TUGAS AKHIR

PENGARUH KARAKTER *PULSE* DAN *FLING* YANG DIMILIKI REKAMAN GERAKAN TANAH TERHADAP PERILAKU NONLINIER RANGKA BERBRESING EKSENTRIS

(Studi Literatur)

Diajukan Untuk Memenuhi Syarat-Syarat Memperoleh Gelar Sarjana Teknik Sipil Pada Fakultas Teknik Universitas Muhammadiyah Sumatera Utara

Disusun Oleh:

LISYA MADHAYANTI BR HRP 1707210076

PROGAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA MEDAN

2022

يَرْاللَّهُ الرَّجْمِرُ الرَّجِيجَ مَرْ

LEMBAR PERSETUJUAN PEMBIMBING

Tugas Akhir ini diajukan oleh :

Nama	: Lisya Madhayanti BR HRP
NPM	: 1707210076
Program Studi	: Teknik Sipil
Judul Skripsi	: Pengaruh Karakter Pulse dan Fling Yang Dimiliki
	Rekaman Gerakan Tanah Terhadap Perilaku Nonlinier
	Rangka Berbresing Eksentris
Bidang Ilmu	: Struktur

DISETUJUI UNTUK DISAMPAIKAN KEPADA PANITIA UJIAN SKRIPSI

Medan, Mei 2022

Dosen Pembimbing

Ade Faisal, S. T. M.Sc., PhD

HALAMAN PENGESAHAN

Tugas Akhir ini diajukan oleh:

Judul Skripsi	: Pengaruh	Karakter	Pulse	dan	Fling	Yang	Dimiliki
	Rekaman (Gerakan Ta	nah Terh	nadap	Perilaku	Nonlinie	Rangka
	Berbresing	Eksentris					

Nama : Lisya Madhayanti BR HRP

NPM : 1707210076

Program Studi : Teknik Sipil

Bidang Ilmu : Struktur

Telah berhasil dipertahankan dihadapan Tim Penguji dan diterima sebagai salah satu syarat yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

> Medan, Mei 2022 Mengetahui dan menyetujui: Dosen Pembimbing

Ade Faisal, S.T., M.Sc., PhD

Dosen Pembanding I

Dr. Fahrizal Zulkarnain, S.T., M.Sc

Dosen Pembanding II Tondi Amirsyah Putera, S.T., M.T

Kepala Program Teknik Sipil

Dr. Fahrizal Zulkarnain, S.T., M.Sc

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Saya yang bertanda tangan di bawah ini:

Nama	: Lisya Madhayanti BR HRP
Tempat/Tanggal Lahir	: Bahbutong/ 14 Februari 2000
NPM	: 1707210076
Fakultas	: Teknik
Program Studi	: Teknik Sipil

Menyatakan dengan sesungguhnya dan sejujurnya, bahwa laporan Tugas Akhir saya yang berjudul:

"Pengaruh Karakter Pulse dan Fling Yang Dimiliki Rekaman Gerakan Tanah Terhadap Perilaku Nonlinier Rangka Berbresing Eksentris".

Bukan merupakan plagiarisme, pencurian hasil karya milik orang lain, hasil kerja orang lain untuk kepentingan saya karena hubungan material dan nonmaterial, ataupun segala kemungkinan lain, yang pada hakekatnya bukan merupakan karya tulis Tugas Akhir saya secara orisinil dan otentik.

Bila kemudian hari diduga ada ketidaksesuaian antara fakta dengan kenyataan ini, saya bersedia di proses oleh Tim Fakultas yang dibentuk untuk melakukan verifikasi, dengan sanksi terberat berupa pembatalan kelulusan/kerjasama saya.

Demikian surat pernyataan ini saya buat dengan kesadaran sendiri dan tidak atas tekanan ataupun paksaan dari pihak manapun demi menegakkan integritas akademik di Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Lisya Madhayanti BR HRP

ABSTRAK

PENGARUH KARAKTER *PULSE* DAN *FLING* YANG DIMILIKI REKAMAN GERAKAN TANAH TERHADAP PERILAKU NONLINIER RANGKA BERBRESING EKSENTRIS (STUDI LITERATUR)

Lisya Madhayanti BR HRP 1707210076 Dr. Ade Faisal, ST, MSc

Gempa bumi merupakan peristiwa bergetarnya bumi akibat pelepasan energi di dalam bumi secara tiba-tiba yang ditandai dengan patahnya lapisan batuan pada kerak bumi. Semakin besar energi yang dilepas maka semakin kuat gempa yang terjadi. Hal itu yang menyebabkan Indonesia masuk ke dalam wilayah zona gempa. Pada tugas akhir ini direncanakan 3 model struktur bangunan dengan menggunakan SRBE, dengan metode RSA T1 untuk analisis linier dan analisis nonlinier yang difungsikan sebagai bangunan perkantoran yang terdapat di daerah Gunung Sitoli. Model 1 memiliki tinggi 18,3 m (4 lantai), model 2 memiliki tinggi 35,36 m (8 lantai), model 3 memiliki tinggi 69,49 m (16 lantai) dengan bentang 30,48 m, jenis tanah sedang (SD). Dari hasil analisis yang didapatkan hasil memodelkan struktur baja dengan kondisi tanah sedang (R8) terhadap gempa *fling* didapatkan nilai maksimum interstory drift dengan pengaruh Tp sebesar 3,33 detik. Namun demikian hasil regresi menunjukkan semakin meningkat periode Tp semakin berkurang pengaruh kepada interstory drift dan simpangan atap. Pada gempa pulse didapatkan nilai maksimum *interstory drift* dengan pengaruh Tp sebesar 7,30 detik. Namun demikian hasil regresi menunjukkan semakin berkurang periode Tp semakin meningkatkan interstory drift dan semakin meningkat periode Tp semakin berkurang pengaruh kepada top displacement.

Kata kunci: Gempa bumi, gempa *pulse* dan *fling*, SRBE, sistem persamaan regresi linear.

ABSTRACT

THE EFFECT OF THE PULSE AND FLING CHARACTER OF THE SOIL MOVEMENT RECORDING ON THE NONLINEAR BEHAVIOR OF THE ECENTRIC BRACED FRAME (LITERATURE STUDY)

Lisya Madhayanti BR HRP 1707210076 Dr. Ade Faisal, ST, MSc

An earthquake is an event that causes the earth to vibrate due to the sudden release of energy in the earth, which is marked by the breaking of rock layers in the earth's crust. The greater the energy released, the stronger the earthquake that occurs. This is what causes Indonesia to enter the earthquake zone. In this final project, 3 models of building structures using SRBE are planned, with the RSA T1 method for linear analysis and nonlinear analysis that function as office buildings in the Gunung Sitoli area. Model 1 has a height of 18.3 m (4 floors), model 2 has a height of 35.36 m (8 floors), model 3 has a height of 69.49 m (16 floors) with a span of 30.48 m, medium soil type (SD). From the analysis results obtained by modeling a steel structure with moderate soil conditions (R8) against a fling, the maximum value of interstory drift with the effect of Tp of 3.33 seconds. However, the regression results show that as the period of Tp increases, the effect on interstory drift and roof slope. In earthquake pulse, the maximum value of interstory drift with a Tp effect of 7.30 seconds. However, the regression results show that the decreasing of the Tp period increases the interstory drift and the increasing of the *Tp period the less the effect on the top displacement.*

Keywords: Earthquakes, pulse and fling earthquakes, SRBE, system of linear regression equations.

KATA PENGANTAR

Dengan nama Allah Yang Maha Pengasih lagi Maha Penyayang. Segala puji dan syukur penulis ucapkan kehadirat Allah SWT yang telah memberikan karunia dan nikmat yang tiada terkira. Salah satu dari nikmat tersebut penulis dapat menyelesaikan Tugas Akhir ini yang berjudul "Pengaruh Karakter Pulse dan Fling Yang Dimiliki Rekaman Gerakan Tanah Terhadap Perilaku Nonlinier Rangka Berbresing Eksentris" sebagai syarat untuk meraih gelar akademik Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara (UMSU), Medan.

Banyak pihak telah membantu dalam menyelesaikan Proposal Tugas Akhir ini, untuk itu penulis menghaturkan rasa terima kasih yang tulus dan dalam kepada:

- Bapak Dr. Ade Faisal S.T, MSc selaku Dosen Pembimbing yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Proposal Tugas Akhir ini.
- Bapak Dr. Fahrizal Zulkarnain S.T, MSc selaku Dosen Ketua Program Studi Teknik Sipil Universitas Muhammadiyah Sumatera Utara dan Pembanding I yang telah mengarahkan penulis dalam menyelesaikan Proposal Tugas Akhir ini.
- 3. Bapak Tondi Amirsyah Putera, S.T., M.T selaku Dosen Pembanding II yang telah mengarahkan penulis dalam menyelesaikan Proposal Tugas Akhir ini.
- 4. Ibu Rizki Efrida S.T., M.T selaku Sekretaris Program Studi Teknik Sipil Universitas Muhammadiyah Sumatera Utara.
- Bapak Munawar Alfansury Siregar, S.T, M.T selaku Dekan Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- Seluruh Bapak/Ibu Dosen di Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara yang telah banyak memberikan ilmu ketekniksipilan kepada penulis.
- Orang tua saya M Ramadhan Harahap, Reliana dan saudara kandung saya Khadizah Nur Maqfiroh, Ahmad Ardiansyah Harahap atas dukungan moril maupun material dan kasih sayang tulus selama ini kepada penulis.

vi

- 8. Bapak/Ibu Staff Administrasi di Biro Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- 9. Gilang Mahardika dan Mhd. Difa Alfanza Nasution yang telah membantu saya dalam mengerjakan proposal tugas akhir ini.
- 10. Kepada para Tim Earthquake Engineering Research Group, Amsyahri, dan semua teman sejawat saya lainnya yang tidak mungkin namanya disebut satu per satu.

Tugas Akhir ini tentunya masih jauh dari kesempurnaan, untuk itu penulis berharap kritik dan masukan yang konstruktif untuk menjadi bahan pembelajaran berkesinambungan penulis di masa depan. Semoga Tugas Akhir ini dapat bermanfaat bagi dunia konstruksi teknik sipil.

Medan, Mei 2022

Lisya Madhayanti BR HRP

DAFTAR ISI

LEMBAR PI	ERSETUJUAN PEMBIMBING	i
LEMBAR PENGESAHAN		
LEMBAR PERNYATAAN KEASLIAN SKRIPSI		
ABSTRAK		iv
ABSTRACT		v
KATA PENO	GANTAR	vii
DAFTAR IS	I	viiii
DAFTAR TA	ABEL	х
DAFTAR GA	AMBAR	xii
DAFTAR NO	DTASI	xiii
BAB 1 PENI	DAHULUAN	1
1.1 1.2 1.3 1.4 1.5 1.6	Latar Belakang Rumusan Masalah Tujuan Penulisan Batasan Masalah Manfaat Penelitian Sistematika Penulisan	1 3 3 4 5 5
BAB 2 TINJ	AUAN PUSTAKA	7
2.1	Umum	7
2.2	Pengertian Gempa	7
2.3	Jenis-Jenis Gempa	7
	2.2.3 Gempa Fling	7
	2.2.4 Gempa Pulse	8
2.4	Ground Motion (Getaran Tanah)	9
2.5	Respon Spektrum Desain	10
2.6	Pembebanan Struktur	10
	2.6.1 Beban Gravitasi	10
	2.6.2 Beban Lateral	10
2.7	Prosedur Analisis	11
	2.7.1 Analisis Statik Ekivalen	11
	2.7.2 Analisis Ragam Spektrum Respons	12
28	2.7.5 Allalisa Kiwayat Wakiu Sistem rangka brosing aksantris	12
2.8	Material Baja	13
2.9	Program Ruaumoko	14 1 <i>A</i>
2.10	Selubung Siklik (Cyclic Envelope)	15
2.12	Pemodelan Sendi Plastis Balok	16
2.12	Pemodelan Sendi Plastis Kolom	18

2.14 Rotasi Leleh ($\theta_{\rm y}$)	19
2.15 Panel Zone Sambungan Balok-Kolom	20
2.16 Prosedur Nonlinier pada Bresing Eksentris (EBF)	23
2.17 Pemodelan Balok Link	25
BAB 3 METODE PENELITIAN	28
3.1. Umum	28
3.2 Pemodelan Struktur	29
3.2.1 Data Perencanaan Struktur	29
3.2.2 Konfigurasi Bangunan	30
3.3 Dimensi Kolom-Balok	34
3.4 Analisis Struktur	34
3.4.1 Pembebanan	35
3.4.2 Respons Spektrum Desain	35
3.4.3 Kombinasi Pembebanan	36
3.5 Analisis Dinamik Struktur Non Linier	34
3.5.1 Pemodelan Struktur pada Program RUAUMOKO2D	37
3.5.2 Groundmotion Record	38
3.5.3 Analisis Respon Riwayat Waktu	40
BAB 4 HASIL DAN PEMBAHASAN	43
4.1 Hasil Model Linier Dan Non Linier	43
4.2 Hasil Analisa Linier	43
4.2.1 Respon Spektrum Ragam	43
4.2.2 Koreksi Gempa Dasar Nominal	44
4.2.3 Koreksi Faktor Redundansi	44
4.2.4 Koreksi Skala Simpangan Antar Tingkat	45
4.2.5 Nilai Simpangan Antar Lantai	45
4.2.6 Kontrol Ketidakberaturan Kekakuan Tingkat Lunak (Soft	
Story)	45
4.2.7 Pengaruh Etek P-Delta	46
4.3 Hasil Analisa Non Linier	46
BAB 5 KESIMPULAN DAN SARAN	61
5.1 Kesimpulan	61
5.2 Saran	61
DAFTAR PUSTAKA	62
LAMPIRAN	

DAFTAR RIWAYAT HIDUP

DAFTAR TABEL

Tabel 3.1:	Komponen Struktural Bangunan	34
Tabel 3.2:	Berat material konstruksi berdasarkan PPPURG 1987.	35
Tabel 3.3:	Beban hidup pada lantai dan atap struktur berdasarkan SNI 1727:2013.	35
Tabel 3.4:	Kombinasi Pembebanan Berdasarkan SNI 1726:2019 dengan nilai P=1, Sds = 1.	37
Tabel 3.5:	Data-Data Rekaman Gempa.	38
Tabel 4.1:	Nilai gaya geser dasar nominal analisa statik ekivalen (V_I) dan nilai gaya geser dasar nominal analisa respon spektrum <i>output</i> Program Analisa Struktur V_t .	44
Tabel 4.2:	Kontrol nilai koreksi skala simpangan antar tingkat.	45
Tabel 4.3:	Nilai simpangan atap (top displacement) akibat gempa pulse.	54
Tabel 4.4:	Nilai simpangan atap (<i>top displacement</i>) dengan gempa <i>fling</i> pada analisa nonlinear.	55
Tabel 4.5:	Nilai rata-rata simpangan atap (top displacement) nonlinear.	55
Tabel 4.6:	Nilai maksimum <i>interstory drift</i> dan <i>top displacement</i> pada setiap <i>ground motion fling</i> .	56
Tabel 4.7:	Nilai maksimum interstory drift dan top displacement pada setiap	
	ground motion pulse.	56
Tabel 4.8:	Nilai persamaan regresi linear pada gempa <i>fling</i> pada analisa nonlinear.	59
Tabel 4.9:	Nilai persamaan regresi linear dengan gempa <i>pulse</i> pada analisa nonlinear.	60

DAFTAR GAMBAR

Gambar 1.1 :	Lempengan Bumi Indonesia.	1
Gambar 1.2:	Ciri khas riwayat waktu kecepatan dan perpindahan dari gerakan tanah (a) gempa jauh (tanpa pulse), (b) gempa dekat (mengandung <i>pulse</i> tanpa <i>fling</i>), and (c) gempa dekat (<i>mengandung pulse dan fling</i>).	2
Gambar 1.3:	Tipikal Bentuk Rangka Bresing Eksentrik.	3
Gambar 2.1:	Rekaman gempa Northridge (1994) dan Parkfield(1997).	8
Gambar 2.2:	Struktur Rangka Bresing Eksentris (SRBE)	14
Gambar 2.3:	Kurva <i>backbone</i> monotonik dan siklik yang ideal untuk balok baja.	16
Gambar 2.4:	Skema gaya dari balok dan kolom yang bekerja pada zona panel dan gaya geser zona panel resultan.	21
Gambar 2.5:	Gaya geser zona panel yang ideal versus deformasi geser.	22
Gambar 2.6:	Skema Pemodelan Analitik Bresing Eksentris (EBF).	24
Gambar 2.7:	Kurva Interaksi P-M (Bagian Permukaan Luluh).	25
Gambar 3.1:	Bagan Alir Penelitian.	28
Gambar 3.2:	Denah Rangka Lantai Tipikal 4 Lantai Dan 8 Lantai.	30
Gambar 3.3:	Denah Rangka Lantai Tipikal 16 Lantai.	31
Gambar 3.4:	Tampilan Isometrik Model Gedung 4 Lantai.	31
Gambar 3.5:	Tampilan Isometrik Model Gedung 8 Lantai.	32
Gambar 3.6:	Tampilan Isometrik Model Gedung 16 Lantai.	33
Gambar 3.7:	Respon Spektrum Desain Berdasarkan Sni 1726:2019	36
Gambar 3.8:	Bentuk pemodelan struktur yang akan digunakan didalam program RUAUMOKO2D.	38
Gambar 3.9:	Rekaman gempa Chichi Taiwan (TCU049) sebelum penskalaan ini merupakan gempa mengandung fling.	40
Gambar 3.10:	Rekaman gempa Chichi Taiwan (TCU049) setelah diubah menjadi respon spektrum.	41
Gambar 3.11:	Rekaman gempa Chichi Taiwan (TCU049) sebelum (gambar atas) dan setelah diskalakan (gambar bawah), ini merupakan gempa <i>fling</i> .	41
Gambar 4.1:	Hasil <i>interstory drift</i> untuk struktur SRBE (EBF) Lantai 4 (Model 1) terhadap rekaman gempa mengandung <i>fling</i>	

xi

	dengan menggunakan berbagai metode modifikasi pengskalaan groundmotion.	47
Gambar 4. 2:	Hasil <i>interstory drift</i> untuk struktur SRBE (EBF) Lantai 4 (Model 1) terhadap rekaman gempa mengandung <i>pulse</i> dengan menggunakan berbagai metode modifikasi pengskalaan <i>groundmotion</i> .	48
Gambar 4.3:	Hasil <i>interstory drift</i> untuk struktur SRBE (EBF) Lantai 8 (Model 2) terhadap rekaman gempa mengandung <i>fling</i> dengan menggunakan berbagai metode modifikasi pengskalaan <i>groundmotion</i> .	49
Gambar 4.4:	Hasil <i>interstory drift</i> untuk struktur SRBE (EBF) Lantai 8 (Model 2) terhadap rekaman gempa mengandung <i>pulse</i> dengan menggunakan berbagai metode modifikasi pengskalaan <i>groundmotion</i> .	50
Gambar 4.5:	Hasil <i>interstory drift</i> untuk struktur SRBE (EBF) Lantai 16 (Model 3) terhadap rekaman gempa mengandung <i>fling</i> dengan menggunakan berbagai metode modifikasi pengskalaan <i>groundmotion</i> .	51
Gambar 4.6:	Hasil <i>interstory drift</i> untuk struktur SRBE (EBF) Lantai 16 (Model 3) Terhadap Rekaman Gempa Mengandung <i>Pulse</i> Dengan Menggunakan Berbagai Metode Modifikasi Pengskalaan <i>Groundmotion</i> .	52
Gambar 4.7:	Hasil persamaan regresi linear <i>interstory drift</i> terhadap Tp dengan gempa <i>fling</i> .	57
Gambar 4.8:	Hasil persamaan regresi linear pada <i>top displasment</i> dengan gempa <i>fling</i> .	57
Gambar 4.9:	Hasil persamaan regresi linear <i>interstory drift</i> terhadap Tp dengan gempa <i>pulse</i> .	59
Gambar 4.10:	Hasil persamaan regresi linear <i>top displasment</i> terhadap Tp dengan gempa <i>pulse</i> .	60

