TUGAS AKHIR

INVESTIGASI PERILAKU SIMPANGAN PERMANEN TERHADAP KERUNTUHAN STRUKTUR SRPMK BAJA *(STUDI LITERATUR)*

Diajukan Untuk Memenuhi Syarat – Syarat Memperoleh Gelar Sarjana Teknik Sipil Pada Fakultas Teknik Universitas Muhamamdiyah Sumatera Utara

Disusun Oleh:

RIZKI TAMARA 2007210064

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA MEDAN 2024

LEMBAR PERSETUJUAN PEMBIMBING

Tugas akhir ini diajukan oleh:

Nama	: Rizki Tamara	a			
Npm	: 2007210064				
Program Studi	: Teknik Sipil				
Judul Skripsi	: Investigasi	Perilaku	Simpangan	Permanen	Terhadap
	Keruntuhan	Struktur SR	PMK Baja		
Bidang Ilmu	: Struktur				

Telah berhasil dipertahankan di hadapan Tim Penguji dan diterima sebagai salah satu syarat yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

> Disetujui Untuk Disampaikan Kepada Panitia Ujian:

Medan, Oktober 2024 Dosen Pembimbing

adefeint

Assoc. Prof. Ir. Ade Faisal, S.T., M.Sc., Ph.D.

i

LEMBAR PENGESAHAN

Tugas akhir ini diajukan oleh:

Nama	: Rizki Tamara	a			
Npm	: 2007210064				
Program Studi	: Teknik Sipil				
Judul Skripsi	: Investigasi	Perilaku	Simpangan	Permanen	Terhadap
	Keruntuhan	Struktur SR	PMK Baja		
Bidang Ilmu	: Struktur				

Telah berhasil dipertahankan dihadapan Tim Penguji dan diterima sebagai salah satu syarat yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

> Medan, Oktober 2024 Mengetahui dan Menyetujui **Dosen Pembimbing**

Assoc. Prof. Ir., Ade Faisal, S.T., M.Sc., Ph.D.

Dosen Pembanding 1

Dosen Pembanding 2

Assoc. Prof. Fahrizal Zulkarnain, S.T., M.Sc., Ph.D.

Rizki Efrida, S.T., M.T.

Ketua Program Studi Teknik Sipil

Assoc. Prof. Fahrizal Zulkarnain, S.T., M.Sc., Ph.D.

ii

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Saya yang bertandatangan dibawah ini :

Nama	: Rizki Tamara
Tempat, Tanggal Lahir	: Takengon, 09 Maret 2002
Npm	: 2007210064
Fakultas	: Teknik
Program Studi	: Teknik Sipil

Menyatakan dengan sesungguhnya dan sejujurnya, bahwa Laporan Tugas Akhir saya yang berjudul:

"Investigasi Perilaku Simpangan Permanen Terhadap Keruntuhan Struktur SRPMK Baja."

Bukan merupakan plagiarisme, pencurian hasil karya milik orang lain, hasil kerja orang lain untuk kepentingan saya karena hubungan material dan nonmaterial serta segala kemungkinan lain, yang pada hakekatnya merupakan karya tulis Tugas Akhir saya secara orisinil dan otentik.

Bila kemudian hari diduga kuat ada ketidaksesuaian antara fakta dengan kenyataan ini, saya bersedia diproses oleh Tim Fakultas yang di bentuk untuk melakukan verifikasi, dengan sanksi terberat berupa pembatalan kelulusan atau kesarjanaan saya.

Demikian Surat Pernyataan ini saya buat dengan kesadaran sendiri dan tidak atas tekanan ataupun pasksaan dari pihak manapun demi menegakkan integritas akademik di Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

> Medan, Oktober 2024 Saya yang menyatakan,

Rizki Tamara

ABSTRAK

INVESTIGASI PERILAKU SIMPANGAN PERMANEN TERHADAP KERUNTUHAN STRUKTUR SPRMK BAJA (STUDI LITERATUR)

Rizki Tamara

2007210064

Dr. Ade Faisal, S.T., M.Sc

Gempa bumi merupakan getaran yang bersifat alami, disebabkan oleh pelepasan energi dan menciptakan gelombang seismik. Kerusakan akibat gempa bumi juga berdampak pada struktur bangunan. Oleh karena itu bangunan yang dirancang harus masuk dalam kategori *life safety*, serta menggunakan sistem struktur penahan beban gempa. Penggunaan material baja untuk konstruksi bangunan dapat mengurangi risiko bangunan runtuh saat diguncang gempa bumi dikarenakan tingkat fleksibilitasnya yang cukup tinggi. Analisa kinerja keruntuhan struktur juga perlu dilakukan untuk mengetahui kapasitas struktur tersebut pada struktur baja di bagian atap dan lantai 1 melalui pengecekan simpangan permanen. Pada bagian ini, terjadi pergerakan bangunan ke arah kanan maupun kiri diakibatkan oleh gerakan tanah gempa dekat mengandung pulse maupun tidak, serta gempa jauh. Pada tugas akhir ini, struktur SRPMK Baja yang digunakan adalah struktur rangka baja 4 dan 8 tingkat. Analisa yang digunakan adalah Respon Spektrum sebagai tahap desain dan Respon Riwayat Waktu Linear dan Nonlinear sebagai tahap evaluasi, dengan alat bantu software analisa struktur dan Opensees. Pada struktur bangunan akan dikenakan 21 ground motion. Hasilnya menunjukkan bahwa Simpangan permanen lebih dominan terjadi pada tingkat 8 ketika struktur mengalami keruntuhan dan nilai rasio simpangan permanen di kondisi CP gerakan tanah gempa jauh pada model 2 lebih kecil dibandingkan dengan nilai rasio gerakan tanah gempa dekat yang tidak mengandung efek *pulse* pada model 2.

Kata Kunci: Gempa Bumi, keruntuhan struktur, SRPMK, simpangan permanen.

ABSTRACT

INVESTIGATION OF THE BEHAVIOR OF PERMANENT DRIFT ON THE COLLAPSE OF MRF STEEL STRUCTURES

(LITERATURE STUDY)

Rizki Tamara

2007210064

Dr. Ade Faisal, S.T., M.Sc

Earthquakes are natural vibrations, caused by the release of energy and creating seismic waves. Damage from earthquakes also impacts building structures. Therefore, the building being designed must be included in the life safety category, and use an earthquake load-bearing structural system. The use of steel materials for building construction can reduce the risk of buildings collapsing when shaken by an earthquake due to its high level of flexibility. Analysis of structural collapse performance also needs to be carried out to determine the capacity of the structure in the steel structure on the roof and first floor through checking permanent Drfit. In this section, there is movement of buildings to the right or left due to ground movements, near earthquakes containing pulses or not, as well as distant earthquakes. In this final project, the SRPMK Steel structure used is a 4 and 8 story steel frame structure. The analysis used is Spectrum Response as the design stage and Linear and Nonlinear Time History Response as the evaluation stage, with structural analysis software tools and Opensees. The building structure will be subject to 21 ground motions. The results show that permanent drift is more dominant at level 8 when the structure collapses and the permanent drift ratio value in the CP condition of far earthquake ground motion in model 2 is smaller than the value of the near earthquake ground motion ratio which does not contain pulse effects in model 2.

Keywords: Earthquake, structural collapse, MRF, permanent deviation.

KATA PENGANTAR

Dengan nama Allah Yang Maha Pengasih lagi Maha Penyayang. Segala puji dan Syukur penulis ucapkan kehadirat Allah SWT yang telah memberikan karunia dan nikmat yang tiada terkira, sehingga penulis dapat menyelesaikan Tugas Akhir dengan judul "Investigasi Perilaku Simpangan Permanen Terhadap Keruntuhan Struktur SRPMK Baja" sebagai syarat untuk meraih gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara, Medan.

Banyak pihak yang telah membantu dalam menyelesaikan Proposal Tugas Akhir ini. Untuk itu penulis menghaturkan rasa terima kasih kepada:

- Bapak Ir. Ade Faisal, S.T., M.Sc., Ph.D selaku Dosen Pembimbing yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Proposal Tugas Akhir ini.
- 2. Bapak Dr. Fahrizal Zulkarnain selaku Dosen Pembanding I sekaligus sebagai Ketua Program Studi Teknik Sipil Universitas Muhammadiyah Sumatera Utara.
- 3. Ibu Rizki Efrida, S.T., M.T. selaku Dosen Pembanding II sekaligus Sekretaris Program Studi Teknik Sipil Universitas Muhammadiyah Sumatera Utara.
- Bapak Munawar Alfansury Siregar, S.T., M.T. selaku Dekan Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- Seluruh Bapak/Ibu Dosen di Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara yang telah banyak memberikan ilmu kepada penulis.
- 6. Yang teristimewa, Orang Tua yang sudah sangat berjasa dalam hidup saya. Ayahanda Tamrin Usman (Alm), serta kedua Ibunda saya Sutami dan Fatimah. Terima kasih atas pengorbanan, cinta, nasihat, serta senantiasa menuturkan doa – doa baik kepada anaknya agar diberi kemudahan dan kelancaran selama berproses dalam dunia perkuliahan.
- Saudara kandung penulis Abangda Erwin, Irfan (Alm), Heri. Serta Kakanda Fitria, Irma, Siska, Nana, dan Weni. Kemudian abang dan kakak ipar penulis (Abang Zulkifli, Zulbahraini, Yudi, Dedi, kemudian Kakak Fauziah, Indah,

Ana). Penulis ucapkan terima kasih banyak atas dukungan moril maupun material dan kasih sayang tulus selama ini kepada penulis.

- 8. Para keponakan penulis yang tidak dapat disebutkan namanya satu persatu.
- 9. Ibu Yusmaniati, S.Pd., yang selalu membantu dan memberi motivasi positif. Terima Kasih atas kebaikan dan ketulusan hati kepada penulis selama ini.
- 10. Syafrieda Indah, Siska Karina, Sri Nadiah Alfianita Putri, Sheren Denisa Aulia, selaku sahabat penulis yang senantiasa selalu menemani dan memberi bantuan kepada penulis. Terima kasih atas semua kebaikan yang diberikan kepada penulis selama ini.
- 11. Abang Afiful Anshari, S.T., yang telah membantu penulis dalam mengerjakan proposal tugas akhir ini, serta Tim *Earthquake Engineering Research*, dan semua teman sejawat penulis lainnya yang tidak mungkin namanya disebut satu per satu.
- 12. Bapak/Ibu Staff Administrasi di Biro Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Tugas Akhir ini tentunya masih jauh dari kesempurnaan, untuk itu penulis berharap kritik dan masukan yang konstruktif untuk menjadi bahan pembelajaran berkesinambungan penulis di masa depan. Semoga Tugas Akhir ini dapat bermanfaat bagi dunia konstruksi teknik sipil.

Medan, September 2024

Rizki Tamara

DAFTAR ISI

LEMBAR PERSETUJUAN PEMBIMBING	ii
LEMBAR PENGESAHAN	ii
LEMBAR PERNYATAN KEASLIAN TUGAS AKHIR	iii
ABSTRAK	iv
ABSTRACT	V
KATA PENGANTAR	vi
DAFTAR ISI	viii
DAFTAR TABEL	xii
DAFTAR GAMBAR	xiii
DAFTAR NOTASI	xvi
DAFTAR SINGKATAN	xviii
BAB 1 PENDAHULUAN	
1.1. Latar Belakang	1
1.2. Rumusan Masalah	3
1.3. Tujuan Penelitian	3
1.4. Ruang Lingkup	3
1.5. Manfaat Penelitian	4
BAB 2 TINJAUAN PUSTAKA	
2.1 Umum	5
2.2 Pengertian Gempa	5
2.2.1. Gempa Dekat	5

viii

2.2.2. Gempa Jauh	5
2.3 Groundmotion	6
2.4 Struktur Penahan Beban Gempa	6
2.5 Sistem Rangka Pemikul Momen Khusus	6
2.6 Perencanaan Struktur Baja Tahan Gempa	7
2.7 Perencanaan Bangunan Tahan Gempa	7
2.8 Incremental Dynamic Analysis	7
2.9 Simpangan Permanen	8
2.10 Keruntuhan Struktur	8
BAB 3 METODE PENELITIAN	
3.1 Umum	9
3.2 Pemodelan Struktur	10
3.2.1 Data Perencanaan Struktur	10
3.2.2 Dimensi Balok – Kolom	12
3.3 Analisis Struktur	12
3.3.1 Analisis Dinamik Struktur Linier	12
3.3.2 Pembebanan	13
3.3.3 Respon Spektrum Desain	14
3.3.4 Analisis Dinamik Struktur Nonlinier	14
3.3.5 Data Rekaman Gempa	14
3.3.6 Simpangan Permanen	15
3.4 Sistem Rangka Pemikul Momen Khusus (SRPMK)	16
3.5 Material Baja	16
3.6 Perencanaan Bangunan Tahan Gempa	17

