TUGAS AKHIR

EVALUASI KINERJA STRUKTUR BAJA TAHAN GEMPA DENGAN STRUKTUR RANGKA BERPENGAKU EKSENTRIK PERBANDINGAN KUAT MEKANIS LINK DENGAN ANALISIS *PUSHOVER*

Diajukan Untuk Memenuhi Syarat-Syarat Memperoleh Gelar Sarjana Teknik Sipil Pada Fakultas Teknik Universitas Muhammadiyah Sumatera Utara

Disusun Oleh:

WAHYU BIMANTARA ANWAR 1307210123

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA MEDAN 2018

HALAMAN PENGESAHAN

Tugas Akhir ini diajukan oleh:

Nama : Wahyu Bimantara Anwar

NPM : 1307210123

Program Studi: Teknik Sipil

Judul Skripsi : Evaluasi Kinerja Struktur Baja Tahan Gempa Dengan Struktur Rangka Berpengaku Eksentrik Perbandingan Kuat Mekanis Link Dengan Analisis *Pushover*

Bidang ilmu : Struktur

Telah berhasil dipertahankan di hadapan Tim Penguji dan diterima sebagai salah satu syarat yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, 21 September 2018

Mengetahui dan menyetujui: Dosen Pembimbing Penguji utera, ST, MT Tondi Dosen Pembanding I / Penguji

Rhini Wulan Dhary, ST, MT

Dosen Pembimbing II / Penguji

Dr. Ade Faisal, ST, MSc

Dosen Pembanding II / Penguji

Dr. Fahrizal Z, ST, MSc

Program Studi Teknik Sipil *letua*

Dr. Fahrizal Zulkarnain ST, MSc

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Saya yang bertanda tangan di bawah ini:

Nama Lengkap : Wahyu Bimantara Anwar

Tempat /Tanggal Lahir: Medan / 28 Mei 1995

NPM : 1307210123

Fakultas : Teknik

Program Studi : Teknik Sipil,

menyatakan dengan sesungguhnya dan sejujurnya, bahwa laporan Tugas Akhir saya yang berjudul:

"Evaluasi Kinerja Struktur Baja Tahan Gempa Dengan Struktur Rangka Berpengaku Eksentrik Perbandingan Kuat Mekanis Link Dengan Analisis Pushover",

bukan merupakan plagiarisme, pencurian hasil karya milik orang lain, hasil kerja orang lain untuk kepentingan saya karena hubungan material dan non-material, ataupun segala kemungkinan lain, yang pada hakekatnya bukan merupakan karya tulis Tugas Akhir saya secara orisinil dan otentik.

Bila kemudian hari diduga kuat ada ketidaksesuaian antara fakta dengan kenyataan ini, saya bersedia diproses oleh Tim Fakultas yang dibentuk untuk melakukan verifikasi, dengan sanksi terberat berupa pembatalan kelulusan/ kesarjanaan saya.

Demikian Surat Pernyataan ini saya buat dengan kesadaran sendiri dan tidak atas tekanan ataupun paksaan dari pihak manapun demi menegakkan integritas akademik di Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, 21 September 2018

Saya yang menyatakan. AFF418438352 Wahyu Bimantara Anwar

ABSTRAK

EVALUASI KINERJA STRUKTUR BAJA TAHAN GEMPA DENGAN STRUKTUR RANGKA BERPENGAKU EKSENTRIK PERBANDINGAN KUAT MEKANIS LINK DENGAN ANALISIS *PUSHOVER* (STUDI LITERATUR)

Wahyu Bimantara Anwar 1307210123 Tondi Amirsyah Putera, ST, MT Dr.Ade Faisal, ST, MSc

Hasil studi kasus pada portal baja 3D menggunakan metode Koefisien Perpindahan FEMA-356 dan metode spectrum kapasitas ATC-40 yang secara default sudah built-in terdapat pada sofware ACI ETABS. Dalam penelitian terdapat 2 model yaitu struktur gedung bertingkat yang memiliki pengaku (Link) dengan Bj-34 pada Model 1 dan struktur gedung bertingkat yang memiliki pengaku (Link) dengan Bj-41 pada Model 2 dengan komponen-komponen profil yang sama. Hasil menunjukan nilai target perpindahan dengan FEMA 356 lebih besar dari ATC-40 yaitu sebesar 0,6308 untuk arah x dan 0,7054 untuk arah y pada Model 1 dengan tingkat kinerja Demage Control/SP-2. Pada Model 2 nilai target perpindahan dengan FEMA 356 juga lebih besar dari ATC-40 yaitu sebesar 0.6442 untuk arah x dan 0.7177 untuk arah y pada Model 2 dengan tingkat kinerja Demage Control/SP-2. Hal ini menunjukan bahwa target fungsi bangunan sebagai gedung mall beserta apartement pada prediksi awal yaitu Lift Safety/SP-3 terpenuhi. Analisis beban dorong memberikan hasil daktilitas pada Model 1 lebih besar dari Model 2 dengan selisih 14,5% untuk arah x dan 14,7% untuk arah y. Hasil menunjukan bahwa Model 2 memiliki kekuatan lebih besar dikarnakan dapat menahan gaya dorong yang lebih besar dari pada Model 1. Hal ini dipengaruhi oleh berat mekanis link pada Model 2 yang menggunakan Bj-41 sehingga kekuatannya lebih besar dari Model 1 yang menggunakan Bj-34.

Kata kunci: SRBE, gempa, titik kinerja, daktilitas, struktur baja , analisis *pushover*.

ABSTRACT

PERFORMANCE EVALUATION OF EARTHQUAKE RESISTANT STEEL STRUCTURES WITH ECCENTRIC RIGID FRAME STRUCTURES IN COMPARISON TO STRONG MECHANICAL LINKS WITH PUSHOVER ANALYSIS (LITERATURE STUDY)

Wahyu Bimantara Anwar 1307210123 Tondi Amirsyah Putera, ST, MT Dr.Ade Faisal, ST, MSc

The results of the case study on the 3D steel portal use the FEMA-356 Transfer Coefficient method and the ATC-40 capacity spectrum method which is built-in by default in the ACI ETABS software. In this study there are 2 models, namely the structure of a multi-storey building that has a stiffener (Link) with Bj-34 in Model 1 and a multi-storey structure that has a stiffener (Link) with Bj-41 in Model 2 with the same profile components. The results show the target value with FEMA 356 is greater than ATC-40 which is 0,6308 for the direction of x and 0,7054 for the direction of y in Model 1 with the performance level of Demage / SP-2 Control. In Model 2 the target transmission value with FEMA 356 is also greater than ATC-40 which is 0,6442 for the x direction and 0.7177 for the y direction in Model 2 with the Demage Control / SP-2 performance level. This shows the target function of the building as a building in the apartment in the initial prediction that the Safety Lift / SP-3 is fulfilled. The analysis of the thrust load gave the results of ductility in Model 1 greater than Model 2 with a difference of 14,5% for the direction of x and 14,7% for the direction of y. The results show that Model 2 has a greater strength can reduce the thrust greater than in Model 1. This is by the weight of the mechanism in Model 2 which uses Bj-41 the strength is greater than model 1 which uses Bj-34.

Keywords: SRBE, earthquake, point of performance, ductility, steel structure, pushover analysis.

KATA PENGANTAR

Dengan nama Allah Yang Maha Pengasih lagi Maha Penyayang. Segala puji dan syukur penulis ucapkan kehadirat Allah SWT yang telah memberikan karunia dan nikmat yang tiada terkira. Salah satu dari nikmat tersebut adalah keberhasilan penulis dalam menyelesaikan laporan Tugas Akhir ini yang berjudul "Evaluasi Kinerja Struktur Baja Tahan Gempa Dengan Struktur Rangka Berpengaku Eksentrik Perbandingan Kuat Mekanis Link Dengan Analisis *Pushover*" sebagai syarat untuk meraih gelar akademik Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara (UMSU), Medan.

Banyak pihak telah membantu dalam menyelesaikan laporan Tugas Akhir ini, untuk itu penulis menghaturkan rasa terimakasih yang tulus dan dalam kepada:

- Bapak Tondi Amirsyah Putera, ST, MT selaku Dosen Pembimbing I dan Penguji yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- Bapak Dr. Ade Faisal, ST, MSc selaku Dosen Pembimbing II dan Penguji yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- Ibuk Rhini Wulan Dary, ST, MT selaku Dosen Pembanding I dan Penguji yang telah banyak memberikan koreksi dan masukan kepada penulis dalam menyelesaikan Tugas Akhir ini.
- 4. Bapak Dr. Fahrizal Zulkarnain, ST, MSc selaku Dosen Pembanding II dan Penguji yang telah banyak memberikan koreksi dan masukan kepada penulis dalam menyelesaikan Tugas Akhir ini, sekaligus sebagai Ketua Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara.
- 5. Bapak Munawar Alfansury Siregar, ST, MT selaku Dekan Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- Seluruh Bapak/Ibu Dosen di Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara yang telah banyak memberikan ilmu ketekniksipilan kepada penulis.

- Orang tua penulis: Chairil Anwar, dan Indria Sari, yang telah bersusah payah membesarkan dan membiayai studi penulis.
- 8. Bapak/Ibu Staf Administrasi di Biro Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- 9. Sahabat-sahabat penulis: yang tidak mungkin namanya disebut satu per satu.

Laporan Tugas Akhir ini tentunya masih jauh dari kesempurnaan, untuk itu penulis berharap kritik dan masukan yang konstruktif untuk menjadi bahan pembelajaran berkesinambungan penulis di masa depan. Semoga laporan Tugas Akhir ini dapat bermanfaat bagi dunia konstruksi teknik sipil.

Medan, 21 September 2018

Wahyu Bimantara Anwar

DAFTAR ISI

LEMBA	AR PENGESAHAN	ii	
LEMBAR PERNYATAAN KEASLIAN TUGAS AKHIR			
ABSTRAK			
ABSTR	ACT	v	
KATA	PENGANTAR	vi	
DAFTA	IR ISI	viii	
DAFTA	R TABEL	xii	
DAFTA	AR GAMBAR	xvi	
DAFTA	IR NOTASI	xix	
BAB 1	PENDAHULUAN		
	1.1. Latar Belakang	1	
	1.2. Rumusan Masalah	2	
	1.3. Ruang Lingkup Pembahasan	3	
	1.4. Tujuan Penelitian	3	
	1.5. Manfaat Penelitian	4	
	1.6. Sistematika Penulisan	4	
BAB 2	TINJAUAN PUSTAKA		
	2.1. Definisi dan Deskripsi Gempa Bumi	6	
	2.2. Proses Terjadinya Gempa Bumi	6	
	2.3. Teori Lempeng Tektonik	7	
	2.4. Fenomena Gempa Bumi di Indonesia	10	
	2.5. Pengetahuan Yang Mendukung Konsep Bangunan Tahan		
	Gempa	12	
	2.6. Perencanaan Struktur Baja Tahan Gempa	15	
	2.6.1. Perilaku Sistem Struktur Yang Diharapkan	15	
	2.6.2. Sistem Rangka Batang Silang (Braced Frame System)	16	
	2.6.2.1. Sistem Rangka Breising Konsentris Biasa	16	
	2.6.2.2. Sistem Rangka Breising Konsentris Khusus	16	
	2.6.2.3. Sistem Rangka Breising Eksentris	17	

	2.6.3.5	Sistem P	ortal (Momen Frame System)	17
	- 	2.6.3.1.	Sistem Rangka Pemikul Momen Biasa	
			(SRPMB)	17
	- 	2.6.3.2.	Sistem Rangka Pemikul Momen Menengah	
			(SRPMM)	17
	4	2.6.3.3.	Sistem Rangka Pemikul Momen Khusus	
			(SRPMK)	18
	2.6.4.5	Sistem L	ainnya	19
	4	2.6.4.1.	Special Plate Shear Walls (SPSW)	19
	4	2.6.4.2.	Special Truss Moment Frames (STMF)	20
	2	2.6.4.3.	Buckling Restrained Braced Frames (BRBF)	21
2.7.	Tata C	ara Pere	ncanaan Bangunan Tahan Gempa	21
	2.7.1.	Gempa	Rencana	21
	2.7.2.	Peta W	ilayah Gempa	22
	2.7.3.	Arah Pe	embebanan Gempa	23
	2.7.4.	Prosedu	ur Analisis Struktur	23
	2.7.5.	Struktu	r Penahan Gaya Seismik	29
	2.7.6.	Kekaku	an Struktur	29
	2.7.7.	Respon	s Spektrum Desain	30
	2.7.8.	Analisi	s Gaya Lateral Ekivalen	34
		2.7.8.1.	Geser Dasar Seismik	34
		2.7.8.2.	Perioda Alami Struktur	36
		2.7.8.3.	Distribusi Vertikal Gaya Gempa	38
		2.7.8.4.	Distribusi Horizontal Gaya Gempa	38
		2.7.8.5.	Penentuan Simpangan Antar Lantai	39
	2.7.9.	Analisi	s Ragam Spektrum Respons	41
	2.7.10	. Pembeł	banan Dan Kombinasi Pembebanan	42
2.8.	Ketent	uan Seis	mik Untuk Struktur Baja	51
	2.8.1.1	Konsep		51
	2.8.2.1	Rangka 🛛	Ferbresing Eksentris	
	(Eccenri	cally Braced Frames-EBF)	52
	- 	2.8.2.1.	Elemen Perangkai (Link)	52

	2.8.2.2. Konsep Perencanaan Elemen Perangkai (Link)	53
	2.8.2.3. Jenis Elemen Perangkai (Link) Berdasarkan	
	Panjangnya	55
	2.8.2.4. Perilaku Inelastik Elemen Perangkai (Link)	56
	2.8.2.5. Sudut Rotasi Perangkai (Link)	58
	2.9. Pushover Analisis Dengan Metode Koefisien Perpindahan	
	(FEMA 356)	60
	2.9.1. Kinerja Struktur Metode FEMA 356	60
	2.9.2. Titik Kinerja Struktur Metode FEMA 356	61
BAB 3	METODE PENELITIAN	
	3.1. Metodologi penelitian	65
	3.2. Pemodelan Struktur	66
	3.2.1. Data Perencanaan Struktur	66
	3.2.2. Konfigurasi Bangunan	66
	3.2.3. Dimensi Kolom, Balok, Link & Bresing	68
	3.2.4. Pelat Lantai	68
	3.2.5. Analisis Pembebanan	69
	3.2.6. Spektrum Respons Desain Gempa	73
	3.2.7. Kombinasi Pembebanan	76
	3.2.8. Analisis Respons Spektrum Ragam	77
BAB 4	HASIL DAN PEMBAHASAN	
	4.1. Tinjauan Umum	78
	4.2. Hasil Analisis Model 1	78
	4.2.1. Analisis Respons Spektrum Ragam	78
	4.2.2. Berat Struktur	80
	4.2.3. Gaya Geser Dasar Nominal	81
	4.2.4. Koreksi Faktor Redundansi	83
	4.2.5. Gaya Geser Lantai	84
	4.2.6. Simpangan Antar Lantai	85
	4.2.7. Ketidakberaturan Kekakuan Tingkat Lunak (Soft Story)	86
	4.2.8. Ketidakberaturan Torsi	88

	4.2.9.	Ketidakberaturan Berat (Massa)	89
	4.2.10	. Sudut Rotasi Dan Jenis Elemen Perangkai Berdasarkan	
		Panjangnya	90
	4.2.11	. Kapasitas Struktur	92
	4.2.12	. Target Perpindahan (FEMA 356)	97
	4.3. Hasil	Analisis Model 2	99
	4.3.1.	Analisis Respons Spektrum Ragam	99
	4.3.2.	Berat Struktur	101
	4.3.3.	Gaya Geser Dasar Nominal	102
	4.3.4.	Koreksi Faktor Redundansi	104
	4.3.5.	Gaya Geser Lantai	105
	4.3.6.	Simpangan Antar Lantai	106
	4.3.7.	Ketidakberaturan Kekakuan Tingkat Lunak (Soft Story)	107
	4.3.8.	Ketidakberaturan Torsi	109
	4.3.9.	Ketidakberaturan (Berat) Massa	110
	4.3.10	. Sudut Rotasi Dan Jenis Elemen Perangkai Berdasarkan	
		Panjangnya	111
	4.3.11	. Kapasitas Struktur	113
	4.3.12	. Target Perpindahan (FEMA 356)	119
	4.4. Evalua	asi Kinerja Struktur	120
BAB 5	KESIMPU	LAN DAN SARAN	
	5.1. Keimp	pulan	123
	5.2. Saran		125
DAFTA	R PUSTAR	XA	126
LAMPI	RAN		
DAFTA	R RIWAY	AT HIDUP	

DAFTAR TABEL

Tabel 2.1	Daftar gempa bumi besar diatas skala richter 5 di Indonesia	
	(www.wikipedia.org)	11
Tabel 2.2	Ketidakberaturan horizontal pada struktur berdasarkan SNI	
	1726;2012	24
Tabel 2.3	Ketidakberaturan vertikal pada struktur berdasarkan SNI	
	1726;2012	25
Tabel 2.4	Kategori resiko bangunan gedung dan struktur lainnya	
	untuk beban gempa berdasarkan SNI 1726;2012	27
Tabel 2.5	Faktor keutamaan gempa berdasarkan SNI 1726;2012	27
Tabel 2.6	Kategori desain seismik berdasarkan parameter respon	
	percepatan pada perioda pendek berdasarkan SNI	
	1726;2012	27
Tabel 2.7	Kategori desain seismik berdasarkan parameter respon	
	percepatan pada perioda 1 detik berdasarkan SNI	
	1726;2012	27
Tabel 2.8	Prosedur Analisis yang boleh digunakan berdasarkan SNI	
	1726;2012	28
Tabel 2.9	Faktor R, C_d , dan Ω_0 untuk sistem penahan gaya gempa	
	berdasarkan SNI 1726;2012	29
Tabel 2.10	Klasifikasi situs berdasarkan SNI 1726;2012	31
Tabel 2.11	Koefisien situs, (Fa) berdasarkan SNI 1726;2012	32
Tabel 2.12	Koefisien situs , (F_v) berdasarkan SNI 1726;2012	32
Tabel 2.13	Nilai parameter periode pendekatan C_t dan x berdasarkan	
	SNI 1726;2012	37
Tabel 2.14	Koefisien untuk batas atas periode yang dihitung	
	berdasarkan SNI 1726;2012	37
Tabel 2.15	Simpangan antar lantai izin (Δ_a) berdasarkan SNI	
	1726;2012	40

Tabel 2.16	Beban hidup terdistribusi merata minimum, L _o dan beban	
	hidup terpusat minimum	43
Tabel 2.17	Faktor elemen beban hidup, K _{LL}	47
Tabel 2.18	Persyaratan masing-masing tingkat yang menahan lebih dari	
	35% gaya geser dasar	50
Tabel 2.19	Bagian yang leleh (sendi plastis) pada setiap sistem struktur	51
Tabel 2.20	Kondisi bangunan pasca gempa dan katagori bangunan	
	pada tingkat kinerja struktur (FEMA 356)	61
Tabel 2.21	Faktor modifikasi C _o FEMA 356	63
Tabel 2.22	Faktor modifikasi C ₂ FEMA 356	64
Tabel 2.23	Faktor modifikasi C ₃ FEMA 356	64
Tabel 3.1	Konfigurasi dan dimensi kolom, balok, link & bresing	68
Tabel 3.2	Berat sendiri bangunan dan komponen gedung	70
Tabel 3.3	Beban tangga akibat reaksi perletakkan di balok lintel dan	
	balok induk	70
Tabel 3.4	Respons spektrum desain gempa Medan dengan kondisi	
	tanah keras berdasarkan SNI 1726;2012	74
Tabel 3.5	Kombinasi pembebanan untuk $\rho = 1,3$ dan $S_{DS} = 0,4$	
	berdasarkan SNI 1726;2012 dan SNI 1727;2013	76
Tabel 4.1	Data hasil analisis ragam getar output program analisis	
	struktur	78
Tabel 4.2	Data hasil selisih persentase analisa ragam getar	79
Tabel 4.3	Massa struktur, pusat massa dan pusat kekakuan	80
Tabel 4.4	Nilai gaya geser dasar nominal analisis statik ekivelen	81
Tabel 4.5	Nilai gaya geser dasar nominal analisis respons spektrum	
	output program analisis struktur	81
Tabel 4.6	Perbandingan gaya geser dasar statik dan dinamik serta	
	faktor skala x	82
Tabel 4.7	Perbandingan gaya geser dasar statik dan dinamik serta	
	faktor skala y	82
Tabel 4.8	Koreksi <i>story shear</i> dengan 35% <i>base shear</i> redundasi (ρ) =	83
	1,0	05

Tabel 4.9	Nilai gaya geser pada setiap lantai	84
Tabel 4.10	Nilai simpangan antar lantai berdasarkan SNI 1726;2012	85
Tabel 4.11	Ketidakberaturan kekakuan tingkat lunak pada gempa arah	
	x	86
Tabel 4.12	Ketidakberaturan kekakuan tingkat lunak pada gempa arah	
	У	87
Tabel 4.13	Ketidakberaturan torsi biasa dan torsi berlebih akibat gempa	
	arah x	88
Tabel 4.14	Ketidakberaturan torsi biasa dan torsi berlebih akibat gempa	
	arah y	88
Tabel 4.15	Ketidakberaturan berat (massa)	89
Tabel 4.16	Sudut rotasi elemen perangkai	90
Tabel 4.17	Kekuatan lentur dan geser elemen perangkai (Link)	91
Tabel 4.18	Data hasil analisis ragam getar output program analisis	
	struktur	100
Tabel 4.19	Data hasil selisih persentase analisis ragam getar	100
Tabel 4.20	Massa struktur, pusat massa dan pusat kekakuan	101
Tabel 4.21	Nilai gaya geser dasar nominal analisis statik ekivelen	102
Tabel 4.22	Nilai gaya geser dasar nominal analisis respons spektrum	
	output program analisis struktur	103
Tabel 4.23	Perbandingan gaya geser dasar statik dan dinamik serta	
	faktor skala x	104
Tabel 4.24	Perbandingan gaya geser dasar statik dan dinamik serta	
	faktor skala y	104
Tabel 4.25	Koreksi <i>story shear</i> dengan 35% <i>base shear</i> redundasi (ρ) =	
	1,0	104
Tabel 4.26	Nilai gaya geser pada setiap lantai	105
Tabel 4.27	Nilai simpangan antar lantai berdasarkan SNI 1726;2012	107
Tabel 4.28	Ketidakberaturan kekakuan tingkat lunak pada gempa arah	
	X	108
Tabel 4.29	Ketidakberaturan kekakuan tingkat lunak pada gempa arah	
	У	108

Tabel 4.30	Ketidakberaturan torsi biasa dan torsi berlebih akibat gempa	
	arah x	109
Tabel 4.31	Ketidakberaturan torsi biasa dan torsi berlebih akibat gempa	
	arah y	110
Tabel 4.32	Ketidakberaturan berat (massa)	111
Tabel 4.33	Sudut rotasi elemen perangkai	111
Tabel 4.34	Kekuatan lentur dan geser elemen perangkai (Link)	112
Tabel 4.35	Persentase perbandingan target perpindahan	121
Tabel 4.36	Daktilitas peralihan aktual arah x	121
Tabel 4.37	Daktilitas peralihan aktual arah y	122
Tabel 4.38	Tingkat kinerja struktur arah x	122
Tabel 4.39	Tingkat kinerja struktur arah y	122

DAFTAR GAMBAR

Gambar 2.1	Struktur bumi (Rekayasa Gempa)	7	
Gambar 2.2	Peta pelat tektonik dunia (Rekayasa Gempa)		
Gambar 2.3	Divergent plate boundaries (Rekayasa Gempa)	9	
Gambar 2.4	Convergent plate boundaries (Rekayasa Gempa)	9	
Gambar 2.5	Transform plate boundaries (Rekayasa Gempa)	10	
Gambar 2.6	Macam-macam respon akibat beban siklik		
	(Pawirodikromo, 2012)	14	
Gambar 2.7	Mekanisme inelatis SCBF	16	
Gambar 2.8	Berbagai variasi konfigurasi EBF (Sumber A, Whittaker)	17	
Gambar 2.9	Perilaku inelastis sistem portal daktail (Hamburger et.al,		
	2009)	18	
Gambar 2.10	Extended end-plate (Hamburger dkk, 2009)	19	
Gambar 2.11	Reduced beam (Hamburger dkk, 2009)	19	
Gambar 2.12	Steel plate shear walls (Seilie and Hooper, 2005)	20	
Gambar 2.13	Perilaku inelastis STMF (Basha dan Goel, 1996)		
Gambar 2.14	Detail dan tampak BRBF (Sabeli dan Lopez, 2004)		
Gambar 2.15	PGA, gempa maksimum yang dipertimbangkan rata-rata		
	geometrik (MCE _G), kelas situs SB (SNI 1726;2012)	22	
Gambar 2.16	Peta respon spectrum percepatan 0,2 detik di batuan		
	dasar S_B untuk probabilitas terlampaui 2% dalam 50		
	tahun (redaman 5%) (SNI 1726;2012)	22	
Gambar 2.17	Peta respon spectrum percepatan 1,0 detik di batuan		
	dasar S_B untuk probabilitas terlampaui 2% dalam 50		
	tahun (redaman 5%) (SNI 1726;2012)	23	
Gambar 2.18	Spektrum respons desain	34	
Gambar 2.19	Penentuan simpangan antar lantai berdasarkan SNI		
	1726;2012	40	
Gambar 2.20	Kurva histeritik pada rangka momen khusus	52	
Gambar 2.21	Gaya-gaya pada elemen link	52	

Gambar 2.22	Balok kantilever sederhana	53
Gambar 2.23	Letak link pada sistem EBF	55
Gambar 2.24	Pembentukan sendi plastis geser	57
Gambar 2.25	Keseimbangan dan plastisifikasi	58
Gambar 2.26	Sudut rotasi link	59
Gambar 2.27	Tingkat kinerja struktur (FEMA 273/356)	60
Gambar 3.1	Diagram alir penelitian	65
Gambar 3.2	Denah struktur dan tinggi lantai Model 1 dan Model 2	67
Gambar 3.3	Prespektif bangunan Model 1 dan Model 2	68
Gambar 3.4	Penampang steel floor deck	69
Gambar 3.5	Denah lift	72
Gambar 3.6	Potongan melintang lift	72
Gambar 3.7	Grafik respon spektrum desain gempa Medan dengan	
	kondisi tanah keras berdasarkan Sni 1726;2012	76
Gambar 4.1	Push x Step 65	92
Gambar 4.2	Push x Step 95	93
Gambar 4.3	Push x Step 96	94
Gambar 4.4	Kurva kapasitas sistem rangka arah x-x	94
Gambar 4.5	Push y Step 75	95
Gambar 4.6	Push y Step 111	96
Gambar 4.7	Push y Step 112	96
Gambar 4.8	Kurva kapasitas sistem rangka arah y-y	97
Gambar 4.9	Kurva biner pushover arah x-x	98
Gambar 4.10	Kurva biner pushover arah y-y	99
Gambar 4.11	Push x Step 81	114
Gambar 4.12	Push x Step 117	114
Gambar 4.13	Push x Step 118	115
Gambar 4.14	Kurva kapasitas sistem rangka arah x-x	116
Gambar 4.15	Push y Step 89	117
Gambar 4.16	Push y Step 134	117
Gambar 4.17	Push y Step 135	118
Gambar 4.18	Kurva kapasitas sistem rangka arah y-y	119

Gambar 4.19	Kurva biner pushover arah x-x	119
Gambar 4.20	Kurva biner pushover arah y-y	120