DAFTAR NOTASI

Α	= Percepatan
V	= Kecepatan
SDOF	= Single Degree Of Freedom
MDOF	= Multi Degree Of Freedom
Fy	= Tegangan leleh
Fu	= Tegangan ultimate
EBF	= Eccentrically Braced Frames
SRBE	= Sistem Rangka Baja Berbresing Eksentris
<i>S1</i>	= Percepatan batuan dasar pada perioda pendek
Ss	= Percepatan batuan dasar pada perioda 1 detik
MCER	= Maximum Considered Eartquake Ratio
Fa	= Faktor amplikasi getaran pada perioda pendek
Fv	= Faktor amplikasi getaran pada perioda 1 detik
SMS	= Parameter spektrum respons percepatan pada perioda pendek
SM1	= Parameter spektrum respons percepatan pada perioda 1 detik
Te	= Waktu getar efektif
Ke	= Kekakuan lateral efektif
Vy	= Kuat leleh bangunan
ρ	= Faktor redudansi
PGA	= Peak Ground Acceleration
RSA (T_1)	$= Response Spectra Acceleration (T_I)$
DL	= Dead load
LL	= Live load
EX	= Earthquake-X
EY	= Earthquake-Y
CQC	= Complete Quadratic Combination
SRSS	= Square Root of the Sum of Square

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Bumi sebagai tempat berpijak mahkluk hidup memiliki banyak komplekifitas dalam pergerakannya. dengan pergerakan lempeng tektonik menjadikan permukaan bumi memiliki berbagai macam sumber daya alam maupun resiko bencana yang akan terjadi di kemudian hari. Gempa bumi merupakan salah satu dampak negatif dari peroses pergerakan lempeng tersebut, daerah pertemuan lempeng ini menjadikan kawasan tersebut menjadi daerah rawan akan bencana Gempa bumi. Pada dasarnya Gempa bumi terjadi karena deretan pergerakan atau getaran yang terjadi pada lapisan kulit bumi yang bersifat sementara kemudian menyebar ke segala arah (Howel, 1969).

Indonesia merupakan jalur dari lempeng bumi, yaitu Lempeng Indonesia-Australia di sisi selatan yang bergerak ke utara dengan kecepatan 6-7cm/tahun menumbuk Lempeng Eurasia yang stabil sepanjang Palung Sunda. Dari sisi timur, Lempeng Pasifik menumbuk kawasan timur Indonesia sepanjang Palung New Guinea-Pasifik dengan kecepatan sampai 11cm/tahun. (UNESCO Office Jakarta, Bertahan Dari Gempa bumi 2010).

Gambar 1.1 : Lempengan Bumi Indonesia (Sapiie,dkk.,1999)

Getaran gempa dapat dibagi kedalam 2 jenis getaran yaitu getaran akibat gempa jauh dan akibat gempa dekat. Getaran akibat gempa dekat dibagi lagi menjadi getaran yang mengandung pulse (tanpa fling), getaran yang mengandung pulse dengan fling, dan getaran tanpa pulse, seperti yang ditunjukkan pada Gambar 1.2.

Gambar 1.2: Ciri khas riwayat waktu kecepatan dan perpindahan dari gerakan tanah (a) gempa jauh (tanpa pulse), (b) gempa dekat (mengandung *pulse* tanpa *fling*), and (c) gempa dekat (mengandung *pulse dan fling*) (Kalkan dan Kunnath, 2006).

Dari gambar dapat dilihat bahwa gempa jauh (a) memliki kecepatan dan *displacement (simpangan)* yang kecil dan fluktuasi osilasi getarannya cenderung stabil. Sedangkan untuk gempa dekat (b) memiliki osilasi kecepatan yang tiba-tiba naik dan turun secara signifikan lalu disusul oleh osilasi kecepatan yang lebih kecil serta memiliki *displacement* yang lebih besar dibandingkan dengan gempa jauh. Untuk gempa dekat *fling* (c) memiliki kecepatan yang tinggi untuk waktu yang lama dan setelah turun kecepatan nya cenderung stabil, gempa fling sama sama memiliki *displacement* yang tinggi dibandingkan dengan gempa jauh.

Sistem Rangka Bresing Eksentrik (SRBE) merupakan sistem struktur yang potensial untuk dapat menahan gaya lateral karena memiliki kekakuan yang cukup, dapat memenuhi kondisi batas simpangan antar lantai, karakteristik disipasi energi yang baik, dan perilaku inelastik yang sangat baik (Popov dan Roeder, 1978).

Bagian dari Rangka Bresing Eksentrik yang dapat mendisipasi energi adalah balok link. Ketika struktur menerima beban gempa horisontal, elemen link akan mengalami leleh geser atau leleh lentur (deformasi inelastis) sedangkan elemen yang berada di luar dari balok link tetap berperilaku elastis. Elemen- elemen yang berada di luar dari balok link harus direncanakan lebih kuat dari balok link untuk menjaga agar struktur tetap stabil (Bohl., 2005).

Gambar 1.3: Tipikal Bentuk Rangka Bresing Eksentrik (Tsai dkk., 2001)

1.2 Rumusan Masalah

- 1. Bagaimana pengaruh karakter fling yang dimiliki rekaman gerakan tanah terhadap perilaku nonlinear *interstory drift* dan *top displacement* pada struktur rangka berbresing eksentris Tipe *Split-V-braced EBF*?
- 2. Bagaimana pengaruh karakter pulse yang dimiliki rekaman gerakan tanah terhadap perilaku nonlinear *interstory drift* dan *top displacement* pada struktur rangka berbresing eksentris Tipe *Split-V-braced EBF*?

1.3 Tujuan Penulisan

- Untuk mengetahui bagaimana pengaruh karakter fling yang dimiliki rekaman gerakan tanah terhadap perilaku nonlinear *interstory drift* dan *top displacement* pada struktur rangka berbresing eksentris Tipe Split-Vbraced EBF
- 2. Untuk mengetahui bagaimana pengaruh karakter pulse yang dimiliki

rekaman gerakan tanah terhadap perilaku nonlinear *interstory drift* dan *top displacement* pada struktur rangka berbresing eksentris Tipe *Split-V-braced EBF*.

1.4 Batasan Masalah

Adapun batasan-batasan masalah yang ditetapkan pada Tugas Akhir ini adalah:

- 1. Struktur bangunan yang direncanakan merupakan:
 - Struktur baja dengan system rangka berbresing eksentris Tipe *Split-V-braced EBF* 2 Dimensi pada 4, 8, dan 16 lantai yang difungsikan sebagai perkantoran yang terdapat di daerah Gunungsitoli dengan jenis tanah sedang (SD).
 - Struktur dengan dimensi kolom dan balok yang hanya dianalisa pada batas aman saja, tidak dianalisa sampai ekonomis.
- 2. Perencanaan struktur baja, pembebanan serta gedung direncanakan berdasarkan:
 - Tata cara perencanaan struktur baja menggunakan Persyaratan Baja Struktural untuk bangunan Gedung SNI 1729:2020.
 - Perencanaan pembebanan menggunakan SNI 1727:2013 dan Pedoman Perencanaan Pembebanan untuk Rumah dan Gedung (PPURG) 1987.
 - Beban gempa dan gedung direncanakan menggunakan Standar Perencanaan Tahan Gempa Untuk Struktur Bangunan Gedung SNI 1726:2019.
 - Menggunakan penskalaan metode RSA (T₁) yang diskalakan berdasarkan respon spektrum wilayah Indonesia.
 - 4. Analisis menggunakan alat bantu berupa program yaitu:
 - Program Analisa Struktur, untuk menganalisa tahap desain pada Analisa *pushover* dan analisa riwayat waktu.
 - PEER NGA, COSMOS untuk mendapatkan rekaman gempa.
 - SEISMOSIGNAL, untuk mengubah *groundmotion* menjadi Respon Spektrum.

- SEISMOMATCH, untuk menyesuaikan data rekaman gempa dengan respon spektra desain.
- MATLAB versi R2014a, untuk menskalakan groundmotion.
- RUAUMOKO2D versi 04, untuk menganalisa tahap evaluasi (Analisa Riwayat Waktu Nonlinear) yang hanya ditinjau secara 2 dimensi.
- 5. Parameter yang ditinjau:
 - Linear adalah semua aspek yang harus di kontrol sesuai dengan SNI 1726:2019
 - Nonlinear : Interstory drift - Top displacement

1.5 Manfaat Penelitian

Dari hasil perencanaan pada pemodelan Struktur Baja dengan Sistem Rangka Berbresing Eksentris (SRBE) maka diharapkan Tugas Akhir ini dapat memberikan manfaat untuk mengetahui bagaimana cara merencanakan struktur gedung baja dengan Sistem Rangka Berbresing Eksentris (SRBE) dengan bresing konsentrik.

1.6 Sistematika Penulisan

Adapun sistematika penulisan yang digunakan pada Tugas Akhir ini sebagai berikut:

BAB 1 PENDAHULUAN

Didalam Bab ini akan menguraikan penjelasan tentang latar belakang masalah, rumusan masalah, ruang lingkup permasalahan, tujuan penelitian, manfaat penelitian, sistematika penulisan.

BAB 2 TINJAUAN PUSTAKA

Bab ini akan menguraikan penjelasan mengenai mekanisme gempa, konsep perencanaan struktur bangunan baja, analisa struktur baja Sistem Rangka Berbresing Eksentris (SRBE), dan konsep tentang kekuatan bangunan baja terhadap gempa yang terjadi.

BAB 3 PEMODELAN STRUKTUR

Bab ini akan menampilkan bagaimana metodologi penelitian yang digunakan dari awal sampai akhir penelitian dan penjelasan mengenai cara memodelkan dan mendesain struktur bangunan baja dengan Sistem Rangka Berbresing Eksentris (SRBE) terhadap gempa yang terjadi dengan menggunakan Program Analisa Struktur dan RUAOMOKO2D versi 04.

BAB 4 ANALISIS DAN PEMBAHASAN

Bab ini akan menyajikan penjelasan mengenai perhitungan, analisis pemodelan bentuk gambar, grafik atau tabel serta pembahasannya.

BAB 5 KESIMPULAN DAN SARAN

Bab ini akan menyajikan penjelasan mengenai kesimpulan yang dapat diambil dari keseluruhan penulisan Tugas Akhir ini dan saran-saran yang dapat diterima penulis agar lebih baik lagi kedepannya.

BAB 2

TINJAUAN PUSTAKA

2.1 Umum

Pada Bab ini akan dibahas mengenai teori-teori dasar dan syaratsyarat/ketentuan yang berhubungan dalam perencanaan struktur bangunan yang akan dianalisa, seperti struktur baja, teori gempa, parameter yang terkait dalam struktur tahan gempa rangka baja berbresing eksentris, tata cara perencanaan bangunan tahan gempa berdasarkan SNI 1726:2019, dan teori-teori terkait lainnya yang berhubungan dengan perhitungan atau analisa data yang dibutuhkan. dalam Tugas Akhir ini.

2.2 Pengertian Gempa

Gempa bumi adalah bergetarnya permukaan tanah karena pelepasan energi secara tiba-tiba akibat dari pecah atau slipnya massa batuan dilapisan kerak bumi. Gempa bumi adalah suatu peristiwa/kejadian bencana alam yang berasal dari dalam bumi dan merambat ke permukaan tanah dari suatu daerah tertentu dan menyebar luas dari titik tersebut ke segala arah. Selain itu gempa bumi merupakan getaran atau guncangan yang terjadi di dalam bumi dan merambat ke permukaan tanah yang disebabkan oleh patahan aktif aktifitas gunung api, tanah longsor, maupun tumbukan antar lempeng bumi (Pawirodikromo, 2012).

2.3 Jenis-Jenis Gempa

2.3.1 Gempa Fling

Dalam bukunya, Pawirodikromo (2012) menyebutkan bahwa gempa dekat mengakibatkan kerusakan yang sangat besar contohnya gempa Northridge (1994), gempa Kobe (1995) dan gempa Taiwan (1999). Gerakan tanah akibat gempa gempa dekat utamanya akan dipengaruhi tiga hal pokok:

- 1. Mekanisme gempa.
- 2. Arah rambatan patahan relatif terhadap site.
- 3. Kemungkinan terjadinya perpindahan permanen akibat patahan.

Hal-hal tersebut di atas selanjutnya dikenal oleh pemerhati gempa sebagai *rupture directivity* dan *fling step*. Menurut Kalkan dan Kunnath, respon struktur terhadap gerakan tanah akibat gempa dekat dapat dikategorikan kedalam dua perbedaan pola riwayat perpindahan yang bergantung pada proses kehancuran dan efek *directivity* yang sesuai dengan proses kehancuran batuan seperti yang ditunjukkan Gambar 2.4. Efek *directivity* terbagi kedalam *forward directivity* dan *backward directivity*.

Gambar 2.4: Tipikal kecepatan dan perpindahan rekaman gempa: a) far-fault, b) near-fault (forward directivity), dan c) near-fault (*fling*-step) (Kalkan dan Kunnath, 2006).

Di sisi lain, *fling step* menjadi hasil dari evolusi perpindahan sisa tanah akibat deformasi tektonik yang berkaitan dengan mekanisme kehancuran, umumnya ditandai dengan *pulse* kecepatan dengan amplitudo besar searah dan langkah monoton dalam perpindahan riwayat waktu. Bentuk riwayat waktu dari gempa jauh, gempa dekat (*forward-directivity*) dan gempa dekat (*fling-step*).

2.3.2 Gempa Pulse

Pawirodikromo (2012) menyebutkan bahwa getaran gempa dekat yang mengandung efek *pulse* dapat menyebabkan bangunan yang tidak direncanakan

secara baik akan mengalami kerusakan. Bangunan yang tidak simetris sebidang termasuk yang memiliki resiko rusak bila mengalami gempa dekat.

Gambar 2.1: Rekaman gempa Northridge (1994) dan Parkfield (1997) (Pawirodikromo, 2012).

Gambar 2.2 menunjukkan data rekaman gempa yang mengandung pulse, pada gambar bagian atas merupakan waktu dengan kecepatan, dapat dilihat bahwa pada waktu $\pm 2,5$ detik terjadi kenaikan yang drastis pada kecepatan rekaman gempa dan pada gambar bagian bawah merupakan waktu dengan perpindahan, dimana pada saat kenaikan kecepatan pada waktu $\pm 2,5$ detik, seketika terjadi juga kenaikan nilai pada perpindahan.

2.4 Ground motion (Getaran Tanah)

Ground motion adalah pergerakan permukaan bumi yang diakibatkan adanya gempa atau ledakan. Pada umumnya, pengertian pergerakan tanah akibat gempa lebih banyak ditujukan pada percepatan tanah. Khususnya untuk keperluan teknik, percepatan tanah akibat gempa merupakan data yang sangat penting (Pawirodikromo, 2012).

Respon gempa sensitif terhadap karakteristik getaran tanah, besar frekuensi gempa, pola *pulse*, durasi getaran, mekanisme *fault-rupture*, dan lainnya. Berdasarkan pola *pulse* nya, gempa dibagi menjadi 3, yaitu *near field* (gempa dekat, yaitu gempa dengan *pulse*), *far field* (gempa jauh, yaitu gempa tanpa *pulse/no-pulse*), dan gempa berulang.

2.5 Respon Spektrum Desain

Menurut teori diamika struktur (*structural dynamics*) salah satu cara untuk menentukan/menghitung simpangan, gaya-gaya dinamik pada struktur derajat kebabasan banyak (*Multi Degree of Freedom*, MDOF) adalah dengan menggunakan metode respons spectrum.

Respon spektrum adalah suatu spectrum yang disajikan dalam bentuk grafik/plot antara periode getar struktur T, lawan respons-respons maksimumnya untuk suatu rasio redaman dan beban gempa tertentu (Pawirodikromo, 2012).

Respons maksimum dapat berupa simpangan maksimum (*Spectral Displacement*, *SD*), kecepatan maksimum (*Spectral Velocity*, *SV*) atau percepatan maksimum (*Spectral Accelaration*, *SA*) suatu massa struktur den8gan derajat kebebasan tunggal (*Single Degree of Freedom*, *SDOF*). Terdapat 2 macam respon spectrum yang ada yaitu Respon Spektrum elastik dan Respon Spektrum inelastik. Respons spektrum elastik adalah suatu spectrum yang didasarkan atas respons elastik struktur dengan derajat kebabasan tunggal (SDOF) berdasarkan rasio redaman dan beban gempa tertentu. Inelastik Respons Spektrum juga disebut desain Respons Spektrum, yaitu spectrum yang diturunkan berdasarkan *elastic respons spectrum* dengan tingkat daktilitas tertentu.

2.6 Pembebanan Struktur

Pembebanan struktur mengacu kepada Peraturan Pembebanan Indonesia Untuk Gedung (PPIUG) 1983. Beban yang bekerja pada suatu struktur dapat digolongkan menjadi beban gravitasi meliputi beban mati (*Dead Load*) dan beban hidup (*Live Load*), dan beban lateral meliputi beban akibat gaya gempa (*Earthquake*) dan angin (*Wind*).