3.6.1 Perioda Alami Struktur	17
3.6.2 Analisa Riwayat Waktu	17
3.6.3 Kinerja Keruntuhan	17
3.6.4 Incremental Dynamic Analysis (IDA)	18
3.7 Kondisi Batas	19
BAB 4 HASIL DAN PEMBAHASAN	
4.1 Hasil Model Liniar Dan Nonlinier	20
4.2 Hasil Analisa Linier	20
4.2.1. Respon Spektrum Ragam	20
4.2.2. Koreksi Gempa Dasar Nominal	22
4.2.3. Koreksi Faktor Redudansi	22
4.2.4. Koreksi Skala Simpangan AntarTingkat	23
4.2.5. Nilai Simpangan Gedung	23
4.2.6. Kontrol Ketidakberaturan Kekakuan Tingkat Lunak (soft story)	23
4.2.7. Pengaruh P-Delta	24
4.3 hasil Analisa Nonlinier	24
4.3.1. Interstory Drift Ratio (IDR)	24
4.3.2. Incremental Dynamic Analysis (IDA)	28
4.3.3. Simpangan Permanen	34
BAB 5 KESIMPULAN DAN SARAN	
5.1 Kesimpulan	49
5.2 Saran	49
DAFTAR PUSTAKA	
LAMPIRAN	

DAFTAR RIWAYAT HIDUP

DAFTAR GAMBAR

Gambar 3.1	Bagan Alir Penelitian	9
Gambar 3.2	Denah Struktur Model 1	10
Gambar 3.3	Denah 2 Dimensi Model 1	11
Gambar 3.4	Denah Struktur Model 2	11
Gambar 3.5	Denah 2 Dimensi Model 2	11
Gambar 3.7	Diagram alir desain struktur baja yang mengacu pada SNI	
	1729 dan SNI 7860:2020	19
Gambar 3.8	Kurva IDA	21
Gambar 4.1	Rasio simpangan maksimum pada kondisi CP terjadi akibat gerakan tanah Cape Mendocino 1992 dengan <i>Pulse Indicator</i>	28
Gambar 4.2	Rasio simpangan maksimum pada kondisi runtuh terjadi akibat gerakan tanah Cape Mendocino 1992 dengan <i>Pulse Indicator</i>	28
Gambar 4.3	Rasio simpangan maksimum pada model 1 kondisi CP dan runtuh akibat gerakan tanah gempa dekat yang tidak mengandung <i>Pulse Indicator</i>	29
Gambar 4.4	Rasio simpangan maksimum pada model 2 kondisi CP dan runtuh akibat gerakan tanah gempa dekat yang tidak mengandung <i>Pulse Indicator</i>	29
Gambar 4.5	Rasio simpangan maksimum pada model 1 yang dipilih berrdasarkan nilai median di kondisi CP dan runtuh akibat gerakan tanah gempa jauh	30
Gambar 4.6	Rasio simpangan maksimum pada model 2 yang dipilih berrdasarkan nilai median di kondisi CP dan runtuh akibat gerakan tanah gempa jauh	30
Gambar 4.7	Ilustrasi kondisi batas mulai dari kondisi batas secara berurutan pada model 1, mulai dari kondisi IO, LS, CP, serta kondisi runtuh	32
Gambar 4.8	Ilustrasi kondisi batas mulai dari kondisi batas secara berurutan pada model 2, mulai dari kondisi IO, LS, CP, serta kondisi runtuh	33

Gambar 4.9	Kondisi batas CP dan Runtuh untuk model 1 akibat sejumlah gerakan tanah gempa yang mengandung efek <i>pulse</i>	34
Gambar 4.10	Kondisi batas CP dan Runtuh untuk model 2 akibat sejumlah gerakan tanah gempa bumi yang mengandung efek <i>pulse</i>	34
Gambar 4.11	Kondisi batas CP dan Runtuh untuk model 1 akibat sejumlah gerakan tanah gempa bumi yang tidak mengandung efek <i>pulse</i>	35
Gambar 4.12	Kondisi batas CP dan Runtuh untuk model 2 akibat sejumlah gerakan tanah gempa bumi yang tidak mengandung efek <i>pulse</i>	35
Gambar 4.13	Kondisi batas CP dan Runtuh untuk model 2 akibat sejumlah gerakan tanah gempa jauh	36
Gambar 4.14	Kondisi batas CP dan Runtuh untuk model 2 akibat sejumlah gerakan tanah gempa jauh	36
Gambar 4.15	Simpangan Permanen	38
Gambar 4.16 (a)	Rasio simpangan permanen di atap dan pada model 1 yang paling ekstrim untuk kondisi CP dari seluruh gerakan tanah gempa dekat mengandung pulse	38
Gambar 4.16 (b)	Rasio simpangan permanen di lantai 1 pada model 1 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa dekat mengandung pulse	39
Gambar 4.17 (a)	Rasio simpangan permanen di atap pada model 1 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa dekat mengandung pulse	39
Gambar 4.17 (b)	Rasio simpangan permanen di lantai 1 pada model 1 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa dekat mengandung pulse	40
Gambar 4.18 (a)	Rasio simpangan permanen di lantai 1 pada model 1 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa dekat tidak mengandung pulse	40
Gambar 4.18 (b)	Rasio simpangan permanen di lantai 1 pada model 1 yang paling ekstrim untuk kondisi CP dari seluruh gerakan tanah gempa dekat yang tidak mengandung pulse	41
Gambar 4.19 (a)	Rasio simpangan permanen di atap pada model 1 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa dekat yang tidak mengandung pulse	41
Gambar 4.19 (b)	Rasio simpangan permanen di lantai pada model 1 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa dekat yang tidak mengandung pulse	42

Gambar 4.20 (a)	Rasio simpangan permanen di atap pada model 1 yang paling ekstrim untuk kondisi CP dari seluruh gerakan tanah gempa jauh	42
Gambar 4.20 (b)	Rasio simpangan permanen di lantai 1 pada model 1 yang paling ekstrim untuk kondisi CP dari seluruh gerakan tanah gempa jauh	43
Gambar 4.21 (a)	Rasio simpangan permanen di atap pada model 1 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa jauh	43
Gambar 4.21 (b)	Rasio simpangan permanen di lantai 1 pada model 1 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa jauh	44
Gambar 4.22	Rasio simpangan permanen di atap dan lantai 1 pada model 2 yang paling ekstrim untuk kondisi CP dari seluruh gerakan tanah gempa dekat Mengandung Pulse	45
Gambar 4.23	Rasio simpangan permanen di atap dan lantai 1 pada model 2 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa dekat Mengandung Pulse	46
Gambar 4.24	Rasio simpangan permanen di atap dan lantai 1 pada model 2 yang paling ekstrim untuk kondisi CP dari seluruh gerakan tanah gempa dekat tanpa pulse	47
Gambar 4.25	Rasio simpangan permanen di atap dan lantai 1 pada model 2 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa dekat tanpa Pulse	48
Gambar 4.26	Rasio simpangan permanen di atap dan lantai 1 pada model 2 yang paling ekstrim untuk kondisi CP dari seluruh gerakan tanah gempa dekat jauh	49
Gambar 4.27	Rasio simpangan permanen di atap dan lantai 1 pada model 2 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa dekat jauh	50

XV

DAFTAR TABEL

Tabel 3.1	Komponen struktural bangunan	12
Tabel 3.2	Kombinasi Pembebanan Berdasarkan SNI 1726:2019	13
Tabel 3.3	Data Rekaman Gempa Dekat Mengandung Pulse	14
Tabel 3.4	Data Rekaman Gempa Dekat Tidak Mengandung Pulse	15
Tabel 3.5	Data Rekaman Gempa Jauh	15
Tabel 4.1	Hasil Analisis CQC dan SRSS Pada Model 1	23
Tabel 4.2	Hasil Analisis CQC dan SRSS Pada Model 2	23
Tabel 4.3	Nilai Gaya Geser Dasar Nominal Analisa Respon Spektrum	24
Tabel 4.4	Koreksi Skala Simpangan Antar Tingkat	25
Tabel 4.5	Rasio simpangan permanen pada model 1 terhadap gempa dekat yang tidak mengandung efek <i>pulse</i>	50
Tabel 4.6	Rasio simpangan permanen pada model 2 terhadap gempa dekat yang tidak mengandung efek <i>pulse</i>	50
Tabel 4.7	Rasio simpangan permanen pada model 1 terhadap gempa jauh	50
Tabel 4.8	Rasio simpangan permanen pada model 2 terhadap gempa jauh	50

DAFTAR NOTASI

C _d	=	Faktor kuat lebih sistem
DL	=	Beban mati, termasuk SIDL
E	=	Modulus elastisitas
Ex	=	Beban gempa arah x
Ey	=	Beban gempa arah y
F	=	Frekuensi Struktur
F_a	=	Koefisien perioda pendek
F_{v}	=	Koefisien perioda 1,0 detik
FPGA	=	Nilai koefisien situs untuk PGA
hn	=	Ketinggian struktur dalam m di atas dasar sampai tingkat
		tertinggi struktur (meter)
Ι	=	Momen Inersia kolom/balok
Ie	=	Faktor keutamaan gempa
ω	=	Kecepatan sudut
k	=	Kekakuan struktur
1	=	Panjang kolom/balok
LL	=	Beban hidup
M_{column}	=	Momen kapasitas 2 kolom yang bertemu di joint
M _{beam}	=	Momen kapasitas 2 balok yang menumpu di kolom
Mc	=	Momen puncak
My	=	Momen leleh
Mu	=	Momen ultimit
PGA	=	Nilai PGA dibatuan dasar (S_B) mengacu pada peta Gempa SNI 1726:2012
R	=	Faktor koefisien modifikasi respon

Ss	=	Nilai parameter respon spektrum percepatan gempa perioda pendek 0,2 detik di batuan dasar (S_B) mengacu pada Peta Gempa SNI 1726:2016
<i>S</i> ₁	=	Nilai parameter respon spektrum percepatan gempa perioda 1,0detik di batuan dasar (<i>S_B</i>) mengacu pada Peta Gempa SNI 1726:2016
S_{DS}	=	Respon spektrum percepatan respon desain untuk perioda pendek
S_{D1}	=	Respon spektrum percepatan desain untuk perioda 1,0 detik
Ta minimum	=	Nilai batas bawah perioda bangunan
T _{a maksimum}	=	Nilai batas atas perioda bangunan
Vt	=	Gaya geser dasar nominal yang didapat dari hasil analisis
		ragam spektrum respon yang telah dilakukan
\mathbf{V}_1	=	Gaya geser dasar prosedur gaya lateral statik ekivalen
θ_y	=	Rotasi pada saat leleh
E	=	Total tegangan yang terjadi
€y	=	Tegangan pada saat leleh
μ_p	=	Lendutam pada titik plastis
μ_y	=	Lendutan pada titik leleh
ϕ_m	=	Lengkungan maksimum yang akan timbul
ϕ_y	=	Lengkungan pada saat leleh
θ_u	=	Rotasi pada batas ultimit
θ_y	=	Rotasi pada batas leleh
θ	=	Koefisien rotasi post-capping
θ	=	Koefisien rotasi plastis
Ω	=	Faktor pembesaran defleksi
ρ	=	Faktor redudansi

DAFTAR SINGKATAN

CQC	= Complete Quadratic Combination
PEER	= Pacific Earthquake Engineering Research
PPURG	= Pedoman Perencanaan Pembebanan untuk Rumah
SRPMK	= Sistem Rangka Pemikul Momen Khusus
SRSS	= Square Root of the Sum of Square
IDA	= Incremental Dynamic Analysis
IDR	= Interstory Drfit Ratio
СР	= Collapse Prevention

BAB 1

PENDAHULUAN

1.1. Latar Belakang

Gempa bumi dapat didefinisikan sebagai getaran yang bersifat alami, dan terjadi di lokasi tertentu yang bersifat tidak berkelanjutan. Gempa bumi disebabkan oleh pelepasan energi dari dalam secara tiba-tiba menciptakan gelombang seismik, tipe gempa bumi meliputi gempa bumi vulkanik (gunung api) dan gempa bumi tektonik. Kerusakan akibat gempa bumi bukan hanya berdampak bagi lingkungan tetapi juga berdampak pada struktur bangunan. Hal ini terjadi, karena gempa bumi membuat struktur bangunan mengalami kerusakan ringan hingga keruntuhan yang dapat menimbulkan korban jiwa. Sehingga bangunan yang direncanakan minimal masuk dalam kategori *life safety*, dimana bangunan diijinkan mengalami kerusakan namun tidak mengalami keruntuhan (Zhafira dkk., 2023).

Oleh sebab itu dibutuhkan sistem struktur penahan beban gempa. Penggunaan Sistem Rangka Pemikul Momen Khusus agar meminimalisir momen yang terjadi pada elemen akibat gaya gempa. Dengan kondisi geografis yang seperti itu letak suatu gedung bisa saja berada tepat dilokasi patahan dan bisa saja berjauhan dari lokasi patahan yang mengakibatkan berbedanya respon gempa yang diterima oleh suatu gedung. Dengan kondisi seperti ini bangunan gedung dengan material baja lebih sesuai dibandingkan dengan material beton (Siswanto dan Salim, 2018).