DAFTAR NOTASI

A_T	=	Luas tributari
A_{tw}	=	Luas badan balok baja (mm ²)
C_d	=	Faktor kuat lebih sistem
C_m	=	rasio kekakuan pasca leleh terhadap kekakuan elastik efektif
$C_{\nu x}$	=	Faktor distribusi vertikal
Cs	=	Koefisien respon seismik yang ditentukan
C_o	=	faktor modifikasi untuk perpindahan spektral menjadi
		perpindahan atap/puncak (lantai teratas yang tidak dihuni).
C_1	=	faktor modifikasi untuk menghubungkan perpindahan inelastik maksimum dengan perpindahan yang dihitung dari respon elastik linier
C_2	=	faktor modifikasi yang mewakili efek dari bentuk histerestis
C_3	=	pada perpindahan maksimum koefisien untuk memperhitungkan pembesaran lateral akibat efek P-Delta
DL	=	Beban mati, termasuk SIDL
d_v	=	Panjang bentang (mm)
d_{vb}	=	Panjang bentang ketika gaya geser dan momen maksimum (N)
Ε	=	Modulus elastisitas
е	=	Panjang link (mm)
e_b	=	Panjang link pada kondisi berimbangan (mm)
E_h		Pengaruh beban seismik horizontal
E_v		Pengaruh beban seismik vertikal
Ex	=	Beban gempa arah x
Ey	=	Beban gempa arah y
f	=	Frekuensi Struktur
F_y	=	Tegangan leleh minimum yang disyaratkan, ksi (Mpa)
F_a	=	Koefisien perioda pendek
F_{v}	=	Koefisien perioda 1,0 detik
F_{PGA}	=	Nilai koefisien situs untuk PGA

G	=	percepatan gravitasi 9,81 m/detik ²
h_n	=	Ketinggian struktur dalam m di atas dasar sampai tingkat tertinggi struktur (meter)
Ie	=	Faktor keutamaan gempa
ω	=	Kecepatan sudut
k	=	Kekakuan struktur
K_e	=	Kekakuan lateral efektif (Kn/m)
K_i	=	Kekakuan lateral elastik (Kn/m)
K_{LL}	=	Faktor elemen beban hidup
LL	=	Beban hidup
L	=	Beban hidup desain tereduksi
L_0		Beban hidup desain tanpa reduksi
<i>M</i> [*] _{<i>pc</i>}	=	Jumlah dari proyeksi kekuatan lentur nominal kolom (termasuk voute bila digunakan) di atas dan di bawah joint pada garis sumbu balok dengan reduksi untuk gaya aksial dalam kolom
M^{*}_{pb}	=	Jumlah dari proyeksi kekuatan lentur ekspektasi dari balok pada lokasi sendi platis pada sumbu kolom
<i>M_{maks}</i>	=	Momen maksimum (N-mm)
M_p	=	Momen plastis penampang (N-mm)
P_c	=	Kekuatan akisial tersedia kolom (N)
PGA	=	Nilai PGA dibatuan dasar (S_B) mengacu pada peta Gempa SNI 1726:2012
PGA_M	=	Nilai percepatan tanah puncak yang disesuaikan dengan pengaruh klasifikasi situs
P_r	=	Kekuatan tekan perlu (N)
Q_E	=	Pengaruh gaya seismik horizontal dari V, yaitu gaya geser desain total di dasar struktur dalam arah yang ditinjau. Pengaruh tersebut harus dihasilkan dari penerapan gaya horizontal secara serentak dalam dua arah tegak lurus satu sama lain
R	=	Faktor koefisien modifikasi respon
S_a	=	akselerasi respon spektrum yang berhubungan dengan waktu
		getar alami efektif pada arah yang ditinjau

Gempa SNI 1726;2012

S_1	=	Nilai parameter respon spektrum percepatan gempa perioda 1,0 detik di batuan dasar (S_B) mengacu pada Peta Gempa SNI 1726;2012
S_{DS}	=	Respon spektrum percepatan respon desain untuk perioda pendek
S_{D1}	=	Respon spektrum percepatan desain untuk perioda 1,0 detik
S_{MS}	=	Parameter percepatan respon spektral MCE pada periode pendek yang sudah disesuaikan terhadap pengaruh kelas situs
S_{M1}	=	Parameter percepatan respon spektral MCE pada periode 1 detik yang sudah disesuaikan terhadap pengaruh kelas situs
Т	=	Perioda getar fundamental struktur
T _{a minimum}	=	Nilai batas bawah perioda bangunan
T _{a maksimum}	=	Nilai batas atas perioda bangunan
T_e	=	Waktu getar efektif (Detik)
t_f	=	Tebal sayap profil (mm)
T_i	=	Waktu getar elastik (Detik)
t_w	=	Tebal badan profil (mm)
V_m	=	Gaya geser dititik terjadinya momen maksimum (N)
V_p	=	Gaya geser plastik penampang (N)
V_t	=	Gaya geser dasar nominal yang didapat dari hasil analisis ragam spektrum respon yang telah dilakukan
V_y	=	Gaya geser dasar pada saat leleh, dari idealisasi kurva pushover menjadi bilinier (Kn)
V_{I}	=	Gaya geser dasar prosedur gaya lateral statik ekivalen
Wi	=	Bagian berat seismik efektif total struktur (<i>W</i>) yang dikenakan atau ditempatkan pada tingkat-i
Wt	=	Berat total gedung
Ζ	=	Modulus penampang plastis komponen struktur (mm ³)
δ_x	=	Defleksi pusat massa ditingkat x
δ_{xe}	=	Defleksi pada lokasi yang disyaratkan dan ditentukan sesuai dengan analisis elastis
\varOmega_0	=	Faktor pembesaran defleksi
Δ	=	Simpangan antar lantai tingkat desain
Δ_a	=	Simpangan antar lantai yang diijinkan

$\Delta_y(D_y)$	=	Jarak penggeseran dasar pada saat leleh, dari idiealisasi kurva
		pushover menjadi bilinier (mm)
ρ	=	Faktor redudansi
γ_P	=	Sudut rotasi link (Detik)
\varTheta_p	=	Sudut penyimpangan plastis (Detik)
δ_t	=	Target perpindahan (m)

DAFTAR SINGKATAN

BRBF = Buckling Restrained Braced Frames = Complete Quadratic Combination CQC = Displacement Conficient Method DCM EBF = *Eccentrically Braced Frames* PEER = Pacific Earthquake Engineering Research PPURG = Pedoman Perencanaan Pembebanan untuk Rumah dan Gedung SCBF = Special Concentrically Braced Frames **SDOF** = Single Degree Of Freedom SRPMK = Sistem Rangka Pemikul Momen Khusus SRPMM = Sistem Rangka Pemikul Momen Khusus = Sistem Rangka Pemikul Momen Biasa SRPMB SRSS = Square Root of the Sum of Square **SPSW** = Steel Plate Shear Walls STMF = Special Truss Moment Frames

BAB 1

PENDAHULUAN

1.1. Latar Belakang

Ilmu pengetahuan dan penerapan teknologi dalam bidang pembangunan konstruksi teknik sipil mengalami perkembangan yang pesat, membuat kita dituntut untuk lebih produktif, kreatif dan inovatif, terutama adalah perancangan struktur. Salah satu kriteria dalam merencanakan struktur bangunan bertingkat adalah kekuatan, kekakuan serta perilaku bangunan tinggi. Indonesia merupakan negara yang terus berkembang pesat, ini berdampak kepada pembangunan di berbagai wilayah khususnya Kota Medan. Sejalan dengan perkembangan teknologi konstruksi saat ini, banyak struktur bangunan konstruksi yang telah mengalami perubahan. Sekarang telah banyak dibuat bangunan-bangunan bertingkat tinggi dengan Model stuktur rumit dan arsitektur yang indah. Tentu saja untuk mendesain dan membuat struktur bangunan seperti itu tidaklah mudah. Dalam perencanaan, perencana selalu mencoba berbagai jenis metoda, material serta dimensi bangunan yang akan dibangun guna untuk mendapatkan hasil yang masuk dalam kategori aman. Pada umumnya bangunan yang ada di Indonesia telah dibangun dengan acuan pedoman SNI 1726;2012.

Namun yang perlu kita cermati dilihat dari geografinya, Indonesia merupakan salah satu Negara dengan aktivitas gempa yang tinggi. Hal ini disebabkan lokasi Indonesia yang terletak pada pertemuan empat lempeng tektonik utama yaitu lempeng Eurasia, Indo-Australia, pasifik, dan Filipina. Pertemuan lempeng-lempeng tersebut mengakibatkan mekanisme tektonik dan kondisi geologi Indonesia mengakibatkan seringnya terjadi gempa. Pada umumnya perencanaan gedung tahan gempa di Indonesia khususnya untuk struktur baja umumnya menggunakan analisis struktur elastis dimana perencanaan didasarkan pada kondisi batas. Pada perencanaan ini kita tidak bisa mengetahui kondisi bangunan saat terjadi gempa dimana perilaku keruntuhan bangunan saat gempa berada pada kondisi inelastis. Perilaku keruntuhan tersebut ternyata dapat dianalisis dengan menggunakan analisis *pushover* atau bisa dikenal dengan analisis beban dorong

statik. Analisis *pushover* biasa digunakan untuk mengevaluasi kinerja struktur bangunan pada saat terjadi gempa dengan direpresentasikan menggunakan level kinerja sesuai aturan yang ditetapkan sehingga perencanaan ini bisa disebut dengan perencanaan tahan gempa berbasis kinerja.Untuk struktur rangka baja, selama ini dikenal tiga jenis konfigurasi yang umum digunakan,yaitu struktur rangka pemikul momen (SRPM), struktur rangka berpengaku konsentrik (SRBK) dan struktur rangka berpengaku eksentrik (SRBE). Masing-masing konfigurasi memiliki kelebihan masing-masing dalam fungsinya sebagai struktur tahan gempa.

Dalam fase elastik, dimana struktur belum mengalami kelelehan pada seluruh komponennya saat memikul kombinasi beban, termasuk beban gempa rencana, SRBK sangat ideal, karena memilik kekuatan dan kekakuan elastik yang sangat tinggi diantara ketiga jenis rangka baja. Sementara itu, dalam hal perilaku inelastik, dimana salah satu atau lebih komponen struktur telah mengalami kelelehan, SRPM lebih unggul, dengan daktilitas dan penyerapan energi yang paling tinggi. Kelebihan masing-masing rangka SRBK dan SRPM diakomodasi dengan munculnya SRBE. Sistem portal ini diperkenalkan tahun 70-an yang kemudian dikembangkan lebih lanjut. SRBE memiliki daktilitas yang lebih tinggi dibanding SRBK. Hal ini disebabkan adanya elemen link yang berfungsi sebagai penyerap energi ketika struktur menerima beban lateral (gempa). Penyerapan energi ini diwujudkan dalam bentuk plastifikasi pada elemen link tersebut. Sementara itu dengan adanya bresing kekuatan dan kekakuan elastik dari SRBE lebih tinggi dibanding SRPM.

Pada Tugas Akhir ini dimaksudkan untuk mengevaluasi kinerja struktur baja tahan gempa dengan struktur rangka berpengaku eksentrik perbandingan kuat mekanis link dengan analisis *pushover*.

1.2. Rumusan Masalah

Permasalahan yang akan dibahas adalah mengetahui dan membandingkan tingkat kinerja struktur rangka berpengaku eksentrik perbandingan kuat mekanis link. Untuk model material link yang akan di bandingkan adalah 2 jenis kuat mekanis link dengan struktur gedung yang sama.

1.3. Ruang Lingkup Pembahasan

Untuk menghindari timbulnya penyimpangan permasalahan yang semakin meluas dalam Tugas Akhir ini, maka diperlukan ruang lingkup/pembatasan masalah yang diantaranya sebagai berikut:

- Struktur bangunan yang direncanakan merupakan struktur baja dengan perbandingan dimensi bangunan struktur gedung tidak beraturan (*Setback*) yang berfungsi sebagai gedung mall beserta apartemen dengan ketinggian 15 lantai dan khusus berada di kota Medan dengan jenis tanah keras (SC).
- 2. Struktur bangunan yang direncanakan tidak meninjau perencanaan struktur bawah.
- 3. Analisis struktur ditinjau dalam 3 dimensi menggunakan bantuan sofware ETABS.
- Analisis gaya gempa berdasarkan SNI 1726;2012 dan peta Hazard gempa Indonesia 2010.
- 5. Analisis struktur gedung terhadap beban gempa menggunakan analisisis *pushover*.
- 6. Sistem struktur yang direncanakan adalah struktur rangka berpengaku eksentrik (SRBE) berdasarkan SNI 7860;2015.
- 7. Parameter yang ditinjau adalah berat jenis struktur link.

1.4. Tujuan Penelitian

Tujuan dari tugas akhir ini adalah berikut:

- 1. Mengevaluasi perilaku seismik dengan analisis beban dorong.
- 2. Mengevaluasi kinerja struktur pada tiap Model.
- 3. Menghasilkan kurva kapasitas pada tiap Model.
- 4. Mendapatkan nilai daktilitas pada tiap Model.
- 5. Mendapatkan nilai target perpindahan (Target Displacement) tiap Model.

1.5. Manfaat Penelitian

Manfaat yang ingin dicapai dalam penulisan tugas akhir ini adalah untuk mengetahui bagaimana cara merencanakan dan sebagai acuan dalam merencanakan ataupun melaksanakan pembangunan struktur baja gedung bertingkat dengan sistem rangka berpengaku eksentrik yang memiliki perbandingan antara berat jenis sistem pengaku yang mampu menahan terhadap beban gempa yang cukup baik apabila dilaksanakan pada kondisi tanah keras.

1.6. Sistematika Penulisan

Skripsi ini terdiri dari lima Bab yang direncanakan dan diharapkan dapat menjelaskan perihal topik bahasan, yaitu:

BAB 1 PENDAHULUAN

Bab ini menguraikan mengenai latar belakang masalah, rumusan masalah, ruang lingkup pembahasan, tujuan dilakukannya penulisan, manfaat penulisan dan sistematika penulisan laporan Tugas Akhir ini.

BAB 2 TINJUAN PUSTAKA

Bab ini menguraikan tentang konsep perencanaan struktur baja tahan gempa, metode analisis yang akan digunakan serta ketentuan-ketentuan dalam desain yang harus dipenuhi sesuai dengan peraturan yang berlaku.

BAB 3 METODE PENELITIAN

Bab ini menguraikan tentang penjelasan mengenai cara memodelkan dan mendesain sistem rangka berpengaku eksentik yang memiliki berat jenis pengaku berbeda pada tiap model terhadap beban gempa pada program ETABS v.16.

BAB 4 HASIL DAN PEMBAHASAN

Bab ini menguraikan tentang penjelesan mengenai perhitungan, analisis serta hasil perbandingan hasil analisis *pushover* dengan struktur baja rangka berpengaku eksentrik yang memiliki berat jenis berbeda pada pengaku setiap Model untuk bangunan gedung bertingkat sesuai dengan persyaratan bangunan baja tahan gempa.

BAB 5 KESIMPULAN DAN SARAN

Bab ini menguraikan tentang penjelasan mengenai kesimpulan yang dapat diambil dari hasil analisis yang dilakukan serta saran untuk pengembangan lebih lanjut yang akan datang.

BAB 2

TINJAUAN PUSTAKA

2.1. Definisi dan Deskripsi Gempa Bumi

Gempa bumi dapat didefinisikan sebagai getaran yang bersifat alamiah, yang terjadi pada lokasi tertentu, dan sifatnya tidak berkelanjutan. Gempa bumi biasa disebabkan oleh pergerakan kerak bumi (lempeng bumi) secara tiba-tiba (*sudden slip*). Pergeseran secara tiba-tiba terjadi karena adanya sumber gaya (*force*) sebagai penyebabnya, baik bersumber dari alam maupun dari bantuan manusia (*artifical earthquakes*). Selain disebabkan oleh *sudden slip*, getaran pada bumi juga bisa disebabkan oleh gejala lain yang sifatnya lebih halus atau berupa getaran kecil-kecil yang sulit dirasakan manusia. Contoh getaran kecil adalah getaran yang disebabkan oleh lalu lintas, mobil, kereta api, tiupan angin pada pohon dan lain-lain. Getaran seperti ini dikelompokan sebagai *mikroseismisilas* (getaran sangat kecil).

Indonesia termasuk negara yang sering tertimpa bencana gempa bumi. Gempa bumi baik yang sekala kecil maupun sekala besar pernah terjadi di Indonesia. Letak geografis Indonesia yang berada di pertemuan perbatasan 3 lempeng tektonik, yaitu lempeng Australia, lempeng Pacifik dan lempeng Euroasia mengakibatkan Indonesia menjadi daerah yang rawan gempa.

2.2. Proses Terjadinya Gempa Bumi

Kebanyakan gempa bumi disebabkan dari pelepasan energi yang dihasilkan oleh tekanan yang dilakukan oleh lempengan yang bergerak. Semakin lama tekanan itu kian membesar dan akhirnya mencapai pada keadaan dimana tekanan tersebut tidak dapat ditahan lagi oleh pinggiran lempengan. Pada saat itulah gempa bumi akan terjadi. Gempa bumi biasanya terjadi di perbatasan lempenganlempengen tersebut, gempa bumi yang paling parah biasanya terjadi di perbatasan lempengan kompresional dan translasional. Gempa bumi kemungkinan besar terjadi karena materi lapisan litosfer yang terjepit kedalam mengalami transisi fase pada kedalaman lebih dari 600 km. Beberapa gempa bumi yang lain juga dapat terjadi karena pergerakan magma di dalam gunung berapi, gempa bumi seperti itu dapat menjadi gejala akan terjadinya letusan gunung berapi, jika gunung tersebut mulai aktif maka akan terjadi getaran di permukaan bumi dan itu termasuk gempa vulkanik.

Beberapa gempa bumi (namun jarang terjadi) juga terjadi karena menumpuknya massa air yang sangat besar dibalik dam, seperti Dam Karibia di Zambia, Afrika. Sebagian lagi juga dapat terjadi karena injeksi atau ekstrasi cairan dari dalam bumi seperti pada beberapa pembangkit listrik tenaga panas bumi dan di Rocky Mountain Arsenal.

2.3. Teori Lempeng Tektonik

Bumi terdiri dari banyaknya lapisan. Lapisan terluar bumi adalah *litosfer*, dibawah permukaan litosfer terdapat lapisan yang menyerupai kerang yang terdiri dari tujuh batu piringan tebal, seperti terlihat pada Gambar 2.1. Batu tersebut tebalnya sekitar 100 km yang bisa bergerak sepanjang 10 cm tiap tahunnya. Gempa bumi sering terjadi karena adanya pergerakan di antara dua lapisan batu tebal. Gerakan batu itu juga bisa terjadi karena ada tekanan dari permukaan bumi selama bertahun-tahun, pergeseran itulah yang membuat gempa bumi terjadi dan sering disebut sebagai gempa tektonik.

Gambar 2.1: Struktur bumi (rekayasa gempa).

Lapisan kulit bumi terbagi dalam beberapa pelat atau lempeng tektonik seperti terlihat pada Gambar 2.2. Pelat tektonik yang satu dengan yang lainnya cenderung untuk bergerak.

Gambar 2.2: Peta pelat tektonik Dunia (rekayasa gempa).

Potensi gempa di Indonesia memang terbilang besar, sebab berada dalam pertemuan sejumlah lempeng tektonik besar yang aktif bergerak. Kemudian interaksi lempeng India-Australia, Eurasia dan Pasifik yang bertemu di Banda serta pertemuan lempeng Pasifik-Asia di Sulawesi dan Halmahera.

Maka dapat disimpulkan bahwa penyebab utama terjadinya gempa bumi berawal dari adanya gaya pergerakan didalam interior bumi (gaya konveksi material) yang menekan kerak bumi (*outer layer*) yang bersifat rapuh, sehingga ketika kerak bumi tidak lagi kuat dalam merespon gaya gerak dari dalam bumi tersebut maka akan membuat sesar dan menghasilkan gempa bumi. Akibat gaya gerak dari dalam bumi ini maka kerak bumi telah terbagi-bagi menjadi beberapa fragmen yang disebut lempeng (*plate*). Gaya gerak penyebab gempa bumi ini selanjutnya disebut gaya sumber tektonik (*tectonic source*). Bentuk pergerakan pada batas pelat (*plate boundary*) yang satu dengan pelat yang lain secara garis besar dikelompokan atas tiga pergerakan sebagai berikut :

1. Divergent plate boundaries (saling menjauh)

Pada Gambar 2.3, terlihat proses pergerakan pelat tektonik yang saling menjauh, sehingga terbentuk lembah pada boundary (*Rift valley*), yang memungkinkan terbukanya mantle dan magma di dalamnya terdorong keluar.

Gambar 2.3: Divergent plate boundaries (Rekayasa Gempa).

2. Convergent plate boundaries (saling mendekat)

Pada Gambar 2.4, terlihat proses pergerakan pelat tektonik yang saling mendekat, pelat tektonik yang satu akan menelusup dibawah pelat tektonik yang lainnya, yang memungkinkan terbentuknya gelombang tsunami.

Gambar 2.4: Convergent plate boundaries (Rekayasa Gempa).

3. Transform plate boundaries (bergeser)

Pada Gambar 2.5, terlihat proses pergerakan pelat tektonik yang saling bergeser, pelat tektonik yang satu akan saling bergeser dalam arah samping atau bawah pelat tektonik yang lainnya, yang memungkinkan terbentuknya gelombang tsunami.

Gambar 2.5: Transform plate boundaries (Rekayasa Gempa).

Terjadi pada tanggal 27 mei 2006. Gempa Yokyakarta yang terjadi selama 57 detik dengan kekuatan 5,9 skala richter, lebih dari 6000 jiwa meninggal. Titik pusat gempa pada kordinat 8.24°LS dan 110.43°BT pada kedalaman laut 33.000 meter.

2.4. Fenomena Gempa Bumi di Indonesia

Sejumlah wilayah di Indonesia berulang kali dilanda gempa bumi. Dalam rentang waktu yang terbilang singkat gempa mengguncang Tasikmalaya, Yogyakarta, Aceh, Nusa Tenggara Barat, Toli-Toli, Sulawesi Tengah. Akibat gempa tidak hanya merusak bangunan, namun banyak menelan korban jiwa.

Selama ada dinamika di lapisan bumi, maka akan tetap terjadi potensi gempa. Menurut Badan Geologi Departemen ESDM, setiap hari kita mencatat ada gempa, cuma skalanya beragam. Lempeng-lempeng yang bergerak menjadikan potensi gempa. Daera rawan gempa tersebut membentang disepanjang batas lempeng tektonik Australia dengan Asia, lempeng Asia dengan Pasifik dari timur hingga barat Sumatera sampai selatan Jawa, Nusa Tenggara, serta Banda.

Berikut ini daftar gempa bumi besar yang terjadi di Indonesia, di atas skala richter 5 di Indonesia:

Tanggal	Skala	Episentrum	Area	Tewas	Keterangan
20- September- 1899	7,8		Kota Ambon	3.280	
25- November- 1833	8,8- 9,2	2,5°LU 100,5°BT	Sumatera		Gempa disebabkan pecahnya segmen Palung Sumatera sepanjang 1000 km di tenggara area yang mengalami hal yang sama pada gempa 26 Dessember 2004. Gempa kemudian memicu terjadinya tsunami yang menerjang pesisir barat Sumatera dengan wilayah terdekat dari pusat gempa adalah Pariaman hingga Bengkulu. Tsunami juga menyebabkan kerusakan parah di Maladewa dan Sri Langka. Selain itu, tsunami juga mencapai Australia Utara, Teluk Benggala, dan Thailand. Bencana ini tidak terdokumentasi dengan baik dan tidak diketahui pasti dampak dan korbannya.
17-Nov-08	7,7		Sulawesi Tengah	4	
04-Jan-09	7,2		Manokwari	2	
02-Sep-09	7,3	8,24°LS 107,32°BT	Tasikmalaya dan Cianjur	>87	

Tabel 2.1: Daftar gempa bumi besar di atas skala Richter 5 di Indonesia (www.wikipedia.org).

Tanggal	Skala	Episentrum	Area	Tewas	Keterangan
30-Sep-09	7,6 Mw	0,725°LS 99,856°BT	Padang Pariaman dan Agam	1.115	135.299 rumah rusak berat, 65.306 rumah rusak sedang, 78.591 rusak ringan
01-Okt-09	6,6 Mw	2,44°LS 101,59°BT	Kerinci	2	
09-Nov-09	6,7	8,24°LS 118,65°BT	Pulau Sumbawa	1	80 orang luka & 282 rumah rusak parah
25-Okt-10	7,7	3,61°LS 99,93°BT	Sumatera Barat	408	

Tabel 2.1: Lanjutan.

2.5. Pengetahuan Yang Mendukung Konsep Bangunan Tahan Gempa

Seperti yang kita bahas sebelumnya bahwa bencana alam gempa bumi sering terjadi di Indonesia. Gempa-gempa tersebut mulai dari skala richter yang relatif kecil (*small*), sedang (*moderate*), kuat (*strong*) dan gempa besar (*great*). Gempa-gempa kecil umumnya sering terjadi, dapat dirasakan orang secara jelas dan tidak menimbulkan kerusakan (Intensitas gempa I_{mm} < V). Gempa sedang umumnya terjadi hanya kadang-kadang, dan gempa ini kemungkinan menimbulkan kerusakan ringan. Gempa kuat umumnya relatif jarang terjadi, tetapi kalau terjadi dapat mengakibatkan kerusakan minor maupun kerusakan major.

Bangunan-bangunan gedung memang mempunyai faktor keutamaan yang bergantung pada penting/ tidaknya suatu bangunan. Bangunan yang sangat penting, diharapkan dapat bertahan/ mempunyai umur yang lebih lama dibanding dengan bangunan biasa.

Dengan banyaknya hal yang dapat berkaitan tersebut maka diantaranya dapat dikelompokkan menurut kekuatan gempa (berkaitan dengan periode ulang dan tingkat pentingnya bangunan) dan performa bangunan dalam rangka melindungi manusia, tetapi masih memperhitungkan tingkat ekonomisnya pembangunan. Pengelompokkan itu dituangkan didalam desain filosofi (*earthquake design philosophy*) suatu bangunan akibat beban gempa. Desain filosofi yang dimaksud adalah sebagai berikut:
- Pada gempa kecil (*light*, atau *minor earthquake*) yang sering terjadi, maka struktur uatam bangunan harus tidak rusak dan berfungsi dengan baik. Kerusakkan kecil yang masih dapat ditoleransi pada elemen non-struktur masih dibolehkan.
- Pada gempa menengah (moderate earthquake) yang relatif jarang terjadi, maka struktur utama bangunan boleh rusak/ retak ringan tetapi masih dapat/ ekonomis untuk diperbaiki. Elemen non-struktur dapat saja rusak tetapi masih dapat diganti dengan yang baru.
- 3. Pada gempa kuat (*strong earthquake*) yang jarang terjadi, maka struktur bangunan boleh rusak tetapi tidak boleh runtuh total (*totally collapse*). Kondisi seperti ini juga diharapkan pada gempa besar (*great earthquake*), yang tujuannya adalah melindungi manusia/ penghuni bagunan secara maksimum.

Desain filosofi seperti yang disampaikan di atas masih sangat deskriptif kualitatif. Untuk dapat mengimplementasikan filosofi tersebut diperlukan banyak komponen-komponen pengetahuan mulai dari beban gempa, analisis struktur, perilaku bahan, perilaku struktur, kategorisasi jenis kerusakan struktur dan konsep bangunan tahan gempa. Oleh karena itu implementasikan atas desain filosofi tersebut diperlukan waktu yang relatif lama, walaupun beberapa pengetahuan telah berkembang sebelumnya.

Perkembangan metode ataupun *software* untuk analisis struktur yang juga sangat mendukung konsep desain bangunan tahan gempa. Konsep-konsep dasar analisis struktur sudah berkembang sejak pengetahuan abad ke-19 misalnya metode *unit load, flexibility method, stiffness method, slope deflection*, sampai abad ke-20. Perkembangan metode analisis terus berkembang misalnya metode Muto (1993), metode distribusi/ *cross method* (1939), metode kani (1949) dan metode takabeya (1965). Untuk analisis yang rumit maka berkembanglah metode matriks yang operasionalisasinya memerlukan alat penghitung yaitu komputer.

Menurut Pawirodikromo (2012), riset tentang perilaku bahan, elemen struktur maupun struktur juga yang mendukung pengembangan konsep bangunan tahan gempa. Perilaku bahan akibat beban dapat berupa linier dan non-linier, sedangkan intensitas beban dapat mengakibatkan respons elastik maupun inelastik. Dengan demikian, akan terdapat 4 kombinasi yaitu seperti yang tampak pada Gambar 2.6.