2.6.1 Beban Gravitasi

Beban gravitasi merupakan beban-beban kearah vertikal dari suatu struktur bangunan, dapat dibedakan menjadi dua yaitu:

1. Beban Mati

Beban mati meliputi berat sendiri struktur, beban mati tambahan seperti berat keramik, berat tegel, dan berat MEP (*Mechanical Electrical Plumbing*). Berat sendiri dari bahan-bahan bangunan dan dari beberapa komponen gedung yang harus ditinjau di dalam menentukan beban mati dari suatu gedung, harus diambil menurut Tabel 2.1 PPIUG 1983 (DPMB, 1983).

2. Beban Hidup

Beban hidup adalah semua beban yang terjadi akibat penghunian atau penggunaan suatu gedung dan ke dalamnya termasuk beban-beban pada lantai yang berasal dari barang-barang yang dapat berpindah, mesin-mesin serta peralatannya yang tidak merupakan bagian yang tak terpisahkan dari gedung dan dapat diganti selama masa hidup dari gedung itu, sehingga mengakibatkan perubahan dalam pembebanan lantai dan atap tersebut.

Beban hidup pada lantai gedung harus diambil menurut Tabel 3.1 (PPIUG 1983). Untuk gedung perkantoran mempunyai beban hidup sebesar 250 kg/m². Beban hidup pada atap dan/atau bagian atap serta pada struktur tudung (*canopy*) yang dapat dicapai dan dibebani oleh orang harus diambil minimum 100 kg/m² bidang datar (PPIUG, 1983).

2.6.2 Beban lateral

Dalam perencanaan beban gempa menurut SNI 1726-2019 Setiap struktur harus dianalisis untuk pengaruh gaya lateral statik yang diaplikasikan secara independen di kedua arah ortogonal. Pada setiap arah yang ditinjau, gaya lateral statik harus diaplikasikan secara simultan di tiap lantai. Untuk tujuan analisis, gaya lateral di tiap lantai dihitung sebagai berikut:

$$F_{\chi} = 0.01 W_{\chi}$$
 (2.1)

2.7 Prosedur Analisis

2.7.1 Analisis Statik Ekivalen

Analisis beban statik ekivalen adalah suatu cara analisis statik struktur, dimana pengaruh gempa pada struktur dianggap sebagai beban-beban statik horizontal

untuk menirukan pengaruh gempa yang sesungguhnya akibat gerakan tanah. Untuk struktur bangunan gedung beraturan, pengaruh gempa rencana dapat ditentukan dengan cara analisis statik ekivalen. Pada analisis beban statik ekivalen ragam getar 1 dianggap dominan.

2.7.2 Analisis Ragam Spektrum Respons

Analisis ragam spektrum respons yaitu suatu cara analisis untuk menentukan respons dinamik struktur gedung yang berperilaku elastik penuh terhadap pengaruh suatu gempa melalui suatu metoda analisis yang dikenal dengan analisis ragam spektrum respons, dimana respons dinamik total struktur gedung tersebut didapat sebagai superposisi dari respons dinamik maksimum masing-masing ragamnya yang didapat melalui spektrum respons gempa rencana (Akbar dkk, 2017).

2.7.3 Analisa Riwayat Waktu

Metode analisis riwayat waktu memerlukan data gempa besar tipikal yang umumnya terjadi di luar lokasi bangunan. Gerakan gempa masukan berupa gelombang akselerasi dengan amplitudo yang dimodifikasi berdasarkan wilayah frekuensi (*Frequency Zone*), sehingga sesuai akselerasi standar respon spektra. Dalam metode analisis riwayat waktu dilakukan dengan menganalisis potensi gempa lokasi struktur bangunan berdasarkan data respons spektra lokasi dan data gempa yang sudah terjadi (Abidin dkk, 2018). Prosedur dalam analisa respon riwayat waktu dibagi menjadi dua yaitu prosedur riwayat waktu linear dan prosedur riwayat waktu non linear.

Menurut Pangestu (2017), Analisa respon dinamik riwayat waktu linear adalah suatu cara analisa untuk menetukan riwayat waktu respon dinamik struktur gedung 3 dimensi yang berperilaku elastik penuh terhadap gerakan tanah akibat gempa rencana pada taraf pembebanan gempa nominal sebagai data maksimum, dimana respon dinamik dalam setiap interval waktu dihitung dengan metode integrasi langsung atau dapat juga dengan metode analisa ragam.

Sedangkan, Analisis riwayat waktu nonlinier adalah analisis yang mereproduksi perilaku sebenarnya dari suatu struktur di bawah gaya rekaman groundmotion. Rekaman groundmotion yang memadai penting untuk melakukan analisis Riwayat Waktu dengan benar dan gerakan tanah yang tercatat rill umumnya dimodifikasi atau diskalakan untuk analisis semacamnya. Tuntutan untuk memodifikasi dan mengukur groundmotion riwayat waktu ke target bahaya dari situs yang perlu diperhatikan untuk penilaian teknik penskalaan dan pencocokan yang tersedia. Apalagi pedoman peraturan gempa tidak mempertimbangkan pengaruh durasi pada respons seismik struktur (Samanta dan Pandey, 2018).

Respon spektrum dengan redaman 5% dari gempa aktual yang diambil akselerogramnya sebagai percepatan gempa masukan harus mempunyai nilai ratarata percepatan spektral respon desain (S_a) yang hampir sama dengan respon spektrum rencana (redaman 5%) pada periode 0,2*T* hingga 1,5*T* (Amirchoupani.dkk.,2020).

2.8 Sistem rangka bresing eksentris

Sistem rangka bresing eksentris merupakan sistem struktur yang unik, karena menggabungkan kekakuan dan kekuatan yang dimiliki sistem rangka breising dengan karakteristik disipasi energi secara inelastik yang dimiliki system rangka pemikul momen. Sistem ini disebut eksentrik karena ujung batang dari bresing direncanakan memiliki eksentrisitas yang biasanya terletak pada balok. Segmen eksentrik pada balok disebut dengan *link* dimana komponen ini berfungsi sebagai *fuse* (sekring) pada struktur.

Elemen link akan mengalami leleh terlebih dahulu melalui mekanisme lentur dan atau geser sebelum terjadi tekuk pada elemen yang mengalami tekan (Taranath, 2012). Menurut AISC 341-10, *link* adalah segmen dari balok yang berada diantara ujung-ujung sambungan dua breising diagonal atau di antara ujung suatu breising diagonal dengan kolom. Pada SRBE diharapkan dapat terjadi deformasi inelastis yang cukup besar pada *link* saat memikul gaya-gaya akibat beban gempa rencana. Kolom-kolom, batang bresing, dan bagian dari balok di luar *link* harus direncanakan untuk tetap dalam keadaan elastis akibat gaya-gaya yang dihasilkan oleh link pada saat mengalami pelelehan penuh. Tipe bresing eksentris pada penelitian yang digunakan ditunjukkan pada Gambar 2.3.

Gambar 2.2: Struktur Rangka Bresing Eksentris (SRBE)

2.9 Material Baja

Baja adalah logam campuran yang terdiri dari besi (Fe) dan karbon (C). Jadi baja berbeda dengan besi (Fe), aluminium (Al), seng (Zn), tembaga (Cu) dan titanium (Ti) yang merupakan logam murni. Dalam senyawa antara besi dan karbon (unsur nonlogam) tersebut besi menjadi unsur yang lebih dominan dibanding karbon. Kandungan karbon berkisar antara 0,2 - 2,1% dari berat baja, tergantung tingkatannya. Secara sederhana, fungsi karbon adalah meningkatkan kwalitas baja, yaitu daya tariknya (tensile strength) dan tingkat kekerasannya (hardness). Selain karbon, sering juga ditambahkan unsur chrom (Cr), nikel (Ni), vanadium (V), molybdaen (Mo) untuk mendapatkan sifat lain sesuai aplikasi di lapangan seperti anti korosi, tahan panas, dan tahan temperatur tinggi (Thamrin Nasution, 2011). Sebutan baja karbon berlaku untuk baja yang mengandung unsur bukan hanya besi (Fe) dengan persentase maksimum karbon (C) 1,7 %, mangan (Mn)1,65 %, 15 silikon (Si) 0,6 % dan tembaga (Cu) 0,6 %. Karbon dan mangan adalah unsur utama untuk menaikkan kekuatan besi murni.

2.10 Program Ruaumoko

Program Ruaumoko dirancang oleh Prof. Athol J Carr, yang berasal dari University of Canterbury, New Zealand. Program ini dirancang untuk melakukan analisa struktur, seperti bangunan dan/atau jembatan, yang mengalami gempa dan eksitasi dinamis lainnya. Program ini digunakan untuk studi eksitasi gempa termasuk pemodelan sistem *base-isolation*. Program ini juga dapat digunakan untuk menganalisa *pushover*, baik statis maupun dinamis. Pada awalnya program ini dirancang untuk analisa 2D (2 dimensi), namun sekarang analisa 3D sudah bisa dilakukan dengan kemampuan pemodelan penuh struktur tiga dimensi. Beberapa jenis analisis yang bisa dilakukan dengan program Ruaumoko, diantaranya yaitu:

- a. Analisis statis.
- b. Modal atau analisis eigen value untuk menemukan frekuensi dan bentuk mode getaran bebas. Program juga menghitung fraksi redaman kritis terkait dengan setiap mode natural dari getaran bebas sebagai hasil pemilihan model redaman.
- c. Analisis gempa dinamis dengan input gempa horizontal dan /atau vertikal serta beban statis awal.
- d. Respon dinamis dengan riwayat gaya dinamis serta beban statis awal.
- e. Analisis secara elastis.
- f. Analisis secara inelastis atau nonlinear analisis.
- g. Analisis elastis respon spectra dan riwayat waktu.

2.11 Selubung Siklik (Cyclic Envelope)

Jika kerusakan siklik tidak secara eksplisit ditangkap dalam model sendi komponen balok, model harus didasarkan pada *envelope* siklik (lihat Gambar 2.7), yang parameternya ditentukan menggunakan statistik kurva selubung (*envelope*) siklus pertama dari tes siklik (NIST, 2017b; Hartloper dan Lignos, 2016). Parameter untuk kurva tulang punggung (*backbone*) siklik didefinisikan seperti, Kekuatan Hasil Efektif dan Kekakuan Elastis (*My* dan *Ke*).

Gambar 2.3: Kurva *backbone* monotonik dan siklik yang ideal untuk balok baja (Applied Technology Council, 2017).

2.12 Pemodelan Sendi Plastis Balok

\succ Momen leleh (*My*)

Momen leleh (M_y). Untuk tujuan pemodelan praktis, Momen leleh dinaikkan (dengan faktor β) di atas momen balok plastis yang diharapkan, $M_{p,exp}$, untuk memperhitungkan kecukupan jumlah siklik strain hardening. Momen luluh efektif diberikan pada Pers. 2.2 sebagai:

$$M_y = \beta M_{p,exp} = \beta Z R_y F_y \tag{2.2}$$

Keterangan :

Ry : penyesuaian dari kekuatan leleh baja nominal yang diharapkan.

Untuk sambungan balok standar, $\beta = 1,2$, dan

untuk sambungan penampang balok tereduksi (RBS), $\beta = 1,1$

Berdasarkan Metode FEMA, momen leleh yang digunakan sebagai *input* analisis nonlinear pada progam RUAUMOKO2D versi 04 adalah momen maksimum pada analisis linier respon riwayat waktu menggunakan Program Analisa Struktur.

Kekakuan Elastis (Ke)

Sendi balok dapat dimodelkan sebagai plastis kaku di mana sendi dimodelkan dengan kekakuan elastis terbatas, tetapi besar. Jika sendi panjang-nol dimodelkan dengan kekakuan elastik terbatas, direkomendasikan untuk membuat kekakuan sendi awal, *Ke*, relatif besar terhadap keseluruhan balok. Ini dapat dinyatakan pada Pers. 2.3 sebagai : $Ke = \alpha_e EI / L$ (2.3) dimana *EI* dan *L* adalah kekakuan penampang dan panjang balok, dan α_e adalah koefisien kekakuan.

> Momen Puncak (M_u^*)

Momen Puncak (M_u^*) . Kekuatan puncak meningkat di atas momen luluh efektif karena pengerasan siklik pada Pers. 2.4 sebagai berikut:

$$M_{u}^{*} = 1.15M_{y} \tag{2.4}$$

> Kapasitas Rotasi (θ_p)

- Kapasitas rotasi plastis (θ_p)

Rotasi plastis siklik pra-puncak (θ_p^*) (rad), dapat ditentukan pada Pers. 2.5a dan Pers. 2.5b sebagai berikut:

untuk balok standar (non-RBS):

$$\theta_p^* = 0.3 \left(\frac{h}{t_w}\right)^{-0.3} \left(\frac{bf}{2t_f}\right)^{-1.7} \left(\frac{L_b}{r_y}\right)^{-0.2} \left(\frac{L}{d}\right)^{1.1} \qquad (\text{COV} = 0.34)$$
(2.5a)

untuk balok RBS (Reduced Beam Section/Penampang balok direduksi):

$$\theta_p^* = 0.55 \left(\frac{h}{t_w}\right)^{-0.5} \left(\frac{bf}{2t_f}\right)^{-0.7} \left(\frac{L_b}{r_y}\right)^{-0.5} \left(\frac{L}{d}\right)^{0.8} \quad (\text{COV} = 0.42)$$
(2.5b)

di mana L_b / r_y adalah panjang yang tidak terikat secara lateral dibagi dengan yang lemah-radius sumbu rotasi

- Rotasi pasca-puncak (θ_{pc})

Rotasi plastis pra-puncak siklik, θ_{pc}^{*} (rad), dapat ditentukan pada Pers. 2.6a dan Pers. 2.6b sebagai berikut:

untuk balok standar (non-RBS):

$$\theta_{pc}^* = 24.0 \left(\frac{h}{t_w}\right)^{-0.9} \left(\frac{bf}{2t_f}\right)^{-0.2} \left(\frac{L_b}{r_y}\right)^{-0.5}$$
 (COV = 0.45) (2.6a)

untuk balok RBS:

$$\theta_{pc}^{*} = 20.0 \left(\frac{h}{t_{w}}\right)^{-0.8} \left(\frac{bf}{2t_{f}}\right)^{-0.1} \left(\frac{L_{b}}{r_{y}}\right)^{-0.6}$$
(COV = 0.31) (2.6b)

Gaya Residu (M_r^*)

Gaya Residu siklik untuk balok RBS dan non-RBS dapat diasumsikan sebagai : $M_r^* = 0.3$ My.

> Rotasi Ultimate (θ_{ult}^*)

Kapasitas rotasi plastis ultimit kemungkinan besar akan dikendalikan oleh fraktur daktail. Berdasarkan data uji siklik yang tersedia, rotasi ultimit di bawah pembebanan siklik sama dengan $\theta_{ult}^* = 0,08$ (radian) dengan COV = 0,3.

Batasan Penggunaan Persamaan

Berdasarkan data yang tersedia yang digunakan dalam kalibrasi, kisaran penerapan yang disarankan dari persamaan di atas adalah sebagai berikut:

$$20 \le h / t_w \le 55$$

$$4 \le b_f / 2t_f \le 8$$

$$20 \le L_b / r_y \le 65$$

$$2.5 \le L / d \le 7$$

 $4 \le d \le 36$ untuk balok standar; $21 \le d \le 36$ untuk balok RBS

2.13 Pemodelan Sendi Plastis Kolom

Momen Hasil Efektif dan Kekakuan Elastis (M_y dan K_e). Parameter ini sama seperti yang didefinisikan sebelumnya untuk kurva *backbone* siklik.

Momen Puncak (M_u^*). Kekuatan momen puncak balok-kolom di bawah pembebanan siklik meningkat di atas momen leleh efektif karena pengerasan siklik, yang dapat diambil sebagai:

$$M_u^* = a^* M_y \tag{2.7}$$

Dimana a^* ditentukan sebagai:

$$a^* = 9.5 \left(\frac{h}{t_w}\right)^{-0.4} \left(\frac{L_b}{r_y}\right)^{-0.16} \left(1 - \frac{P_g}{P_{ye}}\right)^{0.2} \ge 1.0 \ dan < 1.3 \quad (\text{COV} = 0.07)$$
(2.8)

Rotasi Pra-Puncak (θ_p^*). Rotasi plastis pra-puncak, θ_p^* , untuk kolom balok di bawah siklik pembebanan dapat diambil sebagai:

$$\theta_p^* = 15 \left(\frac{h}{t_w}\right)^{-1.6} \left(\frac{L_b}{r_y}\right)^{-0.3} \left(1 - \frac{P_g}{P_{ye}}\right)^{2.3} \ge 0.10 \qquad (\text{COV} = 0.31)$$
(2.9)

Rotasi Plastis Pasca-Puncak (θ_{pc}^{*}). Rotasi plastis pasca-puncak, θ_{pc}^{*} untuk balokkolom di bawah siklik pembebanan dapat diambil sebagai:

$$\theta_{pc}^{*} = 14 \left(\frac{h}{t_{w}}\right)^{-0.8} \left(\frac{L_{b}}{r_{y}}\right)^{-0.5} \left(1 - \frac{P_{g}}{P_{ye}}\right)^{3.2} \ge 0.10 \qquad (\text{COV} = 0.40) \tag{2.10}$$

Momen sisa (M_r^*) . Kekuatan lentur sisa, M_r^* , di bawah siklik pembebanan dapat diambil sebagai:

$$M_r^* = \left(0.4 - 0.4 \frac{P_g}{P_{ye}}\right) M_y^* \tag{COV} = 0.35 \tag{2.11}$$

Rotasi Ultimate, (θ_{ult}^*) . Untuk balok-kolom baja dengan sendi lentur, kapasitas rotasi ultimit kemungkinan besar akan dikendalikan oleh hilangnya daya dukung aksial kolom. Direkomendasikan untuk mengasumsikan bahwa:

$$\theta_{ult}^* = 0.08 \left(1 - 0.6 \frac{P_g}{P_{ye}} \right)$$
 (COV = 0.51) (2.12)

2.14 Rotasi Leleh (θ_y)

Rotasi pada saat leleh digunakan untuk mendapatkan nilai daktalitas yang dibutuhkan sebagai *input* dalam *software* RUAUMOKO2D versi 04. Nilai rotasi sendi plastis tersebut dihitung untuk semua *frame* (balok-kolom) pada struktur

gedung yang direncanakan. Nilai θ_y untuk semua *frame* dapat dilihat pada pembahasan selanjutnya.