SRPMK (Sistem Rangka Pemikul Momen Khusus) yaitu sistem rangka dengan kolom, balok, dan joint balok – kolom, sebagai elemen – elemen penahan gaya lateral. Elemen elemen ini menahan gaya yang bekerja melalui aksi lentur, geser dan aksial. Sistem ini pada dasarnya memiliki daktilitas penuh dan wajib digunakan di zona resiko gempa tinggi yaitu di zona 5 hingga zona 6. Struktur harus direncanakan menggunakan sistem penahan beban lateral yang memenuhi persyaratan detailing yang khusus dan mempunyai daktilitas penuh. Sistem seperti ini akan memiliki Faktor Modifikasi Respons R = 8,5. (Tajunnisa dkk., 2014).

Untuk Sistem Rangka Pemikul Momen Khusus (SRPMK), sifat mekanik dasar material baja tulangan yang penting diperhatikan agar hirarki keruntuhan rencana

dapat terealisasi diantaranya adalah kuat leleh, kuat tarik, daktilitas, faktor kuat lebih (*overstrength*) dan rasio kuat tarik terhadap kuat leleh. Dikaitkan dengan sifat mekaniknya, baja tulangan yang beredar di Indonesia saat ini pada dasarnya dapat dikelompokkan ke dalam dua kategori, yaitu baja tulangan yang memenuhi persyaratan sifat mekanik berdasarkan SNI 03-2847-02 Pasal 23 untuk struktur tahan gempa disebut baja tulangan *compliance* dan baja tulangan yang tidak memenuhi persyaratan disebut baja tulangan *noncompliance*. (Imran dkk., 2010).

Pentingnya memperkirakan kebutuhan drift permanen pada bangunan bertingkat memegang peranan yang sangat penting dalam menentukan kelayakan teknis dan ekonomis perbaikan dan perkuatan bangunan yang rusak akibat eksitasi gempa (Iwata., dkk 2006), mensurvei 12 bangunan baja bertingkat rendah hingga menengah (10 bangunan mempunyai rangka pemikul momen dan 2 bangunan mempunyai rangka pemikul momen dengan bresing baja sebagai sistem struktur penahan beban lateral) yang sedang diperbaiki atau dibongkar akibat gempa bumi Hyogo-Ken-Nambu tahun 1995. Mereka menemukan bahwa di antara bangunanbangunan berbingkai penahan momen, delapan diantaranya diperbaiki sementara dua sisanya dibongkar karena sisa penyimpangan antar lantai yang berlebihan sebesar 2%. Selain itu, mereka mencatat bahwa biaya perbaikan bangunan baja miring yang disurvei meningkat secara linier seiring dengan meningkatnya rasio penyimpangan maksimum dan sisa atap. Oleh karena itu, mereka menyarankan agar bangunan baja dibatasi pada batas maksimum dan batas rasio penyimpangan sisa atap masing-masing sekitar 1,4% dan 0,9%, untuk memenuhi batas kemampuan perbaikan yang memenuhi kendala teknis dan ekonomis. Bertahun-tahun kemudian, penyelidikan lapangan di Jepang menyoroti bahwa sisa pergeseran antar lantai sekitar 0,5% dapat terlihat oleh penghuni bangunan dan sisa pergeseran antar lantai sekitar 1,0% dapat menyebabkan ketidaknyamanan bagi manusia (Ruiz-Garcíay, 2020).

Dalam tulisan ini akan mengulas tentang Investigasi Perilaku Simpangan Permanen Terhadap Keruntuhan SRPMK Baja. Lalu, Pada tingkat manakah simpangan permanen akan dominan ketika struktur mengalami keruntuhan?

1.2. Rumusan Masalah

Berdasarkan latar belakang di atas, maka rumusan masalah yang dapat diambil adalah sebagai berikut.

- 1. Bagaimana perilaku simpangan permanen terhadap keruntuhan struktur baja selama gempa terjadi?
- 2. Pada tingkat manakah simpangan permanen akan dominan ketika struktur mengalami keruntuhan?

1.3. Tujuan Penelitian

Adapun tujuan penelitian ini adalah:

- 1. Untuk mengetahui perilaku simpangan permanen terhadap keruntuhan struktur baja selama gempa terjadi.
- 2. Untuk mengetahui pada tingkat mana simpangan permanen akan dominan ketika struktur mengalami keruntuhan.

1.4. Ruang Lingkup

Adapun Batasan masalah yang ditetapkan pada tugas akhir ini adalah:

- 1. Stuktur bangunan yang digunakan adalah SRPMK baja 4 dan 8 lantai.
- 2. Variabel yang ditinjau adalah simpangan permanen.
- 3. Elemen yang ditinjau secara global melalui perilaku deformasi pada tingkat.
- 4. Gempa yang ditinjau adalah gempa dekat dan gempa jauh, baik itu yang mengandung efek pulse maupun tidak.
- 5. Geometri struktur yang ditinjau adalah tinggi antar tingkat sebesar 4 m untuk semua tingkat kecuali tingkat dasar sebesar 4.3 m. Jumlah bentang pada bidang horizontal adalah 3 dengan jarak kolom tipikal sebesar 6.1 m.
- 6. Struktur SRPMK baja merupakan sistem penahan gaya lateral yang diletakkan pada bagian perimeter terluar, sedangkan pada bagian lain, merupakan sistem penahan gaya vertical.
- 7. Fungsi bangunan yang ditinjau adalah perkantoran yang berada pada kawasan dengan kategori desain seismik D.

- 8. Pengaruh angin diabaikan pada studi ini.
- 9. Kriteria lain yang ditinjau dijelaskan dengan lengkap di bagian bab 3 metodologi penelitian.

1.5. Manfaat Penelitian

Dari hasil perencanaan pada pemodelan struktur baja dengan Sistem Rangka Pemikul Momen Khusus (SRPMK) maka diharapkan tugas akhir ini dapat memberikan manfaat untuk mengetahui bagaimana mengetahui perilaku simpangan permanen terhadap keruntuhan struktur baja selama gempa terjadi serta mengetahui pada tingkat mana simpangan permanen akan dominan ketika struktur mengalami keruntuhan.

BAB 2

TINJAUAN PUSTAKA

2.1 Umum

Bab ini akan membahas mengenai teori – teori dasar dan ketentuan yang berhubungan dengan perencanaan struktur bangunan yang akan dianalisis berdasarkan SNI 1726: 2019 dan teori lain yang terkait dengan perhitungan atau Analisa data yang diperlukan dalam tugas akhir ini.

2.2 Pengertian Gempa

Gempa bumi merupakan suatu gejala fisik yang ditandai dengan bergetarnya bumi yang disebabkan oleh peristiwa vulkanik, yang dimana suatu tanah bergetar disebabkan oleh aktivitas desakan magma ke permukaan bumi. Peristiwa ini disebut juga dengan gempa vulkanik. (Siswanto dan Salim, 2018).

2.2.1 Gempa Dekat

Menurut Pawirodikromo (2012), gempa dekat merupakan respon tanah yang diakibatkan oleh aktivitas gempa pada daerah yang dekat pusat gempa. Rekaman gempa dekat adalah gempa yang direkam ≤ 15 km dari jarak patahan (Kalkan, dkk. 2004). Faisal, dkk. (2015) mengatakan, gempa dekat dibedakan berdasarkan data rekaman yaitu gempa pulse dan fling. Gempa pulse ditandai dengan adanya efek lonjakan yang bersifat monotonik. Efek lain yang dimiliki adalah fling step, yaitu simpangan yang terjadi jauh dari titik nol setelah terjadinya lonjakan simpangan yang besar.

2.2.2 Gempa Jauh

Gempa jauh adalah gempa yang memiliki percepatan yang lebih kecil, dikarenakan ground motion acceleration history mempunyai frekuensi getaran yang lebih tinggi dibandingkan dengan velocity. Dengan kondisi yang seperti ini, maka gempa jarak jauh mempunyai A/V rasio yang lebih rendah daripada gempa jarak dekat.

2.3 GroundMotion (Getaran Tanah)

Groundmotion adalah Gerakan tanah di permukaan bumi yang diakibatkan oleh gempa. umumnya, pemahaman tentang gerakan tanah lebih ditujukan kepada percepatan tanah akibat gempa (Pawirodikromo, 2012). Respon gempa sensitif terhadap karakteristik getaran tanah, besar frekuensi gempa, pola fulse, dan lainnya.

2.4 Struktur Penahan Beban Gempa

Sistem penahan gaya seismik lateral dan vertikal dasar harus memenuhi salah satu tipe yang telah ditetapkan pada SNI 1726:2019 Pasal 7.2 Stuktur Penahan Beban Gempa tentang, setiap tipe dibagi-bagi berdasarkan tipe elemen vertikal yang digunakan untuk menahan gaya seismik lateral. Setiap sistem penahan gaya seismik yang dipilih harus dirancang dan didetailkan sesuai dengan persyaratan khusus bagi sistem tersebut yang telah ditetapkan.

Berdasarkan SNI 1726:2019 Pasal 7.2 tentang Struktur Penahan Beban Gempa, sistem struktur penahan gaya seismik ditentukan oleh parameter berikut.

- 1. Faktor koefisien modifikasi respon (R).
- 2. Faktor kuat lebih sistem (Cd).
- 3. Faktor pembesaran defleksi.
- 4. Faktor Batasan tinggi sistem struktur.

2.5 Sistem Rangka Pemikul Momen Khusus

Sistem Rangka Pemikul Momen Khusus adalah struktur yang mampu menahan gaya akibat beban gempa. Kasiroh, dkk (2018), pada saat struktur mengalami gaya lateral gempa, distribusi kerusakan ketinggian bangunan pada distribusi lateral story drift. Apabila struktur memiliki kolom yang lemah, maka simpangan antar lantai akan cenderung berpusat ke satu lantai.

2.6 Perencanaan Struktur Baja Tahan Gempa

Ada beberapa hal yang harus diperhatikan sewaktu merencanakan struktur tahan gempa. Kinerja struktur tahan gempa diusahakan dapat menyerap energi gempa secara efektif melalui terbentuknya sendi plastis pada bagian tertentu (Pandalele, dkk. 2013) dengan kriteria sebagai berikut.

- 1. Kekuatan, kekakuan, daktilitas yang dapat dipenuhi oleh struktur baja.
- 2. Disipasi energi melalui plasifikasi komponen struktur tertentu, tanpa menyebabkan keruntuhan structural yang terpenuhi dengan perencanaan *Capacity design*.

2.7 Perencanaan Bangunan Tahan Gempa Berdasarkan SNI 1726:2019

Dalam merencanakan suatu konstruksi, aspek yang harus diperhatikan adalah kegempaan. Aspek tersebut dianalisis berdasarkan peraturan yang berlaku, dimana parameter wilayah gempanya sudah tidak digunakan lagi dan diganti berdasarkan dari nilai Ss (parameter respons spectral percepatan gempa pada periode pendek) dan nilai S1 (parameter respons spectral percepatan gempa pada periode 1 detik) pada setiap daerah yang ditinjau. Dalam hal ini, tata cara perencanaan bangunan gedung tahan gempa menjadi lebih rasional dan akurat.

Untuk penentuan respons spektral percepatan gempa MCER di permukaan tanah, diperlukan suatu factor amflikasi seismik pada perioda 0,2 detik dan perioda 1 detik. Faktor amflikasi meliputi faktor amflikasi getaran terkait percepatan pada getaran perioda pendek (Fa) dan factor amflikasi terkait percepatan yang mewakili getaran perioda 1 detik (Fv). Parameter spektrum respons percepatan pada perioda pendek (SMS) dan perioda 1 detik (SM1) yang disesuaikan dengan pengaruh klasifikasi situs.

2.8 Incremental Dynamic Analysis (IDA)

Incremental dynamic analysis (IDA) merupakan analisis komputasi beban gempa untuk melakukan penilaian menyeluruh terhadap perilaku struktur dibawah beban gempa. Metode IDA diperkenalkan oleh Vamvatsiko dan Cornell (2002). Metode ini digunakan untuk membangun hasil analisis bahaya seismic probabilistik untuk memperkirakan resiko seismik yang dihadapi oleh struktur (Faisal & Darsono, 2019)

2.9 Simpangan Permanen

Pentingnya memperkirakan kebutuhan simpangan permanen pada bangunan bertingkat memegang peranan yang sangat penting dalam menentukan kelayakan teknis dan ekonomis perbaikan dan perkuatan bangunan yang rusak akibat eksitasi gempa. Simpangan permanen adalah suatu indeks yang sangat penting pada saat melakukan evaluasi kinerja bangunan setelah terjadi gempa. Hal ini juga sangat penting dalam pengambilan Keputusan terhadap perbaikan bangunan setelah terjadi gempa (Hong, dkk. 2017).

2.10 Keruntuhan Struktur

Keruntuhan adalah sebuah kondisi Dimana simpangan antar tingkat sebuah struktur telah mencapai batas maksimum yang dimilikinya. Nilai keruntuhan struktur menurut FEMA 2000 untuk *collapse* (C) = 10%, collapse prevention (CP) = 5%, life safety (LS) = 2,5% dan immediately ocupancy (IO) = 0.7%.