Gambar 2.6: Macam-macam respon akibat beban siklik (Pawirodikromo, 2012).

1. Linier elastik

Adalah suatu respons bahan/ elemen struktur yang mana hubungan antara beban-simpangan bersifat lurus, proporsional/ linier dan apabila beban dihilangkan maka deformasi bahan akan sama dengan nol (kembali ke posisi semula). Bahan metal khusunya baja mempunyai sifat/ respons linier apabila intensitas bebannya masih kecil.

2. Non-linier elastik

Adalah apabila hubungan antara beban-simpangan dari awal sudah tidak lurus/ linier tetapi non-linier walaupun intensitas bebannya masih realtif kecil. Apabila beban ditiadakan maka deformasi bahan akan sama dengan nol (kembali ke posisi semula, tidak ada deformasi permanen). Tanah dan beton pada umumnya mempunyai sifat non-linier sejak intensitas beban masih kecil.

3. Linier inelastik

Adalah suatu kondisi yang mana intensitas beban sudah besar, tegangan yang terjadi sudah tidak lagi tegangan elastik tetapi sudah inelastik. Apabila beban ditiadakan maka benda tidak dapat lagi kembali ke posisi semula tetapi kembali secara linier/ lurus ditempat yang lain (ada deformasi permanen). Walaupun beban sudah besar tetapi perilaku bahan dimodel secara linier. Struktur beton yang dibebani dengan beban siklik dengan intensitas yang besar pada hakekatnya akan berperilaku non-linier inelastik, tetapi pada umumnya dimodel sebagai linier-inelastik.

4. Non-linier inelastik

Adalah suatu kondisi pembebanan siklik yang intensitasnya besar yang diterapkan pada struktur tanah maupun beton. Hubungan antara beban dan

deformasi tidak lagi bersifat lurus/ linier dan apabila beban siklik ditiadakan maka akan terdapat deformasi permanen.

2.6. Perencanaan Struktur Baja Tahan Gempa

Gempa pasti akan terjadi, hanya waktunya yang belum dapat dipastikan. Sebagai profesional yang bertanggung jawab pada perencanaan bangunan yang kuat, kaku dan aman, maka mempelajari strategi perencanaan struktur tahan gempa adalah kewajiban. Baja secara alami mempunyai rasio kuat dibanding berat-volume yang tinggi, sehingga dapat dihasilkan bangunan yang relatif ringan. Selain material baja itu sendiri yang berkekuatan tinggi, relatif kaku dan daktail.

Keunggulan lain konstruksi baja adalah mutunya relatif seragam dikarenakan produk pabrik yang terkontrol. Karena itu pula ukuran dan bentuknya juga tertentu, terpisah dan baru bisa disatukan di lapangan. Pada satu sisi, konsep seperti itu suatu kelemahan atau sulit untuk dihasilkan konstruksi monolit, perlu detail sambungan yang baik. Tapi jika dapat antisipasi ternyata dapat dibuat suatu detail sedemikian rupa sehingga bila terjadi kerusakan (akibat gempa) maka bagian itu saja yang akan diperbaiki.

2.6.1. Perilaku Sistem Struktur Yang Diharapkan

Untuk pembebanan gravitasi, beban angin dan beban gempa maka diharapkan struktur dapat berpeilaku elastis. Tetapi pada gempa besar, yaitu kondisi gempa sedemikian sehingga jika struktur didesain secara elastis akan tidak praktis dan mahal, maka diijinkan mengalami kondisi inelastis.

Oleh karena itu, tidak adanya jaminan bahwa gempa yang akan terjadi pasti selalu di bawah gempa rencana yang ditetapkan *code*, maka cara perencanaan struktur tahan gempa adalah didasarkan pada metodologi *capacity design*. Dengan cara tersebut, struktur direncanakan sedemikian sehingga bila terjadi kondisi inelastis, hanya terjadi pada tempat yang ditentukan, yang memang telah terencana. Kondisi inelastis yang terjadi juga terkontrol, sebagai tempat disipasi energi. Sedangkan bagian struktur yang lainnya tetap diusahakan berperilaku elastis, yang cara kerjanya seperti alat sekring (*fuse*) pada peralatan listrik di saat menerima *overload*. Jika rusak, bagian tersebut diperbaiki.

Adanya bagian yang terpisah-pisah, ada yang bekerja elastis dan bagian lain ada yang sampai inelastis, dapat dengan mudah diterapkan pada konstruksi baja, yang memang dari awalnya bersifat modul atau segmen terpisah yang tidak monolit. Coba bandingkan dengan konstruksi beton, yang secara alami bersifat monolit, khususnya untuk beton *cast-in-situ*.

2.6.2. Sistem Rangka Batang Silang (*Braced Frame System*)2.6.2.1. Sistem Rangka Breising Konsentrik Biasa

Bekerja seperti sistem SCBF, yaittu mengandalkan perilaku aksial pada elemen-elemen strukturnya. Oleh sebab itu sistem rangka ini relatif kaku, sehingga dapat dianggap sebagai rangka tidak bergoyang. Meskipun demikian, sistem ini hanya andal jika berperilaku elastik saat gempa besar, sehingga hanya cocok (ekonomis) jika digunakan pada struktur yang didominasi beban graviasi atau minimal beban-beban renacana yang sudah pasti keberadaannya.

2.6.2.2. Sistem Rangka Breising Konsentrik khusus

Rangka yang menganut SCBF dikonfigurasi sedemikian sehingga *bracing* bekerja sebagai *fuse* melalui aksi leleh tarik atau tekuk tekan batang diagonal ketika terjadi gempa besar. Hal ini dapat dilihat pada Gambar 2.7.

Gambar 2.7: Mekanisme inelastis SCBF.

2.6.2.3. Sistem Rangka Breising Eksentris

Cara kerja rangka jenis EBF (*Eccentrically Braced Framed*) mirip dengan SCBF (*Special Concentrically Braced Frames*) hanya saja *fuse* atau link diharapkan bekerja secara inelastik memanfaatkan adanya leleh lentur atau kombinasi keduanya. Hal ini dapat dilihat pada Gambar 2.8.

Gambar 2.8: Berbagai variasi konfigurasi EBF.

Dari ketiga konfigurasi rangka sistem EBF di atas, maka jenis *split-K-braced* merupakan konfigurasi EBF yang terbaik karena momen terbesar yang menyebabkan kondisi plastis tidak terjadi di dekat kolom. Jadi dipastikan tidak akan terjadi kegagalan kolom akibat kondisi inelastis yang terjadi.

2.6.3. Sistem Portal (Momen Frame System)2.6.3.1. Sistem Rangka Pemikul Momen Biasa (SRPMB)

Ini adalah jenis rangka yang digunakan pada kondisi elastis saja. Hanya cocok dipakai pada sistem struktur dengan beban gravitasi yang dominan, misalnya bangunan tidak bertingkat yang memiliki bentang panjang. Sistem sambungan balok-kolom yang digunakan dapat berupa sambungan momen penuh atau *full restrained* (FR), tetapi dapat juga semi *rigid* atau *partially restrained* (PR).

2.6.3.2. Sistem Rangka Pemikul Momen Menengah (SRPMM)

Jenis rangka ini mirip SMF, yaitu mampu berperilaku inelastis tetapi terbatas. Cocok dipakai untuk sistem struktur dengan gempa yang relatif sedang, misal bangunan bertingkat rendah. Sistem sambungan kolom-balok mirip SMF hanya saja tingkat daktilitasnya terbatas, yaitu perputaran sudut *interstory-drift* minimum 0,02 radian (*Section* 10.2a AISC 2005a).

2.6.3.3. Sistem Rangka Pemikul Momen Khusus (SRPMK)

Ini adalah jenis struktur rangka yang didesain untuk bekerja secara inelastis penuh. Oleh karena itu pada bagian yang akan mengalami sendi plastis perlu disiapkan secara khsusus. Sistem ini cocok dipakai untuk perencanaan gedung tinggi yang masih memungkinkan dengan sistem portal. Umumnya ketinggian bangunan akan dibatasi oleh persyaratan deformasi lateral. Hal yang penting, struktur rangka harus didesain berperilaku *strong column weak beam* untuk memastikan tidak terjadi sendi plastis di kolom, yang dapat menyebabkan *story mechanism* yaitu seperti yang tampak pada Gambar 2.9.

Gambar 2.9: Perilaku inelastis sistem portal daktail (Hamburger dkk., 2009).

Jenis sambungan kolom-balok yang dapat dipakai di rangka SMF harus didukung data empiris hasul uji laboratorium yang membuktikan bahwa jenis sambungan tadi mempunyai kemampuan daktilitas yang cukup, yaitu dapat bertahan sampai perputaran sudut *interstrory-drift* minimum sebesar 0,04 radian (AISC 2005a).

Beberapa jenis sambungan yang telah distandardisasi dan terbukti oleh hasil pengujian yang seperti pada Gambar 2.10-2.11.

Gambar 2.10: Extended end-plate (Hamburger dkk., 2009).

Gambar 2.11: Reduced beam (Hamburger dkk., 2009).

2.6.4. Sistem Lainnya

2.6.4.1. Special Plate Shear Walls (SPSW)

Dinding geser umumnya terdiri dari beton bertulang selain sebagai sistem struktur penahan lateral, dinding geser juga bisa bekerja sebagai kolom, memikul beban gravitasi. Konsep yang mirip juga dapat diterapkan pada konstruksi baja, struktur rangka dengan dinding pengisi berupa pelat baja didalamnya, yang akan bekerja sebagai *fuse* dengan mekanisme leleh pelat dan tekuk (*tension field action*). Hal ini dapat dilihat pada Gambar 2.12.

Gambar 2.12: Steel plate shear walls (Seilie dan Hooper, 2005).

2.6.4.2. Special Truss Moment Frames (STMF)

STMF adalah struktur rangka biasa seperti *truss* (rangka batang) atau bentuk *Vierendeel* elemen horizontalnya. Elemen di bagian horizontal didesain agar berperilaku inelastis saat gempa besar. Kondisi inelastis yang terjadi akan bekerja sebagai *fuse* (tempat terjadinya disipasi energi). Hal ini dapat dilihat pada Gambar 2.13.

Gambar 2.13: Perilaku inelastis STMF (Basha dan Goel, 1996).

2.6.4.3. Buckling Restrained Braced Frames (BRBF)

BRBF termasuk *Concentrically Braced Frames* tetapi batang diagonalnya diganti elemen khusus, yang mampu berperilaku inelastis baik terhadap tarik maupun tekan. Untuk mengantisipasi tekuk maka elemen khusus tersebut terdiri

batang terbungkus suatu elemen penutup yang mencegah terjadinya tekuk, sehingga ketika ada gaya tekan cenderung mengalami leleh saja. Hal ini dapat dilihat pada Gambar 2.14.

Gambar 2.14: Detail dan tampak BRBF (Sabeli dan Lopez, 2004).

2.7. Tata Cara Perencanaan Bangunan Tahan Gempa (1726;2012)

2.7.1. Gempa Rencana

Menurut peta Hazard gempa Indonesia 2010 wilayah Indonesia meliputi peta percepatan puncak (PGA) dan respons spektra percepatan di batuan dasar (SB) untuk periode pendek 0,2 detik (Ss) dan untuk periode 1,0 detik (S1) dengan redaman 5% mewakili tiga level hazard gempa yaitu 500, 1000 dan 2500 tahun atau memiliki kemugkinan terlampaui 10% dalam 50 tahun dan 10% dalam 100 tahun, dan 2% dalam 50 tahun. Definisi batuan dasar (SB) adalah lapisan batuan dibawah permukaan tanah yang memiliki kecepatan rambat gelombang geser (Vs) mencapai 750 m/detik dan tidak ada lapisan batuan lain dibawahnya yang memiliki nilai kecepatan rambat gelombang geser yang kurang dari itu.

2.7.2. Peta Wilayah Gempa

Berdasarkan SNI 1726;2012 pasal 14, ditetapkan berdasarkan parameter S_S (Percepatan batuan dasar pada periode pendek 0,2 detik) dan S_1 (Percepatan batuan dasar pada periode 1 detik). Hal ini dapat dilihat pada Gambar 2.10-2.12.

Gambar 2.15: PGA, Gempa maksimum yang dipertimbangkan rata-rata geometrik (MCE_G), kelas situs SB (SNI 1726;2012).

Gambar 2.16: S_S , Peta respons spektra percepatan 0,2 detik di batuan dasar S_B untuk probabilitas terlampaui 2% dalam 50 tahun dengan redaman 5% (SNI 1726;2012).

Gambar 2.17: S_1 , Peta respons spektra percepatan 1 detik di batuan dasar S_B untuk probabilitas terlampaui 2% dalam 50 tahun dengan redaman 5% (SNI 1726;2012).

2.7.3. Arah Pembebanan Gempa

Dalam perencanaan gedung, arah utamapengaruh gempa rencana harus ditentukan sedemikian rupa sehingga memberi pengaruh terbesar terhadap unsurunsur subsistem dan sistem struktur gedung secara keseluruhan.

Untuk mensimulasikan arah pengaruh gempa rencana yang sembarang terhadap struktur gedung, pengaruh pembebanan gempa dalam arah utama yang ditentukan harus dianggap efektif 100% dan harus dianggap terjadi bersamaan dengan pengaruh pembebanan gempa dalam arah tegak lurus pada arah utama pembebanan tadi, tetapi dengan efektivitas 30%.

2.7.4. Prosedur Analisis Struktur

Berdasarkan SNI 1726;2012 pasal 7.3.2.1 dan pasal 7.3.2.2 ketidakberaturan struktur bangunan dapat dibedakan menjadi ketidakbertaturan horizontal dan vertikal. Ketidakberaturan horizontal dan vertikal dapat dilihat pada Tabel 2.2 dan 2.3.

	Tipe dan penjelasan ketidakberaturan	Pasal referensi	Penerapan kategori desain seismik
1a.	Ketidakberaturan torsi di definisikan ada jika simpangan antar lantai tingkat maksimum, torsi yang dihitung termasuk tak terduga, di sebuah ujung struktur melintang terhadap sumbu lebih dari 1,2 kali simpangan antar lantai tingkat rata-rata di kedua ujung struktur. Persyaratan ketidakberaturan torsi dalam pasal-pasal refrensi berlaku hanya untuk struktur di mana diafragmanya kaku atau setengah kaku.	7.3.3.4 7.7.3 7.8.4.3 7.121 Tabel 13 12.2.2	D, E, dan F B, C, D, E dan F C, D, E dan F C, D, E dan F D, E, dan F
1b.	Ketidakberaturan torsi berlebihan di definisikan ada jika simpangan antar lantai tingkat maksimum, torsi yang dihitung termasuk tak terduga, di sebuah ujung struktur melintang terhadap sumbu lebih dari 1,4 kali simpangan antar lantai tingkat rata-rata di kedua ujung struktur. Persyaratan ketidakberaturan torsi berlebihan dalam pasal-pasal referensi berlaku hanya untuk struktur di mana diagfragmanya kaku atau setengah kaku.	7.3.3.1 7.3.3.4 7.7.3 7.8.4.3 7.12.1 Tabel 13 12.2.2	E dan F D B, C dan D C dan D C dan D D B, C dan D
2.	Ketidakberaturan sudut dalam didefinisikan ada jika kedua proyeksi denah struktur dari sudut dalam lebih besar dari 15 persen dimensi denah struktur dalam arah yang ditentukan.	7.3.3.4 Tabel 13	D, E, dan F D, E, dan F
3.	Ketidakberaturan diskontinuitas diafragma didefinisikan ada jika terdapat diafragma dengan diskontinuitas atau variasi kekakuan mendadak, termasuk yang mempunyai daerah terpotong atau terbuka lebih besar dari 50 persen daerah diagragma bruto yang melingkupinya, atau perubahan kekakuan diafragma efektif lebih dari 50 persen dari suatu tingkat ketingkat selanjutnya.	7.3.3.4 Tabel 13	D, E, dan F D, E, dan F
4.	Ketidakberaturan pergeseran melintang terhadap bidang didefinisikan ada jika terdapat diskontinuitas dalam lintasan tahanan gaya lateral, seperti pergeseran me lintang terhadap bidang elemen vertikal.	7.3.3.3 7.3.3.4 7.7.3 Tabel 13 12.2.2	B, C, D, E dan F D, E, dan F B, C, D, E dan F D, E, dan F B, C, D, E dan F

Tabel 2.2: Ketidakberaturan horizontal pada struktur berdasarkan SNI 1726;2012.

Tabel 2.2: Lanjutan.

	Tipe dan penjelasan ketidakberaturan	Pasal referensi	Penerapan kategori desain seismik
5.	Ketidakberaturan sistem nonperalel didefnisikan ada jika elemen penahan gaya leteral vertikal tidak parelel atau simetris terhadap sumbu-sumbu orthogonal utama sistem penahan gaya gempa.	7.5.3. 7.7.3 Tabel 13 12.2.2	C, D, E dan F B, C, D, E dan F D, E, dan F B, C, D, E dan F

Tabel 2.3: Ketidakberaturan vertikal pada struktur berdasarkan SNI 1726;2012.

1a	Tipe dan penjelasan ketidakberaturan Ketidakberaturan kekakuan tingkat lunak didefinisikan ada jika terdapat suatu tingkat dimana kekakuan lateralnya kurang dari 70 persen kekakuan leteral tingkat di atasnya atau kurang dari 80 persen kekakuan rata- rata tiga tingkat di atasnya.	Pasal referensi Tabel 13	Penerapan kategori desain seismik D, E, dan F
1b	ketidakberaturan kekakuan tingkat lunak berlebihan didefinisikan ada jika terdapat suatu tingkat di mana kekakuan lateralnya kurang dari 60 persen kekakuan lateral tingkat di atasnya atau kurang dari 70 persen kekakuan rata-rata tiga tingkat di atasnya.	7.3.3.1 Tabel 13	E dan F D, E dan F
2.	Ketidakberaturan berat (massa) didefinisikan ada jika massa efektif semua tingkat lebih dari 150 persen massa efektif tingkat di dekatnya. Atap yang lebih ringan dari lantai di bawahnya tidak perlu di tinjau.	Tabel 13	D, E, dan F
3.	Ketidakberaturan geometri vertikal didefinisikan ada jika dimensi horisontal sistem penahan gaya seismikdi semua tingkat lebih dari 130 persen dimensi horisontal sistem penahanan gaya seismik tingkat di dekatnya.	Tabel 13	D, E dan F
4.	Diskontinuitas arah bidang dalam ketidakberaturan elemen penahan gaya lateral vertikal didefinisikan ada jika pegeseran arah bidang elemen penahan gaya lateral lebih besar dari panjang elemen itu atau terdapat reduksi kekakuan elemen penahan di tingkat di bawahnya.	7.3.3.3 7.3.3.4 Tabel 13	B, C, D, E dan F D, E dan F D, E dan F

Tabel 2.3: Lanjutan.

	Tipe dan penjelasan ketidakberaturan	Pasal referensi	Penerapan kategori desain seismik
5a.	Diskontinuitas dalam ketidakberaturan kuat		E dan F
	lateral tingkat di definisikan ada jika kuat		D, E dan F
	lateral tingkat kurang dari 80 persen kuat		
	lateralnya tingkat di atasnya. Kuat lateral		
	tingkat adalah kuat lateral total semua		
	elemen penahan seismik yang berbagi geser		
	tingkat untuk arah yang ditinjau.		
5b.	Diskontinuitas dalam ketidakberaturan kuat	7.3.3.1	D, E dan F
	lateral tingkat yang berlebihan di definisikan	7.3.3.2	B dan C
	ada jika kuat lateral tingkat kurang dari 65	Tabel 13	D, E dan F
	persen kuat lateral tingkat di atasnya. Kuat		
	tingkat adalah kuat total semua elemen		
	penahan seismik yang berbagi geser tingkat		
	untuk arah yang ditinjau.		

Berdasarkan SNI 1726;2012 pasal 7.6, prosedur analisis yang dapat digunakan seperti pada Tabel 2.8. Prosedur analisis yang digunakan terkait erat dengan berbagai parameter struktur bangunan tersebut, yaitu:

- Parameter keutamaan bangunan berdasarkan pasal 4.1.2 SNI 1726;2012 dan dapat dilihat pada Tabel 2.4.
- Parameter faktor keutamaan gempa berdasarkan SNI 1726;2012 dapat dilihat Tabel 2.5
- Kategori desain seismik berdasarkan parameter percepatan respons spektra pada periode 1 detik (S_1) dan parameter percepatan respons spektra pada periode pendek (S_s) berdasarkan pasal 6.5 SNI 1726;2012 dapat dilihat pada Tabel 2.6 dan 2.7.

Oleh karena itu, prosedur analisis struktur harus terdiri dari salah satu tipe struktur yang diizinkan seperti yang ditunjukkan pada Tabel 2.8, yaitu berdasarkan kategori desain seismik struktur, sistem struktur, properti dinamis dan keteraturan. Dari berbagai parameter yang dimiliki oleh struktur gedung tersebut, dapat ditetapkan prosedur analisis yang dapat digunakan seperti yang dijabarkan pada Tabel 2.8. Tabel 2.4: Kategori risiko bangunan gedung dan struktur lainnya untuk beban gempa berdasarkan SNI 1726;2012.

Jenis Pemanfaatan	Kategori risiko
Semua gedung dan struktur lain, kecuali yang termasuk dalam	
kategori resiko I, III, IV, termasuk, tapi tidak dibatasi untuk:	
- Perumahan	
- Rumah toko dan rumah kantor	
- Pasar	
- Gedung perkantoran	II
- Gedung apartemen/Rumah susun	
- Pusat perbelanjaan/Mall	
- Bangunan industri	
- Fasilitas manufaktur	
- Pabrik	

Tabel 2.5: Faktor keutamaan gempa berdasarkan SNI 1726;2012.

Kategori risiko	Faktor keutamaan gempa, I_e
I atau II	1,0
III	1,25
IV	1,50

Tabel 2.6: Kategori desain seismik berdasarkan parameter respons percepatan pada periode pendek berdasarkan SNI 1726;2012.

Nilai S _{DS}	Kategori resiko		
	I atau II atau III	IV	
S _{DS} < 0,167	А	А	
$0,167 \le S_{DS} < 0,33$	В	С	
$0,33 \le S_{DS} < 0,50$	С	D	
$0,50 \le \mathrm{S}_\mathrm{DS}$	D	D	

Tabel 2.7: Kategori desain seismik berdasarkan parameter respons percepatan pada periode 1 detik berdasarkan SNI 1726;2012.

Nilai S _{D1}	Kategori resiko		
	I atau II atau III	IV	
$S_{D1} < 0.067$	А	А	
$0,\!067 \le S_{D1} < 0,\!133$	В	С	

Tabel 2.7: Lanjutan.

Nilai S-	Kategori resiko		
Nilai SD	I atau II atau III	IV	
$0,133 \le S_{D1} < 0,20$	C	D	
$0,20 \leq S_{D1}$	D	D	

Tabel 2.8: Prosedur analisis yang boleh digunakan berdasarkan SNI 1726;2012.

		Analisis	Analisis	Prosedur
Kategori		gaya	spektrum	riwayat
desain	Karakteristik struktur	lateral	respons	respons
seismik		ekivalen	ragam	seismik
		pasal 7.8	pasal 7.9	Pasal 11
B, C	Bangunan dengan Kategori			
	Risiko I atau II dari konstruksi			
	rangka ringan dengan	Ι	Ι	Ι
	ketinggian tidak melebihi 3			
	tingkat.			
	Bangunan lainnya dengan			
	Kategori Risiko I atau II,	т	т	т
	dengan ketinggian tidak	1	1	1
	melebihi 2 tingkat			
	Semua struktur lainnya	Ι	Ι	Ι
D, E, F	Bangunan dengan kategori			
	Risiko I atau II dari konstruksi			
	rangka ringan dengan	Ι	Ι	Ι
	ketingggian tidak melebihi 3			
	tingkat			
	Bangunan lainnya dengan			
	Kategori Risiko I atau II	т	т	т
	dengan ketinggian tidak	1	1	1
	melebihi 2 tingkat			
	Struktur beraturan dengan T <			
	3,5 T _s dan semua struktur dari	Ι	Ι	Ι
	konstruksi rangka ringan			
D, E, F	Struktur tidak beraturan dengan			
	T < 3,5 T_s dan mempunyai			
	hanya ketidakberaturan			
	horisontal Tipe 2, 3, 4, atau 5	Ι	Ι	Ι
	dari Tabel 2.1 atau			
	ketidakberaturan vertikal Tipe			
	4, 5a, atau 5b dari Tabel 2.2			
	Semua struktur lainnya	TI	Ι	Ι

Catatan, I : Diizinkan, TI : Tidak Dizinkan

2.7.5. Struktur Penahan Gaya Seismik

Sistem penahan gaya seismik lateral dan vertikal dasar harus memnuhi salah satu tipe yang telah ditetapkan pada SNI 1726;2012 pasal 7.2. Setiap tipe dibagibagi berdasarkan tipe elemen vertikal yang digunakan untuk menahan gaya seismik lateral. Setiap sistem penahan gaya seismik yang dipilih hatus dirancang dan didetailkan sesuai dengan persyaratan khusus bagi sistem tersebut yang telah ditetapkan.

Di dalam SNI 1726;2012 pasal 7.2, sistem struktur penahan gaya seismik ditentukan oleh parameter berikut ini:

- Faktor koefisien modifikasi respons (R)
- Faktor kuat lebih sistem (C_d)
- Faktor pembesaran defleksi (Ω_0^{g})
- Faktor batasan tinggi sistem struktur

Hal ini dapat dilihat pada Tabel 2.9.

				Batasan sistem				n
	Koefisien	Faktor	Faktor		stru	ktur	dan	
Cistom nonshan sava	modifika	kuat	pembes	1	batas	san ti	inggi	i
Sistem penanan gaya	si	lebih	aran	St	rukt	ur, h	n (m	$)^{c}$
seismik	respons,	sistem,	defleksi	K	Lateg	gori c	lesai	n
	R^{a}	$arOmega_0^g$, $C_d^{\ b}$	seismik				
				В	С	D^d	E ^d	F ^e
Sistem rangka bangunan:								
Rangka baja dengan	8	2	4	TB	TB	48	48	30
bresing eksentris		-		1.0		.0		20

Tabel 2.9: Faktor R, C_d, dan Ω_0 untuk sistem penahan gaya gempa berdasarkan SNI 1726;2012.

2.7.6. Kekakuan Struktur

Kekakuan struktur adalah gaya yang diperlukan struktur bila mengalami deformasi sebesar satu satuan. Nilai kekakuan struktur ini tergantung dari material yang digunakan, dimensi elemen struktur, penulangan, modulus elastisitas, modulus elastisitas geser dan momen inersia polar. Selain itu, kekakuan struktur juga terkait dengan nilai dari periode struktur tersebut. Dapat dilihat dari Pers. 2.1-2.3.

$$T = \frac{1}{f} = \frac{2\pi}{\omega} \tag{2.1}$$

Di mana,
$$\omega = \sqrt{\frac{k}{m}}$$
 (2.2)

Dengan demikian, $T = \frac{1}{\sqrt{k}}$ (2.3)

Di mana :

T = Periode struktur

f = Frekuensi struktur

 ω = Kecepatan sudut

k =Kekakuan struktur

2.7.7. Respons Spektrum Desain

Respons spektrum merupakan konsep pendekatan yang digunakan untuk keperluan perencanaan bangunan. Definisi respons spektra adalah respon maksimum dari suatu sistem struktur *Single Degree of Freedom* (SDOF) baik percepatan (a), kecepatan (v) dan perpindahan (d) dengan struktur tersebut dibebani oleh gaya luar tertentu. Absis dari respons spectra adalah periode alami sistem struktur dan ordinat dari respons spektra adalah respons maksimum. Kurva respons spektra akan memperlihatkan simpangan relatif maksimum (S_a), kecepatan relatif maksimum (S_v) dan percepatan rekatif maksimum (S_a).