2.15 Panel Zone Sambungan Balok-Kolom

Kawasan *panel zone* (PZ) yang umum untuk pembatas balok dan kolom dikenai kombinasi gaya aksial, gaya geser, dan momen dari bagian yang terhubung. Mengacu pada Gambar 2.5 dan mengasumsikan bahwa momen balok dan kolom ditahan terutama oleh pasangan gaya pada sayapnya, gaya geser horizontal nominal yang ditahan oleh PZ dihitung sebagai:

$$V_{pz,h} = \frac{M_{b1} + M_{b2}}{d_b - t_{fb}} - \frac{V_{c1} + V_{c2}}{2}$$
(2.13)

dimana M_{b1} & M_{b2} adalah momen pada balok, yang bekerja pada muka kolom, V_{c1} dan V_{c2} adalah gaya geser pada kolom, db adalah kedalaman balok, dan tfb adalah tebal sayap balok. Perhatikan bahwa geser zona panel biasanya didefinisikan dalam istilah komponen horizontal, $V_{pz,h}$, karena hal ini konsisten dengan bagaimana kekuatan geser panel sambungan seperti ditentukan dalam ANSI / AISC 360-16, Spesifikasi Bangunan Baja (AISC, 2016). Berdasarkan resultan gaya geser sambungan horizontal, resultan gaya geser sambungan vertikal yang sesuai dapat ditentukan dengan kesetimbangan momen, yaitu,

$$V_{pz,h}(d_b - t_{fb}) = V_{pz,\nu}(d_c - t_{fc}).$$
(2.14)

Gambar 2.4: Skema gaya dari balok dan kolom yang bekerja pada zona panel dan gaya geser zona panel resultan (Applied Technology Council, 2017).

1. Model Geser Terkonsentrasi

Dimana permintaan gaya geser menunjukkan bahwa geser PZ yang diinduksi melebihi kekuatan luluh PZ (Bagian J10.6a dalam ANSI / AISC 360-16), respon *panel zone* inelastis dapat diidealkan oleh tri-linier kurva respon untuk gaya geser PZ versus deformasi geser, seperti yang ditunjukkan pada Gambar 2.6. Untuk *panel zone* yang cukup kompak dan tidak rentan terhadap tekuk, respons histeresis sangat stabil dan kurva *backbone* pada dasarnya sama untuk pembebanan monotonik dan siklik. Meskipun hal ini biasanya terjadi pada sambungan modern dengan detail seismik, mungkin tidak demikian halnya untuk desain yang lebih tua atau tidak sesuai, di mana tekuk mungkin perlu dipertimbangkan.

Gambar 2.5: Gaya geser zona panel yang ideal versus deformasi geser.

Kekakuan geser elastis dari zona panel diberikan pada Pers. 2.15 sebagai berikut:

$$K_{e,pz} = GA_{s,pz} \tag{2.15}$$

di mana G adalah modulus geser elastis baja, dan $A_{s,pz}$ adalah luas penampang pelat badan dalam rencana, sama dengan kedalaman kolom dikalikan tebal pelat badan, termasuk setiap pelat badan.

Selain ekspresi alternatif untuk kekuatan dan kekakuan, Kim dkk. (2015) mengusulkan parameter untuk memperkirakan deformasi pada kekuatan plastis penuh PZ, yang juga mereka rekomendasikan sebagai batasan deformasi untuk menghindari fraktur karena regangan terlokalisasi tinggi (karena kusut) pada sayap kolom. Deformasi ini dihitung bedasarkan Pers. 2.16 sebagai berikut:

$$\gamma_{p,pz} = \frac{0.475F_{yc}}{E} \left(\frac{d_b}{t_{fc}} + 3.45\frac{t_{fc}}{d_b}\right)$$
(2.16)

dimana kuat leleh baja F_{yc} sayap kolom, E adalah modulus elastisitas baja, d_b adalah kedalaman balok, dan t_{fc} adalah tebal sayap kolom.

2. Model Kendala Krawinkler Dan Kinematik

Model yang menunjukkan interpretasi literal dari apa yang disebut "model Krawinkler", di mana PZ dimodelkan dengan anggota kaku dengan koneksi tersemat untuk mensimulasikan kinematika *panel zone*, dan pegas rotasi (pada sudut kanan atas PZ) digunakan untuk merepresentasikan kekakuan geser PZ.
Untuk model kendala Krawinkler dan kinematik, sendi PZ biasanya dijelaskan dalam istilah momen panel geser ekivalen, M_{pz} , di mana hasil dan kekuatan plastis penuh dan parameter kekakuan terkait (K_{Mpz}) dihitung dengan mengalikan gaya geser dan kekakuan dari Gambar 2.6 dengan tinggi zona panel (Gambar 2.5), sebagaimana pada Pers. 2.17a dan Pers. 2.17b berikut:

$$M_{pz} = V(db - tfb) \tag{2.17a}$$

$$K_{M,pz} = K (d_b - t_{fb})$$
 (2.17b)

dimana d_b adalah kedalaman balok dan t_{fb} adalah tebal sayap balok. Untuk model *scissors*, parameter kekuatan dan kekakuan momen ditentukan dengan mengalikan gaya geser dari Gambar 2.9 dengan tinggi zona panel, ditambah istilah untuk menyesuaikan perbedaan dalam kinematika sendi (Charney dan Marshall, 2006), seperti pada Pers. 2.18a dan Pers. 2.18b berikut:

$$M_{pz} = V(d_b - t_{fb}) / (1 - d_b / H - d_e / L)$$
(2.18a)

$$K_{M,pz} = K(d_b - t_{fb}) / (1 - d_b / H - d_e / L)^2$$
(2.18b)

Dimana d_c adalah kedalaman kolom, H adalah tinggi lantai, dan L adalah jarak kolom.

2.16 Prosedur Nonlinier pada Bresing Eksentris (EBF)

Komponen nonlinier antara lain sendi lentur kolom dan brace yang dimodelkan dengan interaksi momen aksial (P-M) dan *panel zone* dimodelkan dengan model Krawinkler (Krawinkler 1978). Sambungan pelat gusset untuk bresing tidak dimodelkan secara eksplisit. Kekakuan lentur, *EI*, dari bagian-bagian yang berdekatan dengan pelat gusset ditingkatkan untuk mendekati efek kekakuan pelat gusset pada bidang rangka. Gambar 2.7 mengilustrasikan model analitik dari sub-perakitan *brace-to-beam/column* untuk prosedur penilaian nonlinier. Pada gambar, Zona Akhir Default dimodelkan dengan faktor kekakuan lentur dua; faktor zona ujung yang lebih tinggi berpotensi terlalu kaku untuk menangkap deformasi lentur di dalam daerah sambungan.

Gambar 2.6: Skema Pemodelan Analitik Bresing Eksentris (EBF).

Plastisitas geser pada sambungan balok direpresentasikan dengan sendi regangan geser plastis dengan panjang sendi plastis sama dengan panjang sambungan, *e*. Kriteria pemodelan dan penerimaan untuk sendi lentur balok-kolom diambil seperti yang disediakan untuk kolom pada ASCE 41 Tabel 5-6. Efek interaksi P-M pada kekuatan lentur bidang-dalam dari sendi kolom, MC_{Ex} , di mana *x* menunjukkan sumbu tekuk dalam-bidang, dimodelkan oleh kekuatan penampang bagian (yaitu, permukaan luluh) menggunakan P/P_{ye} sebagai Pers. 2.19; (lihat Gambar 2.8).

Gambar 2.7: Kurva Interaksi P-M (Bagian Permukaan luluh)(Speicher, 2015).

Hubungan interaksi P-M untuk permukaan hasil sendi MC dalam kolom balok dikalibrasi untuk mendekati kurva ini seperti yang diilustrasikan pada Gambar 2.8. $M_{CEx}=1.18M_{pe,x}\left(1-\frac{P}{P_{ye}}\right) \le M_{pe,x} \text{ (ASCE 41, Persamaan 5-4)}$ (2.19)

Persamaan 2.18 didasarkan pada teori desain plastis dan dapat diterapkan untuk kekuatan penampang dalam bidang (tekukan sumbu kuat) dari penampang sayap lebar. AISC 360 Persamaan H1-1 juga dapat diterapkan untuk menghitung kekuatan penampang dalam bidang dengan menggunakan P/P_{ye} sebagai pengganti P_r/P_c sebagaimana didefinisikan dalam AISC 360.

2.17 Pemodelan Balok Link

Dalam pemodelan balok *link*, terlebih dahulu kita harus menentukan jenis bentang balok *link*. Untuk syaratnya dapat dilihat pada Pers. 2.20a sampai dengan Pers. 2.20c dibawah ini.

Balok link pendek : $e \le 1.6 \frac{M_P}{V_P}$ (2.20a)

Balok link sedang :
$$1.6 \frac{M_P}{V_P} < e < 2.6 \frac{M_P}{V_P}$$
 (2.20b)

Balok link panjang : $e \ge 2.6 \frac{M_P}{V_P}$ (2.20c)

dimana M_p adalah Momen lentur plastis balok *link*, V_p adalah gaya geser plastis balok *link*, dan *e* adalah panjang bentang balok *link*.

Untuk nilai simpangan gaya geser global terhadap desain antar tingkat, $\Delta_{xp,z}$ adalah sebagai Pers. 2.21 berikut :

$$\Delta_{xp,s} = \frac{3}{4} \Delta_x \tag{2.21}$$

dimana Δ_x adalah desain simpangan antar tingkat ke-x.

Untuk sudut rotasi balok *link*, γ_p , digunakan Pers. 2.22 sebagai berikut:

$$\gamma_P = \frac{L_b}{e} \times \frac{\Delta_{xp,s}}{h_{sx}} \tag{2.22}$$

dimana L_b adalah panjang bentang keseluruhan balok, e adalah panjang bentang balok *link*, dan h_{sx} adalah tinggi struktur arah x.

Menurut ASCE 41-13, Model deformasi beban untuk balok penghubung harus mencakup deformasi geser dan deformasi lentur. Ketika tidak secara eksplisit dimodelkan dalam model matematika, kekakuan elastis balok penghubung, *Ke*, dapat dihitung sesuai dengan Pers. 2.23 sampai dengan Pers. 2.25:

$$K_e = \frac{K_s \times K_b}{K_s + K_b} \tag{2.23}$$

Dimana :

$$K_s = \frac{GA_{tw}}{e} \tag{2.24}$$

$$K_b = \frac{12EI_b}{e^3} \tag{2.25}$$

Kemudian, untuk kekakuan balok *link* arah x dan y, K_x dan K_y adalah sebagaimana pada Pers. 2.26 dan Pers. 2.27 berikut:

$$K_x = \frac{AE}{e} \tag{2.26}$$

$$K_{y} = \frac{V_{p}}{v_{p}}$$
(2.27)

Sedangkan, untuk rotasi leleh balok *link*, θ_y , ditentukan bedasarkan pers. 2.28 berikut:

$$\theta_{\mathcal{Y}} = \frac{Q_{CE}}{K_e e} \tag{2.28}$$

dimana :

 K_s = kekakuan geser

 K_b = kekakuan lentur

G =modulus geser

e = panjang balok *link*

E = modulus elastisitas

 I_b = momen inersia balok *link*

A =luas penampang

 t_w = tebal badan (web) profil

 Q_{CE} = kapasitas gaya geser balok *link*

BAB 3

METODE PENELITIAN

3.1. Umum

Bab ini berisi tentang pemodelan struktur yang direncanakan. Struktur dianalisis menggunakan 2 *software* bantuan, yaitu Program Analisa Struktur, dan RUAUMOKO2D versi 04. Secara umum, metode penelitian dalam Tugas Akhir ini dibuat dalam suatu diagram alir seperti yang tampak pada Gambar 3.1.

Gambar 3.1: Bagan alir penelitian.

Berdasarkan Gambar 3.1, dapat dijelaskan bahwa dalam Tugas Akhir ini analisis dilakukan terhadap 1 model dengan sistem rangka baja berbresing eksetris pada bagian luar dan sistem rangka pemikul gravitasi pada bagian dalam. Model bangunan tersebut dianalisis secara Linear dan Non-Linear dengan menggunakan Metode Analisis Respon Spektrum (*Response Spectrum Analysis*) dengan menggunakan Program Analisa Struktur serta Analisis Riwayat Waktu (*Time History Analysis*) dengan menggunakan software RUAUMOKO versi 04, untuk mendapatkan nilai simpangan antar tingkat (*interstory drift*) dan simpangan atap (*top displacement*) ketika bangunan telah dikenakan gempa *pulse* dan *fling*. Kemudian nilai simpangan tersebut akan diambil nilai maksimum dan minimum untuk mendapatkan hasil regresi linear terhadap Tp, IDR dan *Top Displasment*.

3.2 Pemodelan Struktur

3.2.1. Data Perencanaan Struktur

Adapun data perencanaan struktur yang digunakan pada keempat pemodelan dalam Program Analisa Struktur, yaitu:

- 1. Jenis pemanfaatan gedung perkantoran.
- 2. Gedung terletak di Gunungsitoli.
- 3. Klasifikasi situs tanah sedang (SD).
- Sistem struktur yang digunakan adalah Sistem Rangka Bresing Eksentris (SRBE).
- 5. Jenis portal struktur gedung adalah struktur baja.
- Mutu baja yang digunakan adalah adalah mutu baja yang telah digunakan pada penelitian sebelumnya pada buku "Assessment of First Generation Performance-Based Seismic Design Methods for New Steel Buildings, Volume 3: Eccentrically Braced Frames (Vol. 3)", untuk itu digunakan mutu baja sebagai berikut.
 - a. Untuk profil IWF ASTM 992 Grade 50
 - Kuat leleh minimum (fy) : 345 MPa
 - Kuat tarik minimum (fu) : 450 MPa
 - b. Untuk profil HSS ASTM 500 Grade B :

- Kuat leleh minimum (fy) : 317 Mpa
- Kuat tarik minimum (fu) : 450 Mpa

Pada tugas akhir ini, direncanakan struktur bangunan dengan material baja dengan Sistem Rangka Bresing Eksentrik (SRBE) dan berbentuk simetri.

3.2.2. Konfigurasi Bangunan

Pada tugas akhir ini, direncanakan struktur bangunan dengan material baja dengan Sistem Rangka Bresing Eksentrik (SRBE dan berbentuk simetri.

Adapun bentuk denah rangka lantai yang digunakan adalah :

- a. Gambar 3.1: Model Denah Rangka Lantai Tipikal 4 Lantai dan 8 Lantai
- b. Gambar 3.1: Denah Rangka Lantai Tipikal 16 Lantai

Adapun bentuk pemodelan yang digunakan adalah :

- c. Gambar 3.1: Model 1 : Bangunan 4 lantai SRBE pada bagian luar dan Sistem Rangka Pemikul Gravitasi pada bagian dalam.
- d. Gambar 3.1: Model 2 : Bangunan 8 lantai SRBE pada bagian luar dan Sistem Rangka Pemikul Gravitasi pada bagian dalam.
- e. Gambar 3.1: Model 3 : Bangunan 16 lantai SRBE pada bagian luar dan Sistem Rangka Pemikul Gravitasi pada bagian dalam.

Gambar 3.2: Denah Rangka Lantai Tipikal 4 Lantai dan 8 Lantai.

Gambar 3.3: Denah Rangka Lantai Tipikal 16 Lantai.

Gambar 3.4: Tampilan Isometrik Model Gedung 4 Lantai.

Gambar 3.5: Tampilan Isometrik Model Gedung 8 Lantai.

Gambar 3.6: Tampilan Isometrik Model Gedung 16 Lantai.

3.3 Dimensi Kolom-Balok

Bangunan yang direncanakan adalah struktur beraturan, Struktur gedung direncanakan dengan dimensi penampang yang berbeda. Ukuran balok dan kolom terdapat pada Tabel 3.1

			Kolom	Kolom	
Model	Lantai	Bracing	Interior	Eksterior	Balok
Bangunan	2000	Druenig	(Inchi)	(Inchi) (Inchi)	
	1	Hee 8x8x1/2	W 1/1x132	W 1/x 132	W 16x77
Lantai 4	2	$\frac{1155 0 \times 0 \times 1/2}{\text{Hes} 7 \times 7 \times 1/2}$	W 14x132	W 14x132	W 16x45
	2		W 14X132	W 14x132	W 10x+3
	5	$\frac{\text{HSS } 0X0X1/2}{\text{U}}$	W 14X46	W 14X132	W 14x36
	4	Hss 6x6x1/2	W 14x48	W 14x132	W 14x26
Lantai 8	1	Hss 9x9x5/8	W 14x145	W 14x145	W 21x83
	2	Hss 8x8x1/2	W 14x145	W 14x145	W 18x55
	3	Hss 7x7x5/8	W 14x132	W 14x132	W 18x46
	4	Hss 7x7x1/2	W 14x132	W 14x132	W 18x40
	5	Hss 6x6x5/8	W 14x68	W 14x68	W 16x40
	6	Hss 6x6x5/8	W 14x68	W 14x68	W 16x31
	7	Hss 6x6x1/2	W 14x48	W 14x48	W 14x26
	8	Hss 6x6x1/2	W 14x48	W 14x48	W 14x26
Lantai 16	1	W 12x120	W 14x426	W 14x426	W 24x103
	2	W 12x96	W 14x426	W 14x426	W 21x73
	3	W 12x96	W 14x342	W 14x342	W 21x73
	4	W 12x96	W 14x342	W 14x342	W 21x73
	5	W 12x87	W 14x283	W 14x283	W 21x68
	6	W 12x87	W 14x283	W 14x283	W 21x68
	7	W 12x87	W 14x233	W 14x233	W 21x62
	8	W 12x87	W 14x233	W 14x233	W 21x50
	9	W 12x87	W 14x139	W 14x139	W 18x55
	10	W 12x87	W 14x139	W 14x139	W 18x50
	11	W 12x72	W 14x132	W 14x132	W 16x45
	12	W 12x72	W 14x132	W 14x132	W 14x38
	13	W 12x58	W 14x82	W 14x82	W 14x38
	14	W 12x58	W 14x82	W 14x82	W 14x38
	15	W 12x58	W 14x48	W 14x48	W 14x38
	16	W 12x58	W 14x48	W 14x48	W 14x38

Tabel 3.1: Komponen Struktural Bangunan

3.4 Analisis Struktur

3.4.1 Analisis Dinamik Struktur Linier

Analisis ini menggunakan Metode Respon Spektrum. Pada analisis ini, alat bantu *software* yang digunakan adalah Program Analisa Struktur.

3.4.2 Pembebanan

Beban gravitasi yang bekerja pada struktur bangunan diambil dari PPPURG (1987) dan SNI 1727:2013 yang telah disesuaikan dengan jenis dan fungsi bangunan. Beban-beban tersebut adalah beban hidup dan beban mati yang berhubungan dengan komponen material bangunan. Nilai beban hidup dan beban mati yang digunakan dalam perencanaan dapat dilihat pada Tabel 3.2 dan Tabel 3.3.

Tabel 3.2: Berat material konstruksi berdasarkan PPPURG 1987.

Beban Mati	Besarnya Beban
Beton bertulang	2400 kg/m ²
Plafon dan penggantung	18 kg/m ²
Adukan /cm dari semen	21 kg/m ²
Pasangan bata setengah batu	250 kg/m ²
Penutup lantai dari keramik	24 kg/m ²

Tabel 3.3: Beban hidup pada lantai dan atap struktur berdasarkan SNI 1727:2013.