BAB 3

METODE PENELITIAN

3.1 Umum

Bab ini berisi tentang pemodelan struktur yang direncanakan. Struktur SRPMK baja yang digunakan adalah struktur rangka baja 4 dan 8 tingkat. Model ini pertama kali dikembangkan dan dipakai di NIST GCR 10-917-8 (NIST, 2010). Model ini juga dipakai oleh Elkady dan Lignos (2014, 2015) yang dikembangkan lebih lanjut dengan melibatkan pengaruh rangka gravitasi dan juga pengaruh komposit akibat adanya lantai beton. Kedua struktur model ini dianalisa secara nonliner menggunakan metode respon riwayat waktu, dengan menggunakan OpenSees. Secara umum, metode penelitian dalam tugas akhir ini dibuat dalam suatu diagram alir seperti yang terdapat pada Gambar 3.1.

Gambar 3.1: Bagan alir penelitian.

Berdasarkan gambar 3.1, dapat dijelaskan bahwa pada tugas akhir ini analisis dilakukan terhadap pemodelan dengan sistem rangka pemikul momen khusus dan dianalisis secara linear dan nonlinear dengan menggunakan metode Respon Riwayat Waktu dengan menggunakan *Software* OpenSees, untuk mendapatkan nilai simpangan yang ada Ketika bangunan dikenakan gempa, yang kemudian nilai simpangan tersebut akan dibandingkan pada setiap modelnya.

3.2 Pemodelan Struktur

3.2.1. Data Perencanaan Struktur

Adapun data perencanaan Struktur yang digunakan pada kedua pemodelan dalam Program Analisa Struktur, yaitu:

- 1. Jenis pemanfaatan Gedung Perkantoran
- 2. Gedung terletak di Kawasan dengan KDS D
- 3. Klasifikasi situs tanah sedang (SD).
- Sistem struktur yang digunakan adalah Sistem Rangka Pemikul Momen Khusus (SRPMK) dengan jumlah lantai 4 dan 8.
- 5. Jenis portal Struktur Gedung adalah struktur baja dengan ukuran geometri denah dan ketinggian seperti pada Gambar 3.2 dan 3.3.

Gambar 3.2: Denah Struktur model 1.

Gambar 3.3: Gambar 2 dimensi model 1

Gambar 3.4: Denah Struktur Model 2

Gambar 3.5: Gambar 2 Dimensi Model 2

3.2.2. Dimensi Balok – Kolom

Elemen kolom pada struktur baja SRPMK pada studi ini memakai jenis WF profil USA dan untuk balok memakai jenis WF yang penampangnya dikurangi (*reduced beam section*, disingkat RBS). Desain profil penampang balok dan kolom akan mengacu kepada Tabel 3.1 untuk memastikan hasil desain sudah benar dan sesuai dengan hasil studi sebelumnya.

Model	Story	Elevation	Beam	Column Size		Doubler Plate	
		(m)	Size			Thickness (mm)	
				Exterior	Interior	Exterior	Interior
4	4	16.3	W21x57	W24x62	W24x62	0.0	7.9
Tingkat	3	12.3	W21x57	W24x103	W24x103	0.0	7.9
	2	8.3	W21x73	W24x103	W24x103	0.0	7.9
	1	4.3	W21x73	W24x103	W24x103	0.0	7.9
8	8	32.2	W21x68	W24x94	W24x94	0.0	7.9
Tingkat	7	28.2	W24x84	W24x131	W24x131	0.0	14.3
	6	24.2	W24x84	W24x131	W24x131	0.0	11.1
	5	20.2	W27x94	W24x131	W24x176	0.0	14.3
	4	16.2	W27x94	W24x131	W24x176	0.0	7.9
	3	14.2	W30x116	W24x146	W24x192	1.6	15.9
	2	8.2	W30x116	W24x146	W24x192	1.6	11.1
	1	4.2	W30x108	W24x146	W24x192	0.0	9.5

Tabel 3.1: Komponen Struktural Bangunan.

3.3 Analisis Struktur

3.3.1. Analisis Dinamik Struktur Linier

Analisis ini menggunakan metode respon riwayat waktu. Pada Analisa ini, alat bantu *software* yang digunakan adalah OpenSees.

3.3.2. Pembebanan

-

-

Pembebanan mengacu kepada SNI 8899:2020. Nilai beban gravitasi yang bekerja pada struktur bangunan adalah sebagai berikut.

- Beban Mati : 4.309 KN/m² untuk semua lantai.
 - Beban Hidup $: 2.39 \text{ KN/m}^2$ untuk lantai tipikal.
 - Beban Hidup $: 0.957 \text{ KN/ m}^2$ untuk atap
- Beban Mati Tambahan : 1.197 KN/m² untuk semua lantai.

Tabel 3.2: Kombinasi Pembebanan Berdasarkan SNI 1726:2019 dengan nilai SDS 0.2368

Kombinasi	DL	LL	EX	EY
Kombinasi 1	1.40			
Kombinasi 2	1.20	1.6		
Kombinasi 3	1.26	1	0.3	1
Kombinasi 4	1.14	1	-0.3	-1
Kombinasi 5	1.17	1	0.3	-1
Kombinasi 6	1.23	1	-0.3	1
Kombinasi 7	1.26	1	1	0.3
Kombinasi 8	1.14	1	-1	-0.3
Kombinasi 9	1.23	1	1	-0.3
Kombinasi 10	1.17	1	-1	0.3
Kombinasi 11	0.84		0.3	1
Kombinasi 12	0.96		-0.3	-1
Kombinasi 13	0.93		0.3	-1
Kombinasi 14	0.87		-0.3	1
Kombinasi 15	0.84		1	0.3
Kombinasi 16	0.96		-1	-0.3
Kombinasi 17	0.87		1	-0.3
Kombinasi 18	0.93		-1	0.3

3.3.3. Respon Spektrum Desain

Respon spektrum gempa di desain untuk Kawasan dengan kategori Desain Seismik D Maksimum, yang memiliki spektrum percepatan desain sebagai berikut.

- Sds : 0.2368 g
- Sd1 : 0.1774 g

3.3.4. Analisis Dinamik Struktur Nonlinier

3.3.5. Data Rekaman Gempa

Pemilihan rekaman gempa memakai metode yang mengacu kepada SNI 1726:2019. Data rekaman gempa diperoleh dari *website* resmi *Pacific Earthquake Engineering Research* (PEER) *Next Generation Attenuation* (NGA), COSMOS *Strongmotion Data Center*. Dalam pengambilan data rekaman gempa melalui PEER NGA, diperlukan data *Station, Date,* dan *Magnitude* agar terdapat korelasi antara data gempa yang diambil dari *website* tersebut dengan data gempa dari bangunan yang direncanakan. Data rekaman gempa yang diambil sebanyak 21 data rekaman gempa PEER NGA dan COSMOS.

Nama Gempa	Tahun	Nama Stasiun	Magnitu
			de
Imperial Valley-	1979	El Centro Array	6.5
06		#6	
Imperial Valley-	1979	El Centro Array	6.5
06		#7	
Irpinia, Italy-01	1980	Sturno	6.9
Superstition	1987	Parachute Test	6.5
Hills-02		Site	
Loma Prieta	1989	Saratoga-	6.9
		Aloha	
Erzican, Turki	1992	Erzincan	6.7

Tabel 3.3: Data Rekaman Gempa Dekat Mengandung Pulse

Cape	1992	Petrolia	7.0
Mendocino			
Landers	1992	Lucerne	7.3
Chi-Chi, Taiwan	1999	TCU102	7.6
Duzce, Turki	1999	Duzce	7.1

Tabel 3.4: Data Rekaman Gempa Dekat Yang Tidak Mengandung Pulse

Nama Gempa	Tahun	Nama Stasiun	Magnitude
Gazli	-	Karakyr	6.8
Imperial Valley- 06	1979	Bonds Corner	6.5
Imperial Valley- 06	1979	Chihuahua	6.5
Loma Prieta	1989	BRAN	6.9
Loma Prieta	1989	Corralitos	6.9
Cape Mendocino	1992	Cape Mendocino	7.0

Tabel 3.5: Data Rekaman Gempa Jauh

Nama	Tahun	Nama Stasiun	Magnitu
Gempa			de
Kobe, Japan	1995	Nishi- Akashi	6.9
Kocaeli,	1999	Arcelik	7.5
Turki			
Superstition	1987	El Centro Imp.Co.	6.5
Hills			
San	1971	LA – Hollywood	6.6
Fernando		Stor	
Friuli, Italy	1976	Tolmezzo	6.5

3.3.6. Simpangan Permanen

Pentingnya memperkirakan kebutuhan simpangan permanen pada bangunan bertingkat memegang peranan yang sangat penting dalam menentukan kelayakan teknis dan ekonomis perbaikan dan perkuatan bangunan yang rusak akibat eksitasi gempa. Simpangan permanen adalah respon simpangan tidak linear yang terjadi pada tingkat yang ditandai dengan berpindahnya garis acuan (*baseline*) osilasi getaran simpangan secara permanen akibat dari perilaku tidak linear dan tidak elastis dari struktur gedung. Hal ini terjadi akibat adanya perilaku sendi plastis pada sejumlah elemen penahan gaya lateral seperti balok (bresing dan juga kolom pada kasus tertentu). (Sabelli dkk., 2003; Ruiz-Garcia dan Miranda, 2006; Erochko dkk., 2011).

3.4 Sistem Rangka Pemikul Momen Khusus (SRPMK)

SRPMK bisa terbentuk dari material beton atau material baja. SRPMK dikenali sebagai sistem yang dikendalikan oleh elemen balok, elemen kolom dan elemen joint balok-kolom (pada SRPMK baja disebut panel zone). Sistem ini juga dikenali sebagai sistem yang memiliki joint yang kaku antara balok dan kolom, atau disebut dengan sistem dengan sambungan momen. SRPMK pada studi ini adalah SRPMK baja dengan nilai factor R sebesar 8, omega nol sebesar 3 dan faktor Cd sebesar 5 ½ S.

Gambar 3.7: Diagram alir desain struktur baja yang mengacu pada SNI 1729 dan SNI 7860:2020.

3.5 Material Baja

Mutu baja yang digunakan pada studi ini adalah
Untuk profil IWF ASTM 992 Grade 50

- Kuat leleh minimum (fy): 345 Mpa
- Kuat tarik minimum (fu): 450 Mpa

3.6 Perencanaan Bangunan Tahan Gempa Berdasarkan SNI 1726:20193.6.1 Perioda Alami Struktur

Perioda adalah besarnya waktu yang diperlukan untuk mencapai satu getaran. Perioda alami struktur perlu diketahui agar resonansi pada struktur dapat dihindari. Resonansi struktur adalah keadaan dimana frekuensi alami struktur sama dengan frekuensi beban luar yang bekerja sehingga dapat menyebabkan keruntuhan pada struktur (Budiono dan Supriatna, 2011).

Analisa *eigen-value* pada umumnya digunakan untuk mengetahui waktu getar alami bangunan, dimana informasi tersebut sangat penting untuk mendapatkan estimasi besarnya gaya gempa yang akan diterima oleh bangunan tersebut. Analisa *eigen-value* dilaksanakan menggunakan data-data yang masih dalam kondisi elastis linier, padahal pada saat gempa kondisi bangunan mengalami keadaan yang berbeda, yaitu berprilaku in-elastis. Oleh karena itu waktu getar alami bangunan pada saat gempa maksimum berbeda dengan hasil analisa eigenvalue. Waktu getar alami yang memperhitungkan kondisi in-elastis atau waktu getar efektif, Te, dapat diperoleh dengan bantuan kurva hasil analisa pushover.

3.6.2 Analisa Riwayat Waktu

Analisa respon dinamik riwayat waktu nonlinear adalah suatu cara analisa untuk menentukan riwayat waktu respon dinamik struktur gedung yang berprilaku elastik penuh (linear) maupun elasto-plastis (nonlinear) terhadap gerakan tanah akibat gempa, dimana respon dinamik dalam setiap interval waktu dihitung dengan metode integrasi langsung.

3.6.3 Kinerja Keruntuhan

Kinerja keruntuhan adalah sebuah kondisi Dimana simpangan antar tingkat sebuah struktur telah mencapai batas maksimum yang dimilikinya. Untuk hal ini

nilai simpangan antar tingkat maksimum untuk kinerja keruntuhan struktur SRPMK baja adalah 0.1.

3.6.4 Incremental Dynamic Analysis (IDA)

Incremental Dynamic Analysis (IDA) merupakan metode analisis komputasi beban gempa untuk melakukan penilaian meneyeluruh terhadap prilaku struktur dibawah beban gempa. Metode ini digunakan untuk membangun hasil analisis bahaya seismik probabilistik untuk memperkirakan resiko seismik yang dihadapi oleh struktur (Faisal,2019). IDA melibatkan beberapa analisis riwayat waktu nonlinier terhadap model struktural di bawah rangkaian catatan gerak tanah berdasarkan tingkat intensitas seismik yang berbeda. Untuk membuat analisis IDA diperlukan nilai IDR max yaitu adalah rasio interstory drift ratio dibagi dengan tinggi lantai, yang dimana nilai IDR max tersebut di sandingkan dengan nilai RSA (Respon Spektrum Acceleration). Melalui IDA dapat ditentukan kinerja keruntuhan sebuah struktur. Untuk studi ini keruntuhan struktur SRPMK baja akan ditentukan melalui IDA pada saat nilai simpangan antar tingkat mencapai 0.1.