Berdasarkan SNI 1726;2012 pasal 6.3, respons spektra desain harus ditentukan dan dimuat terlebiih dahulu berdasarkan data-data yang ada. Data-data yang dibutuhkan dan prosedur untuk pembuatan respons spektra berdasarkan SNI 1726;2012 pasal 6.3 adalah :

a. Parameter percepatan batuan dasar

Parameter S_S (percepatan batuan dasar pada periode pendek) dan S_a (percepatan batuan dasar pada periode 1 detik) harus ditetapkan masing-masing dari respons spektra perceptan 0,2 detik dan 1 detik dalam peta gerak tanah seismik seperti yang ada pada Gambar 2.16 dan Gambar 2.17 dengan

kemungkinan 2 persen terlampui dalam 50 tahun dan dinyatakan dalam bilangan desimal terhadap percepatan gravitasi.

b. Parameter kelas situs

Berdasarkan sifat-sifat tanah pada situs, maka situs harus diklasifikasikan sebagai situs SA, SB, SC, SD, SE, dan SF berdasarkan SNI 1726;2012 pasal 5.3 dapat dilihat pada Tabel 2.10.

Kelas situs	$\bar{V}_{\rm s}$ (m/detik)	\overline{N} atau $\overline{N}_{ m ch}$	\bar{S}_{u} (kPa)		
SA (batuan keras)	> 1500	N/A	N/A		
SB (batuan)	750 sampai 1500	N/A	N/A		
SC (tanah keras,					
sangat padat dan	350 sampai 750	> 50	≥ 100		
batuan luanak)					
SD (tanah sedang)	175 sampai 350	15 sampai 50	50 sampai 100		
SE (tanah lunak)	< 175	< 15	< 50		
	Atau setiap profil tanah yang mengandung lebih dari 3				
	m tanah dengan karak	teristik sebagai l	perikut:		
	1. Indeks plastisitas, $PI > 20$,				
	2. Kadar air, $w \ge 40$ persen,				
	dan kuat g	eser niralir $\bar{S}_{u} < 2$	25 kPa		
SF (tanah khusus,	Setiap profil lapisan t	anah yang memi	liki salah satu		
yang membutuhkan	atau lebih dari karakte	eristik berikut:			
investigasi geoteknik	• Rawan dan berpot	ensi berpotensi g	gagal atau runtuh		
spesifik dan analisis	akibat beban gempa seperti mudah likuifaksi,				
respons spesifik-situs	lempung sangat sensitif, tanah tersementasi lemah				
yang mengikuti Pasal	 Lempung sanga 	t organik da	n/atau gambut		
6.9.1)	(ketebalan $H > 3$ r	n)	C		

Tabel 2.10:	Klasifikasi	situs	berdasarkan	SNI	1726:2012
1 uooi 2.10.	IMUSIIMUSI	brub	ooraabarkan	D1 11	1/20.2012.

CATATAN, N/A = tidak dapat dipakai

c. Koefisien-koefisien situs dan parameter-parameter respons spektra percepatan gempa maksimum yang dipertimbangkan risiko tertarget (MCE_R).

Untuk penentuan respons spektra percepatan gempa MCE_R di permukaan tanah diperlukan suatu faktor amplifikasi seismik pada periode 0,2 detik dan periode 1 detik. Berdasarkan SNI 1726;2012, faktor amplifikasi meliputi faktor amplifikasi getaran terkait percepatan pada getaran periode pendek (F_a) dan faktor

amplifikasi terkait percepatan yang mewakili getaran periode 1 detik (F_{ν}) . Parameter spektrum respons percepatan pada periode pendek S_{MS} dan periode 1 detik S_{MI} yang disesuaikan dengan pengaruh klasifikasi situs harus ditentukan dengan Pers. 2.4 dan 2.5 berikut ini:

$$S_{MS} = F_a S_S \tag{2.4}$$

$$S_{M1} = F_{v} S_1 \tag{2.5}$$

Dimana:

- S_S = Nilai parameter respon spektra percepatan gempa perioda pendek 0,2 detik di batuan dasar (S_B) mengacu pada Peta Gempa SNI 1726;2012 (Gambar 2.16)
- S_I = Nilai parameter respon spektra percepatan gempa perioda 1,0 detik di batuan dasar (S_B) mengacu pada Peta Gempa SNI 1726;2012 (Gambar 2.17)

 F_a = Koefisien perioda pendek

 F_v = Koefisien perioda 1,0 detik

Koefisien situs F_a dan F_v ditentukan berdasaran Tabel 2.11 dan 2.12

Kelas	Parameter	respons spektr	al percepatan g	empa (MCE _R)	terpetakan pada
cituc	periode pendek, $T = 0,2$ detik, S_S				
situs	$S_S \leq 0,25$	$S_{S} = 0,5$	$S_{S} = 0,75$	$S_{S} = 0,4$	$S_S \ge 1,25$
SA	0,8	0,8	0,8	0,8	0,8
SB	1,0	1,0	1,0	1,0	1,0
SC	1,2	1,2	1,1	1,0	1,0
SD	1,6	1,4	1,2	1,1	1,0
SE	2,5	1,7	1,2	0,9	0,9
SF	SS ^b				

Tabel 2.11: Koefisien situs, F_a berdasarkan SNI 1726;2012.

Tabel 2.12: Koefisien situs, F_v berdasarkan SNI 1726;2012.

Kalas	Parameter respons spektral percepatan gempa (MCE _R) terpetakan pada					
situs	periode pendek, $T = 1$ detik, S_I					
situs	$S_{l} \le 0, 1$	$S_{I} = 0,2$	$S_1 = 0,3$	$S_1 = 0,4$	$S_1 \ge 0,5$	
SA	0,8	0,8	0,8	0,8	0,8	
SB	1,0	1,0	1,0	1,0	1,0	

Kelas	Parameter respons spektral percepatan gempa (MCE _R) terpetakan pada periode pendek, $T = 1$ detik, S_1				
situs	$S_{I} \le 0, 1$	$S_{I} = 0,2$	$S_1 = 0,3$	$S_1 = 0,4$	$S_1 \ge 0,5$
SC	1,7	1,6	1,5	1,4	1,3
SD	2,4	2,0	1,8	1,6	1,5
SE	3,5	3,2	2,8	2,4	2,4
SF	SS ^b				

Tabel 2.12: Lanjutan.

Keterangan :

- Nilai-nilai F_a maupun F_v yang tidak terdapat pada Tabel 2.11 dan 2.12 dapat dilakukan proses interpolasi linier.
- SS merupakan situs yang memerlukan investigasi geoteknik spesifik dan analisis respon situs spesifik.
- d. Parameter percepatan spektra desain

Parameter-percepatan spektra desain untuk periode pendek (S_{DS}) dan periode 1 detik (S_{DI}) harus ditentukan melalui Pers. 2.6 dan 2.7 berikut ini:

$$S_{DS} = \frac{2}{3} S_{MS} \tag{2.6}$$

$$S_{D1} = \frac{2}{3} S_{M1} \tag{2.7}$$

Dimana:

 S_{DS} = Respon spektra percepatan desain untuk perioda pendek

- S_{D1} = Respon spektra percepatan desain untuk perioda 1,0 detik
- e. Prosedur pembuatan respons spektra desain berdasarkan SNI 1726;2012

Selanjutnya, untuk medapatkan kurva spektrum desain harus dikembangkan dengan mengacu pada Gambar 2.18 dan mengikuti ketentuan di bawah ini:

• Untuk periode yang lebih kecil dari T_0 , spektrum respons percepatan desain, S_a , harus diambil dari Pers. 2.8.

$$S_a = S_{DS} \left(0,4 + 0,6 \ \frac{T}{T_0} \right) \tag{2.8}$$

• Untuk perioda lebih besar dari atau sama dengan T_0 dan lebih kecil dari atau sama dengan T_s , spektrum respons percepatan desain, S_a sama dengan S_{DS} .

• Untuk perioda lebih besar dari T_{s} , spektrum respons percepatan desain S_a diambil berdasarkan Pers. 2.9.

$$S_a = \frac{S_{D1}}{T} \tag{2.9}$$

Dimana:

T = Perioda getar fundamental struktur

 S_{DS} = Parameter respons sprktra percepatan desain pada periode pendek

 S_{D1} = Parameter respons sprktra percepatan desain pada periode 1 detik

Untuk nilai T_0 dan T_S dapat ditentukan dengan Pers. 2.10 dan 2.11.

$$T_{0} = 0.2 \frac{S_{D1}}{S_{DS}}$$
(2.10)
$$T_{s} = \frac{S_{D1}}{S_{DS}}$$
(2.11)

Gambar 2.18: Spekrum respons desain.

2.7.8. Analisis Gaya Latera Ekivalen

2.7.8.1. Geser Dasar Seismik

Berdasarkan SNI 1726;2012, Geser dasar seismik (V) dalam arah yang ditetapkan harus ditentukan sesuai dengan Pers. 2.12.

$$V = Cs \cdot Wt \tag{2.12}$$

dimana:

Cs = Koefisien respon seismik yang ditentukan

Wt = Berat total gedung

Berdasarkan SNI 1726;2012 pasal 7.8.1.1 persamaan-persamaan yang digunakan untuk mementukan koefisien C_s adalah:

1. C_s maksimum

Untuk C_s maksimum ditentukan dengan Pers. 2.13.

$$C_{s maksimum} = \frac{S_{DS}}{\left(\frac{R}{I}\right)}$$
(2.13)

dimana:

 S_{DS} = Parameter percepatan spektrum respon desain dalam rentang perioda pendek

- R = Faktor modifikasi respon berdasarkan Tabel 2.9
- I = Faktor keutamaan hunian yang ditentukan berdasarkan Tabel 2.5

Nilai $C_{s maksimum}$ di atas tidak perlu melebihi $C_{s hitungan}$ pada Pers. 2.14.

2. C_{s hasil hitungan}

$$C_{s \text{ hasil hitungan}} = \frac{S_{D1}}{T\left(\frac{R}{I}\right)}$$
(2.14)

dimana:

 S_{D1} = Parameter percepatan respon spektrum desain pada perioda 1 detik

- R = Faktor modifikasi respon berdasarkan Tabel 2.9
- *I* = Faktor keutamaan hunian yang ditentukan berdasarkan Tabel 2.5
- T = Perioda struktur dasar (detik)

Nilai C_{s hitungan} di atas tidak perlu kurang dari nilai C_{s minimum} pada Pers. 2.15.

3. $C_{s \ minimum}$

$$C_{s \text{ minimum}} = 0,044 \ S_{DS} \ I \ge 0,01 \tag{2.15}$$

dimana:

 S_{DS} = Parameter percepatan spektrum respon desain dalam rentang perioda pendek

I = Faktor keutamaan hunian yang ditentukan berdasarkan Tabel 2.5

Sedangkan sebagai tambahan untuk struktur yang berlokasi di daerah dimana S_1 jika lebih besar dari 0,6 g maka C_s harus tidak kurang dari Pers. 2.16.

4. $C_{s \text{ minimum tambahan}}$

$$C_{s \text{ minimum tambahan}} = \frac{0.5S_1}{\left(\frac{R}{I}\right)}$$
(2.16)

dimana:

- S_1 = Parameter percepatan respon spektrum desain yang dipetakan
- R = Faktor modifikasi respon berdasarkan Tabel 2.9
- I = Faktor keutamaan hunian yang ditentukan berdasarkan Tabel 2.5

2.7.8.2. Periode Alami Struktur

Periode adalah besarnya waktu yang dibutuhkan untuk mencapai satu getaran. Hubungan periode dengan kekakuan, frekuensi dan kecepatan sudut struktur telah dijelaskan sebelumnya pada sub Bab 2.7.6. Perioda alami struktur perlu diketahui agar resonansi pada struktur dapat dihindari. Resonansi struktur adalah keadaan di mana frekuensi alami pada struktur sama dengan frekuensi beban luar yang bekerja sehingga dapat menyebabkan keruntuhan struktur.

Berdasarkan SNI 1726;2012 pasal 5.6, perioda struktur fundamental (T) dalam arah yang ditinjau harus diperoleh dengan menggunakan properti struktur dan karakteristik deformasi elemen penahan dalam analisis yang teruji. Perioda struktur fundamental memiliki nilai batas minimum dan batas maksimum. Nilainilai tersebut adalah:

1) Perioda fundamental pendekatan minimum ($T_{a \ minimum}$) ditentukan dari Pers. 2.17.

$$T_{a\ minimum} = C_t h_n^{\ x} \tag{2.17}$$

dimana :

 $T_{a \ minimum} =$ Nilai batas bawah perioda bangunan

- h_n = Ketinggian struktur dalam m diatas dasar sampai tingkat tertinggi struktur (meter)
- C_t = Ditentukan dari Tabel 2.13

= Ditentukan dari Tabel 2.13

х

Tabel 2.13: Nilai parameter periode pendekatan C_t dan x berdasarkan SNI 1726;2012.

Tipe Struktur	Ct	Х
Sistem rangka pemikul momen dimana rangka memikul 100% seismik yang disyaratkan dan tidak dilingkupi atau dihubungkan dengan komponen yang lebih kaku dan akan mencegah rangka dari defleksi jika gaya gempa:		
Rangka baja pemikul momen	0,0724	0,8
Rangka baja dengan bresing eksentris	0,0731	0,75
Rangka baja dengan bresing terkekang terhadap tekuk	0,0731	0,75
Semua sistem struktur lainnya	0,0488	0,75

Perioda fundamental pendekatan maksimum (T_{a maksimum}) ditentukan dari Pers.
 2.18.

 $T_{a \ maksimum} = C_u T_{a \ minimum} \tag{2.18}$

dimana :

 $T_{a maksimum}$ = Nilai batas atas perioda bangunan

 C_u = Ditentukan dari Tabel 2.14

Tabel 2.14: Koefisien untuk batas atas pada periode yang dihitung berdasarkan SNI 1726;2012.

Parameter Percepatan Respon Spektra Desain pada 1 Detik S_{D1}	Koefisien (Cu)
\geq 0,4	1,4
0,3	1,4
0,2	1,5

Parameter Percepatan Respon Spektra Desain pada 1 Detik S_{D1}	Koefisien (Cu)
0,15	1,6
$\leq 0,1$	1,7

2.7.8.3. Distribusi Vertkal Gaya Gempa

Berdasarkan SNI 1726;2012 pasal 7.8.3, gaya gempa Lateral (F_i) yang timbul di semua tingkat harus ditentukan dari Pers. 2.19 dan 2.20.

$$F_i = C_{vx} V \tag{2.19}$$

dan

$$C_{vx} = \frac{w_i h_i^k}{\sum_{i=1}^n w_i h_i^k} \tag{2.20}$$

dimana:

 C_{vx} = Faktor distribusi vertikal

- V = Gaya geser atau laeral desain total
- w_i = Bagian berat seismik efektif total struktur (*W*) yang dikenakan atau ditempatkan pada tingkat-i
- h_i = Tinggi (meter) dari dasar sampai tingkat ke-i
- K = Eksponen yang terkait dengan perioda struktur sebagai berikut.
 - Untuk struktur yang memiliki T \leq 0,5 detik; k = 1
 - Untuk struktur yang memiliki $T \ge 2,5$ detik; k = 2
 - Untuk struktur yang memiliki 0,5 < T < 2,5; k adalah hasil interpolasi

2.7.8.4.Distribusi Horizontal Gaya Gempa

Berdasarkan SNI 1726;2012 pasal 7.8.4, geser tingkat di semua (V_x) harus ditentukan dari Pers. 2.21.

$$V_x = \sum_{i=1}^n F_i \tag{2.21}$$

Dimana:

 F_i = Bagian dari geser dasar seismik (V) (kN) yang timbul di tingkat ke-i

2.7.8.5.Penentuan Simpangan Antar Lantai

Berdasarkan SNI 1726;2012 pasal 7.8.6, simpangan antar lantai hanya terdapat satu kinerja, yaitu pada kinerja batas ultimit. Penentuan simpangan antar lantai tingkat desain (Δ) harus dihitung sebegai perbedaan defleksi pada pusat massa di tingkat teratas dan terbawah yang ditinjau. Apabila pusat massa tidak terletak segaris dalam arah vertikal, diizinkan untuk menghitung defleksi di dasar tingkat berdasarkan proyeksi vertikal dari pusat massa tingkat di atasnya.

Bagi struktur yang dirancang untuk kategori desain seismik C, D, E atau F yang memilki ketidakberaturan horizontal tipe 1a atau 1b pada Tabel 2.1, simpangan antar lantai desain (Δ) harus dihitung sebagai selisish terbesar dari defleksi titik-titik di atas dan di bawah tingkat yang diperhatikan yang letaknya segaris secara vertikal di sepanjang salah satu bagian tepi struktur.

Defleksi pusat massa di tingkat x (δ_x) dalam mm harus ditentukan sesuai dengan Pers. 2.22.

$$\delta_x = \frac{C_d \delta_{xe}}{I_e} \tag{2.22}$$

dimana:

 C_d = Faktor pembesaran defleksi dalam Tabel 2.9

 δ_{xe} = Defleksi pada lokasi yang disyaratkan dan ditentukan sesuai dengan analisis elastis

Ie = Faktor keutamaan yang ditentukan sesuai dengan Tabel 2.5 Penentuan simpangan antar lantai dapat dilihat pada Gambar 2.19.

Gambar 2.19: Penentuan simpangan antar lantai berdasarkan SNI 1726;2012.

Simpangan antar lantai tingkat desain (Δ) tidak boleh melebihi simpangan antar lantai tingkat izin (Δ_a) seperti yang diperlihatkan pada Tabel 2.15.

Tabel 2.15: Simpangan antar lantai iz	n (Δ_a) berdasarkan SNI 1726;2012.
---------------------------------------	---

Struktur	Kategori resiko		
Statia	I atau II	III	IV
Struktur, selain struktur dinding geser batu bata, 4 tingkat atau kurang dengan dinding interior, partisi, langit-langit dan sistem dinding eksterior yang telah didesain untuk mengakomodasi simpangan antar lantai tingkat.	0,025h _{sx} ^c	0,020h _{sx}	0,015h _{sx}
Struktur dinding geser kantilever batu bata ^d	0,010h _{sx}	0,010h _{sx}	0,010h _{sx}
Struktur dinding geser batu bata lainnya	0,007h _{sx}	0,007h _{sx}	$0,007h_{sx}$
Semua struktur lainnya	0,020h _{sx}	0,015h _{sx}	0,010h _{sx}

2.7.9. Analisis Ragam Spektrum Respons

Metode analisis ragam spektrum respons mendefinisikan bahwa simpangan struktur yang terjadi merupakan penjumlahan dari simpangan masing-masing ragam getarnya.

Menurut Budiono dan Supriatna (2011) parameter respons terkombinasi respons masing-masing ragam yang ditentukan melalui spektrum respons rencana gempa merupakan respons maksimum. Pada umumnya, respons masing-masing ragam mencapai nilai maksimum pada saat yang berbeda sehingga respons maksimum ragam-ragam tersebut tidak dapat dijumlahkan begitu saja. Terdapat dua cara metode superposisi, yaitu metode Akar Kuadrat Jumlah Kuadrat (*square Root of the Sum of Squares*) dan Kombinasi Kuadratik Lengkap (*Complete Quadratic Combination*).

Dalam hal ini, jumlah ragam vibrasi yang ditinjau dalam penjumlahan ragam respons menurut metode ini harus sedemikian rupa sehingga partisipasi massa dalam menghasilkan respons total harus mencapai sekurang-kurangnya 90%. Untuk penjumlahan respons ragam yang memiliki waktu-waktu getar alami yang berdekatan, harus dilakukan dengan metode yang telah disebutkan sebelumnya yaitu Kombinasi Lengkap Kuadratik (*Complete Quadratic Combination*/ CQC). Waktu getar alami harus dianggap berdekatan apabila selisihnya kurang dari 15%. Untuk struktur yang memiliki waktu getar alami yang berjauhan, penjumlahan respons ragam tersebut dapat dilakukan dengan metode yang dikenal dengan Akar Kuadrat Jumlah Kuadrat (*square Root of the Sum of Squares*/ SRSS).

Berdasarkan SNI 1726;2012 pasal 7.9.4.1, nilai akhir respon dinamik struktur gedung terhadap pemebebanan gempa nominal akibat pengaruh gempa rencana dalam suatu arah tertentu, tidak boleh diambil dari kurang 85% nilai respons ragam yang pertama. Bila respons dinamik struktur gedung dinyatakan dalam gaya geser V_t , maka persyaratan tersebut dapat dinyatakan dengan Pers. 2.23.

$$V_t \ge 0.85 V_1$$
 (2.23)

dimana:

 V_1 = Gaya geser dasar nominal sebagai respons ragam yang pertama atau yang didapat dari prosedur gaya geser statik ekivalen.

Maka, apabila nilai akhir respons dinamik lebih kecil dari nilai respons ragam pertama, gaya geser tingkat nominal akibat pengaruh gempa rencana sepanjang tinggi struktur gedung hasil analisis spektrum respons ragam dalam suatu arah tertentu harus dikalikan nilainya dengan suatu faktor skala yang ditentukan dengan Pers. 2.24.

Faktor Skala =
$$\frac{0.85 V_1}{Vt} \ge 1$$
 (2.24)

Dimana:

- V_t = Gaya geser dasar nominal yang didapat dari hasil analisis ragam spektrum respons yang telah dilakukan
- V_1 = Gaya geser dasar prosedur gaya lateral statik ekivalen

2.7.10. Pembebanan dan Kombinasi Pembebanan

Pembebanan struktur berdasarkan SNI 1727;2013, beban yang bekerja pada struktur berupa beban mati, beban hidup dan beban gempa selain itu ada pula beban dari lift dan tangga.

1. Beban Mati

Beban mati merupakan berat seluruh bahan konstruksi bangunan gedung yang terpasang, termasuk dinding, lantai, atap, plafon, tangga, dinding partisi tetap, *finishing*, kalding gedung dan komponen arsitektural dan struktural lain serta peralatan layan terpasang lain termasuk berat keran. Beban mati terdiri dari :

- Berat bahan konstruksi :
 - Berat sesungguhnya bahan
 - Data berat jenis dan berat bahan pada standar sebelumnya bisa digunakan
- Berat peralatan layan tetap :
 - Peralatan/ mesin yang menyatu dan selalu ada selama masa layan bangunan seperti : peralatan plambing, M/E, alat pemanas, ventilasi, sistem pengkodisisan udara dll
- 2. Beban Hidup

Beban hidup merupakan beban yang diakibatkan oleh pengguna dan penghuni bangunan gedung atau struktur lain yang tidak termasuk bahan konstruksi dan beban lingkungan, seperti beban angin, beban hujan, beban gempa, beban banjir atau beban mati.

Beban hidup atap merupakan beban pada atap yang diakibatkan pelaksanaan pemeliharaan oleh pekerja, peralatan dan material dan selama masa layan struktur yang diakibatkan oleh benda bergerak, seperti tanaman atau benda dekorasi kecil yang tidak berhubungan dengan penghunian.

- Beban merata :
 - Minimum sesaui Tabel 2.16
- Beban terpusat :
 - Untuk lantai, atap dan sejenisnya
 - Bekerja merata di area 762 mm x 762 mm
 - Minimum sesuai Tabel 2.16
 - Penempatan pada lokasi yang menghasilkan efek beban maksimum
- Beban partisi :
 - Minimal $0,72 \text{ kN/m}^2$
- Beban impak :
 - Tangga berjalan : mengacu pada ASME A17.1
 - Mesin :
 - Mesin ringan : berat ditingkatkan 20%
 - Mesin bergerak maju mundur : berat ditingkat 50%

Tabel 2.16: beban hidup terdistribusi merata minimum, L_o dan beban hidup terpusat minimum.

Hunian atau penggunaan	Merata Psf (kN/m^2)	Terpusat
Apartemen (lihat rumah tinggal)		
Sistem lantai akses		
Ruang kantor	50 (2,4)	2000 (8,9)
Ruang komputer	100 (4,79)	2000 (8,9)
Gudang persenjataan dan ruang latihan	$150(7,18)^a$	
Ruang pertemuan		
Kursi tetap (terikat di lantai)	$100(4,79)^a$	
Lobi	$100(4,79)^a$	
Kursi dapat dipindahan	$100(4,79)^a$	
Panggung pertemuan	$100(4,79)^a$	
Lantai podium	$150(7,18)^a$	
Balkon dan dek	1,5 kali beban	

Hunian atou non councer	Merata	Terpusat
Human atau penggunaan	psf (KN/m ²)	lb (KN)
	hidup untuk	
	daerah yang	
	dilayani. Tidak	
	perlu melebihi	
	100 psf (4,79	
	KN/m ²)	
Jalur untuk akses pemeliharaan	40 (1,92)	300 (1,33)
Koridor		
Lantai pertama	100 (4,79)	
Lantai lain	sama seperti	
	pelayanan	
	hunian kecuali	
	disebutkan lain	
Ruang makan dan restoran	100 (4,79)ª	
Hunian (lihat rumah tinggal)		
Ruang mesin elevator (pada daerah 2 in.x 2		300 (1.33)
in. [50 mmx50mm])		300 (1,33)
Konstruksi pelat lantai finishing ringan (pada		200 (0.89)
area 1 in.x 1 in.[25 mm x 25 mm])		200 (0,0))
Jalur penyelamatan terhadap kebakaran	100 (4,79)	
Hunian satu keluarga saja	40 (1,92)	
Tangga permanen	Lihat pasal 4.5	
Garasi/Parkir		
Mobil penumpang saja	$40(1,92)^{abc}$	
Truk dan bus		
Susuran tangga, rel pengaman dan batang		
pegangan	Lihat pasal 4.5	
Helipad	60 (2,87) ^{de} tidak	
1	boleh direduksi	
Rumah sakit		
Ruang operasi, laboraturium	60 (2,87)	1000 (4,45)
Ruang pasien	40 (1,92)	1000 (4,45)
Koridor diatas lantai pertama	80 (3,83)	1000 (4,45)
Hotel (lihat rumah tinggal)		
Perpustakaan		
Ruang baca	60 (2,87)	1000 (4,45)
Ruang penyimpanan	150 (7,18) ^a	1000 (4,45)
Koridor di atas lantai pertama	80 (3,83)	1000 (4,45)
Pabrik		
Ringan	125 (6,00)ª	2000 (8.90)
Berat	250 (11,97)ª	3000 (13,4)

Tabel 2.16: Lanjutan.

Tabel 2.16: Lanjutan.