Beban Hidup	Besarnya Beban	
Kantor	2,40 kN/m ²	
Atap	1 kN/m^2	

Selanjutnya nilai-nilai tersebut dihitung dan diakumulasikan sesuai dengan luas bangunan pada masing-masing tingkat/lantai yang kemudian digunakan sebagai *input* dalam pemodelan Program Analisa Struktur.

3.4.3 Respons Spektrum Desain

Berdasarkan SNI 1726:2019, respon spektrum gempa didesain pada kondisi tanah sedang yang terletak di Kota Gunungsitoli, kemudian dianalisis dengan data data PGA = 0.60 g, Ss = 1.50 g dan SI = 0.603 g. Nilai-nilai yang diperlukan dalam pembuatan respon spektrum desain yaitu:

- Nilai
$$F_a = 1$$

- Nilai Fv = 1.5

-	S_{MS}	= 1.5
-	S_{M1}	= 0.9
-	S_{DS}	= 1
-	S_{D1}	= 0.6
-	T_{0}	= 0.12
-	T_s	= 0.6
-	T_L	= 20

- Nilai S_a

Respon spektrum diplot ke dalam grafik seperti yang ditampilkan pada Gambar 3.4.

Gambar 3.7: Respon spektrum desain berdasarkan SNI 1726:2019 kota Gunungsitoli dengan jenis tanah sedang.

Selanjutnya nilai respon spektrum desain yang didapatkan tersebut digunakan dalam Analisis Dinamik Struktur Linier dengan Metode Respon Spektrum pada pemodelan menggunakan Progam Analisa Struktur.

3.4.4 Kombinasi Pembebanan

Kombinasi pembebanan yang digunakan dihitung berdasarkan ketentuan yang ditetapkan dalam SNI 1726:2019 tentang standar perencanaan bangunan tahan gempa, maka didapatkan untuk Faktor R = 8 nilai $\rho = 1$ yang diperoleh dari kategori desain seismik D dan nilai SDS = 1, maka kombinasi pembebanannya dapat dilihat pada Tabel 3.4 untuk faktor R = 8.

Kombinasi	Koefisien (DL)	Koefisien (LL)	Koefisien (EX)	Koefisien (EY)	
Kombinasi 1	1.4				
Kombinasi 2	1.2	1.6			
	$(1.2 + 0.2 \text{ S}_{\text{DS}})\text{D}$	$L + 1.0 LL + \rho$	$(\pm 30\% \text{ QEx} \pm 100\% \text{ QEx})$	y)	
Kombinasi 3	1.40	1	0.3	1	
Kombinasi 4	1.40	1	-0.3	-1	
	$(1.2 + 0.2 \text{ S}_{\text{DS}})\text{D}$	$L + 1.0 LL + \rho$	$(\pm 100\% \text{ QEx} \pm 30\% \text{ QEx})$	y)	
Kombinasi 5	1.40	1	1	0.3	
Kombinasi 6	1.40	1	-1	-0.3	
	(0.9 - 0.2 S _I	(± 30) DL + ρ (± 30	% QEx ± 100% QEy)		
Kombinasi 7	0.70		0.3	1	
Kombinasi 8 0.70			-0.3	-1	
$(0.9 - 0.2 \text{ S}_{\text{DS}})\text{DL} + \rho (\pm 100\% \text{ QEx} \pm 30\% \text{ QEy})$					
Kombinasi 9	0.70		1	0.3	
Kombinasi 10	0.70		-1	-0.3	
Envelope Nilai absolute dari seluruh kombinasi				i	

Tabel 3. 4: Kombinasi pembebanan berdasarkan SNI 1726:2019 dengan nilai ρ =1, SDS = 1.

3.5 Analisis Dinamik Struktur Non Linier

3.5.1. Pemodelan Struktur pada Program RUAUMOKO2D

Sebelum memasukkan data rekaman gempa di RUAUMOKO2D, terlebih dahulu kita harus menyiapkan pemodelan struktur dengan komponen elemen seperti balok, kolom, bresing, dan balok link.

Untuk elemen apa saja yang akan digunakan dalam analisis di RUAUMOKO2D, bisa dilihat pada Gambar 3.8 berikut.

Gambar 3.8: Bentuk pemodelan struktur yang akan digunakan didalam program RUAUMOKO2D.

Berdasarkan Gambar 3.8 diatas, hanya bagian balok link yang akan dianalisis secara inelastis dengan menggunakan komponen spring pada program RUAUMOKO2D, sedangkan untuk elemen lainnya dimodelkan secara elastis. Bentuk pemodelan tersebut diharapkan terjadi kerusakan pertama pada balok link dalam mendapatkan data hasil simpangan antar tingkat maupun simpangan atap. Untuk persamaan yang digunakan untuk balok link dapat dilihat kembali pada Subbab 2.19 tentang pemodelan balok link.

3.5.2 Groundmotion Records

Data rekaman gempa diperoleh dari *website* resmi *Pacific Earthquake Engineering Research* (PEER) *Next Generation Attenuation* (NGA), COSMOS *Strongmotion Data Center*. Data rekaman gempa yang diambil sebanyak 29 rekaman gempa diantaranya rekaman gempa tanpa *Pulse* (gempa biasa) dengan jarak *epicentral* diatas 20 km diambil sebanyak 29 data rekaman gempa, rekaman gempa yang mengandung *Pulse* diambil sebanyak 15 rekaman dan rekaman gempa *Pulse* yang mengandung *fling* diambil sebanyak 14 rekaman. Untuk semua tipe rekaman gempa diperoleh dari PEER NGA dan COSMOS seperti terlihat pada Tabel 3.5.

Tabel 3.5: Data-data reka	man gempa.
Data Gempa Dengan Puls	<u>se</u>

No	Nama Gempa	Tahun	Nama Stasiun	Magnitude
1	Izmit, Turkey	1999	YPT	5,4
2	Imperial Valley, CA, USA	1979	E05	7.62
3	Imperial Valley, CA, USA	1979	E07	7.62
4	Northridge, CA, USA	1994	NWS	7.14
5	Parkfield, CA, USA	1966	C02	7.6
6	Palm Springs, CA, USA	1986	DSP	7.51
7	San Fernando, CA, USA	1971	PCD	7.6
8	Northridge, CA, USA	1994	RRS	7.62
9	Palm Springs, CA, USA	1986	NPS	6.2
10	Kobe, Japant	1999	KOB 1	7.62
11	Kobe, Japant	1999	KOB 2	7.62

12	Whittier Narrows, CA, US	1987	DOW	6.2
----	--------------------------	------	-----	-----

Lanjutan Data Gempa Dengan Pulse

No	Nama Gempa	Tahun	Nama Stasiun	Magnitude
13	Whittier Narrows, CA,US	1987	NWK	7.62
14	Aigion, Greece	1995	AEG 1	7.62
15	Aigion, Greece	1995	AEG 2	7.62

Data Gempa Dengan Fling

No	Nama Gempa	Tahun	Nama Stasiun	Magnitude
1	Chi-Chi Taiwan	1999	TCU074	7.62
2	Chi-Chi Taiwan	1999	TCU074	7.62
3	Chi-Chi Taiwan	1999	TCU129	7.62
4	Kocaeli	1999	Izmit	7.62
5	Kocaeli	1999	Sakarya	7.62
6	Chi-Chi Taiwan	1999	TCU089	7.62
7	Chi-Chi Taiwan	1999	TCU049	7.14
8	Chi-Chi Taiwan	1999	TCU067	7.6
9	Chi-Chi Taiwan	1999	TCU076	7.51
10	Chi-Chi Taiwan	1999	TCU072	7.6
11	Chi-Chi Taiwan	1999	TCU079	7.62
12	Chi-Chi Taiwan	1999	TCU078	6.2
13	Chi-Chi Taiwan	1997	TCU082	7.62
14	Chi-Chi Taiwan	1999	TCU071	7.62

Setiap data rekaman gempa terdiri dari 2 data gempa horizontal (arah X dan Y) dan 1 data gempa vertikal (arah Z), namun dalam Tugas Akhir ini data rekaman gempa yang digunakan hanya gempa horizontal arah Y, sementara gempa horizontal arah X tidak digunakan karena bangunan yang direncanakan dalam bentuk 2 dimensi (2D) pada sumbu Y dan gempa vertikal arah Z karena dalam analisis karena data relatif sangat kecil (atau dianggap sama dengan 0).

Selanjutnya data rekaman gempa yang diperoleh tersebut diskalakan terhadap respon spektrum desain. Pada proses penskalaan dibutuhkan data respon spektrum

desain agar data rekaman gempa original disesuaikan dengan kondisi geologis pada Kota Gunungsitoli (tanah sedang). Selain itu, rentang perioda alami (T) juga dibutuhkan dalam proses penskalaan agar hasil skala lebih detail.

Kemudian data rekaman gempa yang telah diskalakan digunakan sebagai *input* pada *software* RUAUMOKO versi 04. untuk Analisis Dinamik Non Linier Inelastis dengan Metode Analisa Riwayat Waktu.

3.5.3 Analisis Respon Riwayat Waktu

Analisis ini merupakan tahap evaluasi yang dijadikan sebagai perbandingan terhadap analisis linear sebelumnya, sehingga tidak perlu seluruhnya memenuhi syarat-syarat SNI 1726:2012. Karena model yang digunakan merupakan model yang seluruhnya telah memenuhi syarat-syarat SNI 1726:2012 pada analisis linier sebelumnya yaitu dengan Metode Respon Spektrum. Pada Metode Respon Riwayat Waktu ini dianalisis secara dua dimensi. Alat bantu *software* yang digunakan adalah RUAUMOKO2D versi 04. Sebelum dianalisis dengan RUAUMOKO2D terdapat beberapa tahapan sebagai berikut :

- a. Pengambilan rekaman gempa dari PEER NGA dan COSMOS. Daerah- daerah rekaman yang diambil tertera pada tabel 3.5.
- b. Mengubah rekaman gempa menjadi respon spektrum dengan bantuan software Seismosignal. Hal ini dilakukan untuk memudahkan proses penskalaan. Selain itu, metode pengskalaan PGA maupun RSA T1 perlu menggunakan software ini untuk mencari nilai percepatan pada masing-masing groundmotion.

Gambar 3.9: Rekaman gempa Chichi Taiwan (TCU049) sebelum penskalaan ini merupakan gempa mengandung fling.

Gambar 3.10: Rekaman gempa Chichi Taiwan (TCU049) setelah diubah menjadi respon spektrum.

- c. Menskalakan rekaman gempa dengan menggunakan software MATLAB.
- Melakukan spectral matching dengan menggunakan software Seismomatch. Software ini lebih khusus digunakan untuk metode pengskalaan spectral matching dengan melakukan pencocokan spectral terhadap grafik Respon Spektra Desain yang ada di indonesia.

Gambar 3.11: Rekaman gempa Chichi Taiwan (TCU049) sebelum (gambar atas) dan setelah diskalakan (gambar bawah), ini merupakan gempa *fling*.

Adapun data-data yang dibutuhkan dalam analisis respon riwayat waktu nonlinier menggunakan *software* RUAUMOKO2D versi 04 antara lain:

- *I* : Momen inersia penampang
- *E* : Modulus elastisitas penampang

- *G* : Modulus geser penampang
- *A* : Luas penampang
- *A_s* : Luas penampang geser
- M_y : Momen leleh
- P_{yc} : Gaya tekan leleh aksial
- P_{yt} : Gaya tarik leleh aksial
- M_c : Momen puncak
- K_e : Kekakuan rotasi elastis
- θ_p : Koefisien rotasi plastis
- θ_y : Koefisien rotasi leleh
- θ_c : Koefisien rotasi kapasitas plastis
- θ_{pc} : Koefisien rotasi *post-capping*
- θ_u : Koefisien rotasi ultimit
- $\mu \theta_c$: Daktilitas rotasi kapasitas plastis
- *r* : Rasio kekakuan *post-yield*

BAB 4

HASIL DAN PEMBAHASAN

4.1 Hasil Model Linier Dan Non Linier

Pada Bab ini akan membahas beberapa hasil analisa linier dan non linier oleh Program Analisa Struktur diantaranya, perioda getar, nilai simpangan dan gayagaya dalam struktur gedung, berdasarkan model dengan Sistem Rangka Berbresing Eksentris (SRBE). Semua *input* pembebanan serta kombinasi, zona gempa dan konfigurasi bangunan adalah sama. Serta perbandingan metode analisa pada tiap pemodelan, yaitu analisa respon spektrum ragam dan analisa respon riwayat waktu.

4.2 Hasil Analisa Linier

4.2.1 Respon Spektrum Ragam

Berdasarkan SNI 1726:2019, analisa harus dilakukan untuk menentukan ragam getar alami untuk struktur. Analisa harus menyertakan jumlah ragam yang cukup untuk mendapatkan partisipasi massa ragam terkombinasi sebesar paling sedikit 90 persen dari massa aktual dalam masing-masing arah horizontal ortogonal dari respon yang ditinjau oleh model. persentase nilai perioda yang menentukan jenis perhitungan menggunakan CQC atau SRSS.

Syarat : SRSS > 15% , CQC < 15%

Analisa menggunakan metode CQC (*Complete Quadratic Combination*), hasil persentase perioda rata-rata yang didapat lebih kecil dari 15% dan SRSS (*Square Root of the Sum of Square*) lebih besar dari 15%. Pada hasil analisa diperoleh hasil model 4 lantai didapat 6 mode dan hasil persentase nilai perioda lebih banyak diatas 15%. Untuk hasil model 8 lantai didapat 12 mode dan hasil persentase nilai perioda lebih banyak diatas 15%. Untuk hasil model 16 lantai didapat 16 mode dan hasil persentase nilai perioda Lampiran A3.

4.2.2 Koreksi Gempa Dasar Nominal

Berdasarkan SNI 1726:2019 Pasal 7.9.4.1, kombinasi respon untuk geser dasar ragam (Vt) lebih kecil 85 persen dari geser dasar yang dihitung (V_1) menggunakan prosedur gaya lateral ekivalen, maka gaya dan simpangan antar lantai harus dikalikan dengan faktor skala seperti pada Pers. 4.1 yaitu:

$$0.85 \frac{VI}{Vt} \ge 1 \tag{4.1}$$

dimana:

 V_l = Gaya geser dasar nominal statik ekivalen

Vt = Gaya geser dasar kombinasi ragam

Tabel 4.1: Nilai gaya geser dasar nominal analisa statik ekivalen (V_I) dan Nilai gaya geser dasar nominal analisa respon spektrum *output* Program Analisa Struktur V_t .

Struktur	Arah Gempa	V_1 (kN)	Vt (kN)
Lantai 4 (Model 1)	Gempa Y	1956,78	1751.94
Lantai 8 (Model 2)	Gempa Y	2690,18	1693.74
Lantai 16 (Model 3)	Gempa Y	3382,19	10687.47

Untuk memenuhi syarat berdasarkan SNI 1726:2019, maka nilai faktor skala harus lebih kecil atau sama dengan 1.

Syarat : 0,85 $\frac{Vl}{Vt} \le 1$

Untuk perhitungan tertera pada Lampiran A5.

4.2.3 Koreksi Faktor Redundansi

Nilai gaya geser dengan redundansi 1 per lantainya harus dikoreksi dengan 35 persen gaya geser dasar dengan redundansi 1. Jika persyaratan tersebut tidak terpenuhi, maka nilai faktor redundansi 1 harus diganti dengan redundansi 1,3. Dari hasil koreksi untuk setiap gaya geser diperoleh beberapa lantai yang tidak memenuhi syarat 35 persen gaya geser dasar. Untuk perhitungan terdapat pada Lampiran A6.

4.2.4 Koreksi Skala Interstory Drift

Nilai V₁ dan gaya geser dasar nominal analisis respon spektrum (V_t) dapat dilihat pada Tabel 4.1. Kontrol Koreksi skala simpangan antar tingkat, yaitu:

Syarat : $V_t \ge 0.85 C_{s.} W$

Berdasarkan Tabel 4.11 nilai Vt sb. x diperoleh :

Tabel 4.2: Kontrol Nilai Koreksi Skala interstory drift.

Struktur	Arah Gempa	Vt (kN)	0,85 Cs.W (kN)	Cek
Lantai 4 (Model 1)	Gempa Y	1751.94	1663.26	Oke
Lantai 8 (Model 2)	Gempa Y	1693.74	2286.65	Oke
Lantai 16 (Model 3)	Gempa Y	10687.47	2874.86	Oke

Dengan demikian syarat skala *interstory drift* telah terpenuhi, yaitu gaya geser dasar respon spektrum (V_t) lebih besar dari nilai $C_s W$, sehingga simpangan antar lantai tidak perlu dikalikan dengan faktor skala.

4.2.5 Nilai Simpangan Antar Lantai

Berdasarkan peraturan SNI 1726:2019, kontrol simpangan antar lantai hanya terdapat satu kinerja batas, yaitu kinerja batas ultimit. Simpangan antar lantai yang diizinkan yaitu 0,02 dikali tinggi lantai, nilai simpangan tidak boleh melebihi ketentuan tersebut. Pada hasil yang diperoleh, nilai simpangan antar lantai tidak melebihi batas izin atau memenuhi syarat. Untuk hasil perhitungan terdapat pada Lampiran A7.

4.2.6 Kontrol Ketidakberaturan Kekakuan Tingkat Lunak (Soft Story)

Berdasarkan SNI 1726:2019, kekakuan tingkat lunak (*soft story*) didefinisikan ada jika terdapat suatu tingkat dimana kekakuan lateralnya kurang dari 70 persen kekakuan lateral tingkat diatasnya atau kurang dari 80 persen kekakuan rata-rata tiga tingkat diatasnya.

Pada hasil kontrol ketidakberaturan kekakuan tingkat lunak pada arah y untuk semua model, diperoleh nilai persentase kekakuan diatas batas yang ditentukan atau

struktur yang direncanakan tidak mengalami *Soft Story*. Untuk hasil perhitungan terdapat pada Lampiran A8.

4.2.7 Pengaruh Efek P-Delta

Berdasarkan SNI 1726:2019, efek P-delta dapat diabaikan jika nilai *stability ratio* lebih kecil dari 1. Pada hasil perhitungan, nilai *stability ratio* dibawah nilai 1 untuk semua model atau dapat dikatakan kontrolnya memenuhi syarat yang ditentukan. Pada dasarnya efek P-delta dapat diabaikan jika syarat *stability ratio* sudah terpenuhi. Untuk hasil perhitungan terdapat pada Lampiran A9.