Gambar 3.8: Kurva IDA

3.7 Kondisi Batas

Kondisi batas CP adalah kondsisi dimana struktur kehilangan kemampuan menahan gaya lateral dan kehilangan kestabilan ditandai dengan banyaknya elemen struktur yang mengalami kerusakan dengan tercapainya IDRmax = 0.05. Sedangkan kondisi batas runtuh *(Collapse)* adalah kondisi dimana nilai IDRmax = 0.1, atau saat dimana kekakuan pasca elastis pada kurva IDA mencapai kemiringan 20% dari kekakuan elastisnya (mana yang terlebih dahulu terjadi) (Vamvatsikos dan Cornell, 2002; 2004).

BAB 4

HASIL DAN PEMBAHASAN

4.1 Hasil Model Linear Dan NonLinear

Bab ini membahas hasil analisa linier dan non linier oleh program analisa struktur diantaranya, perioda getar, nilai simpangan, serta gaya – gaya yang ada pada struktur gedung. Berdasarkan model yang didesain dengan Sistem Rangka Pemikul Momen Khusus (SRPMK). Semua input pembebanan serta kombinasi, zona gempa dan konfigurasi bangunan adalah sama. Serta perbandingan metode analisa pada tiap pemodelan, yaitu analisa respon spektrum ragam dan analisa respon riwayat waktu.

4.2 Hasil Analisa Linier

4.2.1 Respon Spektrum Ragam

Berdasarkan SNI 1726:2019, untuk menentukan ragam getar alami untuk struktur. Nilai Analisa yang disertakan, harus mencukupi untuk mendapatkan partisipasi massa ragam terkombinasi sebesar paling sedikit 90 persen dari massa aktual dalam masing-masing arah horizontal ortogonal dari respon yang ditinjau oleh model. Persentase nilai perioda yang menentukan jenis perhitungan menggunakan CQC atau SRSS.

Syarat: SRSS > 15%, CQC < 15%

Analisa menggunakan metode CQC (*Complete Quadratic Combination*), hasil persentase perioda rata-rata yang didapat lebih kecil dari 15% dan SRSS (Square Root of the Sum of Square) lebih besar dari 15%.

Moda (Perioda)	Selisih Persentase (%)	CQC < 15%	SRSS > 15%
T1 - T2	29%	NOT OK	ОК
T2 - T3	14%	ОК	NOT OK
T3 - T4	44%	NOT OK	ОК
T4 - T5	35%	NOT OK	OK
T5 - T6	12%	OK	NOT OK
T6 - T7	6%	OK	NOT OK
T7 - T8	36%	NOT OK	OK
T8 - T9	3%	OK	NOT OK
T9 - T10	11%	OK	NOT OK
T10 - T11	31%	NOT OK	ОК
T11 - T12	10%	ОК	NOT OK

Tabel 4.1: Hasil analisis CQC dan SRSS pada Model 1

Sehingga, dipeoleh hasil:

- a. Model 1: untuk nilai R = 8, didapat 6 mode dan hasil persentase nilai perioda dibawah 15 %.
- b. Model 1: untuk nilai R = 8, didapat 6 mode dan hasil persentase nilai
 Perioda di atas 15 %.

Table 4.2: Hasil analisis CQC dan SRSS pada Model 2

SYARAT				
Moda (Perioda)	Selisih Persentase (%)	CQC < 15%	SRSS > 15%	
T1 - T2	5%	OK	NOT OK	
T2 - T3	29%	NOT OK	OK	
T3 - T4	48%	NOT OK	OK	
T4 - T5	7%	ОК	NOT OK	
T5 - T6	25%	NOT OK	OK	
T6 - T7	18%	NOT OK	OK	
T7 - T8	11%	ОК	NOT OK	
T8 - T9	19%	NOT OK	OK	
T9 - T10	7%	OK	NOT OK	

T10 - T11	19%	NOT OK	ОК
T11 - T12	11%	ОК	NOT OK

4.2.2 Koreksi Gempa Dasar Nominal

Berdasarkan SNI 1726:2019 Pasal 7.9.4.1, kombinasi respon untuk geser dasar ragam (Vt) lebih kecil 85 persen dari geser dasar yang dihitung (V1) menggunakan prosedur gaya lateral ekivalen, maka gaya dan simpangan antar lantai harus dikalikan dengan faktor skala pada persamaan 4.1.

$$0,85 \frac{V_1}{Vt} \ge 1 \tag{4.1}$$

Dimana:

V₁ = Gaya geser dasar nominal statik ekivalen

Vt = Gaya geser dasar kombinasi ragam

Tabel 4.3: Nilai gaya geser dasar nominal analisa statik ekivalen (V1) dan Nilai gaya geser dasar nominal analisa respon spektrum output Program Analisa Struktur Vt.

Struktur	Arah Gempa	V ₁ (KN)	Vt (KN)	Cek
MODEL	Gempa X	1639.41	1639.4	ОК
1	(R=8)			
MODEL	Gempa X	1188.47	1188.5	ОК
2	(R=8)			

Untuk memenuhi syarat berdasarkan SNI 1726:2019, maka nilai faktor skala harus lebih kecil atau sama dengan 1.

Untuk perhitungan tertera pada lampiran.

4.2.3 Koreksi Faktor Redundansi

Nilai gaya geser dengan redundansi 1 per lantainya harus dikoreksi dengan 35 persen gaya geser dasar dengan redundansi 1. Jika persyaratan tersebut tidak terpenuhi, maka nilai faktor redundansi 1 harus diganti dengan redundansi 1,3. Dari hasil koreksi untuk setiap gaya geser diperoleh beberapa lantai yang tidak memenuhi syarat 35 persen gaya geser dasar.

4.2.4 Koreksi Skala Simpangan Antar Tingkat

Nilai V1 dan gaya geser dasar nominal analisis respon spektrum (Vt) dapat dilihat pada Tabel 4.1. Kontrol Koreksi skala simpangan antar tingkat, yaitu:

Syarat :

$$Vt \ge 0.85 \text{ Cs.W}$$
 (4.2)

Berdasarakan Tabel 4.4 nilai Vt sb. X diperoleh:

Struktur	Arah Gempa	Vt (KN)	0,85 Cs.W	Cek
MODEL 1	Gempa X (R=8)	1639.4	1393.4	OK
MODEL 2	Gempa X (R=8)	1188.5	1010,2	ОК

4.2.5 Nilai Simpangan Gedung

Berdasarkan peraturan SNI 1726:2019, kontrol simpangan antar lantai hanya terdapat satu kinerja batas, yaitu kinerja batas ultimit. Simpangan antar lantai yang diizinkan yaitu 0,02 dikali tinggi lantai, nilai simpangan tidak boleh melebihi ketentuan tersebut. Pada hasil yang diperoleh, nilai simpangan antar lantai tidak melebihi batas izin atau memenuhi syarat. Untuk hasil perhitungan terdapat pada lampiran.

4.2.6 Kontrol Ketidakberaturan Kekakuan Tingkat Lunak (Soft Story)

Berdasarkan SNI 1726:2019, kekakuan tingkat lunak (*soft story*) didefinisikan ada jika terdapat suatu tingkat dimana kekakuan lateralnya kurang dari 70 persen kekakuan lateral tingkat diatasnya atau kurang dari 80 persen kekakuan rata-rata tiga tingkat diatasnya. Pada hasil kontrol ketidakberaturan kekakuan tingkat lunak pada arah x untuk semua model, diperoleh nilai persentase kekakuan diatas batas yang ditentukan atau struktur yang direncanakan tidak mengalami *Soft Story*. Untuk hasil perhitungan terdapat pada lampiran.

4.2.7 Pengaruh Efek P-Delta

Berdasarkan SNI 1726:2019, efek P-delta dapat diabaikan jika nilai stability ratio lebih kecil dari 1. Pada hasil perhitungan, nilai stability ratio dibawah nilai 1 untuk semua model atau dapat dikatakan kontrolnya memenuhi syarat yang ditentukan. Pada dasarnya efek p-delta dapat diabaikan jika syarat stability ratio sudah terpenuhi. Untuk hasil perhitungan terdapat pada lampiran.

4.3 Hasil Analisa Non Linier

Tahap ini adalah bagian dari evaluasi struktrur baja yang telah didesain terhadap beban gempa yang telah direncanakan, dalam hal ini respon struktur akan ditinjau terhadap perbedaan jenis gempa, faktor R pada gedung, dan perioda struktur bangunan. Jenis gempa yang diberikan pada struktur baja adalah gempa dekat mengandung *pulse*, gempa dekat *no pulse*, serta gempa jauh. Faktor R pada gedung merupakan faktor reduksi gedung yang telah didesain dengan perbedaan sistem struktur baja. Perbedaan nilai perioda didapat dari kedua jenis model yang telah didesain. Setiap model struktur akan diambil data *interstory drift* dan *top displacement* setelah dianalisis, nilai tersebut dibandingkan terhadap faktor - faktor yang telah disebutkan diatas.

4.3.1 InterStory Drift Ratio (IDR)

Seiring dengan target kondisi batas yang ingin dicapai (CP dan Collapse). Pada gambar ini di bawah diilustrasikan peningkatan nilai IDRmax akibat rekaman gerakan tanah gempa. Perubahan respon tingkat maksimum menuju ke tingkat bawah juga ditunjukkan pada hasil evaluasi terhadap SRPMK baja bertingkat 4 – 18 (Erochko dkk., 2011; Bojorquez dkk., 2017).

Gambar 4.1: Menunjukkan rasio simpangan maksimum pada kondisi CP terjadi akibat gerakan tanah Cape Mendocino 1992 dengan *Pulse Indicator* 1.0.

Gambar 4.2: Menunjukkan rasio simpangan maksimum pada kondisi runtuh terjadi akibat gerakan tanah Cape Mendocino 1992 dengan *Pulse Indicator* 1.0, yang terjadi pada gedung model 1 akibat gempa dekat mengandung efek *Pulse*.

Gambar 4.3: Menunjukkan rasio simpangan maksimum pada model 1 yang dipilih berdasarkan nilai yang mendekati median pada kurva ida, pada kondisi CP nilai yang mendekati median terjadi pada gerakan tanah gempa yang tidak mengandung pulse (Imperial Valley06), serta pada kondisi runtuh terjadi akibat gerakan tanah gempa Loma Prieta

Gambar 4.4: Menunjukkan rasio simpangan maksimum pada model 2 yang dipilih berdasarkan nilai yang mendekati median pada kurva ida, pada kondisi CP nilai yang mendekati median terjadi pada gerakan tanah gempa yang tidak mengandung pulse (Gazli), dan pada kondisi runtuh nilai yang mendekati median terjadi pada gerakan tanah gempa Cape Mendocino.

Gambar 4.5: Menunjukkan rasio simpangan maksimum pada model 1 yang dipilih berdasarkan nilai yang mendekati median pada kurva ida, pada kondisi CP nilai yang mendekati median terjadi pada gerakan tanah gempa jauh San Fernando 1971, dan pada kondisi runtuh nilai yang mendekati median terjadi pada gerakan tanah gempa Superstition hills 1987.

Gambar 4.6: Menunjukkan rasio simpangan maksimum pada model 2 yang dipilih berdasarkan nilai yang mendekati median pada kurva ida, pada kondisi CP nilai yang mendekati median terjadi pada gerakan tanah gempa jauh San Fernando 1971, dan pada kondisi runtuh nilai yang mendekati median terjadi pada gerakan tanah gempa San Fernando 1971.

4.3.2 Incremental Dynamic Analysis (IDA)

Incremental Dynamic Analysis yang di lakukan pada ketiga model struktur menghasilkan gambaran respon. Dalam menentukan besaran intensitas sebuah gempa yang dapat menghasilkan suatu kondisi batas, seperti kondisi IO (*immediate occupancy*), LS (*limit safety*) dan kondisi batas CP (*collapse prevention*) dicari melalui analisa bertahap respon riwayat waktu nonlinear (*incremental dynamic analysis*, disingkat IDA). Untuk mengetahui nilai keruntuhan pada struktur, batas kondisi yang diperhatikan adalah kondisi CP (*collapse prevention*) dan kondisi batas runtuh (Collapse).

Kondisi batas CP adalah kondsisi dimana struktur kehilangan kemampuan menahan gaya lateral dan kehilangan kestabilan ditandai dengan banyaknya elemen struktur yang mengalami kerusakan dengan tercapainya IDRmax = 0.05. Sedangkan kondisi batas runtuh (Collapse) adalah kondisi dimana nilai IDRmax = 0.1, atau saat dimana kekakuan pasca elastis pada kurva IDA mencapai kemiringan 20% dari kekakuan elastisnya (mana yang terlebih dahulu terjadi) (Vamvatsikos dan Cornell, 2002; 2004).

Gambar 4.7: Menggambarkan ilustrasi kondisi batas mulai dari kondisi batas secara berurutan pada model 1, mulai dari kondisi IO, LS, CP, serta kondisi runtuh.