	Merata	Terpusat
Hunian atau penggunaan	psf (KN/m²)	lb (KN)
Gedung perkantoran:		
Ruang arsip dan komputer harus		
dirancang untuk beban yang lebih berat		
berdasarkan pada perkiraan hunian		
Lobi dan koridor lantai pertama	100 (4,79)	2000 (8,90)
Kantor	50 (2,40)	2000 (8,90)
Koridor di atas lantai pertama	80 (3,83)	2000 (8,90)
Lembaga hukum		
Blok sel	40 (1,92)	
Koridor	100 (4,79)	
Tempat rekreasi		
Tempat bowling, kolam renang, dan	75 (3,59)ª	
penggunaan vang sama		
Bangsal dansa dam Ruang dansa	100 (4,79)ª	
Gimnasium	100 (4,79)ª	
Tempat menonton baik terbuka atau	100 (4,79) ^{ak}	
tertutup		
Stadium dan tribun/arena dengan	60 (2,87) ^{ak}	
tempat duduk tetap (terikat pada lantai)		
Rumah tinggal		
Hunian (satu keluarga dan dua keluarga)		
Loteng yang tidak dapat didiamin	10 (0,48)'	
tanpa gudang		
Loteng yang tidak dapat didiamin	20 (0,96) ^m	
dengan gudang		
Loteng yang dapat didiami dan ruang	30 (1,44)	
tidur		
Semua ruang kecuali tangga dan	40 (1,92)	
balkon		
Semua hunian rumah tinggal lainnya		
Rumah pribadi dan koridor yang	40 (1,92)	
melayani mereka	100 (4 70)	
Ruang publik" dan koridor yang melayani	100 (4,79)	
Atap Atap datar harbubung dan langkung	20 (0.96)	
Atap diaunakan untuk taman atan	100(4,79)	
Atap ungunakan untuk taman atap	100(+,77) Sama senerti	
Atap yang digunakan untuk tujuan iam	hunian dilayani	
	a	
Atan yang digunakan untuk hunian lainnya		
Awning dan kanopi		
Konstruksi pabrik vang didukung oleh	5 (0.24) tidak	
struktur rangka kaku ringan	boleh direduksi	

	Merata	Terpusat
Human atau penggunaan	psf (KN/m²)	lb (KN)
Rangka tumpu layar penuh	5 (0.24) tidak	
8	boleh direduksi	
	dan berdasarkan	
	luas tributari	
	dari atan yang	
	ditumpu oleh	
	rangka	
Semua konstruksi lainnya	20(0.96)	
Komponen struktur atan utama yang	20 (0,90)	
terhuhung langsung dengan pekeriaan lantai		
Titik papal tunggal dari batang bawah		
ronge eten eten setien titik seneniong		200 (0,89)
komponen struktur utema vang		
mondultung atan diatas nahrik, gudang		
don norhoiten geregi		2000 (8,9)
Samua komponen struktur atan utama		200 (1 22)
lainnya		300 (1,33)
Semua permukaan atap dengan beban		300 (1,33)
pekerja pemeliharaan		
Sekolah		
Ruang kelas	40 (1,92)	1000 (4,5)
Koridor diatas lantai pertama	80 (3,83)	1000 (4,5)
Koridor lantai pertama	100 (4,79)	1000 (4,5)
Bak-bak/scuttles, rusuk untuk atap kaca dan		200 (0,89)
langit-langit yang dapat diakses		
Pinggir jalan untuk pejalan kaki, jalan lintas	250 (11,97) ^{ap}	8000 (35,6)
kendaraan, dan lahan/jalan untuk truk-truk		
Tangga dan jalan keluar	100 (4,79)	300 ^r
Rumah tinggal untuk satu dan dua	40 (1,92)	300 ^r
keluarga saja		
Gudang diatas langit-langit	20 (0,96)	
Gudang penyimpanan barang sebelum		
disalurkan ke pengecer (jika diantisipasi		
menjadi gudang penyimpanan, harus		
dirancang untuk beban lebih berat)		
Ringan	125 (6,00)ª	
Berat	250 (11,97)ª	
Toko		
Eceran		
Lantai pertama	100 (4,79)	1000 (4,45)
Lantai diatasnya	75 (3,59)	1000 (4,45)
Grosir, di semua lantai	125 (6,00)ª	1000 (4,45)
Penghalang kendaraan	Lihat pasal 4,5	

Tabel 2.16: Lanjutan.

Tabel 2.16: Lanjutan.

Hunian atau penggunaan	Merata psf (KN/m²)	Terpusat lb (KN)
Susunan jalan dan panggung yang ditinggikan		
(selain jalan keluar)	60 (2,87)	
Pekarangan dan teras, jalur pejalan kaki	100 (4,79)ª	

- Reduksi beban hidup merata
 - Untuk struktur dengan $K_{LL}A_T \ge 37,16 \text{ m}^2$
 - $L \ge 4,79 \text{ kN/m}^2$, garasi mobil penumpang dan tempat pertemuan tidak boleh direduksi
 - Beban hidup tereduksi dihitung dengan Pers. 2.12.

$$L = L_0 \left(0,25 + \frac{4,57}{\sqrt{K_{LL} \cdot A_T}} \right)$$
(2.25)

$$L \geq 0.50 L_0$$
 - Komponen struktur penyangga 1 lantai

$$L \geq 0.40 L_0$$
 - Komponen struktur penyangga ≥ 2 lantai

dimana:

$$L$$
 = Beban hidup desain tereduksi

 L_0 = Beban hidup desain tanpa reduksi

$$K_{LL}$$
 = Faktor elemen beban hidup berdasarkan Tabel 2.17

 A_T = Luas tributari

Tabel 2.17: Faktor elemen beban hidup, K_{LL}.

Elemen	K_{LL}^{a}
Kolom-kolom interior	4
Kolom-kolom eksterior tanpa pelat kantilever	4
Kolom-kolom tepi dengan pelat kantilever	3
Kolom-kolom sudut dengan pelat kantilever	2
Balok-balok tepi tanpa pelat-pelat kantilever	2
Balok-balok interior	2
Semua komponen struktur yang tidak disebut di atas:	
Balok-balok tepi dengan pelat-pelat kantilever	1
Balok-balok kantilever	1
Pelat-pelat satu arah	

Tabel 2.17: Lanjutan.

Elemen	K_{LL}^{a}
Pelat-pelat satu arah Komponen struktur tanpa ketentuan-ketentuan untuk penyaluran Geser menerus tegak lurus terhadap bentangnya	1

3. Beban Gempa

Beban gempa merupakan beban yang timbul akibat pergerakkan tanah dimana struktur tersebut berdiri. Pembebanan struktur beban gempa berdasarkan SNI 1726:2012. Analisis beban gempa terdapat 3 cara analisis, yaitu analisis gaya lateral ekivalen, analisis spektrum respons ragam dan prosedur riwayat respons seismik.

Kombinasi beban untuk metode ultimit struktur, komponen-komponen struktur, dan elemen-elemen fondasi harus sedemikian hingga kuat rencananya sama atau melebihi pengaruh beban-beban terfaktor.

Menurut Budiono dan Supriatna (2011), faktor-faktor dan kombinasi beban untuk beban mati nominal, beban hidup nominal dan beban gempa nominal adalah:

- 1. 1,4 DL
- 2. 1,2 DL + 1,6 LL
- 3. $1,2 \text{ DL} + 1 \text{ LL} \pm 0,3 (\rho \text{ Q}_E + 0,2 \text{ S}_{DS} \text{ DL}) \pm 1 (\rho \text{ Q}_E + 0,2 \text{ S}_{DS} \text{ DL})$
- 4. $1,2 \text{ DL} + 1 \text{ LL} \pm 1 (\rho \text{ } Q_E + 0,2 \text{ } S_{DS} \text{ DL}) \pm 0,3 (\rho \text{ } Q_E + 0,2 \text{ } S_{DS} \text{ DL})$
- 5. $0.9 \text{ DL} \pm 0.3 (\rho \text{ Q}_E 0.2 \text{ S}_{DS} \text{ DL}) \pm 1 (\rho \text{ Q}_E 0.2 \text{ S}_{DS} \text{ DL})$
- 6. $0.9 \text{ DL} \pm 1 \text{ (}\rho \text{ }Q_E + 0.2 \text{ }S_{DS} \text{ DL}\text{)} \pm 0.3 \text{ (}\rho \text{ }Q_E 0.2 \text{ }S_{DS} \text{ DL}\text{)}$

Untuk penggunaan dalam kombinasi beban (3) dan (4), E harus didefinisikan sesuai dengan Pers. 2.26.

$$E = E_h + E_v \tag{2.26}$$

• Untuk penggunaan dalam kombinasi beban (5) dan (6), E harus didefinisikan sesuai dengan Pers. 2.27.

$$E = E_h - E_v \tag{2.27}$$
dimana:

E = Pengaruh beban seismik

 E_h = Pengaruh beban seismik horizontal yang akan didefinisikan selanjutnya

 E_v = Pengaruh beban seismik vertikal yang akan didefinisikan selanjutnya

• Untuk pengaruh beban seismik E_h harus ditentukan dengan Pers. 2.28.

$$E_h = \rho \ Q_E \tag{2.28}$$

dimana:

- Q = pengaruh gaya seismik horizontal dari V atau F_p
- ρ = Faktor redundansi, untuk desain seismik D sampai F nilainya 1,3
- Sedangkan pengaruh beban seismik E_v harus ditentukan dengan Pers. 2.29.

$$E_{\nu} = 0.2 \, S_{DS} \, DL \tag{2.29}$$

Faktor redundansi (ρ) harus dikenakan pada sitem penahan gaya seismik masingmasing dalam kedua arah ortogonal untuk semua struktur.

Kondisi dimana nilai p diinzinkan 1 sebagai berikut:

- Struktur dirancang untuk kategori desain seismik B atau C.
- Perhitungan simpangan antar lantai dan pengaruh P-delta; desain komponen nonstruktural.
- Desain struktural nongedung yang tidak mirip dengan bangunan gedung.
- Desain elemen kolektor, sambungan lewatan, dan sambungannya dimana kombinasi beban dengan faktor kuat-lebih berdasarkan pasal 7.4.3 pada SNI 1726:2012 yang digunakan
- Desain elemen struktur atausambungan dimana kombinasi beban dengan faktor kuat-lebih berdasarkan pasal 7.4.3 disyaratkan untuk didesain.
- Beban diafragma ditentukan dengan meggunakan Pers. 2.30 yaitu:

$$F_{px} = \frac{\sum_{i=x}^{n} F_i}{\sum_{i=x}^{n} w_i} w_{px}$$
(2.30)

dimana:

 F_{px} = Gaya desain diafragma

 F_i = Gaya desain yang diterapkan di tingkat i

 w_i = Tributari berat sampai tingkat i

 w_{px} = Tributari berat sampai diafragma di tingkat x

dimana F_{px} tidak boleh kurang dari Pers. 2.30.

$$F_{px} = 0.2 \ S_{DS} \ I_{ex} \ W_{px} \tag{2.30}$$

dan F_{px} tidak boleh melebihi dari Pers. 2.31.

$$F_{px} = 0.4 S_{DS} I_{ex} W_{px}$$
(2.31)

- Struktur bagian sistem peredaman
- Desain dinding geser struktural terhadap gaya keluar bidang, termasuk sistem angkurnya.

Untuk struktur yang dirancang bagi kategori desain seismik D,E, dan F faktor redundansi (ρ) harus sama dengan 1,3; kecuali jika satu dari dua kondisi berikut dipenuhi dimana ρ dizinkan diambil sebesar 1:

• Masing-masing tingkat yang menahan lebih dari 35% geser dasar dalam arah yang ditinjau sesuai dengan Tabel 2.18.

Elemen Penahan Gaya Lateral	Persyaratan
Rangka dengan bresing	Pelepasan bresing individu, atau
	sambungan yang terhubung, tidak akan
	mengakibatkan reduksi kuat tingkat
	sebesar lebih dari 33%, atau sustem yang
	dihasilkan tidak mempunyai
	ketidakteraturan torsi yang berlebihan
	(ketidakteraturan struktur horisontal Tipe
	1b).

Tabel 2.18: Persyaratan masing-masing tingkat yang menahan lebih dari 35% gaya geser dasar.

 Struktur dengan denah beraturan disemua tingkat dengan sistem penahan gaya seismik terdiri dari paling sedikit dua bentang permeter penahan gaya seismik yang merangka pada masing-masing sisi struktur dalam masing-masing arah ortogonal disetiap tingkat yang menahan lebih dari 35% geser dasar. Jumlah bentang untuk dinding geser harus dihitung sebagai panjang dinding geser dibagi dengan tinggi tingkat atau dua kali panjang dinding geser dibagi dengan tinggi tingkat untuk konstruksi rangka ringan.

2.8. Ketentuan Seismik Untuk Struktur Baja

2.8.1. Konsep

Kinerja struktur tahan gempa berupa penyerapan energi gempa secara efektif melalui terbentuknya sendi plastik pada bagian struktur tertentu dengan kriteria kekuatan, kekakuan, daktilitas dan dispasi energi. Adapun terbentuk sendi plastik pada masing-masing sistem struktur dapat dilihat pada Tabel 2.19.

Sistem Struktur	Bagian Yang Leleh
Sistem Rangka pemikul Momen (<i>Moment</i> <i>Resisting</i> <i>Frames</i>)	Ujung Balok
Sistem Rangka Bresing Konsentrik (Concentrically Braced Frames)	Pelat Buhul (Bresing tekuk)
Sistem Rangka Bresing Eksentrik (Eccentrically Braced Frames)	"Link" (Bresing stabil)

Tabel 2.19: Bagian yang leleh (sendi plastis) pada setiap sistem struktur.

Bagian yang leleh (sendi plastik) harus mampu memperlihatkan kurva histeristik yang gemuk dan stabil, sebagaimana terlihat pada Gambar 2.20.

Gambar 2.20: Kurva histeritik pada rangka momen khusus.

2.8.2. Rangka Terbresing Eksentris (*Eccentrically Braced Frames*)2.8.2.1. Elemen Perangkai (Link)

Perilaku link pada suatu sistem EBF bisa berupa moment link dan bisa sebagai *shear* link tergantung dari panjang pendeknya element link. Link adalah elemen yang berperilaku sebagai balok pendek yang pada kedua sisinya bekerja gaya geser dengan arah yang berlawanan serta momen yang diakibatkan oleh gaya geser tersebut. Akibat gaya geser yang bekerja berlawanan arah maka momen yang bekerja pada ujung-ujungnya mempunyai besar dan arah yang sama. Kedua gaya tersebut akan mengakibatkan terjadinya plastisifikasi pada elemen link.

Gambar 2.21: Gaya-gaya pada elemen link.

Seperti telah dijelaskan diatas bahwa elemen link berguna untuk mendisipasi energi gempa, maka elemen tersebut harus direncanakan secara khusus agar fungsi tersebut dapat tercapai. Untuk mencapai fungsi ini perencanaan elemen link harus memperhatikan bahwa elemen-elemen lain diluar link harus tetap berprilaku elastis saat elemen link telah mencapai kelelehan.

2.8.2.2. Konsep Perencanaan Elemen Perangkai

Gaya-gaya yang mendominasi pada suatu elemen link adalah gaya geser dan gaya lentur. Berdasarkan gaya tersebut pola kelelehan elemen link dapat dibedakan menjadi leleh geser dan leleh lentur. Kondisi batas antara mekanisme keruntuhan akibat geser dan lentur dapat dijelaskan dengan menggunakan suatu pemodelan kantilever sederhana pada Gambar 2.22.

Gambar 2.22: Balok kantilever sederhana.

Panjang kantilever tersebut merupakan rasio momen maksimum dan geser maksimum pada bentang atau besarnya jarak antara titik dimana momen maksimum terjadi dengan titik dimana momen minimum (M=0) terjadi. Kondisi ini memenuhi Pers.2.32.

$$dv = \frac{M_{maks}}{V_m}$$
(2.32)

Dimana :

 d_v = panjang bentang (mm)

 M_{maks} = momen maksimum (Nmm)

 V_m = gaya geser di titik terjadinya momen maksimum (N)

Perilaku sistem rangka EBF juga dijelaskan dengan konsep yang sama. Rasio pada kondisi berimbang tercapai ketika pada bentang tersebut terjadi secara terusmenerus leleh geser dan lentur, sesuai dengan Pers.2.33.

$$d_{\rm Vb} = \frac{M_{\rm p}}{V_{\rm p}} \tag{2.33}$$

Dimana :

 d_{vb} = panjang bentang ketika gaya geser dan momen berimbang (mm)

M_p = momen plastis penampang (Nmm)

 V_p = gaya geser plastis penampang (N)

Kekuatan atau kondisi batas link geser dan lentur didefinisikan sebagai berikut.

• Untuk pelelehan geser.

$$V_{n} = V_{p} \tag{2.34}$$

$$V_{\rm P} = 0.6F_{\rm y}A_{\rm tw} \text{ untuk } \frac{P_{\rm r}}{P_{\rm c}} \le 0.15$$
 (2.35)

$$V_{\rm p} = 0.6F_{\rm y}A_{\rm tw}\sqrt{1 - \left(\frac{P_{\rm r}}{P_{\rm c}}\right)^2}$$
 untuk $\frac{P_{\rm r}}{P_{\rm c}} > 0.15$ (2.36)

$$A_{tw} = (d - 2t_f)t_w \tag{2.37}$$

• Untuk pelelehan lentur.

$$V_{\rm n} = \frac{2M_{\rm p}}{\rm e} \tag{2.38}$$

$$M_{\rm P} = F_{\rm y} Z \text{ untuk } \frac{P_{\rm r}}{P_{\rm c}} \le 0.15$$
(2.39)

$$M_{p} = F_{y}Z\left[\frac{1-\frac{P_{r}}{P_{c}}}{0.85}\right] untuk \frac{P_{r}}{P_{c}} > 0.15$$
 (2.40)

Dimana :

 A_{tw} = luas badan balok baja (mm²)

 F_y = tegangan leleh minimum yang disyaratkan dari tipe baja (Mpa)

 P_c = kekuatan aksial tersedia kolom (N)

 P_r = kekuatan tekan perlu (N)

$$t_f$$
 = tebal sayap profil (mm)

$$t_w$$
 = tebal badan profil (mm)

Z = modulus penampang plastis komponen struktur (mm³)

2.8.2.3. Jenis Elemen Perangkai Berdasarkan Panjangnya

Bentang geser yang ditunjukan oleh kantilever pada Gambar 2.21 memiliki hubungan $M_p = d_{vb} V_p$ dimana balok kantilever tersebu diumpamakan sebagai link. Balok ini akan berperilaku sebagai moment link jika panjang link (e) lebih besar dari d_{vb} dan akan berperilaku sebagai *shear* link jika panjang link (e) lebih kecil dari d_{vb}. Apabila link terletak dekat kolom maka diasumsikan bahwa link tersebut dihubungkan dengan kolom melalui sambungan yang memiliki kapasitas plastis sekurang-kurangnya sama dengan yang dimiliki oleh balok (Gambar 2.23.a). Sebaliknya, ketika link terletak menerus antara dua bresing (Gambar 2.23.b), maka sambungan tersebut harus mampu memikul sendi plastis yang terjadi pada ujung bresing. Konsekuensinya, seluruh link pada kedua gambar tersebut diasumsikan akan mencapai kondisi sendi plastis pada kedua ujungnya. Sehingga kondisi batas antara leleh geser dan leleh lentur pada link untuk jenis struktur EBF dirumuskan dengan Per.2.41.

$$e_b = 2d_{vb} = \frac{2M_p}{V_P}$$
(2.41)

Dimana :

 e_b = panjang link pada kondisi berimbang (mm)

a, Link berada dekat kolom

b. Link berada di tengah kolom

Gambar 2.23: Letak link pada sistem EBF.

Batas yang jelas antara leleh lentur dan leleh geser ini sebenernya tidak diketahui dengan pasti, sehingga pada perencanaannya diasumsikan bahwa leleh geser murni akan terjadi pada saat panjang link (e) lebih kecil dari 80 % panjang link pada kondisi berimbang. Ketika panjang link mencapai lebih besar sama dengan 5,0 M_p / V_p , diasumsikan bahwa mekanisme leleh yang terjadi pada link adalah lentur murni.

Jenis link berdasarkan panjangnya dapat dibedakan menjadi empat kelompok, yaitu :

- a. E ≤ 1,6 M_p / V_p, link geser murni.
 Jenis link ini leleh akibat gaya geser pada respon/deformasi inelastik.
- b. 1,6 M_p / V_p < e ≤ 2,6 M_p / V_p, link dominasi geser.
 Jenis link ini leleh akibat dominasi geser (pada kombinasi geser dan lentur) pada respon/deformasi inelastik.
- c. 2,6 M_p / V_p < e < 5,0 M_p / V_p, link dominasi lentur. Jenis link ini leleh akibat dominasi lentur (pada kombinasi geser dan lentur) pada respon/deformasi inelastik.
- d. $E \ge 5,0 M_p / V_p$, link lentur murni. Jenis link ini leleh akibat lentur pada respon/deformasi inelastik.

2.8.2.4. Perilaku Inelastik Elemen Perangkai

Terjadinya pastifikasi yang berpusat di elemen link akan memberikan nilai daktilitas yang relatif tinggi pada sistem portal EBF. Hal ini karena elemen link mempunyai kapasitas inelastik yang relatif tinggi bila dibandingkan dengan elemen-elemen lainnya. Plastifikasi yang terjadi pada elemen link disebabkan oleh kombinasi geser dan momen yang bekerja pada kedua ujungnya. Berdasarkan kedua gaya yang bekerja ini, sifat keruntuhan link secara garis besar dapat dibagi keruntuhan akibat geser dan keruntuhan akibat momen.

Gambar 2.24: Pembentukan sendi plastis geser

Plastifikasi geser yang terjadi pada link ditandai dengan terbentuknya sendi plastis geser pada kondisi beban batas, yaitu V_P pada badan dan M_P pada sayap, seperti terlihat pada Gambar 2.24. Mekanisme terbentuknya sendi plastis geser pada elemen link dimulai ketika pada kedua ujungnya bekerja suatu gaya geser sebesar V. Kedua gaya geser tersebut secara otomatis menimbulkan momen pada kedua ujung link, yaitu sebesar M₁ dan M₂ seperti terlihat pada Gambar 2.25. Apabila diasumsikan M₁ lebih besar dari M₂, dan gaya-gaya tersebut bertambah besar sehingga melewati kondisi batas maka kelelehan pertama akan terjadi pada ujung link sebelah kiri. Ketika gaya terus bertambah maka kelelehan selanjutnya akan berpindah dari ujung sebelah kiri keujung sebelah kanan, hal ini terjadi karena ujung sebelah kiri telah mencapai kapasitas gesernya. Seiring dengan bertambahnya gaya, maka plastifikasi ini terjadi karena adanya retribusi momen pada kedua ujung link. Ketika seluruh penampang link telah mengalami plastifikasi, maka tercapailah kondisi M₁ = M₂ = M_P dan V = V_P.

a. Keseimbangan sendi geser.b. Plastisifikasi geser link.Gambar 2.25: Keseimbangan dan plastisifikasi.

2.8.2.5. Sudut Rotasi Perangkai

Dalam perencanaan EBF, lokasi titik belok (*inflection*) biasanya diasumsikan terjadi pada link. Secara teoritis titik belok ini terjadi pada jarak M_P/V_P dihitung dari pengaku. Kondisi ini dipenuhi ketika link terletak simetris seperti ditunjukan pada Gambar 2.25a. Dimana titik belok tersebut terletak ditengah link. Kondisi ini memungkinkan sendi plastis terbentuk pada tengah bentang, yaitu link. Akan tetapi ketika link yang terletak antara kolom dan bresing, rotasi kemungkinan akan terjadi pada permukaan kolom yang mengakibatkan regangan yang cukup besar pada daerah sayap kolom. Untuk EBF jenis ini, diasumsikan sendi plastis terbentuk pada tengah disebutkan sendi plastis terbentuk pada tengah terjadi pada tengah bentang seperti yang telah disebutkan sebelumnya, akan tetapi terjadi pada daerah dekat permukaan kolom.

Leleh yang terjadi pada link akibat deformasi elastis dari elemen-elemen kaku pada sistem rangka menyebabkan terjadinya rotasi pada link. Sudut rotasi link ini merupakan sudut inelastik antara link dengan balok diluar link pada saat besar total simpangan lantai yang terjadi sama dengan simpangan lantai rencana seperti pada Gambar 2.26.

Sudut rotasi link dihitung berdasarkan defleksi lateral yang terjadi sesuai dengan geometri rangka EBF yang menggunakan link tunggal pada tiap tingkatnya, sudut rotasi link dihitung dengan Pers.2.42.

$$Y_{\rm p} = \frac{L}{e} \theta_{\rm p} \tag{2.42}$$

Sedangkan apabila pada sistem EBF yang menggunakan 2 buah link pada tiap tingkatnya, maka sudut rotasi link dihitung dengan Pers.2.43.

$$Y_{\rm p} = \frac{L}{2e} \theta_{\rm p} \tag{2.43}$$

Dimana :

 γ_p = sudut rotasi link (radius)

L = lebar bentang (m)

e = panjang link (mm)

 $\theta_{\rm p}$ = sudut penyimpangan plastis (radius)

Gambar 2.26: Sudut rotasi link.

2.9. Pushover Analysis Dengan Metode Koefisien Perpindahan (FEMA 356)

Displacement Coeficient Method (DCM) merupakan salah satu cara untuk mengetahui kinerja suatu struktur. Konsep dasar dari analisis statis pushover nonlinier adalah memberikan pola pembebanan statis tertentu dalam arah lateral yang ditingkatkan secara bertahap (*incremental*). Penambahan beban statis ini dihentikan sampai struktur tersebut mencapai sampai target atau beban tertentu. Dari analisis statis *pushover* nonlinier ini didapatkan kurva kapasitas yang kemudian diolah lebih lanjut dengan metode tertentu, salah satunya adalah Displacement Coeficient Method (DCM) [FEMA 356].

2.9.1. Kinerja Struktur Metode FEMA 356

Berdasarkan FEMA 356 maka kinerja struktur bangunan saat terjadi gempa dibagi menjadi beberapa kategori dan dapat dilihat pada Gambar 2.27.

Gambar 2.27: Tingkat Kinerja Struktur (FEMA 356).

Sedangkan kondisi bangunan pasca gempa dan katagori bangunan pada tingkat kinerja struktur sesuai FEMA 356 dapat dilihat pada Tabel 2.20.

Tabel 2.20: Kondisi bangunan pasca gempa dan katagori bangunan pada tingkat kinerja struktur (FEMA 356).

Tingkat	Kondisi Pangunan Pasaa Compa	Katagori
Kinerja	Kondisi Bangunan Fasca Gempa	Bangunan
Operational	Bangunan tidak ada kerusakan yang berarti pada komponen struktural maupun non struktural. Secara spesifik hal ini ditandai dengan tidak ada pergeseran permanen pada bangunan, sebagian besar struktur dapat mempertahankan kekuatan dan kekakuannya, sedikit retak dan semua sistem penting pada gedung dapat beroperasi dengan normal.	-
Imediate Ocupancy	Bangunan tidak ada kerusakan yang berarti pada komponen struktural. Kekuatan dan kekakuan gedung masih hampir sama dengan kondisi sebelum struktur dilanda gempa. Pada komponen non struktural, peralatan, dan isi gedung umumnya masih aman, tetapi secara operasional tidak dapat bekerja karena kegagalan mekanik atau kurangnya utilitas.	Rumah sakit, Gudang bahan bakar/bahan berbahaya dll.
Life Safety	Dalam katagori ini berarti bangunan pasca gempa terjadi beberapa kerusakan komponen struktur dan kekuatan serta kekakuannya berkurang. Struktur masih mempunyai kekuatan cukup untuk memikul beban-beban yang terjadi pada ambang keruntuhan. Komponen non struktural masih ada tetapi tidak dapat berfungsi dan dapat digunakan kembali apabila telah dilakukan perbaikan.	Fasilitas- fasilitas umum, Gedung perkantoran, perumahan, gedung dll.

2.9.2. Titik Kinerja Struktur Metode FEMA 356

Metode koefisien perpindahan FEMA 356 adalah suatu metode pendekatan yang menyediakan perhitungan numerik langsung dari perpindahan global maksimum pada struktur. Penyelesaian dilakukan dengan memodifikasi respon elastis dari sistem SDOF ekuivalen dengan faktor koefisien C_{o} , C_{1} , C_{2} , dan C_{3} sehingga diperoleh perpindahan global maksimum (elastis dan inelastis) yang disebut target perpindahan.