4.3 Hasil Analisa Non Linier

Pada tahap ini merupakan bagian dari evaluasi struktur baja yang telah di desain terhadap beban gempa yang telah direncanakan, dalam hal ini respon struktur akan ditinjau terhadap perbedaan metode modifikasi penskalaan rekaman gempa. Jenis gempa yang diberikan pada struktur baja yaitu gempa *pulse* dan *fling*.

Berdasarkan analisa menggunakan aplikasi Ruaumoko 2D didapatkan nilai *interstory drift* berdasarkan dari metode modifikasi *groundmotion* yaitu metode RSA (T₁) (*Response Spectral Acceleration* (T_1)) yang diskalakan berdasarkan respon spektrum wilayah Indonesia. Pada Gambar 4.1 sampai dengan Gambar 4.6 menunjukkan beberapa grafik nilai maksimum dan nilai minimum *interstory drift* dengan menggunakan metode pengskalaan *groundmotion* dan Tabel 4.3 menunjukkan nilai simpangan atap (*top displacement*) akibat gempa *pulse*, Tabel 4.4 menunjukkan nilai simpangan antar lantai (*interstory drift*).pada metode pengskalaan *groundmotion* seperti metode RSA (T₁). Pada Gambar 4.7 sampai dengan Gambar 4.10 menunjukkan beberapa grafik nilai persamaan regresi linear *interstory drift* dan *top displacement*.

Gambar 4. 1: Hasil *interstory drift* untuk struktur SRBE (EBF) Lantai 4 (Model 1) akibat rekaman gempa mengandung *fling*.

Pada Gambar 4.1 untuk model 4 lantai (Model 1) metode RSA (T₁) dapat dilihat hasil *interstory drift* akibat rekaman gempa mengandung *fling* bahwa nilai maksimum *interstory drift* diketinggian kebawah ditunjukkan akibat rekaman gempa TCU071 terdapat pada Tp 3,33 detik sebesar 0.230 m dan nilai maksimum *interstory drift* diketinggian keatas ditunjukkan akibat rekaman gempa TCU089 terdapat pada Tp 9,99 detik sebesar 0.034 m. Nilai minimum *interstory drift* diketinggian keatas ditunjukkan akibat rekaman gempa TCU089 terdapat pada Tp 9,99 detik sebesar 0.034 m.

Batas *Near collapse* telah dilampaui oleh semua nilai rata-rata *interstory drift* dengan persentase terbesar senilai 87% pada metode RSA (T₁) dengan nilai sebesar 0,119 m.

Gambar 4. 2: Hasil *interstory drift* untuk struktur SRBE (EBF) Lantai 4 (Model 1) akibat rekaman gempa mengandung *pulse*.

Pada Gambar 4.2 untuk model 4 lantai (Model 1) dapat dilihat hasil simpangan antar lantai akibat rekaman gempa mengandung *pulse* bahwa nilai maksimum *interstory drift* diketinggian kebawah ditunjukkan akibat rekaman gempa *izmit turkey* terdapat pada Tp 7,30 sebesar 0.365 m dan nilai maksimum *interstory drift* diketinggian keatas ditunjukkan akibat rekaman gempa *Aigion, Greece* terdapat pada Tp 0.71 sebesar 0.148 m . Nilai minimum *interstory drift* diketinggian kebawah ditunjukkan akibat rekaman gempa *kobe, japan* terdapat pada Tp 0,91 sebesar 0.168 m dan nilai minimum *interstory drift* diketinggian keatas ditunjukkan akibat rekaman gempa *kobe, japan* terdapat pada Tp 0,91 sebesar 0.168 m dan nilai minimum *interstory drift* diketinggian keatas ditunjukkan akibat rekaman gempa *kobe, japan* terdapat pada Tp 0,91 sebesar 0.168 m dan nilai minimum *interstory drift* diketinggian keatas ditunjukkan akibat rekaman gempa *kobe, japan* terdapat pada Tp 0,91 sebesar 0.168 m dan nilai minimum *interstory drift* diketinggian keatas ditunjukkan akibat rekaman gempa *kobe, japan* terdapat pada Tp 0,91 sebesar 0.168 m dan nilai minimum *interstory drift* diketinggian keatas ditunjukkan akibat rekaman gempa *kobe, japan* terdapat pada Tp 0,91 sebesar 0.168 m dan nilai minimum *interstory drift* diketinggian keatas ditunjukkan akibat rekaman gempa *kobe, japan* terdapat pada Tp 0,91 sebesar 0.168 m dan nilai minimum *interstory drift* diketinggian keatas ditunjukkan akibat rekaman gempa *kobe*, *japan* terdapat pada Tp 0,91 sebesar 0.168 m dan nilai minimum *interstory drift* diketinggian keatas ditunjukkan akibat rekaman gempa *kobe*, *japan* terdapat pada Tp 0,91 sebesar 0.168 m dan nilai minimum *interstory drift* diketinggian keatas ditunjukkan akibat rekaman gempa *kobe*, *japan* terdapat pada terdapat pada akibat rekaman gempa *kobe*, *japan* terdapat pada ditunjukkan akibat rekaman gempa *kobe*, *japan* terdapat pada terdapat pada akibat rekaman gempa *kobe*, *japan* terdapat pada ditunjukkan akibat rekaman ge

Batas *Near collapse* telah dilampaui oleh semua nilai rata-rata *interstory drift* dengan persentase terbesar senilai 104% pada metode RSA (T_1). Nilai rata-rata *interstory drift* terbesar terjadi pada metode penskalaan RSA (T_1) dengan nilai sebesar 0,143 m.

Gambar 4.3: Hasil *interstory drift* untuk struktur SRBE (EBF) Lantai 8 (Model 2) akibat rekaman gempa mengandung *fling*.

Pada Gambar 4.3 untuk model 8 lantai (Model 2) dapat dilihat hasil *interstory drift* akibat rekaman gempa mengandung *fling*. Nilai maksimum *interstory drift* diketinggian kebawah dan diketinggian keatas ditunjukkan akibat rekaman gempa TCU129 terdapat pada Tp 2,75 detik sebesar 0.193 m. Nilai minimum *interstory drift* diketinggian kebawah dan diketinggian keatas ditunjukkan akibat rekaman gempa TCU089 terdapat pada TP 9,99 detik sebesar 0.034 m.

Batas *Near collapse* telah dilampaui oleh semua nilai rata-rata *interstory drift* dengan persentase terbesar senilai 80% pada metode RSA (T_1). Nilai rata-rata *interstory drift* terbesar terjadi pada metode penskalaan RSA (T_1) dengan nilai sebesar 0,107 m.

Gambar 4.4: Hasil *interstory drift* untuk struktur SRBE (EBF) Lantai 8 (Model 2) akibat rekaman gempa mengandung *pulse*.

Pada Gambar 4.4 untuk model 8 lantai (Model 2) dapat dilihat hasil *interstory drift* akibat rekaman gempa mengandung *pulse* nilai maksimum *interstory drift* diketinggian kebawah dan diketinggian keatas ditunjukkan akibat rekaman gempa *Izmit, Turkey* terdapat pada Tp 7,30 detik sebesar 0.365 m. Nilai minimum *interstory drift* diketinggian kebawah ditunjukkan akibat rekaman gempa *Aigion, Greece* terdapat pada Tp 0,71 detik sebesar 0.148 m dan nilai minimum *interstory drift* diketinggian keatas ditunjukkan akibat rekaman gempa *Aigion, Greece* terdapat pada Tp 0,71 detik sebesar 0.148 m dan nilai minimum *interstory drift* diketinggian keatas ditunjukkan akibat rekaman gempa *Imperial Valley, CA, USA* terdapat pada Tp 3,92 detik sebesar 0.365 m.

Batas *Near collapse* telah dilampaui oleh nilai rata-rata *interstory drift* dengan persentase terbesar senilai 88% pada metode RSA (T_1). Nilai rata-rata *interstory drift* terbesar terjadi pada metode penskalaan RSA (T_1) dengan nilai sebesar 0,107 m.

Gambar 4.5: Hasil *interstory drift* untuk struktur SRBE (EBF) Lantai 16 (Model 3) akibat rekaman gempa mengandung *fling*.

Pada Gambar 4.5 untuk model 16 lantai (Model 3) dapat dilihat hasil *interstory drift* akibat rekaman gempa mengandung *fling*. Nilai maksimum *interstory drift* diketinggian kebawah dan diketinggian keatas ditunjukkan akibat rekaman gempa TCU082 terdapat pada Tp 3,95 detik sebesar 0.227 m. Nilai minimum *interstory drift* diketinggian kebawah dan diketinggian keatas ditunjukkan akibat rekaman gempa TCU089 terdapat pada Tp 9,99 detik sebesar 0.034 m.

Batas *Near collapse* telah dilampaui oleh semua nilai rata-rata *interstory drift* dengan persentase terbesar senilai 119% pada metode RSA (T₁). Nilai rata-rata *interstory drift* terbesar terjadi pada metode penskalaan RSA (T₁) dengan nilai sebesar 0,155 m.

Gambar 4.6: Hasil *interstory drift* untuk struktur SRBE (EBF) Lantai 16 (Model 3) akibat rekaman gempa mengandung *pulse*.

Pada Gambar 4.6 untuk model 16 lantai (Model 3) dapat dilihat hasil *interstory drift* akibat rekaman gempa mengandung *pulse* nilai maksimum *interstory drift* diketinggian kebawah ditunjukkan akibat rekaman gempa *Kobe, Japan* terdapat pada Tp 1,00 detik sebesar 0.302 m dan nilai maksimum *interstory drift* diketinggian keatas ditunjukkan akibat rekaman gempa *Northridge, CA, USA* terdapat pada Tp 1,25 detik sebesar 0.291 m.

Nilai minimum *interstory drift* diketinggian kebawah ditunjukkan akibat rekaman gempa *Aigion, Greece* terdapat pada Tp 0,68 detik sebesar 0.137 m dan nilai minimum *interstory drift* diketinggian keatas ditunjukkan akibat rekaman gempa gempa *Whittier Narrows, CA, USA* terdapat pada Tp 0,74 detik sebesar 0.101 m.

Batas *Near collapse* telah dilampaui oleh semua nilai rata-rata *interstory drift* dengan persentase terbesar senilai 124% pada metode RSA (T_1). Nilai rata-rata *interstory drift* terbesar terjadi pada metode penskalaan RSA (T_1) dengan nilai sebesar 0,162 m.

Dari keenam grafik di atas pada hasil analisa nonlinear, di dapat nilai maksimum *interstory drift* akibat rekaman gempa *fling* sebesar 0.230 m dengan pengaruh Tp 3,33 detik. Secara tren tidak ditemukan pengaruh Tp (acak) namun demikian hasil regresi menunjukkan semakin meningkat periode Tp yang ada di getaran gempa *fling* semakin berkurang pengaruh kepada *interstory drift* dan *top displacement*.

Nilai maksimum *interstory drift* akibat rekaman gempa *pulse* sebesar 0.365 m dengan pengaruh Tp 7,30 detik. Secara tren tidak ditemukan pengaruh Tp (acak) namun demikian hasil regresi menunjukkan semakin berkurang periode Tp yang ada di getaran gempa *pulse* semakin meningkatkan *interstory drift* dan semakin meningkat periode Tp yang ada di getaran gempa *fling* semakin berkurang pengaruh kepada *top displacement*.

NO.	Ground Motion	Displacement		
		Model 1	Model 2	Model 3
1	Izmit, Turkey	0.371	0.629	0.329
2	Imperial Valley, CA, USA	0.101	0.448	1.00
3	Imperial Valley, CA, USA	0.122	1.249	2.198
4	Northridge, CA, USA	0.169	0.572	1.588
5	Parkfield, CA, USA	0.101	0.665	0.867
6	Palm Springs, CA, USA	0.178	0.648	1.653
7	San Fernando, CA, USA	0.110	0.502	2.109
8	Northridge, CA, USA	0.110	1.013	2.463
9	Palm Springs, CA, USA	0.217	0.648	1.653
10	Kobe, Japant	0.109	1.202	3.133
11	Kobe, Japant	0.091	0.806	1.592
12	Whittier Narrows, CA,US	0.111	0.751	0.781
13	Whittier Narrows, CA,US	0.103	0.454	0.860
14	Aigion, Greece	0.151	0.432	0.729
15	Aigion, Greece	0.140	0.831	0.739
	Rata-rata	0.146	0.723	1.446

Tabel 4.3: Nilai simpangan atap (top displacement) akibat gempa pulse.

NO.	Ground Motion	Displacement		
		Model 1	Model 2	Model 3
1	Chi-Chi Taiwan	0.057	0.948	1.775
2	Chi-Chi Taiwan	0.132	0.638	1.414
3	Chi-Chi Taiwan	0.197	1.270	1.485
4	Kocaeli	0.132	0.523	1.703
5	Kocaeli	0.181	0.760	2.023
6	Chi-Chi Taiwan	0.026	0.114	0.406
7	Chi-Chi Taiwan	0.099	0.815	1.468
8	Chi-Chi Taiwan	0.085	0.544	2.261
9	Chi-Chi Taiwan	0.128	0.470	1.542
10	Chi-Chi Taiwan	0.084	0.864	1.632
11	Chi-Chi Taiwan	0.138	1.078	1.233
12	Kocaeli Turkey	0.106	0.457	1.574
13	Kocaeli Turkey	0.102	0.831	2.621
14	Chi-Chi Taiwan	0.235	0.690	1.864
	Rata-rata	0.122	0.714	1.643

Tabel 4.4: Nilai simpangan atap (*top displacement*) dengan gempa *fling* pada analisa nonlinear.

Tabel 4.5: Nilai rata-rata simpangan atap (top displacement) nonlinear.

Struktur	Gempa Fling	Gempa Pulse
Lantai 4 (Model 1)	0.122	0.146
Lantai 8 (Model 2)	0.714	0.723
Lantai 16 (Model 3)	1.643	1.446

Ground Motion	Model 1, 2 dan 3		
Fling	Tp (detik)	Interstory Drift	Top Displasment
Tinig		Maksimum (m)	Maksimum (m)
TCU074	2.00	0.183	1.542
TCU074	2.25	0.193	2.261
TCU129	2.75	0.193	1.485
Izmit	3.33	0.230	1.864
Sakarya	3.75	0.128	1.468
TCU089	3.95	0.227	2.621
TCU049	4.73	0.198	2.023
TCU067	8.90	0.184	1.574
TCU076	9.00	0.168	1.703
TCU072	9.50	0.134	1.632
TCU079	9.99	0.034	0.406
TCU078	12.00	0.129	1.414
TCU082	13.45	0.169	1.775
TCU071	18.00	0.158	1.233

Tabel 4.6: Nilai maksimum *interstory drift* dan *top displacement* pada setiap *ground motion fling*.

Tabel 4.7: Nilai maksimum *interstory drift* dan *top displacement* pada setiap *ground motion pulse*.

	Model 1, 2 dan 3			
Ground Motion Pulse	Tp (detik)	Interstory Drift Maksimum (m)	<i>Top Displacement</i> Maksimum (m)	
YPT	0.68	0.137	0.831	
E05	0.71	0.148	0.729	
E07	0.74	0.101	0.860	
NWS	0.83	0.111	0.781	
C02	0.91	0.168	1.592	
DSP	1.00	0.302	3.133	
PCD	1.25	0.291	2.463	
RRS	1.25	0.213	1.653	
NPS	1.47	0.207	2.109	
KOB 1	1.67	0.183	1.653	
KOB 2	2.00	0.118	0.867	
DOW	2.70	0.167	1.588	
NWK	3.64	0.274	2.198	
AEG 1	3.92	0.100	1.001	
AEG 2	7.30	0.365	0.629	

Gambar 4.7: Hasil persamaan regresi linear *interstory drift* terhadap Tp dengan gempa *fling*.

Pada Gambar 4.7 dapat dilihat bahwa berdasarkan grafik hasil regresi linear pada gempa *fling* menunjukkan bahwa semakin besar periode Tp yang ada di getaran gempa fling semakin berkurang pengaruh kepada *interstory drift* dengan $R^2 0.1893$.

Gambar 4.8: Hasil persamaan regresi linear pada *Top displasment* dengan gempa *fling*.

Pada Gambar 4.8 dapat dilihat bahwa berdasarkan grafik hasil regresi linear pada gempa *fling* menunjukkan bahwa semakin besar periode Tp yang ada di getaran gempa *fling* semakin berkurang pengaruh kepada *top displacement* dengan $R^2 0.1893$.

Gambar 4.9: Hasil persamaan regresi linear *interstory drift* terhadap Tp dengan gempa *pulse*.

Pada Gambar 4.9 dapat dilihat bahwa berdasarkan grafik hasil regresi linear pada gempa *pulse* menunjukkan bahwa semakin besar periode Tp yang ada di getaran gempa *pulse* semakin meningkat pengaruhnya kepada *interstory drift* dengan R² 0.2435.

Gambar 4.10: Hasil persamaan regresi linear *top displasment* terhadap Tp dengan gempa *pulse*.
Pada Gambar 4.10 dapat dilihat bahwa berdasarkan grafik hasil regresi linear pada gempa *pulse* menunjukkan bahwa semakin besar periode Tp yang ada di getaran gempa *pulse* semakin berkurang pengaruh kepada *top* dengan R² 0.0405.

NO.	Ground Motion	Tp (detik)	Interstory Drift (m)	Top Displasment (m)
1	TCU076	2.00	0.111	1.892
2	TCU067	2.25	0.100	1.880
3	TCU129	2.75	0.078	1.857
4	TCU071	3.33	0.052	1.830
5	TCU049	3.75	0.034	1.811
6	TCU082	3.95	0.025	1.802
7	Sakarya	4.73	-0.009	1.766
8	TCU078	8.90	-0.193	1.574
9	Izmit	9.00	-0.197	1.569
10	TCU072	9.50	-0.219	1.546
11	TCU089	9.99	-0.241	1.523
12	TCU074	12.00	-0.329	1.431
13	TCU074	13.45	-0.393	1.364
14	TCU079	18.00	-0.593	1.154

Tabel 4.8: Nilai persamaan regresi linear pada gempa *fling* pada analisa nonlinear.

Tabel 4.9: Nilai persamaan regresi linear dengan gempa *pulse* pada analisa nonlinear.