Gambar 4.8: Menggambarkan ilustrasi kondisi batas mulai dari kondisi batas secara berurutan pada model 2, mulai dari kondisi IO, LS, CP, serta kondisi runtuh.

Gambar 4.9 sampai 4.14 menjelaskan respon IDRmax yang diplot terhadap nilai respon spektrum percepatan gerakan tanah saat perioda alami struktur, RSA(T1). Respon IDRmax ini dihasilkan dari analisa struktur dinamik secara bertingkat (*incremental dynamic analysis* disingkat IDA) dan dilakukan sampai melewati kondisi batas LS, CP dan mencapai runtuh. Fokus hasil dan diskusi penelitian ini akan ditekankan pada kondisi CP serta kondisi runtuh.

Gambar 4.9: Menunjukkan kondisi batas CP dan Runtuh untuk model 1 akibat sejumlah gerakan tanah gempa yang mengandung efek *pulse*.

Gambar 4.10: Menunjukkan Kondisi batas CP dan Runtuh untuk model 2 akibat sejumlah gerakan tanah gempa bumi yang mengandung efek *pulse*.

Gambar 4.11: Menunjukkan Kondisi batas CP dan Runtuh untuk model 1 akibat sejumlah gerakan tanah gempa bumi yang tidak mengandung efek *pulse*.

Gambar 4.12: Menunjukkan Kondisi batas CP dan Runtuh untuk model 2 akibat sejumlah gerakan tanah gempa bumi yang tidak mengandung efek *pulse*.

Gambar 4.13: Menunjukkan Kondisi batas CP dan Runtuh untuk model 1 akibat sejumlah gerakan tanah gempa jauh.

Gambar 4.14: Menunjukkan Kondisi batas CP dan Runtuh untuk model 2 akibat sejumlah gerakan tanah gempa jauh.

Pada Gambar 4.9 dan 4.10 dianalisis berdasarkan semua jenis groundmotion untuk menunjukkan pengaruh pulse indicator yang dimiliki gempa dekat yang mengandung efek *pulse*. Sedangkan untuk gambar 4.11, sampai 4.14 dianalisis berdasarkan hasil median keseluruhan groundmotion yang di peroleh. Nilai median ini dijelaskan oleh garis hitam tebal pada grafik IDA pada Gambar 4.9, sampai dengan Gambar 4.14. Hasil pada Gambar tersebut jelas menggambarkan bahwa kondisi CP pada model SRPMK banyak dicapai akibat gerakan tanah sebelum respon deformasi struktur mencapai kondisi IDRmax = 0.05. Sehingga hasil tersebut juga menjelaskan kondisi ketidakstabilan terjadi ketika respon deformasi jauh sebelum mencapai IDRmax = 0.1, bahkan sebelum kondisi CP, yang ditunjukkan oleh terjadinya lebih dahulu 80% perubahan kemiringan garis kekakuan elastis (Vamvatsikos dan Cornell, 2002, 2004).

Penelitian ini menghasilkan nilai kemungkinan yang memberikan deformasi global SRPMK baja untuk mengetahui kondisi batas CP serta keruntuhan yaitu batas runtuh, yang masing – masing secara berurutan RSA (T1) = 0.59 g, dan 0.834 g untuk struktur Gedung tingkat 4 SRPMK dan RSA (T1) = 0.45 g, dan 0.554 g untuk struktur Gedung tingkat 8 SRPMK pada gempa yang tidak mengandung efek *pulse*.

4.3.3 Simpangan Permanen

Untuk mendapatkan perilaku yang sesuai seperti yang diinginkan, maka pembahasan hasil deformasi tidak linear akan didasarkan kepada respon riwayat waktu dari deformasi global IDR. Gambar di bawah ini menjelaskan bagaimana bentuk perubahan deformasi IDR yang terjadi akibat gerakan tanah gempa Cape Mendocino (1992) yang mengandung *Pulse* ketika mencapai kondisi batas CP dan runtuh. Rekaman gempa ini dipilih untuk mewakili seluruh rekaman gerakan tanah yang dipakai, karena perilaku respon IDRmax nya terletak pada garis yang paling mendekati nilai CP dan runtuh pada garis median di grafik IDA. Tampak jelas pada Gambar dibawah ini perilaku deformasi tidak linear pada lantai tersebut dimana nilai IDRmax = 0.05 telah melewati nilai LS pada rentang durasi waktu awal dan kemudian terjadi simpangan permanen/sisa (atau simpangan residu) sebesar IDRmax = 0.01 pada akhirnya. Artinya telah terjadi proses plastifikasi di beberapa elemen, khususnya di lantai 4 pada model tingkat ini. Deformasi sisa ini kemudian

membesar seiring dengan pembesaran penskalaan IM gerakan tanah dan melampaui IDRmax yang terjadi pada durasi awal waktu gerakan tanah.

Gambar 4.15: Simpangan Permanen

Gambar 4.16 (a): Rasio simpangan permanen di atap dan pada model 1 yang paling ekstrim untuk kondisi CP dari seluruh gerakan tanah gempa dekat mengandung pulse, (Cape Mendocino 1992).

Gambar 4.16 (b): Rasio simpangan permanen di lantai 1 pada model 1 yang paling ekstrim untuk kondisi CP dari seluruh gerakan tanah gempa dekat mengandung pulse, (Cape Mendocino 1992).

Gambar 4.17 (a): Rasio simpangan permanen di atap pada model 1 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa dekat mengandung pulse, (Cape Mendocino 1992).

Gambar 4.17 (b): Rasio simpangan permanen di lantai 1 pada model 1 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa dekat mengandung pulse, (Cape Mendocino 1992).

Gambar 4.18 (a): Rasio simpangan permanen di atap pada model 1 yang paling ekstrim untuk kondisi CP dari seluruh gerakan tanah gempa dekat yang tidak mengandung pulse, (Imperial Valley- 06 1979).

Gambar 4.18 (b): Rasio simpangan permanen di lantai 1 pada model 1 yang paling ekstrim untuk kondisi CP dari seluruh gerakan tanah gempa dekat yang tidak mengandung pulse, (Imperial Valley- 06 1979).

Gambar 4.19 (a): Rasio simpangan permanen di atap pada model 1 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa dekat yang tidak mengandung pulse, (Loma Prieta).

Gambar 4.19 (b): Rasio simpangan permanen di lantai 1 pada model 1 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa dekat yang tidak mengandung pulse, (Loma Prieta).

Gambar 4.20 (a): Rasio simpangan permanen di atap pada model 1 yang paling ekstrim untuk kondisi CP dari seluruh gerakan tanah gempa jauh, (San Fernando 1971).

Gambar 4.20 (b): Rasio simpangan permanen di lantai 1 pada model 1 yang paling ekstrim untuk kondisi CP dari seluruh gerakan tanah gempa jauh, (San Fernando 1971).

Gambar 4.21 (a): Rasio simpangan permanen di atap pada model 1 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa jauh, (Superstition hills 1987).

Gambar 4.21 (b): Rasio simpangan permanen di lantai 1 pada model 1 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa jauh, (Superstition hills 1987).

Gambar dibawah ini menunjukkan perilaku deformasi tidak linear pada model 2 dimana nilai IDRmax = 0.05 telah melewati nilai LS pada rentang durasi waktu awal dan kemudian terjadi simpangan permanen/sisa (atau simpangan residu) sebesar IDRmax = 0.01 pada akhirnya. Artinya telah terjadi proses plastifikasi di beberapa elemen. Deformasi sisa ini kemudian membesar seiring dengan pembesaran penskalaan IM gerakan tanah dan melampaui IDRmax yang terjadi pada durasi awal waktu gerakan tanah.

Gambar 4.22: Rasio simpangan permanen di atap dan lantai 1 pada model 2 yang paling ekstrim untuk kondisi CP dari seluruh gerakan tanah gempa dekat mengandung efek *pulse*, (Chi- Chi Taiwan).

Gambar 4.23: Rasio simpangan permanen di atap dan lantai 1 pada model 2 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa dekat mengandung efek *pulse*, (Irpinia, Italy-01).

Gambar 4.24: Rasio simpangan permanen di atap dan lantai 1 pada model 2 yang paling ekstrim untuk kondisi CP dari seluruh gerakan tanah gempa dekat yang tidak mengandung efek *pulse*, (Cape Mendocino 1992.).

Gambar 4.25: Rasio simpangan permanen di atap dan lantai 1 pada model 2 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah gempa dekat yang tidak mengandung efek *pulse*, (Gazli).

Gambar 4.26: Rasio simpangan permanen di atap dan lantai 1 pada model 2 yang paling ekstrim untuk kondisi CP dari seluruh gerakan tanah jauh (San Fernando 1971).

Gambar 4.27: Rasio simpangan permanen di atap dan lantai 1 pada model 2 yang paling ekstrim untuk kondisi runtuh dari seluruh gerakan tanah jauh (San Fernando 1971).

Tabel 4.3 dan 4.4. menunjukkan urutan gempa yang telah diurutkan berdasarkan *pulse indikator* mulai dari urutan terkecil hingga terbesar, kesimpulan yang didapat adalah gempa yang mengandung efek *Pulse* tidak terlalu berpengaruh terhadap rasio simpangan sisa pada struktur bangunan model 1 dan model 2

Tabel 4.5: Rasio simpangan permanen pada model 1 terhadap gempa dekat yang tidak mengandung efek *pulse*.

KONDIGI		Δ	
KUNDISI	KSA (11) g	Δ4 (m)	Δ1 (m)
СР	0.59	-0.6604	-0.20828
RUNTUH	0.8339	1.778	0.635

Tabel 4.6: Rasio simpangan permanen pada model 2 terhadap gempa dekat yang tidak mengandung efek *pulse*.

KONDIGI	RSA (T1) g	Δ	
KUNDISI		Δ8 (m)	Δ1 (m)
СР	0.45	0.7874	0.18034
RUNTUH	0.554	1.905	0.6858

Tabel 4.7: Rasio simpangan permanen pada model 1 terhadap gerakan tanah gempa jauh.

KONDISI	RSA (T1) g	Δ	
KONDISI		Δ4 (m)	Δ1 (m)
СР	0.7084	0.635	0.2286
RUNTUH	0.74	1.778	0.6858

Tabel 4.8: Rasio simpangan permanen pada model 2 terhadap gerakan tanah gempa jauh.

KONDISI	$\mathbf{DCA}(\mathbf{T1}) =$	Δ	
KUNDISI	KSA (11) g	Δ8 (m)	Δ1 (m)
СР	0.095	0.2159	0.0127
RUNTUH	0.4484	1.778	0.6858

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan penelitian yang telah dilakukan, didapatkan hasil berikut ini:

- Perilaku simpangan permanen di kondisi CP gerakan tanah gempa jauh pada model 2, nilai rasionya lebih kecil dibandingkan dengan nilai rasio gerakan tanah gempa dekat yang tidak mengandung efek *pulse* pada model 2.
- 2. Simpangan permanen lebih dominan terjadi pada tingkat 8 ketika struktur mengalami keruntuhan.

5.2 Saran

- 1. Pada Tugas Akhir ini, jumlah *groundmotion* yang diteliti masih sedikit, kedepannya diharapkan agar menambah jumlah *groundmotion* yang diteliti agar mendapatkan hasil yang lebih optimal.
- Dalam Tugas Akhir ini, jika terdapat hasil yang kurang sesuai pada analisa linier dan non linier diharapkan agar dapat diskusi dengan penulis. Apabila nilai yang didapatkan jauh dari hasil yang ada.
- Diharapkan Tugas Akhir ini dapat diteruskan atau dievaluasi kembali dalam rangka mendapatkan hasil yang optimal dan dapat dilakukan perbandingan terhadap hasil yang ada.