Prosedur dimana dengan menetapkan waktu getar efektif (T_e) yang memperhitungkan kondisi elastis bangunan. Waktu getar efektif didapat dengan Pers.2.44.

$$T_e = T_1 \sqrt{\frac{K_i}{K_e}} \tag{2.44}$$

Dimana :

$$T_e$$
 = waktu getar efektif

 T_1 = waktu getar elastik

 K_i = kekakuan lateral elastik

K_e = kekakuan lateral efektif

Kekakuan lateral efektif ditentukan tergantung dari perilaku struktur. Kekakuan lateral efektif ini sangat tergantung dari penggambaran kurva bilinier dari kurva kapasitasnya. Kekakuan lateral efektif dihitung dengan Pers.2.45.

$$K_{e} = \frac{0.6 \times V_{y}}{0.6 \times \Delta_{y}}$$
(2.45)

Dimana :

- V_y = gaya geser dasar pada saat leleh, dari idealisasi kurva pushover menjadi bilinier
- Δ_y = jarak penggeseran dasar pada saat leleh, dari idealisasi kurva pushover menjadi bilinier

Selanjutnya target perpindahan didapat dari modifikasi respon elastik linier dari sistem SDOF ekuivalrn dengan beberapa faktor koefisien perpindahan dan dihitung dengan Pers.2.46.

$$\delta_T = C_o C_1 C_2 C_3 S_a \frac{T_e^2}{4\pi^2} g$$
(2.46)

Dimana :

 T_e = waktu getar efektif

 $\delta_{\rm T}$ = target perpindahan

C_o = faktor modifikasi untuk perpindahan spektral menjadi perpindahan atap/puncak (lantai teratas yang tidak dihuni). Umumnya menggunakan faktor partisipasi ragam pertama atau berdasarkan Tabel 2.21

 C_1 = faktor modifikasi untuk menghubungkan perpindahan inelastik maksimum dengan perpindahan yang dihitung dari respon elastik linier

$$C_1 = 1,0 \text{ untuk } T_e \ge T_s \tag{2.47}$$

$$C_1 = [1,0 + (R-1) T_s/T_e] / R, \text{ untuk } T_e < T_s$$
(2.48)

- C₂ = faktor modifikasi yang mewakili efek dari bentuk histerestis pada perpindahan maksimum, diambil berdasarkan Tabel 2.22
- C_3 = koefisien untuk memperhitungkan pembesaran lateral akibat efek P-Delta. Jika gedung pada kondisi pasca leleh kekakuannya positif (kurva meningkat) maka C_3 = 1, sedangkan jika perilaku pasca lelehnya negatif (kurva menurun) maka,

$$C_3 = 1.0 + \frac{|\alpha|(R-1)^{3/2}}{T_e}$$
(2.49)

$$S_a$$
 = akselerasi respon spektrum yang berhubungan dengan waktu getar alami efektif pada arah yang ditinjau

$$R = \frac{S_a}{V_y/W} C_m \tag{2.50}$$

G = percepatan gravitasi 9,81 m/detik²

 C_m = rasio kekakuan pasca leleh terhadap kekakuan elastik efektif, diambil berdasarkan Tabel 2.23

Values for Modification Factor Co ¹			
	Shear B	Shear Buildings ²	
Number of Stories	Triangular Load Pattern (1,1. 1,2. 1,3)	Uniform Load Pattern	Any Load Pattern
1	1,0	1,0	1,0
2	1,2	1,15	1,2
3	1,2	1,2	1,3
5	1,3	1,2	1,4
10+	1,3	1,2	1,5

Tabel 2.21: Faktor modifikasi C_o FEMA 356.

Values for Modification Factor C ₂				
Structural	$T \leq 0,1$	second ³	$T \ge T_s \text{ second}^3$	
Derformance Level	Framing	Framing	Framing	Framing
renomance Lever	Type 1^1	Type 2^2	Type 1^1	Type 2^2
Immediate Occupancy	1,0	1,0	1,0	1,0
Life Safety	1,3	1,0	1,1	1,0
Collapse Prevention	1,5	1,0	1,2	1,0

Tabel 2.22: Faktor modifikasi C₂ FEMA 356.

Tabel 2.23: Faktor modifikasi C_m FEMA 356.

No. Of Stories	Concrete Moment Frame	Concrete Shear Wall	Conncrete Pier- Spandrel	Steel Moment Frame	Steel Concentric Braced Frame	Steel Eccentric Braced Frame	Other
1-2	1,0	1,0	1,1	1,0	1,0	1,0	1,0
3 or more	0,9	0,8	0,8	0,9	0,9	0,9	1,0

Catatan : C_m akan diambil sebagai 1,0 jika periode fundamental (T) > 1,0 detik.

BAB 3 METODE PENELITIAN

3.1. Metodologi Penelitian

Pada bab ini berisi tentang tahapan pemodelan struktur dan struktur dianalisis menggunakan bantuan program analisis struktur. Adapun tahapan tersebut dapat dilihat dibagan alir pada Gambar 3.1.

Gambar 3.1: Diagram alir penelitian.

Berdasarkan pada Gambar 3.1, dapat dijelaskan bahwa dalam Tugas Akhir ini analisis dilakukan 2 Model bangunan dengan jenis sistem struktur yang sama. Hanya saja pada Model pertama menggunakanberat jenis Link menggunakan BJ-37 dan Model kedua menggunakan berat jenis Link BJ-41. Kedua Model bangunan tersebut dianalisis secara nonlinier dengan menggunakan Analisis *Pushover* dengan metode Capacitu Spectrum.

3.2.Pemodelan Struktur

3.2.1. Data Perencanaan Struktur

Adapun data perencanaan struktur yang digunakan pada kedua pemodelan tersebut yaitu :

- 1. Gedung difungsikan sebagai mall & apartemen
- 2. Gedung terletak di Kota Medan
- 3. Klasifikasi situs tanah keras, sangat padat dan batuan lunak (SC)
- 4. Gedung dikategorikan desain seismik (KDS) D
- 5. Struktur utama bangunan adalah struktur baja
- 6. Sistem struktur yang digunakan adalah Sistem Rangka Breising Eksentrik (SRBE)

3.2.2. Konfigurasi Bangunan

Pada Tugas Akhir ini, struktur yang direncanakan adalah struktur baja dengan sistem rangka beising eksentrik. Bangunan berbentuk persegi yang berfungsi sebagai mall dan memiliki 1 tower yang berfungsi sebagai apartemen yang terlihat pada Gambar 3.2 dan 3.3. Adapun Model yang digunakan pada Tugas Akhir ini adalah:

- 1. Model 1 =SRBE dengan berat jenis link menggunakan BJ-34
- 2. Model 2 = SRBE dengan berat jenis link menggunakan BJ-41

b) Potongan A-A

b) Potongan B-B, C-C, D-D.

Gambar 3.2: Denah struktur dan tinggi lantai Model 1 dan 2.

Gambar 3.3: Prespektif bangunan Model 1 dan 2.

3.2.3. Dimensi Kolom, Balok, Link & Bresing

Bangunan yang direncanakan adalah bangunan tidak beraturan, sehingga kolom, balok, link dan bresing yang digunakan pada struktur bangunan tidak sama setiap lantai.

Ukuran kolom, balok, link & bresing dapat dilihat pada Tabel 3.1, sedangkan letak dan posisi dari masing-masing ukuran kolom, balok, bresing dan link dapat dilihat pada Gambar 3.2 dan 3.3.

Konfigurasi struktural	Dimensi profil	Mutu baja	Keterangan
Kolom 1	414.405.18.28	BJ 50	Untuk lantai 1-11
Kolom 2	300.200.9.14	BJ 50	Untuk lantai 12-15
Balok 1	350.175.7.11	BJ 41	Untuk lantai 1-4
Balok 2	300.150.6,5.9	BJ 41	Untuk lantai 5-15
Balok Lintel	250.125.6.9	BJ 41	Untuk semua lantai
Balok Lift	350.175.7.11	BJ 41	Untuk semua lantai
Balok Anak	200.100.5,5.8	BJ 37	Untuk semua lantai
Link model 1.a	300.150.6,5.9	BJ 34	Untuk lantai 1-4
Link model 2.a	250.125.6.9	BJ 34	Untuk lantai 5-12
Link model 3.a	200.100.5,5.8	BJ 34	Untuk lantai 13-15
Link model 1.b	300.150.6,5.9	BJ 41	Untuk lantai 1-4

Tabel 3.1: Konfigurasi dan dimensi kolom, balok, link & bresing.

Konfigurasi struktural	Dimensi profil	Mutu baja	Keterangan
Link model 2.b	250.125.6.9	BJ 41	Untuk lantai 5-12
Link model 3.b	200.100.5,5.8	BJ 41	Untuk lantai 13-15
Bresing 1	200.200.8.12	BJ 41	Untuk lantai 1-5
Bresing 2	150.150.7.10	BJ 41	Untuk lantai 6-15

Tabel 3.1: Konfigurasi dan dimensi kolom, balok, link & bresing.

3.2.4. Pelat Lantai

Pada tugas akhir ini, pelat lantai yang digunakan dalam pemodelan struktur menggunakan pelat rusuk (*deck*). Konstruksi pelat rusuk terdiri dari kombinasi monolit sejumlah rusuk dengan jarak beraturan dan pelat atas yang membentang dalam satu arah atau dua arah.Perencanaan pelat *floor deck* menggunakan profil W yang ada dari PT BLUESCOPE LYSAGHT INDONESIA. Spesifikasi yang digunakan adalah sebagai berikut :

- Beban mati (berat sendiri floor deck dan pelat beton) sudah diperhitungkan
- Beton menggunakan mutu fc' = 30 Mpa
- *Floor deck* menggunakan tebal 1,0 mm dengan mutu G550 (fy = 550 MPa)

Gambar 3.4: Penampang steel floor deck.

3.2.5. Analisis Pembebanan

Perencanaan pembebanan pada struktur yang dihitung berdasarkan Pedoman Perencanaan Pembebanan Untuk Rumah dan Gedung (PPPURG 1987) dan SNI 1727;2013. Pembebanan yang digunakan antara lain:

1. Beban Mati

Beban mati adalah berat seluruh bahan konstruksi bangunan gedung yang bersifat tetap berupa kolom, balok, dinding dan juga termasuk segala unsur tambahan *finishing*, mesin-mesin serta peralatan-peralatan tetap yang merupakan bagian yang tidak terpisahkan dari gedung tersebut. Berikut beban mati untuk bangunan gedung dilihat pada Tabel 3.2.

Nama bahan bangunan dan komponen gedung	Berat sendiri
Bahan bangunan	
Baja	7850 kg/m^3
Beton	2200 kg/m^3
Beton bertulang	2200 kg/m^3
Komponen gedung	
Adukan per cm tebal dari semen	21 kg/m^2
Dinding pasangan batako tanpa lubang	300 kg/m^2
Plafond	11 kg/m^2
Penggantung langit-langit	7 kg/m^2
Penutup lantai tanda adukan per cm tebal	24 kg/m^2
M&E	40 kg/m^2

Tabel 3.2: Berat sendiri bangunan dan kompoenen gedung.

• Pembebanan Pada Tangga

Untuk beban tangga sendiri dilakukan analisis struktur dengan bantuan program *software* SAP 2000 v.14 dan hasil reaksi perletakan dari hasil analisis struktur tersebut akan dijadikan beban terpusat yang diletakan di balok lintel dan balok induk, maka nilai beban tangga disajikan dalam Tabel 3.3.

Tabel 3.3: Beban tangga akibat reaksi perletakkan di balok lintel dan balok induk.

Beban Mati			
1. Untuk Lt 5 ke Lt 15	Z	Satuan	
Reaksi di balok lintel	0,21	kN	
Reaksi di balok induk	43,18	kN	
2. Untuk Lt 4 ke Lt 5	Z	Satuan	
Reaksi di balok lintel	0,57	kN	
Reaksi di balok induk	44,72	kN	

Tabel 3.3: Lanjutan.

Beban Hidup			
1. Untuk Lt 5 ke Lt 15	Ζ	Satuan	
Reaksi di balok lintel	2,44	kN	
Reaksi di balok induk	38,23	kN	
2. Untuk Lt 4 ke Lt 5	Z	Satuan	
Reaksi di balok lintel	1,72	kN	
Reaksi di balok induk	39,8	kN	

• Pembebanan Pada Lift

Pada perencanaan balok lift ini meliputi balok-balok yang berkaitan dengan ruang mesin lift yang terdiri dari balok penumpu dan balok penggantung. Pada bangunan ini menggunakan lift penumpang dengan data-data sesuai brosur sebagai berikut: :

0	Type Lift	: Passenger Elevators
0	Merek	: Hyundai
0	Kapasitas	: 17 Orang/ 1150 kg
0	Lebar pintu (Opening width)	: 1000 mm
0	Dimensi ruang luncur	
	(Hoistway inside) 2 Car	: 4900x 2180 mm ²
0	Dimensi sangkar (Car size)	
	Internal	:1800x 1500 mm ²
	External	: 1900x 1670 mm ²
0	Dimensi ruang mesin (2 Car)	: 4900 x 3900 mm ²
0	Beban reaksi ruang mesin	:
	$R_1 = 6600 \text{ kg}$	
	$R_2 = 5100 \text{ kg}$	

Gambar 3.5: Denah lift.

Gambar 3.6: Potongan melintang lift.

Beban Pada Dinding

Beban dinding sendiri menggunakan pasangan batako tanpa lubang dengan tebal 15 cm. Pembebanan dinding dijadikan sebagai beban terbagi merata yang ditumpu pada balok-balok yang berhubungan pada masing-masing lantai. Untuk lantai 1-4 sebesar 12 KN/m, lantai 5 (atap mall) sebesar 6 KN/m, lantai 5 (apartemen) sebesar 5,25 KN/m, lantai 6-14 sebesar 10,5 KN/m dan lantai 15 sebesar 5,25 KN/m.

2. Beban Hidup

Beban hidup adalah beban yang terjadi akibat penghunian bangunan gedung atau struktur lain yang tidak termasuk beban konstruksi dan beban lingkungan. Adapun nilai beban hidup mengacu pada SNI 1727;2013 yang dapat dilihat pada Tabel 2.13.

3. Beban Gempa

Beban gempa adalah beban yang timbul akibat pergerakkan tanah dimana struktur tersebut berdiri. Pembebanan struktur beban gempa berdasarkan SNI 1726;2012. Analisis beban gempa terdapat 3 analisis, yaitu analisis gaya lateral ekivalen, analisis spektrum respons ragam dan prosedur riwayat respon seismik. Adapun untuk menentukan beban gempa dapat dilihat pada sub Bab 2.7.

3.2.6. Spektrum Respons Desain Gempa

Berdasarkan SNI 1726;2012, spektrum respons desain gempa harus dibuat terdahulu. Dengan data percepatan batuan dasar $S_S = 0,5$ dan $S_1 = 0,4$ pada kondisi tanah keras yang berada di kota Medan. Spektrum desain gempa rencana dianalisis berdasarkan tahap-tahap yang terdapat pada sub Bab 2.7.7, maka akan didapatkan nilai-nilai yang diperlukan dalam pembuatan spektrum respons desain. Nilai-nilai tersebut yaitu:

- Nilai $F_a = 1,2$ (berdasarkan Tabel 2.11)
- Nilai F_v =1,4 (berdasarkan Tabel 2.12)
- $S_{MS} = 0,6$ (berdasarkan Pers. 2.4)

- $S_{M1} = 0,56$ (berdasarkan Pers. 2.5)
- $S_{DS} = 0,4$ (berdasarkan Pers. 2.6)
- $S_{D1} = 0,373$ (berdasarkan Pers. 2.7)
- T_0 = 0,187 (berdasarkan Pers. 2.10)
- T_1 = 0,933 (berdasarkan Pers. 2.11)
- Nilai S_a (berdasarkan Pers.2.8 dan Pers 2.9)

Respons spektrum percepatan disajikan dalam Tabel 3.4 dan respons spektrum diplot ke dalam grafik yang seperti pada Gambar 3.7.

Tabel	3.4:	Respons	spektrum	desain	gempa	Medan	dengan	kondisi	tanah	keras
berdasa	arka	n SNI 172	26;2012.							

T (DETIK)	T (DETIK)	Sa (g)
0	0,000	0,160
	0,187	0,400
	0,200	0,400
	0,300	0,400
	0,400	0,400
Т0	0,500	0,400
	0,600	0,400
	0,700	0,400
	0,800	0,400
	0,900	0,400
Ts	0,933	0,400
Ts +0,1	1,033	0,361
Ts +0,2	1,133	0,329
Ts +0,3	1,233	0,303
Ts +0,4	1,333	0,280
Ts +0,5	1,433	0,260
Ts +0,6	1,533	0,243
Ts +0,7	1,633	0,229
Ts +0,8	1,733	0,215
Ts +0,9	1,833	0,204
Ts +1,0	1,933	0,193

Tabel 3.4: Lanjutan.

T (DETIK)	T (DETIK)	Sa (g)
Ts +1,1	2,033	0,184
Ts +1,2	2,133	0,175
Ts +1,3	2,233	0,167
Ts +1,4	2,333	0,160
Ts +1,5	2,433	0,153
Ts +1,6	2,533	0,147
Ts +1,7	2,633	0,142
Ts +1,8	2,733	0,137
Ts +1,9	2,833	0,132
Ts +2,0	2,933	0,127
Ts +2,1	3,033	0,123
Ts +2,2	3,133	0,119
Ts +2,3	3,233	0,115
Ts +2,4	3,333	0,112
Ts +2,5	3,433	0,109
Ts +2,6	3,533	0,106
Ts +2,7	3,633	0,103
Ts +2,8	3,733	0,100
Ts +2,9	3,833	0,097
Ts +3,0	3,933	0,095
Ts +3,1	4,033	0,093
Ts +3,2	4,133	0,090
Ts +3,3	4,233	0,088
Ts +3,4	4,333	0,086
Ts +3,5	4,433	0,084
Ts +3,6	4,533	0,082
Ts +3,7	4,633	0,081
Ts +3,8	4,733	0,079
Ts +3,9	4,833	0,077
Ts +4,0	4,933	0,076

Gambar 3.7: Grafik respons spektrum desain gempa Medan dengan kondisi tanah keras berdasarkan SNI 1726;2012.

3.2.7. Kombinasi Pembebanan

Kombinasi pembebanan yang digunakan adalah menggunakan desain kekuatan batas (DFBK) yang telah ditetapkan dalam SNI 1726;2012 dan SNI 1727;2013. Sebelum membuat kombinasi pembebanan terlebih dahulu untuk memeriksa nilai redundansi (ρ), yang akan digunakan dalam kombinasi pembebanan. Pemeriksaan nilai redundansi (ρ) dapat dilihat pada sub Bab 3.2.7.

Dari hasil pemeriksaan nilai redundansi (ρ), maka untuk pemodelan ini menggunakan nilai redundansi $\rho = 1,3$ dan $S_{DS} = 0,4$. Maka kombinasi pembebanan dapat disajikan pada Tabel 3.6.

Kombinasi	Koefisien		Koefisien		Koefisien		Koefisien	
Kombinasi 1	1,4	DL	0	LL	0	EX	0	EY
Kombinasi 2	1,2	DL	1,6	LL	0	EX	0	EY
Kombinasi 3	1,30	DL	1	LL	0,39	EX	1,3	EY
Kombinasi 4	1,10	DL	1	LL	-0,39	EX	-1,3	EY
Kombinasi 5	1,14	DL	1	LL	0,39	EX	-1,3	EY
Kombinasi 6	1,26	DL	1	LL	-0,39	EX	1,3	EY
Kombinasi 7	1,30	DL	1	LL	1,3	EX	0,39	EY
Kombinasi 8	1,10	DL	1	LL	-1,3	EX	-0,39	EY

Tabel 3.5: Kombinasi pembebanan untuk $\rho = 1,3$ dan $S_{DS} = 0,4$ berdasarkan SNI 1726;2012 dan SNI 1727;2013.

Kombinasi	Koef	isien	Ko	efisien	Koef	Tisien	Koef	Tisien
Kombinasi 9	1,26	DL	1	LL	1,3	EX	-0,39	EY
Kombinasi 10	1,14	DL	1	LL	-1,3	EX	0,39	EY
Kombinasi 11	1,00	DL	0	LL	0,39	EX	1,3	EY
Kombinasi 12	0,80	DL	0	LL	-0,39	EX	-1,3	EY
Kombinasi 13	0,84	DL	0	LL	0,39	EX	-1,3	EY
Kombinasi 14	0,96	DL	0	LL	-0,39	EX	1,3	EY
Kombinasi 15	1,00	DL	0	LL	1,3	EX	0,39	EY
Kombinasi 16	0,80	DL	0	LL	-1,3	EX	-0,39	EY
Kombinasi 17	0,96	DL	0	LL	1,3	EX	-0,39	EY
Kombinasi 18	0,84	DL	0	LL	-1,3	EX	0,39	EY

Tabel 3.5: Lanjutan.

3.2.8. Analisis Respons Spektrum Ragam

Analisis ini merupakan tahap desain yang harus memenuhi syarat-syarat batas berdasarkan SNI 1726;2012. Analisis telah memenuhi syarat jumlah ragam yang cukup untuk mendapatkan partisipasi massa ragam terkombinasi yaitu paling sedikit 90 % dari massa aktual dalam masing-masing arah horizontal ortogonal dari respon yang ditinjau oleh model. Nilai untuk masing-masing parameter desain terkait gaya yang ditinjau, termasuk simpangan antar lantai tingkat, gaya dukung dan gaya elemen struktur individu untuk masing-masing ragam respons harus dihitung menggunakan properti masing-masing ragam dan spektrum respons yang telah dijelaskan pada sub Bab 2.7.7. Analisis spektrum ragam dilakukan dengan menggunakan program analisis struktur. Analisis spektrum respon ragam ini dilakukan dengan metode kombinasi kuadrat lengkap (Complete Quadratic Combination/ CQC) pada mode 1 dan 2 dengan input gaya gempa menggunakan respons spektrum desain berdasarkan sub Bab 3.2.7. Berdasarkan SNI 1726;2012 pasal 7.3.4, faktor redundasi (ρ) harus dikenakan pada sistem penahan gaya seismik dalam masing-masing kedua arah ortogonal. Pasal 7.3.4.2 menyebutkan bahwa untuk kategori desain seismik D, E, atau F nilai redundasi (ρ) dapat diambil sama dengan 1 bila masing-masing tingkat yang menahan lebih dari 35% gaya geser dasar pada arah yang ditinjau memenuhi peryaratan Tabel 2.14, selain itu nilai redundasi (ρ) harus diambil sama dengan 1,3. Perhitungan analisis modal partisipasi massa pada Model 1 dan 2 dapat dilihat pada Bab 4.

BAB 4 HASIL DAN PEMBAHASAN

4.1. Tinjauan Umum

Pada Bab ini akan membahas tentang hasil studi dari hasil analisis oleh program analisis struktur serta akan diperiksa berdasarkan peraturan yang telah ditentukan oleh SNI 1726;2012 dan SNI 7860;2015. Pada Bab ini akan membandingkan hasil dari perilaku bangunan struktur baja yang memiliki BJ-34 pada pengaku (Model 1) dan bangunan struktur baja yang memiliki BJ-41 pada pengaku (Model 2) dengan menggunakan Pushover Analisis dengan Metode Koefisien Perpindahan.

4.2. Hasil Analisis Model 1

4.2.1. Analisis Respons Spektrum Ragam

Sesuai SNI 1726;2012, analisis yang dilakukan untuk menentukan ragam getar alami untuk struktur. Analisis harus menyertakan jumlah ragam yang cukup untuk mendapatkan partisipasi massa ragam terkombinasi sebesar paling sedikit 90 persen dari massa aktual dalam masing-masing arah horizontal ortogonal dari respons yang ditinjau oleh model. Pada Model 1, kombinasi ragam model partisipasi massa telah mencapai 90 persen (*Sum* UX dan *Sum* UY) pada *mode* 11, sehingga partisipasi massa telah memenuhi syarat. Data modal partisipasi massa dapat dilihat pada Tabel 4.1.

	Modal Participating Mass Ratio							
Case	Mode	Period sec	Sum UX	Sum UY	Sum UZ			
Modal	1	3,515	0	0,5494	0			
Modal	2	3,302	0,5423	0,5494	0			
Modal	3	2,872	0,543	0,5495	0			
Modal	4	1,33	0,543	0,8322	0			
Modal	5	1,213	0,814	0,8322	0			
Modal	6	1,171	0,817	0,8322	0			

Tabel 4.1: Data hasil analisis ragam getar *output* program analisis struktur.

	Modal Participating Mass Ratio							
Case	Mode	Period sec	Sum UX	Sum UY	Sum UZ			
Modal	7	0,822	0,817	0,9028	0			
Modal	8	0,764	0,8178	0,9028	0			
Modal	9	0,737	0,8847	0,9028	0			
Modal	10	0,539	0,8847	0,9284	0			
Modal	11	0,479	0,909	0,9284	0			
Modal	12	0,471	0,9115	0,9284	0			

Tabel 4.1: Lanjutan.

Dapat dilihat pada Tabel 4.2 persentase nilai periode yang menentukan jenis perhitungan menggunakan CQC atau SRSS.

Mode	Persentase (%)	CQC < 15%	SRSS > 15%
T1-T2	6,06%	OKE	TIDAK OKE
Т2-Т3	13,02%	OKE	TIDAK OKE
T3-T4	53,69%	TIDAK OKE	OKE
T4-T5	8,80%	OKE	TIDAK OKE
T5-T6	3,46%	OKE	TIDAK OKE
T6-T7	29,80%	TIDAK OKE	OKE
Т7-Т8	7,06%	OKE	TIDAK OKE
Т8-Т9	3,53%	OKE	TIDAK OKE
T9-T10	26,87%	TIDAK OKE	OKE
T10-T11	11,13%	OKE	TIDAK OKE
T11-T12	1,67%	OKE	TIDAK OKE

Tabel 4.2: Data hasil selisih persentase analisis ragam getar.

Berdasarkan pada Tabel 4.2, analisis yang digunakan adalah Metode Kombinasi Kuadrat Lengkap (*Complete Quadratic Combination/ CQC*), karena nilai perioda rata-rata yang didapat memiliki waktu getar yang berdekatan yaitu selisihnya lebih kecil dari 15%.

4.2.2. Berat Struktur

Besarnya beban gempa sangat dipengaruhi oleh berat struktur dari suatu bangunan, maka perlu diketahui berat total bangunan untuk menahan gaya geser statik. Berat dari bangunan berasal dari beban mati yang terdiri dari berat sendiri material bangunan dan elemen-elemen struktur, serta beban hidup yang diakibatkan oleh hunian atau penggunaan bangunan. Pada Tugas Akhir ini, perhitungan berat bangunan diambil dari analisis menggunakan program analisis struktur

Peneliti tidak melakukan analisis perhitungan manual, sebab program analisis struktur telah menghitung berat struktur secara otomatis. Adapun massa struktur gedung dari output hasil program analisis struktur yang disajikan dalam Tabel 4.3.

Lantai	Masssa X kg	Massa Y kg	XCM m	YCM m	XCR m	YCR m
Lt. 15	879468,4	879468,36	28,3584	27,2672	27,5961	27,7238
Lt. 14	1013023	1013023,2	27,4852	28,057	27,6014	27,738
Lt. 13	1015477	1015477,2	27,455	28,0968	27,6086	27,7366
Lt. 12	1013160	1013159,8	27,4852	28,0569	27,6155	27,7355
Lt. 11	1031127	1031127,2	27,4899	28,0516	27,6212	27,7347
Lt. 10	1049763	1049762,9	27,4945	28,0462	27,6296	27,7341
Lt. 9	1049763	1049762,9	27,4945	28,0462	27,6396	27,7339
Lt. 8	1049763	1049762,9	27,4945	28,0462	27,6525	27,7342
Lt. 7	1049763	1049762,9	27,4945	28,0462	27,671	27,735
Lt. 6	1049763	1049762,9	27,4945	28,0462	27,7009	27,7365
Lt. 5	2118643	2118643,5	27,6241	27,8966	27,7401	27,7389
Lt. 4	2774632	2774631,6	27,596	27,919	27,7576	27,7413
Lt. 3	2825245	2825245	27,6993	27,7997	27,758	27,7421
Lt. 2	2825245	2825245	27,6993	27,7997	27,7577	27,7432
Lt. 1	3011104	3011103,5	27,6982	27,8005	27,7562	27,7455
Total	23755939	23755939		•		

Tabel 4.3: Massa struktur, pusat massa dan pusat kekakuan.

Pada Tabel 4.3, menunjukkan hasil massa struktur bangunan per lantai, dimana nilai absis pusat massa tidak sama dengan nilai absis pusat kekakuan.

Oleh karena itu, struktur bangunan pada Model 1 memiliki eksentrisitas sebab nilai pusat massa dan pusat kekakuan tidak saling berimpit satu sama lain, maka struktur akan diperiksa terhadap ketidakberaturan torsi berdasarkan SNI 1726;2012.

4.2.3. Gaya Geser Dasar Nominal

Berdasarkan SNI 1726;2012 pasal 7.9.4.1, kombinasi respon dinamik untuk geser dasar ragam (V_i) lebih kecil 85 persen dari geser dasar yang dihitung (V_i) menggunakan prosedur gaya lateral ekivalen, maka gaya geser dan simpangan antar lantai harus dikalikan dengan faktor skala yaitu:

 $0,85\frac{V_1}{Vt} \ge 1$

Nilai gaya geser dasar nominal analisis statik ekivalen dan respons spektrum tertera pada Tabel 4.4 dan Tabel 4.5.

Tabel 4.4: Nilai gaya geser dasar nominal analisis statik ekivalen.