NO.	Ground Motion	Tp (detik)	Interstory Drift Maksimum (m)	Top Displasment Maksimum (m)
1	Aigion, Greece	0.68	0.132	1.584
2	Aigion, Greece	0.71	0.131	1.581
3	Whittier Narrows, CA, USA	0.74	0.130	1.579
4	Whittier Narrows, CA, USA	0.83	0.128	1.571
5	Kobe, Japan	0.91	0.126	1.565
6	Kobe, Japan	1.00	0.124	1.557

NO.	Ground Motion	Tp (detik)	Interstory Drift Maksimum (m)	Top Displasment Maksimum (m)
7	Northridge, CA, USA	1.25	0.119	1.536
8	Palm Springs, CA, USA	1.25	0.119	1.536
9	San Fernando, CA, USA	1.47	0.114	1.517
10	Palm Springs, CA, USA	1.67	0.109	1.501
11	Parkfield, CA, USA	2.00	0.102	1.473
12	Northridge, CA, USA	2.70	0.086	1.414
13	Imperial Valley, CA, USA	3.64	0.065	1.335
14	Imperial Valley, CA, USA	3.92	0.058	1.311
15	Izmit, Turkey	7.30	-0.018	1.027

Lanjutan Tabel 4.10: Nilai persamaan regresi linear dengan gempa *pulse* pada analisa nonlinear.

Pada Tabel 4.8 dan Tabel 4.9 dapat dilihat bahwa hasil Tabel 4.8 dan Tabel 4.9 merupakan hasil dari persamaan regresi linear dengan persamaan IDR = a(Tp) + b.

Dengan contoh perhitungan pada grafik gempa *fling* sebagai berikut:

IDR = a(Tp) + b

= -0,0044x + 0,199

= -0,0044(2,75) + 0,199

= 0,078

Keterangan:

IDR = *Interstory drift* atau Y

x = Time periode (Tp)

a dan b = konstanta

 R^2 = koefesien yang menyatakan kontribusi Tp terhadap interstory drift

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

- 1. Nilai maksimum *interstory drift* akibat rekaman gempa *fling* sebesar 0.230 m dengan pengaruh Tp 3,33 detik. Secara tren tidak ditemukan pengaruh Tp (acak) namun demikian hasil regresi menunjukkan semakin meningkat periode Tp yang ada di getaran gempa *fling* semakin berkurang pengaruh kepada *interstory drift* dan *top displacement*.
- 2. Nilai maksimum *interstory drift* akibat rekaman gempa *pulse* sebesar 0.365 m dengan pengaruh Tp 7,30 detik. Secara tren tidak ditemukan pengaruh Tp (acak) namun demikian hasil regresi menunjukkan semakin berkurang periode Tp yang ada di getaran gempa *pulse* semakin meningkatkan *interstory drift* dan semakin meningkat periode Tp yang ada di getaran gempa *fling* semakin berkurang pengaruh kepada *top displacement*.

5.2 Saran

- 1 Dalam Tugas Akhir ini, dimensi balok kolom yang ekonomis diabaikan. Disarankan untuk penganalisaan selanjutnya komponen tersebut direncanakan agar data yang dihasilkan lebih akurat dan sesuai data kondisi yang ada dilapangan.
- 2 Dalam Tugas Akhir ini, jika terdapat hasil yang kurang sesuai pada analisa linier dan non linier diharapkan agar dapat diskusi dengan penulis. Apabila nilai yang didapatkan jauh dari hasil yang ada.
- 3 Diharapkan tugas akhir ini dapat diteruskan atau dievaluasi kembali dalam rangka mendapatkan hasil yang optimal.

DAFTAR PUSTAKA

- Badan Standardisasi Nasional Indonesia. (2020). Beban minimum untuk perancangan bangunan gedung dan struktur lain. Jakarta: Departemen Pekerjaan Umum.
- Badan Standardisasi Nasional Indonesia. (2019). Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan nongedung. Jakarta: Departemen Pekerjaan Umum.
- Badan Standardisasi Nasional Indonesia. (2020). Spesifikasi untuk bangunan gedung baja struktural. Jakarta: Departemen Pekerjaan Umum.
- UNESCO Office Jakarta (2010) Bertahan Dari Gempa Bumi Dan Tsunami. Jakarta: Indonesian Institute of Scriences Research, 10.
- Chesoan.Adriana., Aurel,Stratan., Dominiq,Jakab.,etc.(2019). The influence of joint modelling on the seismic design of steel frames. *Nordic steel constructions conference*. Research 18-20
- Tashakori, J., Razzaghi, J., & Ansari, S. (2019). Reassessment of current design criteria of plastic hinges in shear links. Journal of Constructional Steel Research, 158, 350-365.
- Mahmoudi, F., Dolatshahi, K. M., Mahsuli, M., Nikoukalam, M. T., & Shahmohammadi, A. (2019). Experimental study of steel moment resisting frames with shear link. Journal of Constructional Steel Research, 154, 197-208.
- Montuori, R., Nastri, E., & Piluso, V. (2017). Influence of the bracing scheme on seismic performances of MRF-EBF dual systems. Journal of Constructional Steel Research, 132, 179-190.
- Iman Mansouri, Shahrokh Shahbazi, Jong Wan Hu and Salar Arian Moghaddam (2019) Effects of pulse-like nature of forward directivity ground motions on the seismic behavior of steel moment frames. Earthquakes and Structures, 17.
- Reyhaneh Eskandari and Davoud Vafaei (2015) Effects of near-fault records characteristics on seismic performance of eccentrically braced frames. Structural Engineering and Mechanies ISSN: 1225-4568. Iran : Structures Engineering and Mechanies, 17. Research 855-858.

http://peer.berkeley.edu.

http://puskim.pu.go.id.

http://strongmotionscemter.org.

- Pawirodikromo, W., (2012), Seismologi Teknik dan Rekayasa Kegempaan, Pustaka Pelajar., Yogyakarta.
- Pangestu, M. (2017). Analisa Kinerja Bangunan Bertingkat Akibat Gempa Pada Gedung Pascasarjana Universitas Muhammadiyah Malang Dengan Metode Riwayat Waktu. Malang.
- National Institute of Standards and Technology. (2017a). Guidelines for Nonlinear Structural Analysis for Design of Buildings Part I – General. Gaithersburg: Applied Technology Council.
- National Institute of Standards and Technology. (2017b). Guidelines for Nonlinear Structural Analysis for Design of Buildings Part IIa – Steel Moment Frames (April 2017). Gaithersburg: Applied Technology Council.
- Samanta, A., & Pandey, P. (2018). Effects of Ground Motion Modification Methods and Ground Motion Duration On Seismic Performance of a 15-Storied Building. Journal of Building Engineering, 15, 14–25.
- Lignos, D. G., Hartloper, A. R., Elkady, A., Deierlein, G. G., & Hamburger, R. (2019). Proposed Updates to the ASCE 41 Nonlinear Modeling Parameters for Wide-Flange Steel Columns in Support of Performance-Based Seismic Engineering. *Journal of Structural Engineering*, 145(9).

LAMPIRAN

A.1. Perhitungan Pembebanan Struktur

Dalam Tugas Akhir ini, jenis pembebanan yang digunakan adalah beban gravitasi. Adapun beban gravitasi yang bekerja pada struktur tersebut adalah:

•	Beban mati	= 46 psf	$= 2,20 \text{ KN/m}^2$
---	------------	-----------	-------------------------

• Beban mati tambahan

	\triangleright	Pada lantai tipikal	$= 15 \text{ psf} = 0,48 \text{ KN/m}^2$
		Pada atap	$= 10 \text{ psf} = 0,72 \text{ KN/m}^2$
		Pada Façade (Curtain Wall)	= 250 plt = 3,65 KN/m
•	В	eban hidup	
		Pada lantai tipikal	$= 50 \text{ psf} = 2,39 \text{ KN/m}^2$
	۶	Pada atap	$= 30 \text{ psf} = 1,44 \text{ KN/m}^2$

A.2. Syarat Perioda Struktur

Penentuan perioda yang akan digunakan untuk perhitungan gaya geser dasar dan gaya lateral statik ekivalen adalah berdasarkan SNI 1726:2019.

➤ Model 1

Data struktur:

- Tinggi lantai bawah	: 5,49 m
- Tinggi lantai tipikal	: 4,27 m
- Hn	: 18,29 m
- Cu	: 1,4
- Ct	: 0.0724
- X	: 0,75

Tabel L.1: Kontrol perioda getar alami struktur Model 1

	SYARAT PERIODA					
Arah	Ta _{min} (Ct x hn ^x)	T _{sap2000}	T _{dipakai}	KONTROL		
Y	0,647	0,905	0.99	1,09	OK	

Berdasarkan Tabel L.1, perioda alami struktur yang digunakan adalah batas perioda maksimum yaitu 1,09 karena nilai perioda pada Program Analisa Struktur lebih kecil dari batas maksimum pada model tersebut.

➢ Model 2

Data struktur:

- Tinggi lantai bawah	: 5,49 m
- Tinggi lantai tipikal	: 4,27 m
- Hn	: 35,36 m

- Cu : 1,4
- Ct : 0.0724
- x : 0,75

	SYARAT PERIODA				
Arah	Arah Ta_{min} Ta_{max} (Ct x hn ^x)(Cu x Ta_{min})			T _{dipakai}	KONTROL
Y	1,060	1,485	2,421	2,46	OK

Tabel L.2: Kontrol perioda getar alami struktur Model 2

Berdasarkan Tabel L.3, perioda alami struktur yang digunakan adalah batas perioda maksimum yaitu 2,46 karena nilai perioda pada Program Analisa Struktur lebih kecil dari batas maksimum pada model tersebut.

➢ Model 3

Data struktur:

- Tinggi lantai bawah	: 5,49 m
- Tinggi lantai tipikal	: 4,27 m
- Hn	: 69,49 m
- Cu	: 1,4
- Ct	: 0.0724
- X	: 0,75

Tabel L.3: Kontrol perioda getar alami struktur Model 2

	SYARAT PERIODA					
Arah	Arah Ta_{min} Ta_{max} (Ct x hn ^x)(Cu x Ta_{min})		T _{sap2000}	$T_{dipakai}$	KONTROL	
Y	1,76	2,464	3,542	3,88	OK	

Berdasarkan Tabel L.3, perioda alami struktur yang digunakan adalah batas perioda maksimum yaitu 3,88 karena nilai perioda pada Program Analisa Struktur lebih kecil dari batas maksimum pada model tersebut.

A.3. Modal Participating Mass Ratios

A.3.1. Modal Participating Mass Ratios Model 1

Tabel L.4: Hasil output *Modal Participating Mass Ratios* struktur pemodelan dengan Program Analisa Struktur (Model 1).

Modal Participating Mass Ratios					
Case	Mode	Period	UY	Sum UY	
Modal	1	1,991	0	0.00%	
Modal	2	0,99	0,8913	89,13%	
Modal	3	0,772	0	89,13%	
Modal	4	0,542	0	89,13%	
Modal	5	0,356	0,089	98,03%	
Modal	6	0,285	0	98,03%	

Tabel L.5: Hasil selisih persentase nilai perioda (Model 1).

Mode	Persentase (%)	CQC < 15%	SRSS > 15%
T1-T2	50,28	not OK	ОК
T2-T3	22,02	not OK	ОК
T3-T4	29,79	not OK	ОК
T4-T5	34,32	not OK	ОК
T5-T6	19,94	not OK	ОК

A.3.2. Modal Participating Mass Ratios Model 2

Modal Participating Mass Ratios					
Case	Mode	Period	UY	Sum UY	
Modal	1	3,409	0	0,00%	
Modal	2	2,421	0,7267	72,67%	
Modal	3	1,588	0	72,67%	
Modal	4	1,166	0	72,67%	
Modal	5	0,812	0,188	91,47%	
Modal	6	0,603	0	91,47%	
Modal	7	0,547	0	91,47%	
Modal	8	0,45	0,049	96,37%	
Modal	9	0,404	0	96,37%	
Modal	10	0,404	0	96,37%	
Modal	11	0,403	0	96,37%	
Modal	12	0.403	0	96.37%	

Tabel L.6: Hasil output *Modal Participating Mass Ratios* struktur pemodelan dengan Program Analisa Struktur (Model 2).

Tabel L.7: Hasil selisih persentase nilai perioda (Model 2).

Mode	Persentase (%)	CQC < 15%	SRSS > 15%
T1-T2	28,98	not OK	OK
T2-T3	34,41	not OK	OK
T3-T4	26,57	not OK	ОК
T4-T5	30,36	not OK	ОК
T5-T6	25,74	not OK	ОК
T6-T7	9,29	OK	not OK
T7-T8	17,73	not OK	ОК
T8-T9	10,22	OK	not OK
T9-T10	0,00	OK	not OK
T10-T11	0,25	OK	not OK
T11-T12	0,00	OK	not OK

Modal Participating Mass Ratios					
Case	Mode	Period	UY	Sum UY	
Modal	1	4,53	0	0,00%	
Modal	2	3,542	0,67080	67,08%	
Modal	3	2,283	0,00001	67,08%	
Modal	4	1,641	0	67,08%	
Modal	5	1,113	0,20020	87,10%	
Modal	6	0,912	0	87,10%	
Modal	7	0,753	0,00001	87,10%	
Modal	8	0,585	0,06300	93,39%	
Modal	9	0,579	0	93,39%	
Modal	10	0,442	0	93,39%	
Modal	11	0,442	0	93,39%	
Modal	12	0,434	0	93,39%	
Modal	13	0,434	0	93,39%	
Modal	14	0,414	0	93,39%	
Modal	15	0,411	0	93,39%	
Modal	16	0,41	0	93,39%	

A.3.3. Modal Participating Mass Ratios Model 3

Tabel L.8: Hasil output *Modal Participating Mass Ratios* struktur pemodelan dengan Program Analisa Struktur (Model 3).

Mode	Persentase (%)	CQC < 15%	SRSS > 15%
T1-T2	21,81	not OK	OK
T2-T3	35,54	not OK	OK
T3-T4	28,12	not OK	ОК
T4-T5	32,18	not OK	OK
T5-T6	18,06	not OK	OK
T6-T7	17,43	not OK	OK
T7-T8	22,31	not OK	OK
T8-T9	1,03	ОК	not OK
T9-T10	23,66	not OK	ОК
T10-T11	0,00	OK	not OK
T11-T12	1,81	OK	not OK
T12-T13	0,00	OK	not OK
T13-T14	4,61	OK	not OK
T14-T15	0,72	OK	not OK
T15-T16	0,24	ОК	not OK

Tabel L.9: Hasil selisih persentase nilai perioda (Model 3).

A.4. Berat Sendiri Struktur

A.4.1 Berat Sendiri Struktur (Model 1)

Tabel L.10: Hasil output berat sendiri struktur pemodelan dengan Program Analisa Struktur.

Story	Self weight (KN)
4	4789.1852
3	6196.818667
2	6209.090682
1	6263.281024
TOTAL	23458.376

Dapat dilihat pada tabel di atas bahwa berat total struktur untuk tersebut adalah 23458,376 KN.

A.4.2 Berat Sendiri Struktur (Model 2)

Tabel L.11: Hasil output berat sendiri struktur pemodelan dengan Program Analisa Struktur.

Story	Self weight (KN)
8	5125,006614
7	6736,508165
6	6762,705574
5	6781,653687
4	6839,041696
3	6884,091767
2	6922,963794
1	7003,776416
TOTAL	53055,74771

Dapat dilihat pada tabel di atas bahwa berat total struktur untuk tersebut adalah 53055,745 KN.

A.4.3 Berat Sendiri Struktur (Model 3)

Story	Self weight (KN)
16	5172,129734
15	6815,850856
14	6832,586716
13	6849,515931
12	6899,667791
11	6923,59026
10	6949,987597
9	6977,649148
8	7010,86159
7	7038,38482
6	7066,177041
5	7092,61038
4	7156,132681
3	7202,250864
2	7275,236675
1	7452,133735
TOTAL	110714,7658

Tabel L.12: Hasil output berat sendiri struktur pemodelan dengan Program Analisa Struktur.

Dapat dilihat pada tabel di atas bahwa berat total struktur untuk tersebut adalah 110714,76 KN.

A.5. Perhitungan Gaya Geser Dasar dan Gaya Lateral Statik Ekivalen

Gaya geser dasar yang digunakan untuk menghitung gaya lateral statik ekivalen ditentukan berdasarkan SNI 1726:2019.

Model 1

Data struktur:	
- S _{D1}	: 0,60
- S _{DS}	: 1,00
- R	: 8.00
- Ie	: 1.00
- S1	: 0.60
✓ CsMaksimum	$= \frac{S_{DS}}{\left(\frac{R}{Ie}\right)}$
	$=$ $\frac{1,0}{\left[\frac{8}{1}\right]}$ $=$ 0,125
✓ Cs Minimum	$= \frac{S_1}{\left[\frac{R}{I_e}\right]}$
	$= \frac{0,60}{\left[\frac{8}{1}\right]} = 0,075$
✓ Cs Hitungan	$= \frac{S_{D1}}{T\left(\frac{R}{Ie}\right)}$
	$= \frac{0,60}{0,905.\left[\frac{8}{1}\right]} = 0,083$

Tabel L.13: Nilai Cs yang digunakan untuk Model 1 (R=8).

Arah	Cs Maksimum	Cs Hitungan	Cs Minimum	Cs Digunakan
Y	0,125	0,083	0,075	0,083
Pada paraturan SNI 1726:2010 Damilihan pilai Ca di dapat karana pilai Ca				

Pada peraturan SNI 1726:2019.Pemilihan nilai *Cs* di dapat karena nilai *Cshitungan* berada diantara *Csminimum* dan *Csmaksimum*.Maka yang digunakan adalah *Cshitungan*. Maka gaya geser dasar struktur gedung adalah $V = Cs \times Wt$ $V = 0,083 \times 23624,54$

V = 1956,78 KN

✓ Penentuan nilai k

Berdasarkan SNI 1726:2019 Pasal 7.8.3, *k* adalah eksponen yg terkait dengan perioda struktur sebagai berikut :

- Untuk struktur yg mempunyai perioda sebesar 0,5 detik atau kurang, k = 1
- Untuk struktur yg mempunyai perioda sebesar 2,5 detik atau lebih, k = 2
- Untuk struktur yg mempunyai perioda antara 0,5 dan 2,5 detik, *k* harus sebesar
 2 atau harus ditentukan dengan interpolasi linear antara 1 dan 2.

Nilai perioda struktur adalah 1,09 detik, maka dengan interpolasi linear nilai *k* adalah 1,295.

Lantai	Berat Seismik (Wx)	Tinggi Lantai (hx)	Wx.hx ^k	$\frac{Force}{\frac{(Wx.hx^k)}{(\Sigma Wx.hx^k)}} x V$	Story Shear (Fx)
4	4789,19	18,3	206602,60	707,26	707,26
3	6196,82	14,03	189499,68	648,71	1355,98
2	6209,09	9,76	118676,72	406,27	1762,24
1	6263,28	5,49	56826,13	194,53	1956,78
	TOTAL		571605,13		

Tabel L.14: Nilai story shear untuk gaya lateral statik ekivalen Model 1.

Berdasarkan Tabel L.14, dapat diketahui nilai gaya geser pada lantai 1 yang merupakan nilai gaya geser dasar untuk struktur tersebut adalah 1956,78 KN.