DAFTAR PUSTAKA

- Anakampun, B. A., & Nurhidayatullah, E. F. (2020). Komparasi Desain Dan Respon Struktur Gedung Dengan Sistem Rangka Baja Pemikul Momen Khusus, Menengah Dan Biasa Comparison Of Building Structure Design And Response With Special, Medium, And Momential Steel Frame Systems (Doctoral dissertation, University Technology Yogyakarta).
- Budiono, B. dan Supriatna, L (2011) Studi Komparasi Desain Bangunan Tahan Gempa Dengan Menggunakan SNI 03-1726:2002 dan SNI 1726:2012. Bandung: ITB.
- Dary, R. W., Frapanti, S., & Utami, C. (2019). Evaluasi Kekakuan Batu Bata Lubuk Pakam Pada Bangunan Bertingkat Dengan Analisis Pushover. Portal: Jurnal Teknik Sipil, 11(2), 11-15.
- Departemen Pekerjaan Umum (1987) Pedoman Perencanaan Pembebanan Untuk Rumah dan Gedung, Jakarta: Yayasan Badan Penerbit PU.
- Dewi, H. A., Widayanto, E., & Wiswamitra, K. A. (2023). Analisis Kinerja Struktur Gedung Bertingkat Menggunakan Sistem Rangka Pemikul Momen Khusus (SRPMK) pada Pembangunan Rumah Susun Cakung Jakarta Timur. Rekayasa Sipil, 17(3), 243-248.
- Elkady A, Lignos DG. Modeling of the composite action in fully restrained beamto-column connections: implications in the seismic design and collapse capacity of steel special moment frames. Earthquake Engineering & Structural Dynamic 2014; 43(13):1935–1954. DOI: 10.1002/eqe.2430.
- Elkady, A., & Lignos, D. G. (2015). Effect of gravity framing on the overstrength and collapse capacity of steel frame buildings with perimeter special moment frames. Earthquake Engineering & Structural Dynamics, 44(8), 1289-1307.
- Faisal, A. (2019). Perilaku Nonlinear Struktur Gedung Baja Dengan Bentuk Denah L, T Dan U Akibat Gempa. Progress In Civil Engineering Journal, 1(1), 63-73.
- GULTOM, S. W. F. (2018). Analisis Perbandingan Antara Penggunaan Bracing Vertikal Konsentrik Tipe Z Dan Shear Wall Terhadap Nilai Simpangan Horizontal Gedung Tingkat Tinggi (Doctoral dissertation, UNIMED).
- Hajati, N. L., & Noviansyah, R. (2017). Kajian Perilaku Struktur Portal Beton Bertulang Tipe SRPMK dan Tipe SRPMM. Rekayasa Hijau: Jurnal Teknologi Ramah Lingkungan, 1(3).

- Imran, I., & Simatupang, R. (2010). Pengaruh jenis baja tulangan terhadap perilaku plastifikasi elemen struktur SRPMK. Jurnal Teknik Sipil, 6(1), 32-45.
- Lukmansa, I. (2015). Studi Perbandingan Perencanaan Struktur Baja Menggunakan Profil Biasa Dan Profil Kastela Pada Proyek Gedung Pgn Di Surabaya. Extrapolasi: Jurnal Teknik Sipil, 8(02).
- Pawirodikromo, W., (2012), Seismologi Teknik dan Rekayasa Kegempaan, Pustaka Pelajar., Yogyakarta.
- Ruiz-García, J., & Ramos-Cruz, J. M. (2020, October). Assessment of permanent drift demands in steel moment-resisting steel buildings due to recorded nearfault forward directivity earthquake ground motions and velocity pulse models. In Structures (Vol. 27, pp. 1260-1273). Elsevier.
- Santur, M. F., Pah, J. J., & Hangge, E. E. (2022). Hubungan Antara Tinggi Pusat Massa Vertikal Bangunan Tingkat Tinggi Terhadap Simpangan Antar Lantai Akibat Beban Gempa. Jurnal Teknologi, 16(1), 28-34.
- Siswanto, B., & Salim, M., (2018), Rekayasa Gempa, K-Media, Yogyakarta.
- Tajunnisa, Y., Chadaffi, M., & Ramadhaniawan, V. (2014). Perbandingan evaluasi kinerja bangunan gedung tahan gempa antara metode SRPMM dan SRPMK. Jurnal Aplikasi Teknik Sipil, 12(1), 1-16.
- Tethool, Y. C., & Barat, M. P. (2019). Perilaku Seismik Sistem Rangka Baja Pemikul Momen Khusus Menggunakan Reduced Beam Section. Musamus Journal of Civil Engineering, 2(01), 1-6.
- Zhafira, T., Taufiqy, I., & Anggraini, N. K. (2023). Analisis Dinamik Respons Spektrum Dan Statik Ekuivalen Gedung Perkuliahan Universitas Semarang. JOURNAL OF CIVIL ENGINEERING BUILDING AND TRANSPORTATION, 7(1), 75-79.

LAMPIRAN

L.1. Syarat Perioda Struktur

Penentuan perioda yang akan digunakan untuk perhitungan gaya geser dasar dan gaya lateral statik ekivalen adalah berdasarkan SNI 1726:2019.

a. Model 1 Data struktur:

-	Tinggi lantai bawah	: 4,6 meter
-	Tinggi lantai tipikal	: 4 meter

- Hn : 16,6 meter
- Cu : 1,5
- Ct : 0,0724
- x : 0,8
- T min $T_a = C_t h_n^x$
- T max : cu x Tmin

Tabel L.1: Perioda struktur Model 1 untuk arah X dan Y

Kontrol Periode Arah	X			
Tmin	Tmax	Tprogram	Tdipakai	
0.685212121	1.027818181	2.206	1.028	
Kontrol Periode Arah Y				
Tmin	Tmax	Tprogram	Tdipakai	
0.685212121	1.027818181	1.572	1.028	

b. Model 2 Data struktur:

-	Tinggi lantai bawah	: 4,6 meter
-	Tinggi lantai tipikal	: 4 meter
-	Hn	: 32, 6 meter
-	Cu	: 1,5
-	Ct	: 0.0724
-	Х	: 0.8
- T min
$$T_a = C_t h_n^x$$

- T max : Cu x T min

Tabel L.2: Perioda struktur Model 2 untuk arah X dan Y

Kontrol Periode Arah X					
Tmin	Tmax	Tprogram	Tdipakai		
1.175743662	1.763615493	2.584	1.764		
Kontrol Periode Arah Y					
Tmin	Tmax	Tprogram	Tdipakai		
1.175743662	1.763615493	2.462	1.764		

L.2. Modal Participating Mass Ratios

L.2.1. Modal Participating Mass Ratios Model 1

Tabel	L.3:	Hasil	output	Modal	Participating	Mass	Ratios	struktur	pemodelan
denga	n Pro	gram A	Analisa S	Struktur	(Model 1).				

SYARAT						
Moda (Perioda)	Selisih Persentase (%)	CQC < 15%	SRSS > 15%			
T1 - T2	29%	NOT OK	ОК			
T2 - T3	14%	OK	NOT OK			
T3 - T4	44%	NOT OK	OK			
T4 - T5	35%	NOT OK	OK			
T5 - T6	12%	OK	NOT OK			
T6 - T7	6%	OK	NOT OK			
T7 - T8	36%	NOT OK	OK			
T8 - T9	3%	OK	NOT OK			
T9 - T10	11%	OK	NOT OK			
T10 - T11	31%	NOT OK	OK			
T11 - T12	10%	OK	NOT OK			

Tabel L.4: Hasil output *Modal Participating Mass Ratios* struktur pemodelan dengan Program Analisa Struktur (Model 2).

SYARAT						
Moda (Perioda)	Selisih Persentase (%) CQC < 15%		SRSS > 15%			
T1 - T2	5%	OK	NOT OK			
T2 - T3	29%	NOT OK	ОК			
T3 - T4	48%	NOT OK	OK			
T4 - T5	7%	OK	NOT OK			
T5 - T6	25%	NOT OK	OK			
T6 - T7	18%	NOT OK	ОК			
T7 - T8	11%	OK	NOT OK			
T8 - T9	19%	NOT OK	ОК			
T9 - T10	7%	OK	NOT OK			
T10 - T11	19%	NOT OK	ОК			
T11 - T12	11%	OK	NOT OK			

L.3 Berat Sendiri Struktur

L.3.1 Berat Sendiri Struktur (Model 1)

Tabel L. 5: Hasil output berat sendiri struktur pemodelan dengan Program Analisa Struktur.

Story	Self Weight (KN)
4	1.885186
3	1.944083
2	1.958588
1	1.960308
TOTAL	7.748

Dapat dilihat pada tabel di atas bahwa berat total struktur untuk tersebut adalah 7.748 KN.

L.3.2 Berat Sendiri Struktur (Model 2)

Story	Self Weight (KN)
8	1.115481
7	1.202102
6	1.213938
5	1.184578
4	1.223929
3	1.239287
2	1.240929
1	1.21777
TOTAL	9.638

Tabel L. 6: : Hasil output berat sendiri struktur pemodelan dengan Program Analisa Struktur.

Dapat dilihat pada tabel di atas bahwa berat total struktur untuk tersebut adalah 9.638 KN.

L.4 Perhitungan Gaya Geser Dasar dan Gaya Lateral Statik Ekivalen

Gaya geser dasar yang digunakan untuk menghitung gaya lateral statik ekivalen ditentukan berdasarkan SNI 1726:2019.

a. <u>Model 1</u>

Data Struktur:

-	SD1	: 0,1774
-	SDS	: 0,236
-	R	:8
-	Ie	:1
-	S1	: 0,112

Tabel L.7: Nilai Cs yang digunakan untuk Model 1 (R=8)

Cs minimum	Cs hitungan	Cs maksimum	CsX digunakan	CsY digunakan
0.007	0.0296	0.021576	0.0216	0.0216

Maka gaya geser dasar struktur gedung adalah V = Cs x Wt

V = 0.0216 x 75984

V = 1639.41 KN

Penentuan nilai k Berdasarkan SNI 1726:2019 Pasal 7.8.3, k adalah eksponen yg terkait dengan perioda struktur sebagai berikut :

- Untuk struktur yg mempunyai perioda sebesar 0,5 detik atau kurang, k = 1
- Untuk struktur yg mempunyai perioda sebesar 2,5 detik atau lebih, k=2
- Untuk struktur yg mempunyai perioda antara 0,5 dan 2,5 detik, k harus sebesar
 2 atau harus ditentukan dengan interpolasi linear antara 1 dan 2.

Story	Berat Wx	h (mm)	Wx.hx^k (X)	Wx.hx^k (Y)	Force (x)	Force (y)	Story Shear (x)	Story Shear (y)
4	1.885186	4000	67302.4	67302.4	495.1	495.1	495.1	495.1
3	1.944083	4000	69405.1	69405.1	510.6	510.6	1005.8	1005.8
2	1.958588	4000	69922.9	69922.9	514.4	514.4	1520.2	1520.2
1	1.960308	4600	83505.9	83505.9	614.4	614.4	2134.6	2134.6
TOTAL			222833.9	222833.9	1639.4	1639.4	4660.5	4660.5

Tabel L. 8: Nilai story shear untuk gaya lateral statik ekivalen Model 1.

Berdasarkan Tabel L.8, dapat diketahui nilai gaya geser pada model 1 arah X yang merupakan nilai gaya geser dasar untuk struktur tersebut adalah 1639.4 KN. Dan diketahui nilai gaya geser pada model 1 arah Y yang merupakan nilai gaya geser dasar untuk struktur tersebut adalah 1639.4 KN.

b. Model 2

Data Struktur:

- SD1 : 0,1774
- SDS : 0,236
- R :8
- Ie :1
- S1 : 0,112

Tabel L. 9: Nilai Cs yang digunakan untuk Model 2 (R=8).

Cs minimum	Cs hitungan	Cs maksimum	CsX digunakan	CsY digunakan
0.007	0.0296	0.0126	0.0126	0.0126

Maka gaya geser dasar struktur gedung adalah

V = Cs x Wt

V = 0.0126 x 94517

V = 1188.47 KN

Penentuan nilai K Berdasarkan SNI 1726:2019 Pasal 7.8.3, k adalah eksponen yang terkait dengan perioda struktur sebagai berikut :

- Untuk struktur yg mempunyai perioda sebesar 0,5 detik atau kurang, k = 1
- Untuk struktur yg mempunyai perioda sebesar 2,5 detik atau lebih, k = 2
- Untuk struktur yg mempunyai perioda antara 0,5 dan 2,5 detik, k harus sebesar
 2 atau harus ditentukan dengan interpolasi linear antara 1 dan 2.

Story	Berat Wx	h (mm)	Wx.hx^k (X)	Wx.hx^k (Y)	Force (x)	Force (y)	Story Shear	Story Shear
8	1.115481	4000	842037.8	842037.8	330.6	330.6	(x) 330.6	(y) 330.6
7	1.202102	4000	907425.0	907425.0	356.3	356.3	356.3	356.3
6	1.213938	4000	916359.5	916359.5	359.8	359.8	359.8	359.8
5	1.184578	4000	894196.7	894196.7	351.1	351.1	351.1	351.1
4	1.223929	4000	923901.4	923901.4	362.7	362.7	362.7	362.7
3	1.239287	4000	935494.6	935494.6	367.3	367.3	730.0	730.0
2	1.240929	4000	936734.1	936734.1	367.8	367.8	1097.8	1097.8
1	1.21777	4600	1154733.8	1154733.8	453.4	453.4	1551.2	1551.2
TOTAL			3026962.5	3026962.5	1188.5	1188.5	3379.1	3379.1

Tabel L. 10: Nilai story shear untuk gaya lateral statik ekivalen Model 2.

Berdasarkan Tabel L.12, dapat diketahui nilai gaya geser pada model 2 arah X yang merupakan nilai gaya geser dasar untuk struktur tersebut adalah 1188.5 KN. Dan diketahui nilai gaya geser pada model 2 arah Y yang merupakan nilai gaya geser dasar untuk struktur tersebut adalah 1188.5 KN.

L.5 Koreksi story shear dengan 35% base shear

Tabel L.11: Hasil analisa Koreksi *story shear* dengan 35% *base shear* dengan redundansi 1, R = 8, untuk Model 1 arah X.