Arah Gempa	V ₁ (kN)
Gempa X	5261,7542
Gempa Y	5261,7542

Tabel 4.5: Nilai gaya geser dasar nominal analisis respons spektrum *output* program analisis struktur.

	Base Reaction						
Output CaseCase TypeStep TypeGlobal FxGlobal Fy							
Text	Text	Text	kN	kN			
Gempa X	LinRespSpec	Max	3195,4511	914,4561			
Gempa Y	LinRespSpec	Max	958,6489	3048,1437			

Berdasarkan SNI 1726;2012, nilai akhir dinamik struktur gedung terhadap pembebanan gempa nominal akibat pengaruh gempa rencana dalam suatu arah tertentu, tidak boleh diambil kurang dari 85% nilai respons ragam yang pertama. Bila respons dinamik struktur gedung dinyatakan dalam gaya geser V_t , maka persyaratan tersebut dapat dinyatakan sebagai berikut.

Syarat	: $V_t \ge 0.85 V_1$
EQX	: 3195,4511 kN \geq 0,85 x 5261,7542 kN
	$: 3195,4511 \text{ kN} \leq 4472,4910 \text{ kN}$ (Tidak Memenuhi Syarat)
EQY	: 3048,1437 kN \geq 0,85 x 5261,7542 kN
	$3048,1437 \text{ kN} \leq 4472,4910 \text{ kN}$ (Tidak Memenuhi Syarat)

Dari perhitungan di atas bahwa nilai gaya geser dasar ragam (V_t) lebih kecil dari 85 persen gaya geser dasar statik ekivalen (V_t) , maka ordinat respon spektrum harus dikalikan dengan faktor skala. Berikut ini nilai faktor skala untuk masing-masing arah.

- Syarat : $0.85 \frac{V_1}{Vt} \ge 1$
- EQX : $0,85 \frac{5261,7542}{3195,4511} \ge 1$

: 1,3996 ≥ 1

EQY :
$$0,85 \frac{5261,7542}{3048,1437} \ge 1$$

: $1,4673 \ge 1$

Tabel 4.6: Perbandingan gaya geser dasar statik dan dinamik serta faktor skala X.

Vt (CQC)	0,85*Cs W (ELF)	Faktor Skala
(X-Dir) - (kN)	(X-Dir) - (kN)	Arah X
3195,4511	4472,4910	1,3996

Tabel 4.7: Perbandingan gaya geser dasar statik dan dinamik serta faktor skala Y.

Vt (CQC)	0,85*Cs W (ELF)	Faktor Skala
(Y-Dir) - (kN)	(Y-Dir) - (kN)	Arah Y
3048,1437	4472,4910	1,4673

4.2.4. Koreksi Faktor Redundansi

Berdasarkan sub Bab 2.7.8 (3), untuk struktur yang dirancang kategori desain seismik D, redundansi (ρ) harus sama dengan 1,3 kecuali jika satu dari dua kondisi berikut dipenuhi, dimana redundansi (ρ) diijinkan diambil 1,0. Salah satu kondisi untuk menentukan yaitu masing-masing tingkat yang menahan lebih dari 35 persen geser dasar dalam arah yang ditinjau, maka redudansi (ρ) diijinkan diambil 1,0. Apabila kondisi tersebut tidak terpenuhi, maka redundansi (ρ) 1,0 harus diganti dengan redundansi (ρ) 1,3. Sebagaimana tertera pada Tabel 4.8.

Lantai	V _x (kN)	V _y (kN)	35 % Vx Base Shear	35 % Vy Base Shear	Kontrol	Kontrol
Lt 15	421,1957	409,9035	1118,4079	1066,8503	NOT OK	NOT OK
Lt 14	801,9262	774,6139	1118,4079	1066,8503	NOT OK	NOT OK
Lt 13	1051,5253	1004,7443	1118,4079	1066,8503	NOT OK	NOT OK
Lt 12	1193,7551	1125,0547	1118,4079	1066,8503	OK	OK
Lt 11	1276,9019	1191,3407	1118,4079	1066,8503	OK	OK
Lt 10	1332,1198	1246,9302	1118,4079	1066,8503	OK	OK
Lt 9	1373,9970	1298,4771	1118,4079	1066,8503	OK	OK
Lt 8	1425,1979	1359,5339	1118,4079	1066,8503	OK	OK
Lt 7	1498,0230	1436,4932	1118,4079	1066,8503	OK	OK
Lt 6	1585,4273	1520,3362	1118,4079	1066,8503	OK	OK
Lt 5	1823,2238	1727,6226	1118,4079	1066,8503	OK	OK
Lt 4	2246,9849	2093,4488	1118,4079	1066,8503	OK	OK
Lt 3	2703,6228	2521,6341	1118,4079	1066,8503	OK	OK
Lt 2	3045,0785	2871,3748	1118,4079	1066,8503	OK	OK
Lt 1	3195,4511	3048,1437	1118,4079	1066,8503	OK	OK
Base	0	0	0	0	OK	OK

Tabel 4.8: Koreksi *story shear* dengan 35% *base shear* redundansi (ρ) 1,0.

Dari Tabel 4.8, gaya geser pada lantai 13 sampai 15 dengan redundansi 1,0 tidak memenuhi syarat lebih besar dari 35 persen gaya geser dasar, maka nilai redundansi (ρ) pada pemodelan struktur menggunakan dengan nilai redundansi 1,3.

4.2.5. Gaya Geser Lantai

Gaya geser lantai merupakan distribusi dari gaya geser dasar yang dibagi pada setiap lantai untuk masing-masing arah gempa. Nilai gaya geser setiap lantai didapat dari hasil pemodelan struktur dengan menggunakan program analisis struktur yang dapat disajikan pada Tabel 4.9.

Tingkat	Tinggi	Lokosi	Vx	Vy
тыдка	(m)	LOKASI	(kN)	(kN)
15		Тор	589,5070	601,4278
	55	Bottom	589,5236	601,4447
14	F1 F	Тор	1122,3986	1136,5665
	51,5	Bottom	1122,4105	1136,5782
10	48	Тор	1471,7530	1474,2380
15		Bottom	1471,7601	1474,2448
12	44,5	Тор	1670,8270	1650,7709
12		Bottom	1670,8311	1650,7742
11	4.1	Тор	1787,1960	1748,0245
	41	Bottom	1787,2069	1748,0346
10	07.5	Тор	1864,4851	1829,5916
10	37,5	Bottom	1864,4923	1829,6001
0	34	Тор	1923,0984	1905,2250
9		Bottom	1923,1054	1905,2341
0	30,5	Тор	1994,7583	1994,8100
0		Bottom	1994,7684	1994,8217
7	27	Тор	2096,6842	2107,7286
		Bottom	2096,6975	2107,7428
6	<u>ээ г</u>	Тор	2219,0174	2230,7500
	23,5	Bottom	2219,0324	2230,7643
_	20	Тор	2551,8324	2534,8853
5		Bottom	2551,8626	2534,9122
4	16	Тор	3144,9115	3071,6212
		Bottom	3144,9769	3071,6829
2	12	Тор	3784,0492	3699,8928
3	12	Bottom	3784,1070	3699,9522
2	8	Тор	4261,9891	4213,0824
2		Bottom	4262,0231	4213,1209

Tabel 4.9: Nilai gaya geser pada setiap lantai.
Tabel 4.9: Lanjutan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
1	Λ	Тор	4472,4826	4472,4802
1	4	Bottom	4472,4910	4472,4910
0	0	Тор	0	0
0	0	Bottom	0	0

Pada Tabel 4.9, menunjukkan gaya geser maksimum dari masing-masing arah saja. Untuk gaya geser dasar lantai untuk setiap arah gempa dapat dilihat pada Tabel B9 – 12 yang terdapat pada Lampiran B3.1.

4.2.6. Simpangan Antar Lantai

Simpangan antar lantai merupakan selisih nilai defleksi pada pusat massa gedung antara lantai teratas dan lantai dibawahnya. Berdasarkan SNI 1726;2012, simpangan antar lantai hanya terdapat satu kinerja batas, yaitu kinerja batas ultimit. Pada Tabel 4.10 menunjukan hasil nilai perpindahan dan simpangan antar lantai pada setiap lantai.

Lt	h	Perpin Elasti	idahan s (δe)	Perpindal (δe*C	Perpindahan Total (δe*Cd)/Ie		Simpangan Antar Lantai (Δ)		Cek	Cek
	(m)	X (m)	Y (m)	X (m)	Y (m)	X (m)	Y (m)	0,020hsx	X	Y
15	3,5	0,083	0,096	0,332	0,383	0,014	0,021	1,100	OK	OK
14	3,5	0,079	0,091	0,317	0,362	0,020	0,027	1,030	OK	OK
13	3,5	0,074	0,084	0,297	0,335	0,024	0,031	0,960	OK	OK
12	3,5	0,068	0,076	0,274	0,304	0,026	0,031	0,890	OK	OK
11	3,5	0,062	0,068	0,248	0,273	0,025	0,025	0,820	OK	OK
10	3,5	0,056	0,062	0,223	0,248	0,025	0,027	0,750	OK	OK
9	3,5	0,049	0,055	0,198	0,221	0,026	0,028	0,680	OK	OK
8	3,5	0,043	0,048	0,172	0,193	0,027	0,029	0,610	OK	OK
7	3,5	0,036	0,041	0,145	0,165	0,026	0,029	0,540	OK	OK
6	3,5	0,030	0,034	0,118	0,136	0,024	0,028	0,470	OK	OK
5	3,5	0,024	0,027	0,094	0,108	0,022	0,025	0,400	OK	OK
4	3,5	0,018	0,021	0,072	0,083	0,019	0,019	0,320	OK	OK
3	3,5	0,013	0,016	0,053	0,064	0,021	0,022	0,240	OK	OK

Tabel 4.10: Nilai simpangan antar lantai berdasarkan SNI 1726;2012.

Lt	h	Perpir Elasti	ndahan is (δe)	Perpindal (δe*C	Perpindahan Total (δe*Cd)/Ie		Simpangan Antar Lantai (Δ)		Cek	Cek
	(m)	X (m)	Y (m)	X (m)	Y (m)	X (m) Y (m)		0,020hsx	X	Y
2	3,5	0,008	0,010	0,032	0,041	0,020	0,024	0,160	OK	OK
1	4	0,003	0,004	0,012	0,017	0,012	0,017	0,080	OK	OK
0										

Tabel 4.10: Lanjutan.

Pada Tabel 4.10 menunjukkan, perpindahan dan simpangan antar lantai maksimum dari setiap arah saja. Untuk perpindahan dan simpangan antar lantai dari setiap arah dapat dilihat pada Tabel B17 – B20 yang terdapat pada Lampiran B3.2.

4.2.7. Ketidakberaturan Kekakuan Tingkat Lunak (Soft Story)

Berdasarkan SNI 1726;2012, kekakuan tingkat lunak (*soft* story) didefinisikan ada jika terdapat suatu tingkat di mana kekakuan lateralnya kurang dari 70 persen kekakuan lateral tingkat di atasnya atau kurang dari 80 persen kekakuan rata-rata tiga tingkat di atasnya. Pemeriksaan ketidak beraturan tingkat lunak dilakukan dengan cara menghitung kekakuan lateral tiap lantai. Perhitungan ketidak beraturan kekakuan tingkat lunak pada arah x dan y untuk Model 1 dapat dilihat pada Tabel 4.11 dan 4.12.

Tingkat	Σk _{ix} (kN/m)	Σk_{iy} (kN/m)	$\frac{1}{kN/m}$	%Σk _{iy+1} (kN/m)	%Σk _{ix +3} (kN/m)	%Σk _{iy+3} (kN/m)
Lantai 15	117276,72	87335,78	-	-	-	-
Lantai 14	161924,11	125212,58	138,07	143,37	138,07	143,37
Lantai 13	184556,7	145300,97	113,98	116,04	132,20	136,72
Lantai 12	200987,98	169706,13	108,90	116,80	130,02	142,27
Lantai 11	227533,06	212110,07	113,21	124,99	124,68	144,55
Lantai 10	230158,19	210002,88	101,15	99,01	112,62	119,52
Lantai 9	234599,07	215424,45	101,93	102,58	106,85	109,20
Lantai 8	243042,01	223547,96	103,60	103,77	105,32	105,19
Lantai 7	260326,36	235243,09	107,11	105,23	110,34	108,75
Lantai 6	304688,05	263494,28	117,04	112,01	123,86	117,24

Tabel 4.11: Ketidakberaturan kekakuan tingkat lunak pada gempa arah x.

Tabel 4.11: Lanjutan.

Tingkat	Σk_{ix} (kN/m)	Σk _{iy} (kN/m)	$\%\Sigma k_{ix + 1}$ (kN/m)	%Σk _{iy+1} (kN/m)	%Σk _{ix +3} (kN/m)	%Σk _{iy+3} (kN/m)
Lantai 5	418139,32	349609,12	137,24	132,68	155,24	145,21
Lantai 4	636928	597086,71	152,32	170,79	194,35	211,15
Lantai 3	724382,78	646610,16	113,73	108,29	159,82	160,29
Lantai 2	831757,49	692911,92	114,82	107,16	140,23	130,47
Lantai 1	1483823,7	1027947,2	178,40	148,35	202,98	159,24

Tabel 4.12: Ketidakberaturan kekakuan tingkat lunak pada gempa arah y.

Tingkat	Σk_{ix} (kN/m)	Σk_{iy} (kN/m)	$\frac{1}{kN/m}$	%Σk _{iy+1} (kN/m)	%Σk _{ix +3} (kN/m)	%Σk _{iy+3} (kN/m)
Lantai 1	116947	88116,1	-	-	-	-
Lantai 2	161741	126285	138,30	143,32	138,30	143,32
Lantai 3	184433	146790	114,03	116,24	132,36	136,93
Lantai 4	200871	171699	108,91	116,97	130,12	142,61
Lantai 5	227410	213646	113,21	124,43	124,71	144,10
Lantai 6	230029	211476	101,15	98,98	112,63	119,22
Lantai 7	234468	216989	101,93	102,61	106,85	109,07
Lantai 8	242913	225212	103,60	103,79	105,32	105,22
Lantai 9	260207	238075	107,12	105,71	110,35	109,26
Lantai 10	304590	265028	117,06	111,32	123,89	116,88
Lantai 11	418024	351867	137,24	132,77	155,26	144,94
Lantai 12	636725	601932	152,32	171,07	194,36	211,21
Lantai 13	724092	652211	113,72	108,35	159,80	160,53
Lantai 14	831371	698720	114,82	107,13	140,21	130,52
Lantai 15	1482999	1035013	178,38	148,13	202,95	159,00

Berdasarkan Tabel 4.11 dan 4.12 nilai $\%\Sigma k_{ix +1}$, $\%\Sigma k_{iy +1}$, $\%\Sigma k_{ix +3}$, $\%\Sigma k_{ix +3}$ menunjukkan bahwa kekakuan lateral tiap lantai lebih besar dari 70% kekakuan lateral tingkat di atasnya atau 80% kekakuan rata-rata tiga tingkat di atasnya artinya gedung tidak memiliki ketidakberaturan kekakuan tingkat lunak (*soft story*) terhadap masing-masing arah.

4.2.8. Ketidakberaturan Torsi

Berdasarkan SNI 1726;2012, jika ada rasio antara simpangan antar lantai tingkat maksimum terhadap simpangan antar lantai tingkat rata-rata yang lebih dari 1,2 sehingga struktur gedung memiliki ketidak beraturan torsi akibat gempa arah x maupun arah y. Perhitungan ketidak beraturan torsi pada arah x dan y untuk Model 1 dapat dilihat pada Tabel 4.13 dan 4.14.

	Rigid	Arah X							
Lantai	diafragma	δx_{min}	δx_{max}	Δx_{min}	Δx_{max}	Patio	Δ		
	(y/t)	m	m	m	m	Кино	Ах		
Lantai 15	rigid	0,0576	0,0611	0,0026	0,0027	1,0230	0,727		
Lantai 14	rigid	0,0550	0,0584	0,0035	0,0037	1,0237	0,728		
Lantai 13	rigid	0,0515	0,0547	0,0041	0,0043	1,0309	0,738		
Lantai 12	rigid	0,0474	0,0503	0,0044	0,0047	1,0349	0,744		
Lantai 11	rigid	0,0430	0,0456	0,0042	0,0045	1,0355	0,745		
Lantai 10	rigid	0,0387	0,0410	0,0044	0,0047	1,0380	0,748		
Lantai 9	rigid	0,0344	0,0363	0,0045	0,0049	1,0395	0,750		
Lantai 8	rigid	0,0299	0,0314	0,0060	0,0050	0,9055	0,569		
Lantai 7	rigid	0,0238	0,0265	0,0048	0,0049	1,0177	0,719		
Lantai 6	rigid	0,0191	0,0216	0,0042	0,0043	1,0124	0,712		
Lantai 5	rigid	0,0149	0,0172	0,0022	0,0040	1,2944	1,163		
Lantai 4	rigid	0,0127	0,0132	0,0033	0,0035	1,0233	0,727		
Lantai 3	rigid	0,0093	0,0097	0,0036	0,0038	1,0201	0,723		
Lantai 2	rigid	0,0057	0,0059	0,0036	0,0037	1,0182	0,720		
Lantai 1	rigid	0,0021	0,0022	0,0021	0,0022	1,0179	0,719		

Tabel 4.13: Ketidakberaturan torsi biasa dan torsi berlebihan pada gempa arah x.

Tabel 4.14: Ketidakberaturan torsi biasa dan torsi berlebihan pada gempa arah y.

	Rigid	Arah Y							
Lantai	diafragma (y/t)	δY_{min}	δY_{max}	ΔY_{min}	ΔY_{max}	Patio	۸V		
		m	m	m	m	Καπο	111		
Lantai 15	rigid	0,0634	0,0655	0,0041	0,0037	0,9427	0,617		
Lantai 14	rigid	0,0593	0,0618	0,0049	0,0047	0,9726	0,657		
Lantai 13	rigid	0,0544	0,0572	0,0051	0,0053	1,0147	0,715		
Lantai 12	rigid	0,0492	0,0519	0,0048	0,0053	1,0476	0,762		
Lantai 11	rigid	0,0444	0,0466	0,0044	0,0043	0,9802	0,667		
Lantai 10	rigid	0,0400	0,0423	0,0047	0,0046	0,9941	0,686		
Lantai 9	rigid	0,0353	0,0377	0,0048	0,0048	0,9975	0,691		

	Rigid	Arah Y							
Lantai	diafragma (y/t)	δY_{min}	δY_{max}	ΔY_{min}	ΔY_{max}	Patio	۸V		
		m	m	m	m	Кино	711		
Lantai 8	rigid	0,0305	0,0329	0,0049	0,0049	0,9958	0,689		
Lantai 7	rigid	0,0256	0,0281	0,0049	0,0049	1,0027	0,698		
Lantai 6	rigid	0,0207	0,0232	0,0046	0,0047	1,0055	0,702		
Lantai 5	rigid	0,0161	0,0185	0,0020	0,0043	1,3581	1,281		
Lantai 4	rigid	0,0141	0,0142	0,0033	0,0033	1,0050	0,701		
Lantai 3	rigid	0,0108	0,0109	0,0038	0,0038	1,0050	0,701		
Lantai 2	rigid	0,0070	0,0071	0,0041	0,0041	1,0044	0,701		
Lantai 1	rigid	0,0029	0,0030	0,0029	0,0030	1,0037	0,700		

Tabel 4.14: *Lanjutan*.

Dari Tabel 4.13 dan 4.14 dapat dilihat pada lantai 5 bahwa ada rasio antara simpangan antar lantai tingkat maksimum terhadap simpangan antar lantai tingkat rata-rata yang lebih dari 1,2 tetapi tidak melebihi 1,4 sehingga struktur gedung pada lantai 5 memiliki ketidakberaturan torsi biasa akibat gempa arah x maupun arah y.

4.2.9. Ketidakberaturan Berat (Massa)

Berdasarkan SNI 1726;2012, ketidakberaturan berat (massa) didefinisikan ada jika massa efektif semua tigkat lebih dari 150 persen massa efektif tingkat didekatnya. Pemeriksaan ketidakberaturan berat (massa) dilakukan dengan cara menghitung berat gedung per lantai. Pemeriksaan gedung dengan ketidakberaturan massa dapat dilihat pada Tabel 4.15.

Lantai	W _x (Kg)	W _y (Kg)	$\% W_{x\pm 1}$	$\%W_{y\pm1}$	$\frac{Cek}{\%W_{x\pm1}} > \\ 150\%$	$\frac{Cek}{\%W_{y\pm1}} > \\ 150\%$
Lantai 15	879468,36	879468,4	86,82%	86,82%	Tidak Ada	Tidak Ada
Lantai 14	1013023,21	1013023	99,76%	99,76%	Tidak Ada	Tidak Ada
Lantai 13	1015477,16	1015477	100,23%	100,23%	Tidak Ada	Tidak Ada
Lantai 12	1013159,76	1013160	98,26%	98,26%	Tidak Ada	Tidak Ada
Lantai 11	1031127,15	1031127	98,22%	98,22%	Tidak Ada	Tidak Ada
Lantai 10	1049762,89	1049763	100,00%	100,00%	Tidak Ada	Tidak Ada

Tabel 4.15: Ketidakberaturan berat (massa).

					Cek	Cek
Lantai	W _x (Kg)	W _y (Kg)	$\% W_{x\pm 1}$	$\%W_{y\pm 1}$	$\% W_{x\pm1} > \\ 150\%$	$\% W_{y\pm1} > \\ 150\%$
Lantai 9	1049762,89	1049763	100,00%	100,00%	Tidak Ada	Tidak Ada
Lantai 8	1049762,89	1049763	100,00%	100,00%	Tidak Ada	Tidak Ada
Lantai 7	1049762,89	1049763	100,00%	100,00%	Tidak Ada	Tidak Ada
Lantai 6	1049762,89	1049763	100,00%	100,00%	Tidak Ada	Tidak Ada
Lantai 5	2118643,47	2118643	76,36%	76,36%	Tidak Ada	Tidak Ada
Lantai 4	2774631,64	2774632	98,21%	98,21%	Tidak Ada	Tidak Ada
Lantai 3	2825244,96	2825245	101,82%	101,82%	Tidak Ada	Tidak Ada
Lantai 2	2825244,96	2825245	100,00%	100,00%	Tidak Ada	Tidak Ada
Lantai 1	3011103,53	3011104	106,58%	106,58%	Tidak Ada	Tidak Ada

Tabel 4.15: Lanjutan.

Pada Tabel 4.15 didapat nilai $W_{\pm 1}$ lebih kecil dari 150%. Sesuai SNI 1726;2012 gedung didefinisikan sebagai tanpa ketidakberaturan berat (massa).

4.2.10. Sudut Rotasi dan Jenis Elemen Perangkai Berdasarkan Panjangnya

Sudut rotasi elemen perangkai adalah sudut inelastic antara elemen perangkai dan balok diluar dari elemen perangkai bila total simpangan tingkat adalah sama dengan simpangan tingkat desain, Δ . Perhitungan sudut rotasi elemen perangkai dapat diliat pada Table 4.16.

Lt	h (m)	L (m)	e (m)	ΔX (m)	ΔY (m)	θрх	θру	үрх	үру
15	3,5	5,5	1	0,0143	0,0214	0,0041	0,0061	0,0224	0,0336
14	3,5	5,5	1	0,0202	0,0272	0,0058	0,0078	0,0317	0,0427
13	3,5	5,5	1	0,0236	0,0307	0,0067	0,0088	0,0371	0,0483
12	3,5	5,5	1	0,0257	0,0310	0,0073	0,0088	0,0403	0,0487
11	3,5	5,5	1	0,0245	0,0249	0,0070	0,0071	0,0386	0,0391
10	3,5	5,5	1	0,0255	0,0270	0,0073	0,0077	0,0400	0,0424
9	3,5	5,5	1	0,0262	0,0279	0,0075	0,0080	0,0412	0,0439
8	3,5	5,5	1	0,0267	0,0286	0,0076	0,0082	0,0420	0,0450
7	3,5	5,5	1	0,0265	0,0289	0,0076	0,0083	0,0416	0,0455
6	3,5	5,5	1	0,0243	0,0275	0,0069	0,0079	0,0381	0,0432
5	4	5,5	1	0,0218	0,0250	0,0055	0,0063	0,0300	0,0344

Tabel 4.16: Sudut rotasi elemen perangkai.

Lt	h (m)	L (m)	e (m)	ΔX (m)	ΔY (m)	θрх	θру	үрх	үру
4	4	5,5	1	0,0191	0,0195	0,0048	0,0049	0,0263	0,0268
3	4	5,5	1	0,0207	0,0224	0,0052	0,0056	0,0285	0,0308
2	4	5,5	1	0,0205	0,0241	0,0051	0,0060	0,0281	0,0331
1	4	5,5	1	0,0120	0,0173	0,0030	0,0043	0,0166	0,0238

Tabel 4.16: Lanjutan.

Pada Tabel 4.16 hanya menunjukkan, nilai sudut rotasi elemen perangkai pada sumbu x dan y, serta menunjukan nilai sudut penyimpangan plastis pada kolom yang diakibatkan terjadinya sudut rotasi perangkai.

Untuk mengetahui jenis elemen perangkai berdasarkan panjangnya dapat ditentukan berdasarkan kekuatan lentur dan geser elemen perangkai, dalam Tabel 4.17.

Lt	h (m)	L (m)	e (m)	M _p (kn.m)	V _p (kn)	V _n (kn)	$1,6M_p/V_p$	$2,6M_p/V_p$	$5M_p/V_p$
15	3,5	5,5	1	42,032	127,512	84,064	0,527	0,857	1,648
14	3,5	5,5	1	42,032	127,512	84,064	0,527	0,857	1,648
13	3,5	5,5	1	42,032	127,512	84,064	0,527	0,857	1,648
12	3,5	5,5	1	73,891	175,392	147,782	0,674	1,095	2,106
11	3,5	5,5	1	73,891	175,392	147,782	0,674	1,095	2,106
10	3,5	5,5	1	73,891	175,392	147,782	0,674	1,095	2,106
9	3,5	5,5	1	73,891	175,392	147,782	0,674	1,095	2,106
8	3,5	5,5	1	73,891	175,392	147,782	0,674	1,095	2,106
7	3,5	5,5	1	73,891	175,392	147,782	0,674	1,095	2,106
6	3,5	5,5	1	73,891	175,392	147,782	0,674	1,095	2,106
5	4	5,5	1	73,891	175,392	147,782	0,674	1,095	2,106
4	4	5,5	1	109,636	230,958	219,272	0,760	1,234	2,374
3	4	5,5	1	109,636	230,958	219,272	0,760	1,234	2,374
2	4	5,5	1	109,636	230,958	219,272	0,760	1,234	2,374
1	4	5,5	1	109,636	230,958	219,272	0,760	1,234	2,374

Tabel 4.17: Kekuatan lentur dan geser elemen perangkai.

Pada lantai 1 sampai lantai 12 dapat diasumsikan jenis elemen perangkai ini dominan geser, jenis link ini leleh akibat dominsi geser (pada kombinasi geser dan lentur) pada respon/deformasi inelastik. Sedangkan pada lantai 13 sampai lantai 15 dapat diasumsikan jenis elemen perangkai ini dominan lentur, jenis link ini leleh akibat dominasi lentur (pada kombinasi geser dan lentur) pada respon/deformasi inelastik.

4.2.11. Kapasitas Struktur

Dari output analisis pushover didapatkan kurva kapasitas dari struktur, selanjutnya dari kurva kapasitas akan dievaluasi berdasarkan FEMA 356. Kurva kapasitas hasil analisa pushover untuk masing-masing arah adalah sebagai berikut:

a. Kapasitas Sistem Rangka (Arah x-x)

Dari hasil running pushover analysis dengan program ETABS v16 untuk arah x-x didapatkan 96 Step pola beban dorong yang diberikan pada struktur hingga struktur mengalami keruntuhan. Dari 96 Step beban dorong tersebut dapat digambarkan dalam grafik hubungan gaya dan perpindahan terhadap struktur. 96 Step pola beban dorong hasil running dengan ETABS dapat dilihat pada Lampiran B4 Tabel B25. Dari Tabel tersebut dapat dilihat bahwa pada setiap kenaikan beban dorong yang diberikan maka kondisi plastifikasi pada elemen juga akan meningkat secara bertahap hingga mengalami keruntuhan. Pada Gambar 4.1 adalah lokasi terjadinya awal sendi plastis pada elemen struktur yang untuk beban dorong arah x-x sebagai berikut:

Gambar 4.1: Push x Step 65.

