6	4000	0.018	0.002	0.1	0.1	OK
5	22.0	5.8	66142.7	2866.2	6663.9	4000	0.023	0.003	0.1	0.1	OK
4	23.4	6.2	83831.5	3216.8	7506.2	4000	0.028	0.003	0.1	0.1	OK
3	23.0	6.2	101686.9	3576.3	8361.1	4000	0.030	0.003	0.1	0.1	OK
2	24.7	6.6	119580.9	3939.1	9233.1	4000	0.034	0.004	0.1	0.1	OK
1	23.4	5.8	137410.1	4212.0	9802.3	4600	0.030	0.003	0.1	0.1	OK

Tabel L.20: Hasil analisa P-Delta struktur Model 2 (R=8).

L.9. Model Denah Struktur

Untuk Model Denah struktur Model 1 dapat dilihat seperti gambar dibawah:

Untuk Model Denah struktur Model 2 dapat dilihat seperti gambar dibawah:

L.10. Grafik Rekaman Gempa

Untuk gambar grafik rekaman gempa yang mengandung efek *Pulse* dapat dilihat seperti gambar dibawah:

Untuk gambar grafik rekaman gempa yang tidak mengandung efek *Pulse* pada Model 1 dapat dilihat seperti gambar dibawah:

3. Imperial Velly-06-Chihuahua

4. Loma Prieta -Bran

Untuk gambar grafik rekaman gempa yang tidak mengandung efek *Pulse* pada Model 2 dapat dilihat seperti gambar dibawah:

- 1. Imperial Valley-06-Bonds

2. Gazli

3. Cape Mendocino

4. Gazli

L.11. Interstory Drift Rasio (IDR)

Untuk gambar *Interstory Drift Rasio* rekaman gempa mengandung *pulse* pada Model 1 dapat dilihat seperti gambar dibawah:

72

Untuk gambar *Interstory Drift Rasio* rekaman gempa mengandung *pulse* pada Model 2 dapat dilihat seperti gambar dibawah:

Untuk gambar *Interstory Drift Rasio* rekaman gempa yang tidak mengandung *pulse* pada Model 1 dapat dilihat seperti gambar dibawah:

Untuk gambar *Interstory Drift Rasio* rekaman gempa yang tidak mengandung *pulse* pada Model 2 dapat dilihat seperti gambar dibawah:

L.12. Simpangan Sisa

Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi IO di Lantai 4 Model 1 dapat dilihat seperti gambar dibawah:

Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi IO di Lantai 1 Model 1 dapat dilihat seperti gambar dibawah:

76

Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi LS di Lantai 4 Model 1 dapat dilihat seperti gambar dibawah:

Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi LS di Lantai 1 Model 1 dapat dilihat seperti gambar dibawah:

Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi CP di Lantai 4 Model 1 dapat dilihat seperti gambar dibawah:

Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi CP di Lantai 1 Model 1 dapat dilihat seperti gambar dibawah:

Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi *Collapse* di Lantai 4 Model 1 dapat dilihat seperti gambar dibawah:

Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi *Collapse* di Lantai 1 Model 1 dapat dilihat seperti gambar dibawah:

Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi IO di Lantai 8 Model 2 dapat dilihat seperti gambar dibawah:

Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi IO di Lantai 1 Model 2 dapat dilihat seperti gambar dibawah:

Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi LS di Lantai 8 Model 2 dapat dilihat seperti gambar dibawah:

Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi LS di Lantai 1 Model 2 dapat dilihat seperti gambar dibawah:

Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi CP di Lantai 1 Model 2 dapat dilihat seperti gambar dibawah:

Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi Collapse di Lantai 8 Model 2 dapat dilihat seperti gambar dibawah:

Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi Collapse di Lantai 8 Model 2 dapat dilihat seperti gambar dibawah:
Untuk gambar simpangan sisa rekaman gempa yang tidak mengandung *pulse* pada Kondisi IO, LS, CP serta Collapse yang mndekati median di Lantai 4 dan Lantai 1 Model 1 dapat dilihat seperti gambar dibawah:

- ROOF IO BASE IO 0.03 0.12 0.1 0.02 0.08 0.06 0.01 0.04 0.02 0 60 -0.02 -0.01 -0.04 -0.06 -0.02 -0.08 -0.1 -0.03
- 1. Kondisi IO pada gempa tanpa Pulse Northridge

3. Kondisi CP pada gempa tanpa Pulse Imperial Velly-06-Chihuahua

4. Kondisi Collapse pada gempa tanpa Pulse Loma Prieta -Bran

Untuk gambar simpangan sisa rekaman gempa yang tidak mengandung *pulse* pada Kondisi IO, LS, CP serta Collapse yang mndekati median di Lantai 4 dan Lantai 1 Model 2 dapat dilihat seperti gambar dibawah:

1. Kondisi IO pada gempa tanpa Pulse Imperial Valley-06-Bonds

2. Kondisi LS pada gempa tanpa Pulse Gazli

3. Kondisi CP pada gempa tanpa Pulse Cape Mendocino

DAFTAR RIWAYAT HIDUP

DATA DIRI PENULIS

Nama Lengkap	: Syafrieda Indah
Tempat Tanggal Lahir	: Kotanopan, 13 Februari 2002
Alamat	: Jln. Gn. Singgamata No.38, Glugur Darat
	II, Kec. Medan Timur, Kota Medan,
	Sumatera Utara.
Agama	: Islam
Nama Orang Tua	
Ayah	: Sukri Rahmat
Ibu	: Rosmina Lubis
No. Telp	: 081384406836
Email	: indahsyafrieda13@gmail.com

RIWAYAT PENDIDIKAN

SD Negeri 1 Kotanopan	Tahun Lulus 2014
SMP Negeri 1 Kotanopan	Tahun Lulus 2017
SMA Negeri 2 Plus Panyabungan	Tahun Lulus 2020
Universitas Muhammadiyah Sumatera	2020 - Selesai
Utara	