Model 2

✤ Data struktur:

- $-S_{D1}$: 0,60
- $-S_{DS}$: 1,00
- R : 8.00
- Ie : 1.00
- S1 : 0.60
- ✓ CsMaksimum = $\frac{S_{DS}}{\left(\frac{R}{Ie}\right)}$ = $\frac{1,0}{\left[\frac{8}{11}\right]}$ = 0,125 ✓ Cs Minimum = $\frac{S_1}{\left[\frac{R}{Ie}\right]}$ = $\frac{0,60}{\left[\frac{8}{11}\right]}$ = 0,075 ✓ Cs Hitungan = $\frac{S_{D1}}{T\left(\frac{R}{Ie}\right)}$
 - $= \frac{0,60}{2,460.\left[\frac{8}{1}\right]} = 0,051$

Tabel L.15: Nilai Cs yang digunakan untuk Model 1 (R=8).

Arah	Cs Maksimum	Cs Hitungan	Cs Minimum	Cs Digunakan
Y	0,125	0,051	0,075	0,051

Pada peraturan SNI 1726:2019.Pemilihan nilai Cs di dapat karena nilai $C_{shitungan}$ berada dibawah $C_{sminimum}$ dan $C_{smaksimum}$. Maka yang digunakan adalah $C_{shitungan}$.

Maka gaya geser dasar struktur gedung adalah

V = Cs x Wt V = 0,051 x 53251,72V = 2690,18 KN

✓ Penentuan nilai k

Berdasarkan SNI 1726:2019 Pasal 7.8.3, *k* adalah eksponen yg terkait dengan perioda struktur sebagai berikut :

- Untuk struktur yg mempunyai perioda sebesar 0,5 detik atau kurang, k = 1
- Untuk struktur yg mempunyai perioda sebesar 2,5 detik atau lebih, k = 2
- Untuk struktur yg mempunyai perioda antara 0,5 dan 2,5 detik, *k* harus sebesar
 2 atau harus ditentukan dengan interpolasi linear antara 1 dan 2.

Nilai perioda struktur adalah 2,46 detik, maka dengan interpolasi linear nilai *k* adalah 1,98.

Lantai	Berat Seismik (Wx)	Tinggi Lantai (hx)	Wx.hx ^k	$\frac{Force}{\frac{(Wx.hx^k)}{(\Sigma Wx.hx^k)}} x V$	Story Shear (Fx)
8	5125,01	35,38	5973583,39	665,48	665,48
7	6736,51	31,11	6086629,44	678,07	1343,55
6	6762,71	26,84	4561522,83	508,17	1851,72
5	6781,65	22,57	3245847,38	361,60	2213,32
4	6839,04	18,3	2160968,37	240,74	2454,06
3	6884,09	14,03	1285348,34	143,19	2597,26
2	6922,96	9,76	630090,16	70,19	2667,45
1	7003,78	5,49	204026,00	22,73	2690,18
	TOTAL		24148015,91		

Tabel L.16: Nilai *story shear* untuk gaya lateral statik ekivalen Model 2.

Berdasarkan Tabel L.16, dapat diketahui nilai gaya geser pada lantai 1 yang merupakan nilai gaya geser dasar untuk struktur tersebut adalah 2690,18 KN.

Model 3

*	Data	struktur	•
---	------	----------	---

-	S_{D1}	:	0,60		
-	\mathbf{S}_{DS}		:	:	1,00
-	R		:	:	8.00
-	Ie		:	:	1.00
-	S 1		:	:	0.60

$$\checkmark \text{ CsMaksimum} = \frac{S_{DS}}{\left(\frac{R}{Ie}\right)}$$

$$= \frac{1,0}{\left[\frac{8}{1}\right]} = 0,125$$

$$\checkmark \text{ Cs Minimum} = \frac{S_1}{\left[\frac{R}{Ie}\right]}$$

$$= \frac{0,60}{\left[\frac{8}{1}\right]} = 0,075$$

$$\checkmark \text{ Cs Hitungan} = \frac{S_{D1}}{T\left(\frac{R}{Ie}\right)}$$

$$= \frac{0,60}{3,88.\left[\frac{8}{1}\right]} = 0,030$$

Tabel L.17: Nilai Cs yang digunakan untuk Model 1 (R=8).

Arah	Cs Maksimum	Cs Hitungan	Cs Minimum	Cs Digunakan
Y	0,125	0,030	0,075	0,030

Pada peraturan SNI 1726:2019. Pemilihan nilai C_s di dapat karena nilai $C_{shitungan}$ berada dibawah $C_{sminimum}$ dan $C_{smaksimum}$. Maka yang digunakan adalah $C_{shitungan}$.

Maka gaya geser dasar struktur gedung adalah $V = Cs \times Wt$ $V = 0,030 \times 111136,91$ V = 3382,19 KN

✓ Penentuan nilai k

Berdasarkan SNI 1726:2019 Pasal 7.8.3, *k* adalah eksponen yg terkait dengan perioda struktur sebagai berikut :

- Untuk struktur yg mempunyai perioda sebesar 0,5 detik atau kurang, k = 1
- Untuk struktur yg mempunyai perioda sebesar 2,5 detik atau lebih, k = 2
- Untuk struktur yg mempunyai perioda antara 0,5 dan 2,5 detik, *k* harus sebesar
 2 atau harus ditentukan dengan interpolasi linear antara 1 dan 2.
 Nilai perioda struktur adalah 3,88 detik, maka dengan nilai *k* adalah 2.

Lantai	Berat Seismik (Wx)	Tinggi Lantai (hx)	Wx.hx ^k	$\frac{Force}{\frac{(Wx.hx^k)}{(\Sigma Wx.hx^k)}} \ge V$	Story Shear (Fx)
16	5172,13	69,54	25011445	445,272	445,272
15	6815,85	65,27	29036703,1	516,932	962,204
14	6832,59	61	25424055,2	452,617	1414,82
13	6849,52	56,73	22043748,5	392,439	1807,26
12	6899,67	52,46	18988241,8	338,042	2145,3
11	6923,59	48,19	16078488,2	286,241	2431,54
10	6949,99	43,92	13406292,6	238,668	2670,21
9	6977,65	39,65	10969719,2	195,291	2865,5
8	7010,86	35,38	8775806,73	156,233	3021,74
7	7038,38	31,11	6811974,76	121,272	3143,01
6	7066,18	26,84	5090372,19	90,6225	3233,63
5	7092,61	22,57	3613010,48	64,3214	3297,95
4	7156,13	18,3	2396517,27	42,6645	3340,62
3	7202,25	14,03	1417697,54	25,2389	3365,85
2	7275,24	9,76	693021,585	12,3377	3378,19
1	7452,13	5,49	224608,056	3,99863	3382,19
	TOTAL		24148015,91		

Tabel L.18: Nilai story shear untuk gaya lateral statik ekivalen Model 3.

Berdasarkan Tabel L.18, dapat diketahui nilai gaya geser pada lantai 1 yang merupakan nilai gaya geser dasar untuk struktur tersebut adalah 3382,19 KN.

A.6. Koreksi story shear dengan 35% base shear

Story	Vx	35% Vx base shear	Kontrol
4	707,26	684,87	Oke
3	1355,98	684,87	Oke
2	1762,24	684,87	Oke
1	1956,78	684,87	Oke
Base	0	0	Oke

Tabel L.19: Hasil analisa Koreksi *story shear* dengan 35% *base shear* dengan redundansi 1, R = 8, untuk Model 1.

Tabel L.20: Hasil analisa Koreksi *story shear* dengan 35% *base shear* dengan redundansi 1, R = 8, untuk Model 2.

Story	Vx	35% Vx base shear	Kontrol
8	665,48	941,56	Tidak Oke
7	1343,55	941,56	Oke
6	1851,72	941,56	Oke
5	2213,32	941,56	Oke
4	2454,06	941,56	Oke
3	2597,26	941,56	Oke
2	2667,45	941,56	Oke
1	2690,18	941,56	Oke
Base	0	0	Oke

Story	Vx	35% Vx base shear	Kontrol
16	445,272	1183,77	Tidak Oke
15	962,204	1183,77	Tidak Oke
14	1414,82	1183,77	Oke
13	1807,26	1183,77	Oke
12	2145,3	1183,77	Oke
11	2431,54	1183,77	Oke
10	2670,21	1183,77	Oke
9	2865,5	1183,77	Oke
8	3021,74	1183,77	Oke
7	3143,01	1183,77	Oke
6	3233,63	1183,77	Oke
5	3297,95	1183,77	Oke
4	3340,62	1183,77	Oke
3	3365,85	1183,77	Oke
2	3378,19	1183,77	Oke
1	3382,19	1183,77	Oke
Base	0	0	Oke

Tabel L.21: Hasil analisa Koreksi *story shear* dengan 35% *base shear* dengan redundansi 1, R = 8, untuk Model 3.

A.7. Nilai Simpangan Gedung

Tinggi gedung (hi)	Lantai gedung	Simpangan (δ _{Ye} - m)	Simpangan antar tingkat ((δ*Cd)/Ie))	Syarat (∆a) 0,02*hi	Cek (Sb,Y,Y) Story drift <∆a
		Y	Y		Y
18,3	4	0,003723	0,0204765	0,0854	ОК
14,03	3	0,005967	0,0328185	0,0854	ОК
9,76	2	0,006889	0,0378895	0,0854	ОК
5,49	1	0,009396	0,051678	0,1098	ОК

Tabel L.22: Hasil analisa nilai simpangan gedung untuk Model 1.

Berdasarkan Tabel L.22: seluruh simpangan antar tingkat telah memenuhi syarat yaitu lebih kecil dari ∆a (simpangan antar tingkat izin).

Tinggi gedung (hi)	Lantai gedung	Simpangan (δ _{Ye} - m)	Simpangan antar tingkat ((δ*Cd)/Ie))	Syarat (∆a) 0,02*hi	Cek (Sb,Y,Y) Story drift <∆a
		Y	Y		Y
35,38	8	0,00908	0,04994	0,0854	ОК
31,11	7	0,010604	0,058322	0,0854	ОК
26,84	6	0,010291	0,0566005	0,0854	ОК
22,57	5	0,009913	0,0545215	0,0854	OK
18,3	4	0,009185	0,0505175	0,0854	ОК
14,03	3	0,008383	0,0461065	0,0854	ОК
9,76	2	0,007708	0,042394	0,0854	ОК
5,49	1	0,0068	0,0374	0,1098	ОК

Tabel L.23: Hasil analisa nilai simpangan gedung untuk Model 2.

Berdasarkan Tabel L.23: seluruh simpangan antar tingkat telah memenuhi syarat yaitu lebih kecil dari ∆a (simpangan antar tingkat izin).

Tinggi gedung (hi)	Lantai gedung	Simpangan (δ _{Ye} - m)	Simpangan antar tingkat ((δ*Cd)/Ie))	Syarat (∆a) 0,02*hi	Cek (Sb,Y,Y) Story drift <∆a
		Y	Y		Y
69,54	16	0,042996	0,171984	0,0854	not OK
65,27	15	0,04666	0,18664	0,0854	not OK
61	14	0,050692	0,202768	0,0854	not OK
56,73	13	0,053585	0,21434	0,0854	not OK
52,46	12	0,052233	0,208932	0,0854	not OK
48,19	11	0,051569	0,206276	0,0854	not OK
43,92	10	0,048418	0,193672	0,0854	not OK
39,65	9	0,046464	0,185856	0,0854	not OK
35,38	8	0,044131	0,176524	0,0854	not OK
31,11	7	0,041063	0,164252	0,0854	not OK
26,84	6	0,037867	0,151468	0,0854	not OK
22,57	5	0,034389	0,137556	0,0854	not OK
18,3	4	0,029748	0,118992	0,0854	not OK
14,03	3	0,025545	0,10218	0,0854	not OK
9,76	2	0,021515	0,08606	0,0854	not OK
5,49	1	0,016143	0,064572	0,1098	OK

Tabel L.24: Hasil analisa nilai simpangan gedung untuk Model 3.

Berdasarkan Tabel L.11: hanya simpangan antar tingkat pada lantai 1 yang memenuhi syarat yaitu lebih kecil dari Δa (simpangan antar tingkat izin). Bedasarkan sumber, simpangan antar lantai pada model 3 memiliki simpangan yang melebihi izin.

A.8. Kontrol Ketidakberaturan Kekakuan Tingkat Lunak (Soft Story)

	ARAH Y						
STORY	KEKAKUAN TOTAL	Ki/Ki+1 (%)	RATA-RATA KEK. 3TINGKAT (Kr)	Ki/Kr (%)			
4	142149,3	-	-	-			
3	178721,9	125,73	193106,3343	-			
2	214141,3	119,82	-	-			
1	186455,9	87,07	-	96,56			

Tabel L.25: Kontrol ketidakberaturan kekakuan tingkat lunak pada arah Y (Model 1).

Tabel L.26: Kontrol ketidakberaturan kekakuan tingkat lunak pada arah Y (Model 2).

ARAH Y							
STORY	KEKAKUAN TOTAL	Ki/Ki+1 (%)	RATA-RATA KEK. 3TINGKAT (Kr)	Ki/Kr (%)			
8	45682,47	-	-	-			
7	64260,32	140,67%	62636,955	-			
6	77968,07	121,33%	78605,57733	-			
5	93588,34	120,03%	96218,697	149,41			
4	117099,7	125,12%	120650,185	148,97			
3	151262,5	129,17%	198838,0657	157,21			
2	196187,9	129,70%	-	162,61			
1	249063,8	126,95%	-	125,26			

ARAH Y								
STORY	TORY KEKAKUAN Ki/Ki+1 RATA TOTAL (%)		RATA-RATA KEK. 3TINGKAT (Kr)	Ki/Kr (%)				
16	17585,26	-	-	-				
15	34772,45	197,74	46778,73	-				
14	47424,52	136,39	58032,06	-				
13	58139,22	122,59	70193,66	124,29				
12	68532,44	117,88	84545,76	118,09				
11	83909,33	122,44	100971,9	119,54				
10	101195,5	120,60	117932,4	119,69				
9	117810,7	116,42	137249,4	116,68				
8	134790,9	114,41	159533,2	114,30				
7	159146,6	118,07	186812,8	115,95				
6	184662	116,03	221552,7	115,75				
5	216629,7	117,31	268151,2	115,96				
4	263366,4	121,57	330647,7	118,87				
3	324457,5	123,20	439214,8	121,00				
2	404119,3	124,55	-	122,22				
1	589067,5	145,77	-	134,12				

Tabel L.27: Kontrol ketidakberaturan kekakuan tingkat lunak pada arah Y (Model 3).

A.9. Pengaruh Efek P-Delta

Tabel L.28: Hasil analisa P-Delta struktur Model 1 (R=8).

ARAH Y								
LANTAI	TINGGI	INTER STORY DRIFT	Vu	Pu	Ie	Cd	STABILITY RATIO	CEK < 1
4	18,3	0,0205	565,82	6074,60	1	4	0,0129	OK
3	14,03	0,0328	1106,78	14600,28	1	4	0,0253	OK
2	9,76	0,0379	1488,31	23126,82	1	4	0,0345	OK
1	5,49	0,0517	1751,94	31681,47	1	4	0,0426	OK

ARAH Y								
LANTAI	TINGGI	INTER STORY DRIFT	Vu	Pu	Ie	Cd	STABILITY RATIO	CEK < 1
8	35,38	0,050	468,57	6068,18	1	4	0,0379	OK
7	31,11	0,058	801,96	14471,1	1	4	0,0616	OK
6	26,84	0,057	930,80	22882,9	1	4	0,0815	OK
5	22,57	0,055	1040,80	31329,1	1	4	0,0961	OK
4	18,3	0,051	1166,44	39789,8	1	4	0,1009	OK
3	14,03	0,046	1331,57	48322,6	1	4	0,0980	OK
2	9,76	0,042	1538,63	56864,9	1	4	0,0917	OK
1	5,49	0,037	1693,74	65500,8	1	4	0,0659	OK

Tabel L.29: Hasil analisa P-Delta struktur Model 2 (R=8).

ARAH Y								
LANTAI	TINGGI	INTER STORY DRIFT	Vu	Pu	Ie	Cd	STABILITY RATIO	CEK < 1
16	69,54	0,1720	1261,89	6083,20	1	4	0,0485	OK
15	65,27	0,1866	2699,12	14562,01	1	4	0,0590	OK
14	61	0,2028	3913,05	23040,63	1	4	0,0699	OK
13	56,73	0,2143	4940,29	31553,09	1	4	0,0802	OK
12	52,46	0,2089	5823,05	40093,61	1	4	0,0842	OK
11	48,19	0,2063	6580,65	48680,12	1	4	0,0893	OK
10	43,92	0,1937	7244,16	57266,67	1	4	0,0896	OK
9	39,65	0,1859	7834,81	65907,23	1	4	0,0915	OK
8	35,38	0,1765	8360,23	74556,59	1	4	0,0922	OK
7	31,11	0,1643	8821,17	83257,86	1	4	0,0908	OK
6	26,84	0,1515	9222,21	91960,49	1	4	0,0884	OK
5	22,57	0,1376	9565,31	100715,96	1	4	0,0848	OK
4	18,3	0,1190	9851,37	109488,84	1	4	0,0774	OK
3	14,03	0,1022	10076,59	118353,92	1	4	0,0703	OK
2	9,76	0,0861	10232,70	127218,58	1	4	0,0626	OK
1	5,49	0,0646	10310,14	136237,62	1	4	0,0389	OK

Tabel L.30: Hasil analisa P-Delta struktur Model 3 (R=8).

DAFTAR RIWAYAT HIDUP

DATA DIRI PENYUSUN

Nama Lengkap	: Lisya Madhayanti BR HRP
Tempat, Tanggal Lahir	: Bahbutong, 14 Februari 2000
Jenis Kelamin	: Perempuan
Alamat	: Desa Banjaran Raya, Kebun Sawit Langkat,
	Kecamatan Padang Tualang, Kabupaten Langkat
Agama	: Islam
Nama Ayah	: M. Ramadhan Harahap
Nama Ibu	: Reliana BR Karo-Karo
No. Handphone	: 087895206483
E_mail	: lisyamadhayantihrp@gmail.com

RIWAYAT PENDIDIKAN

No	Tingkat Pendidikan	Nama dan Lokasi	Tahun
1	Taman Kanak-Kanak	TK Kencana Mekar	2003-2005
2	Sekolah Dasar	SDN 054904	2005-2011
3	Sekolah Menegah Pertama	SMP Swasta Tenera	2011-2014
4	Sekolah Menengah Atas	SMK Negeri 1 Stabat	2014-2017
5	Perguruan Tinggi	Universitas	2017-
	(Strata 1)	Muhammadiyah Sumatera	Sekarang
		Utara, Medan	