Struktur Fixed Base							
Lantai Ke-	Story Shear (V) (kg)	Base Shear (V) (kg)	Cek35%V Base Shear<				
4	79158.8	573.7920118	ОК				
3	113257.45	573.7920118	ОК				
2	141461.66	573.7920118	ОК				
1	167234.19	573.7920118	ОК				

		Struktur Fixed Base are	h
Lantai Ke-	Story Shear (V) (kg)	Base Shear (V) (kg)	Cek 35% V Base Shear < Story Shear V
8	8220.43	415.9638415	ОК
7	12735.42	415.9638415	ОК
6	15027.13	415.9638415	ОК
5	17064.39	415.9638415	ОК
4	17802.35	415.9638415	ОК
3	19659.04	415.9638415	OK
2	21896.19	415.9638415	ОК
1	24387.87	415.9638415	OK

Tabel L.12: Hasil analisa Koreksi *story shear* dengan 35% *base shear* dengan redundansi 1, R = 8, untuk Model 2.

L.6 Nilai simpangan Gedung

Tabel L.13: Hasil Analisa nilai simpangan Gedung pada (Model 1).

Story	Displac	ement	ElasticDrift		h	Inelastic Drift		Drift Limit	Cek
Story	δe_X	δey	δex	δey		Δ_X	Δγ		
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
4	0.613	0.048	0.171	0.015	4000	0.941	0.083	61.538	OK
3	0.442	0.033	0.182	0.014	4000	1.001	0.077	61.538	OK
2	0.26	0.019	0.164	0.012	4000	0.902	0.066	61.538	OK
1	0.096	0.007	0.096	0.007	4600	0.528	0.039	70.769	OK

Tabel L. 14: Hasil Analisa nilai simpangan Gedung pada (Model 2).

Story	Displac	ement	Elastic Drif	ť	h	Inelastic	Drift	Drift Limit	Cek
Story	δex	δey	δex	беү		Δx	Δγ		
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
8	30.613	7.713	2.567	0.493	4000	14.119	2.711	61.538	OK
7	28.046	7.220	3.144	0.710	4000	17.292	3.907	61.538	OK
6	24.902	6.510	3.710	0.940	4000	20.405	5.169	61.538	OK

Story	Displace	ement	Elastic Drif	ît	h	Inelastic .	Drift	Drift Limit	Cek
Story	δex	беү	δex	беү		Δx	Δγ		
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
5	21.192	5.570	4.003	1.054	4000	22.017	5.796	61.538	OK
4	17.189	4.516	4.253	1.128	4000	23.392	6.202	61.538	OK
3	12.936	3.388	4.185	1.129	4000	23.018	6.210	61.538	OK
2	8.751	2.259	4.494	1.203	4000	24.717	6.614	61.538	OK
1	4.257	1.057	4.257	1.057	4600	23.414	5.811	70.769	OK

L.7 Kontrol Ketidakberaturan Kekakuan Tingkat Lunak (Soft Story)

Tabel L. 17: Kontrol ketidakberaturan kekauan tingkat lunak pada arah X (Model 1).

Story	Story Stiffness (kN/m)	Story Stiffness > 70% Story Stiffness above	kr	ki/kr (%)	Story Stiffness < 80% Story Stiffness above
4	102139.262				
3	142422.321	OK	133494.81		
2	155922.86	OK	158467.93	116.8006868	ОК
1	177058.609	OK		111.7315087	OK

Tabel L.18: Kontrol ketidakberaturan kekakuan tingkat lunak pada arah Y (Model 1).

Story	Story Stiffness (kN/m)	Story Stiffness > 70% Story Stiffness above	kr	ki/kr (%)	Story Stiffness < 80% Story Stiffness above
4	193787.872				
3	236954.415	ОК	232362.75		
2	266345.976	ОК	287804.36	114.6250727	ОК
1	360112.684	ОК		125.1241246	ОК

Tabel L. 19: Kontrol ketidakberaturan kekauan tingkat lunak pada arah X (Model 2).

Story	Story Stiffness (kN/m)	Story Stiffness > 70% Story Stiffness above	kr	ki/kr (%)	Story Stiffness < 80% Story Stiffness above
8	105664.853				
7	142143.971	ОК	134037.22		
6	154302.844	ОК	156149.52		
5	172001.755	ОК	171618.01	128.3238727	ОК
4	188549.424	OK	193461.35	120.7492793	ОК
3	219832.86	ОК	212651.33	128.0942851	ОК
2	229571.715	OK		118.6654178	ОК
1	261535.409	ОК		122.9879001	ОК

Tabel L. 20: Kontrol ketidakberaturan kekauan tingkat lunak pada arah X (Model 2).

	Story	Story Stiffness			Story Stiffness <
Story	Stiffness	> 70% Story	kr	ki/kr (%)	80% Story
	(kN/m)	Stiffness above			Stiffness above
8	88129.003				
7	142381.673	ОК	131203.6497		
6	163100.273	ОК	161132.7013		
5	177916.158	ОК	179185.0627	135.6030556	ОК
4	196538.757	ОК	199986.8007	121.9732279	ОК
3	225505.487	ОК	227858.4127	125.8506059	OK
2	261530.994	OK		130.7741277	ОК
1	383657.767	ОК		168.3755111	ОК

L.8 Pengaruh Efek P-Delta

	Inelast	ic Drift	Story Forces	V	V	h	Koafisia	. Stabilitas	Batas	Batas Stabil	
Lt	\varDelta_X	Δ_Y	Р	V _X	Vy	n	коерізіеї	i Siubiilius	Pengar uh P-	tas Strukt	Cek
	(mm)	(mm)	(kN)	(kN)	(kN)	(mm)	θΧ	θY	Delta	ur, $ heta_{max}$	
4	0.941	0.083	332.6	776.3	721	4000	0.0000	0.0000	0.1	0.1	OK
3	1.001	0.077	687.2	1110.7	1,122	4000	0.0000	0.0000	0.1	0.1	OK
2	0.902	0.066	104655.3	1387.3	1,426	4000	0.0031	0.0002	0.1	0.1	ОК
1	0.528	0.039	140594.2	1640.0	1,640	4600	0.0018	0.0001	0.1	0.1	ОК

Tabel L.21: Hasil analisa P-Delta struktur Model 1 (R=8).

Tabel L. 22: Hasil analisa P-Delta struktur Model 2 (R=8).

Lt	Inel Di	astic rift	Sto	ory Force:	5	h	Koef Stab	isien ilitas	Batas Pengaruh P-Delta	Batas Stabiltas Struktur. θmax	Cek
	Δ_X	Δγ	Р	V_x	V_y						
	(mm)	(mm)	(kN)	(kN)	(kN)	(mm)	θX	θΥ			
8	14.1	2.7	14191.0	1228.8	3186.7	4000	0.007	0.001	0.1	0.1	OK
7	17.3	3.9	31604.7	1973.8	4708.6	4000	0.013	0.001	0.1	0.1	OK
6	20.4	5.2	49173.5	2487.7	5826.6	4000	0.018	0.002	0.1	0.1	OK

5	22.0	5.8	66142.7	2866.2	6663.9	4000	0.023	0.003	0.1	0.1	OK
4	23.4	6.2	83831.5	3216.8	7506.2	4000	0.028	0.003	0.1	0.1	ОК
3	23.0	6.2	101686.9	3576.3	8361.1	4000	0.030	0.003	0.1	0.1	ОК
2	24.7	6.6	119580.9	3939.1	9233.1	4000	0.034	0.004	0.1	0.1	OK
1	23.4	5.8	137410.1	4212.0	9802.3	4600	0.030	0.003	0.1	0.1	OK
			•	1	1						1

L.9 Rekaman Gempa

a. Rekaman Gempa Mengandung Pulse Model 1 dan 2

 B. Rekaman Gempa Tanpa Pulse Pada Model 1 berdasarkan Kondisi CP dan Runtuh

c. Rekaman Gempa Tanpa Pulse Pada Model 2 berdasarkan Kondisi CP dan Runtuh

- d. Rekaman Gempa Jauh Pada Model 1 berdasarkan Kondisi CP dan Runtuh

e. Rekaman Gempa Jauh Pada Model 2 Berdasarkan Kondisi CP dan Runtuh

	<i>*</i>)		. 0	0	10	34	14		10	20	- 22	- 24	• •		20		- 3	-	24.0	36	Tr	40 ne (se	sc "/	·	• •	•	90 () ()	50	52	54	50	- 50	60	6,		• •	5 00	100 m	, ,	66) X		10
	1.1		· · · ·	 100			1.1		 		-		64 G	2175	~					-			1					201				1					20.02	1004	a 0.,			20
			111	 	tin.				 200			****	1377						****	1911	*****	-						-	-						****	*****				*****		
																1																										
	144		***	 				~~~~	1	1	1		-		1	- 1			4	1	1	1			11 - C	193	1	4	11	8 I -	4	10	1	1			6 - S			2	1	1
1		11.1		 22		144		842		24							100																									

L.10 Interstory Drift Rasio (IDR)

a. Untuk gambar *Interstory Drift Rasio* rekaman gempa mengandung *pulse* pada
 Model 1 dapat dilihat seperti gambar dibawah:

 b. Untuk gambar *Interstory Drift Rasio* rekaman gempa mengandung *pulse* pada Model 2 dapat dilihat seperti gambar dibawah:

c. Untuk gambar *Interstory Drift Rasio* rekaman gempa yang tidak mengandung *pulse* pada Model 1 dapat dilihat seperti gambar dibawah:

d. Untuk gambar *Interstory Drift Rasio* rekaman gempa yang tidak mengandung *pulse* pada Model 2 dapat dilihat seperti gambar dibawah:

e. Untuk gambar *Interstory Drift Rasio* rekaman gempa jauh pada Model 1 dapat dilihat seperti gambar dibawah:

f. Untuk gambar *Interstory Drift Rasio* rekaman gempa jauh pada Model 2 dapat dilihat seperti gambar dibawah:

L.11 Simpangan Sisa

a. Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada
 Kondisi CP di Lantai 4 Model 1 dapat dilihat seperti gambar dibawah:

 b. Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi CP di Lantai 1 Model 1 dapat dilihat seperti gambar dibawah:

c. Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi *Collapse* di Lantai 4 Model 1 dapat dilihat seperti gambar dibawah:

 d. Untuk gambar simpangan sisa rekaman gempa yang mengandung *pulse* pada Kondisi *Collapse* di Lantai 1 Model 1 dapat dilihat seperti gambar dibawah:

e. Untuk gambar simpangan sisa rekaman gempa mengandung *pulse* pada Kondisi CP di Lantai 4 Model 2 dapat dilihat seperti gambar dibawah:

f. Untuk gambar simpangan sisa rekaman gempa mengandung *pulse* pada Kondisi
 CP di Lantai 1 Model 2 dapat dilihat seperti gambar dibawah:

g. Untuk gambar simpangan sisa rekaman gempa mengandung *pulse* pada Kondisi
 Runtuh di Lantai 4 Model 2 dapat dilihat seperti gambar dibawah:

 h. Untuk gambar simpangan sisa rekaman gempa mengandung *pulse* pada Kondisi Runtuh di Lantai 4 Model 2 dapat dilihat seperti gambar dibawah:

 Untuk gambar simpangan sisa rekaman gempa yang tidak mengandung *pulse* pada Kondisi CP dan Collapse yang mndekati median di Lantai 4 dan Lantai 1 Model 1 dapat dilihat seperti gambar dibawah:

2. Kondisi Collapse pada gempa tanpa Pulse Loma Prieta -Bran

- j. Untuk gambar simpangan sisa rekaman gempa yang tidak mengandung *pulse* pada Kondisi CP dan Collapse yang mndekati median di Lantai 4 dan Lantai 1 Model 2 dapat dilihat seperti gambar dibawah:
- 1. Kondisi CP pada gempa tanpa Pulse Cape Mendocino

2. Kondisi Collapse pada gempa tanpa Pulse Gazli

 k. Untuk gambar simpangan sisa rekaman gempa Jauh pada Kondisi CP dan Collapse yang mendekati median di Lantai 4 dan Lantai 1 Model 1 dapat dilihat seperti gambar dibawah:

 Untuk gambar simpangan sisa rekaman gempa Jauh pada Kondisi CP dan Collapse yang mendekati median di Lantai 4 dan Lantai 1 Model 2 dapat dilihat seperti gambar dibawah:

DAFTAR RIWAYAT HIDUP

DATA DIRI PENULIS

Nama Lengkap	: Rizki Tamara
Tempat Tanggal Lahir	: Takengon, 9 Maret 2002
Alamat	: Jln. Gn. Singgamata No.38, Glugur Darat
	II, Kec. Medan Timur, Kota Medan,
	Sumatera Utara.
Agama	: Islam
Nama Orang Tua	
Ayah	: Tamrin Usman (Alm)
Ibu	: Sutami
No. Telp	: 082261389742
Email	: <u>rizkitamara00@gmail.com</u>

RIWAYAT PENDIDIKAN

SD Negeri 1 Bebesen	Tahun Lulus 2014
SMP Negeri 1 Takengon	Tahun Lulus 2017
SMK Negeri 3 Takengon	Tahun Lulus 2020
Universitas Muhammadiyah Sumatera	2020 - Selesai
Utara	