Dari Gambar 4.1 dapat dilihat awal terjadinya sendi plastis terdapat pada elemen link pada lantai 7 dengan beban dorong sebesar 4589,2095 Kn.

Untuk terjadinya sendi plastis dengan beban dorong maksimum dapat dilihat pada Gambar 4.2.

Gambar 4.2: Push x Step 95.

Dari Gambar 4.2 dapat dilihat pada lantai 5 sampai lantai 10 terjadi sendi plastis pada elemen link, tetapi belum mengalami kehancuran terhadap beban dorong maksimum sebesar 6817,1442 Kn.

Untuk terjadi sendi plastis maksimum pada elemen link dapat dilihat pada Gambar 4.3.

Gambar 4.3: Push x Step 96.

Dari Gambar 4.3 dapat dilihat pada lantai 7 dan 8 elemen link mengalami sendi plastis maksimum walau hanya menahan beban dorong sebesar 5558,899 Kn. Hal ini disebabkan karna ketika struktur diberi beban dorong sebesar 6817,1442 Kn pada step 95 pada elemen link masih mampu menahan beban tersebut tetapi ketika kembali pada titik nol lalu diberi lagi beban dorong maka link mengalami sendi plastis maksimum disaat beban dorong sebesar 5558,899 Kn pada step 96. Hal tersebut dapat dilihat dalam Grafik hubungan gaya vs perpindahan pada Gambar 4.4.

Gambar 4.4: Kurva kapasitas sistem rangka arah x-x.

Untuk nilai-nilai dari step 1 sampai step 96 pada kurva kapasitas system rangka x-x dapat dilihat pada Tabel B25 yang terdapat pada Lampiran B4.

b. Kapasitas Sistem Rangka (Arah y-y)

Pada sistem rangka arah y-y, terdapat 112 step pola beban dorong yang diberikan pada struktur hingga mengalami keruntuhan seperti pada Lampiran B4 Tabel B26. Untuk arah y-y mekanisme terbentuknya sendi plastis awal dapat dilihat pada Gambar 4.5.

Gambar 4.5: Push y Step 75.

Dari Gambar 4.5 dapat dilihat awal terjadinya sendi plastis terdapat pada elemen link pada lantai 6 dan lantai 7 dengan beban dorong sebesar 4457,5964 Kn.

Untuk terjadinya sendi plastis dengan beban dorong maksimum dapat dilihat pada Gambar 4.6.

Gambar 4.6: Push y Step 111.

Dari Gambar 4.6 dapat dilihat pada lantai 5 sampai lantai 9 dan lantai 12 sampai lantai 13 terjadi sendi plastis pada elemen link, tetapi belum mengalami kehancuran terhadap beban dorong maksimum sebesar 6338,28 Kn.

Untuk terjadi sendi plastis maksimum pada elemen link dapat dilihat pada Gambar 4.7.

Gambar 4.7: Push y Step 112.

Dari Gambar 4.7 dapat dilihat pada lantai 6 dan 7 elemen link mengalami sendi plastis maksimum walau hanya menahan beban dorong sebesar 3822,0826 Kn. Hal ini disebabkan karna ketika struktur diberi beban dorong sebesar 6338,28 Kn pada step 111 pada elemen link masih mampu menahan beban tersebut tetapi ketika kembali pada titik nol lalu diberi lagi beban dorong maka link mengalami sendi plastis maksimum disaat beban dorong sebesar 3822,0826 Kn pada step 112. Hal tersebut dapat dilihat dalam Grafik hubungan gaya vs perpindahan pada Gambar 4.8.

Gambar 4.8: Kurva kapasitas sistem rangka arah y-y.

Untuk nilai-nilai dari step 1 sampai step 112 pada kurva kapasitas system rangka y-y dapat dilihat pada Tabel B26 yang terdapat pada Lampiran B4.

4.2.12. Target Perpindahan

a. Target Perpindahan Arah x-x

Hasil dari kurva bilinear pushover arah x-x dapat dilihat pada gambar 4.9.

Gambar 4.9: Kurva *bilinear pushover* arah x-x.

Dari Gambar diatas dapat dilihat nilai target perpindahan berdasarkan Metode ATC-40 secara default sudah built-in terdapat pada ETABS v16 sebesar 0,6276 m.

Maka dari nilai-nilai yang terdapat dari Gambar 4.9 dapat dihitung nilai target perpindahan berdasarkan Metode FEMA 356 dengan Pers.2.33 seperti dibawah ini.

$$\delta_T = C_0 C_1 C_2 C_3 S_a \frac{T_e^2}{4\pi^2} g$$

= 1,358557 × 1 × 1 × 1 × 0,167019 × $\frac{3,345^2}{4\pi^2}$ × 9,81
= 0,6308 m

b. Target Perpindahan Arah y-y

Hasil dari kurva bilinear pushover arah y-y dapat dilihat pada Gambar 4.10.

Gambar 4.10: Kurva *bilinear pushover* arah y-y.

Dari Gambar diatas dapat dilihat nilai target perpindahan berdasarkan Metode ATC-40 secara default sudah built-in terdapat pada ETABS v16 sebesar 0,6997 m.

Maka dari nilai-nilai yang terdapat dari Gambar 4.10 dapat dihitung nilai target perpindahan berdasarkan Metode FEMA 356 dengan Pers.2.33 seperti dibawah ini.

$$\delta_T = C_0 C_1 C_2 C_3 S_a \frac{T_e^2}{4\pi^2} g$$

= 1,423926 × 1 × 1 × 1 × 0,1566 × $\frac{3,568^2}{4\pi^2}$ × 9,81
= 0,7054 m

4.3.Hasil Analisis Model 2

4.3.1. Analisis Respons Spektrum Ragam

Sesuai SNI 1726;2012, analisis yang dilakukan untuk menentukan ragam getar alami untuk struktur. Analisis harus menyertakan jumlah ragam yang cukup untuk mendapatkan partisipasi massa ragam terkombinasi sebesar paling sedikit 90 persen dari massa aktual dalam masing-masing arah horizontal ortogonal dari respons yang ditinjau oleh model. Pada Model 2, kombinasi ragam model partisipasi massa telah mencapai 90 persen (*Sum* UX dan *Sum* UY) pada *mode* 11,

sehingga partisipasi massa telah memenuhi syarat. Data modal partisipasi massa dapat dilihat pada Tabel 4.18.

Modal Participating Mass Ratio								
Case	Mode	Period sec	Sum UX	Sum UY	Sum UZ			
Modal	1	3,515	0	0,5494	0			
Modal	2	3,302	0,5423	0,5494	0			
Modal	3	2,872	0,543	0,5495	0			
Modal	4	1,33	0,543	0,8322	0			
Modal	5	1,213	0,814	0,8322	0			
Modal	6	1,171	0,817	0,8322	0			
Modal	7	0,822	0,817	0,9028	0			
Modal	8	0,764	0,8178	0,9028	0			
Modal	9	0,737	0,8847	0,9028	0			
Modal	10	0,539	0,8847	0,9284	0			
Modal	11	0,479	0,909	0,9284	0			
Modal	12	0,471	0,9115	0,9284	0			

Tabel 4.18: Data hasil analisis ragam getar *output* program analisis struktur.

Dapat dilihat pada Tabel 4.19 persentase nilai periode yang menentukan jenis perhitungan menggunakan CQC atau SRSS.

Tabel 4.19: Data hasil selisih persentase analisis ragam getar.

Mode	Persentase (%)	CQC < 15%	SRSS > 15%
T1-T2	6,06%	OKE	TIDAK OKE
Т2-Т3	13,02%	OKE	TIDAK OKE
T3-T4	53,69%	TIDAK OKE	OKE
T4-T5	8,80%	OKE	TIDAK OKE
T5-T6	3,46%	OKE	TIDAK OKE
T6-T7	29,80%	TIDAK OKE	OKE
T7-T8	7,06%	OKE	TIDAK OKE
Т8-Т9	3,53%	OKE	TIDAK OKE
T9-T10	26,87%	TIDAK OKE	OKE
T10-T11	11,13%	OKE	TIDAK OKE
T11-T12	1,67%	OKE	TIDAK OKE

Berdasarkan pada Tabel 4.19, analisis yang digunakan adalah Metode Kombinasi Kuadrat Lengkap (*Complete Quadratic Combination/ CQC*), karena nilai perioda rata-rata yang didapat memiliki waktu getar yang berdekatan yaitu selisihnya lebih kecil dari 15%.

4.3.2. Berat Struktur

Besarnya beban gempa sangat dipengaruhi oleh berat struktur dari suatu bangunan, maka perlu diketahui berat total bangunan untuk menahan gaya geser statik. Berat dari bangunan berasal dari beban mati yang terdiri dari berat sendiri material bangunan dan elemen-elemen struktur, serta beban hidup yang diakibatkan oleh hunian atau penggunaan bangunan. Pada tugas akhir ini, perhitungan berat bangunan diambil dari analisis menggunakan program analisis struktur. Peneliti tidak melakukan analisis perhitungan manual, sebab program analisis struktur telah menghitung berat struktur secara otomatis. Adapun massa struktur gedung dari output hasil program analisis struktur yang disajikan dalam Tabel 4.20.

Lantai	Masssa X kg	Massa Y kg	XCM m	YCM m	XCR m	YCR m
Lt. 15	879468,4	879468,36	28,3584	27,2672	27,5961	27,7238
Lt. 14	1013023	1013023,2	27,4852	28,057	27,6014	27,738
Lt. 13	1015477	1015477,2	27,455	28,0968	27,6086	27,7366
Lt. 12	1013160	1013159,8	27,4852	28,0569	27,6155	27,7355
Lt. 11	1031127	1031127,2	27,4899	28,0516	27,6212	27,7347
Lt. 10	1049763	1049762,9	27,4945	28,0462	27,6296	27,7341
Lt. 9	1049763	1049762,9	27,4945	28,0462	27,6396	27,7339
Lt. 8	1049763	1049762,9	27,4945	28,0462	27,6525	27,7342
Lt. 7	1049763	1049762,9	27,4945	28,0462	27,671	27,735
Lt. 6	1049763	1049762,9	27,4945	28,0462	27,7009	27,7365
Lt. 5	2118643	2118643,5	27,6241	27,8966	27,7401	27,7389
Lt. 4	2774632	2774631,6	27,596	27,919	27,7576	27,7413
Lt. 3	2825245	2825245	27,6993	27,7997	27,758	27,7421
Lt. 2	2825245	2825245	27,6993	27,7997	27,7577	27,7432

Tabel 4.20: Massa struktur, pusat massa dan pusat kekakuan.

Tabel 4.20: Lanjutan.

Lantai	Masssa X kg	Massa Y kg	XCM m	YCM m	XCR m	YCR m
Lt. 1	3011104	3011103,5	27,6982	27,8005	27,7562	27,7455
Total	23755939	23755939				

Pada Tabel 4.20, menunjukkan hasil massa struktur bangunan per lantai, dimana nilai absis pusat massa tidak sama dengan nilai absis pusat kekakuan. Oleh karena itu, struktur bangunan pada Model 2 memiliki eksentrisitas sebab nilai pusat massa dan pusat kekakuan tidak saling berimpit satu sama lain, maka struktur akan diperiksa terhadap ketidakberaturan torsi berdasarkan SNI 1726;2012.

4.3.3. Gaya Geser Dasar Nominal

Berdasarkan SNI 1726;2012 pasal 7.9.4.1, kombinasi respon dinamik untuk geser dasar ragam (V_t) lebih kecil 85 persen dari geser dasar yang dihitung (V_t) menggunakan prosedur gaya lateral ekivalen, maka gaya geser dan simpangan antar lantai harus dikalikan dengan faktor skala yaitu:

$$0,85\frac{V_1}{Vt} \ge 1$$

Nilai gaya geser dasar nominal analisis statik ekivalen dan respons spektrum tertera pada Tabel 4.21 dan Tabel 4.22.

Tabel 4.21: Nilai gaya geser dasar nominal analisis statik ekivalen.

Arah Gempa	V_1 (kN)
Gempa X	5261,7542
Gempa Y	5261,7542

Base Reaction							
Output Case	Case Type	Step Type	$Global F_X$	Global F _Y			
Text	Text	Text	kN	kN			
Gempa X	LinRespSpec	Max	3195,4511	914,4561			
Gempa Y	LinRespSpec	Max	958,6489	3048,1437			

Tabel 4.22: Nilai gaya geser dasar nominal analisis respons spektrum *output* program analisis struktur.

Berdasarkan SNI 1726;2012, nilai akhir dinamik struktur gedung terhadap pembebanan gempa nominal akibat pengaruh gempa rencana dalam suatu arah tertentu, tidak boleh diambil kurang dari 85% nilai respons ragam yang pertama. Bila respons dinamik struktur gedung dinyatakan dalam gaya geser V_t , maka persyaratan tersebut dapat dinyatakan sebagai berikut.

Syarat	: $V_t \ge 0,85 V_1$		
EQX	: 3195,4511 kN	\geq 0,85 x 5261,7542	2 kN
	: 3195,4511 kN	\leq 4472,4910 kN	(Tidak Memenuhi Syarat)
EQY	: 3048,1437 kN	\geq 0,85 x 5261,7542	2 kN
	3048,1437 kN	\leq 4472,4910 kN	(Tidak Memenuhi Syarat)

Dari perhitungan di atas bahwa nilai gaya geser dasar ragam (V_t) lebih kecil dari 85 persen gaya geser dasar statik ekivalen (V_1) , maka ordinat respon spektrum harus dikalikan dengan faktor skala. Berikut ini nilai faktor skala untuk masing-masing arah.

Syarat : $0.85 \frac{V_1}{Vt} \ge 1$

EQX :
$$0,85 \frac{5261,7542}{3195,4511} \ge 1$$

$$: 1,3996 \ge 1$$

EQY :
$$0,85\frac{5261,7542}{3048,1437} \ge 1$$

$$: 1,4673 \ge 1$$

Tabel 4.23: Perbandingan gaya geser dasar statik dan dinamik serta faktor skala X.

Vt (CQC)	0,85*Cs W (ELF)	Faktor Skala
(X-Dir) - (kN)	(X-Dir) - (kN)	Arah X
3195,4511	4472,4910	1,3996

Tabel 4.24: Perbandingan gaya geser dasar statik dan dinamik serta faktor skala Y.

Vt (CQC)	0,85*Cs W (ELF)	Faktor Skala
(Y-Dir) - (kN)	(Y-Dir) - (kN)	Arah Y
3048,1437	4472,4910	1,4673

4.3.4. Koreksi Faktor Redundansi

Berdasarkan sub Bab 2.7.8 (3), untuk struktur yang dirancang kategori desain seismik D, redundansi (ρ) harus sama dengan 1,3 kecuali jika satu dari dua kondisi berikut dipenuhi, dimana redundansi (ρ) diijinkan diambil 1,0. Salah satu kondisi untuk menentukan yaitu masing-masing tingkat yang menahan lebih dari 35 persen geser dasar dalam arah yang ditinjau, maka redundansi (ρ) diijinkan diambil 1,0. Apabila kondisi tersebut tidak terpenuhi, maka redundansi (ρ) 1,0 harus diganti dengan redundansi (ρ) 1,3. Sebagaimana tertera pada Tabel 4.25.

Lantai	V _x (kN)	V _y (kN)	35 % Vx Base Shear	35 % Vy Base Shear	Kontrol	Kontrol
Lt 15	421,1957	409,9035	1118,4079	1066,8503	NOT OK	NOT OK
Lt 14	801,9262	774,6139	1118,4079	1066,8503	NOT OK	NOT OK
Lt 13	1051,5253	1004,7443	1118,4079	1066,8503	NOT OK	NOT OK
Lt 12	1193,7551	1125,0547	1118,4079	1066,8503	OK	OK
Lt 11	1276,9019	1191,3407	1118,4079	1066,8503	OK	OK
Lt 10	1332,1198	1246,9302	1118,4079	1066,8503	OK	OK
Lt 9	1373,9970	1298,4771	1118,4079	1066,8503	OK	OK
Lt 8	1425,1979	1359,5339	1118,4079	1066,8503	OK	OK
Lt 7	1498,0230	1436,4932	1118,4079	1066,8503	OK	OK
Lt 6	1585,4273	1520,3362	1118,4079	1066,8503	OK	OK
Lt 5	1823,2238	1727,6226	1118,4079	1066,8503	OK	OK
Lt 4	2246,9849	2093,4488	1118,4079	1066,8503	OK	ОК

Tabel 4.25: Koreksi story shear dengan 35% base shear redundansi (ρ) 1,0.

Lantai	V _x (kN)	V _y (kN)	35 % Vx Base Shear	35 % Vy Base Shear	Kontrol	Kontrol
Lt 3	2703,6228	2521,6341	1118,4079	1066,8503	OK	OK
Lt 2	3045,0785	2871,3748	1118,4079	1066,8503	OK	OK
Lt 1	3195,4511	3048,1437	1118,4079	1066,8503	OK	OK
Base	0	0	0	0	OK	OK

Tabel 4.25: Lanjutan.

Dari Tabel 4.25, gaya geser pada lantai 13 sampai 15 dengan redundansi 1,0 tidak memenuhi syarat lebih besar dari 35 persen gaya geser dasar, maka nilai redundansi (ρ) pada pemodelan struktur menggunakan dengan nilai redundansi 1,3.

4.3.5. Gaya Geser Lantai

Gaya geser lantai merupakan distribusi dari gaya geser dasar yang dibagi pada setiap lantai untuk masing-masing arah gempa. Nilai gaya geser setiap lantai didapat dari hasil pemodelan struktur dengan menggunakan program analisis struktur yang dapat disajikan pada Tabel 4.26.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
15		Тор	589,5070	601,4278
15	55	Bottom	589,5236	601,4447
14	F1 F	Тор	1122,3986	1136,5665
14	51,5	Bottom	1122,4105	1136,5782
12	40	Тор	1471,7530	1474,2380
15	48	Bottom	1471,7601	1474,2448
10		Тор	1670,8270	1650,7709
12	44,5	Bottom	1670,8311	1650,7742
11	4.1	Тор	1787,1960	1748,0245
11	41	Bottom	1787,2069	1748,0346
10	27 5	Тор	1864,4851	1829,5916
10	37,5	Bottom	1864,4923	1829,6001
0	24	Тор	1923,0984	1905,2250
9	34	Bottom	1923,1054	1905,2341

Tabel 4.26: Nilai gaya geser pada setiap lantai.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
0	20.5	Тор	1994,7583	1994,8100
0	30,5	Bottom	1994,7684	1994,8217
7	27	Тор	2096,6842	2107,7286
/	27	Bottom	2096,6975	2107,7428
6	22 E	Тор	2219,0174	2230,7500
0	23,5	Bottom	2219,0324	2230,7643
5	20	Тор	2551,8324	2534,8853
5	20	Bottom	2551,8626	2534,9122
1	16	Тор	3144,9115	3071,6212
4	10	Bottom	3144,9769	3071,6829
2	10	Тор	3784,0492	3699,8928
5	12	Bottom	3784,1070	3699,9522
2	0	Тор	4261,9891	4213,0824
2	ŏ	Bottom	4262,0231	4213,1209
1	Λ	Тор	4472,4826	4472,4802
1	4	Bottom	4472,4910	4472,4910
0	0	Тор	0	0
U	U	Bottom	0	0

Tabel 4.26: Lanjutan.

Pada Tabel 4.26, menunjukkan gaya geser maksimum dari masing-masing arah saja. Untuk gaya geser dasar lantai untuk setiap arah gempa dapat dilihat pada Tabel B13 – B16 yang terdapat pada Lampiran B3.1.

4.3.6. Simpangan Antar Lantai

Simpangan antar lantai merupakan selisih nilai defleksi pada pusat massa gedung antara lantai teratas dan lantai dibawahnya. Berdasarkan SNI 1726;2012, simpangan antar lantai hanya terdapat satu kinerja batas, yaitu kinerja batas ultimit. Pada Tabel 4.27 menunjukan hasil nilai perpindahan dan simpangan antar lantai pada setiap lantai.

Lt	h (m)	Perpindahan Elastis (δe)		Perpindahan Total (δe*Cd)/Ie		Simpangan Antar Lantai (Δ)		Syarat	Cek	Cek
	(III)	X (m)	Y (m)	X (m)	Y (m)	X (m)	Y (m)	0,020hsx	Х	Y
15	3,5	0,083	0,096	0,332	0,383	0,014	0,021	1,100	OK	OK
14	3,5	0,079	0,091	0,317	0,362	0,020	0,027	1,030	OK	OK
13	3,5	0,074	0,084	0,297	0,335	0,024	0,031	0,960	OK	OK
12	3,5	0,068	0,076	0,274	0,304	0,026	0,031	0,890	OK	OK
11	3,5	0,062	0,068	0,248	0,273	0,025	0,025	0,820	OK	OK
10	3,5	0,056	0,062	0,223	0,248	0,025	0,027	0,750	OK	OK
9	3,5	0,049	0,055	0,198	0,221	0,026	0,028	0,680	OK	OK
8	3,5	0,043	0,048	0,172	0,193	0,027	0,029	0,610	OK	OK
7	3,5	0,036	0,041	0,145	0,165	0,026	0,029	0,540	OK	OK
6	3,5	0,030	0,034	0,118	0,136	0,024	0,028	0,470	OK	OK
5	3,5	0,024	0,027	0,094	0,108	0,022	0,025	0,400	OK	OK
4	3,5	0,018	0,021	0,072	0,083	0,019	0,019	0,320	OK	OK
3	3,5	0,013	0,016	0,053	0,064	0,021	0,022	0,240	OK	OK
2	3,5	0,008	0,010	0,032	0,041	0,020	0,024	0,160	OK	OK
1	4	0,003	0,004	0,012	0,017	0,012	0,017	0,080	OK	OK
0	0	0	0	0	0	0	0	0		

Tabel 4.27: Nilai simpangan antar lantai berdasarkan SNI 1726;2012.

Pada Tabel 4.27 menunjukkan, perpindahan dan simpangan antar lantai maksimum dari setiap arah saja. Untuk perpindahan dan simpangan antar lantai dari setiap arah dapat dilihat pada Tabel B21 – B24 yang terdapat pada Lampiran B3.2.

4.3.7. Ketidakberaturan Kekakuan Tingkat Lunak (Soft Story)

Berdasarkan SNI 1726;2012, kekakuan tingkat lunak (*soft* story) didefinisikan ada jika terdapat suatu tingkat di mana kekakuan lateralnya kurang dari 70 persen kekakuan lateral tingkat di atasnya atau kurang dari 80 persen kekakuan rata-rata tiga tingkat di atasnya. Pemeriksaan ketidak beraturan tingkat lunak dilakukan dengan cara menghitung kekakuan lateral tiap lantai. Perhitungan ketidak beraturan kekakuan tingkat lunak pada arah x dan y untuk Model 2 dapat dilihat pada Tabel 4.28 dan 4.29.

Tingkat	Σk _{ix} (kN/m)	Σk_{iy} (kN/m)	%Σk _{ix +1} (kN/m)	%Σk _{iy+1} (kN/m)	%Σk _{ix +3} (kN/m)	%Σk _{iy+3} (kN/m)
Lantai 15	117276,72	87335,78	-	-	-	-
Lantai 14	161924,11	125212,58	138,07	143,37	138,07	143,37
Lantai 13	184556,7	145300,97	113,98	116,04	132,20	136,72
Lantai 12	200987,98	169706,13	108,90	116,80	130,02	142,27
Lantai 11	227533,06	212110,07	113,21	124,99	124,68	144,55
Lantai 10	230158,19	210002,88	101,15	99,01	112,62	119,52
Lantai 9	234599,07	215424,45	101,93	102,58	106,85	109,20
Lantai 8	243042,01	223547,96	103,60	103,77	105,32	105,19
Lantai 7	260326,36	235243,09	107,11	105,23	110,34	108,75
Lantai 6	304688,05	263494,28	117,04	112,01	123,86	117,24
Lantai 5	418139,32	349609,12	137,24	132,68	155,24	145,21
Lantai 4	636928	597086,71	152,32	170,79	194,35	211,15
Lantai 3	724382,78	646610,16	113,73	108,29	159,82	160,29
Lantai 2	831757,49	692911,92	114,82	107,16	140,23	130,47
Lantai 1	1483823,7	1027947,2	178,40	148,35	202,98	159,24

Tabel 4.28: Ketidakberaturan kekakuan tingkat lunak pada gempa arah x.

Tabel 4.29: Ketidakberaturan kekakuan tingkat lunak pada gempa arah y.

Tingkat	Σk _{ix} (kN/m)	Σk _{iy} (kN/m)	%Σk _{ix +1} (kN/m)	%Σk _{iy+1} (kN/m)	%Σk _{ix +3} (kN/m)	%Σk _{iy+3} (kN/m)
Lantai 1	116947	88116,1	-	-	-	-
Lantai 2	161741	126285	138,30	143,32	138,30	143,32
Lantai 3	184433	146790	114,03	116,24	132,36	136,93
Lantai 4	200871	171699	108,91	116,97	130,12	142,61
Lantai 5	227410	213646	113,21	124,43	124,71	144,10
Lantai 6	230029	211476	101,15	98,98	112,63	119,22
Lantai 7	234468	216989	101,93	102,61	106,85	109,07
Lantai 8	242913	225212	103,60	103,79	105,32	105,22
Lantai 9	260207	238075	107,12	105,71	110,35	109,26
Lantai 10	304590	265028	117,06	111,32	123,89	116,88
Lantai 11	418024	351867	137,24	132,77	155,26	144,94
Lantai 12	636725	601932	152,32	171,07	194,36	211,21
Lantai 13	724092	652211	113,72	108,35	159,80	160,53
Lantai 14	831371	698720	114,82	107,13	140,21	130,52
Lantai 15	1482999	1035013	178,38	148,13	202,95	159,00

Berdasarkan Tabel 4.28 dan 4.29 nilai $\%\Sigma k_{ix +1}$, $\%\Sigma k_{iy +1}$, $\%\Sigma k_{ix +3}$, $\%\Sigma k_{ix +3}$ menunjukkan bahwa kekakuan lateral tiap lantai lebih besar dari 70% kekakuan lateral tingkat di atasnya atau 80% kekakuan rata-rata tiga tingkat di atasnya artinya gedung tidak memiliki ketidakberaturan kekakuan tingkat lunak (*soft story*) terhadap masing-masing arah.

4.3.8. Ketidakberaturan Torsi

Berdasarkan SNI 1726;2012, jika ada rasio antara simpangan antar lantai tingkat maksimum terhadap simpangan antar lantai tingkat rata-rata yang lebih dari 1,2 sehingga struktur gedung memiliki ketidak beraturan torsi akibat gempa arah x maupun arah y. Perhitungan ketidak beraturan torsi pada arah x dan y untuk Model 2 dapat dilihat pada Tabel 4.30 dan 4.31.

	Rigid		Arah X							
Lantai	diafragma	δx_{min}	δx_{max}	Δx_{min}	Δx_{max}	Patio	٨			
	(y/t)	m	m	m	m	Κάπο	Ax			
Lantai 15	rigid	0,0576	0,0611	0,0026	0,0027	1,0230	0,727			
Lantai 14	rigid	0,0550	0,0584	0,0035	0,0037	1,0237	0,728			
Lantai 13	rigid	0,0515	0,0547	0,0041	0,0043	1,0309	0,738			
Lantai 12	rigid	0,0474	0,0503	0,0044	0,0047	1,0349	0,744			
Lantai 11	rigid	0,0430	0,0456	0,0042	0,0045	1,0355	0,745			
Lantai 10	rigid	0,0387	0,0410	0,0044	0,0047	1,0380	0,748			
Lantai 9	rigid	0,0344	0,0363	0,0045	0,0049	1,0395	0,750			
Lantai 8	rigid	0,0299	0,0314	0,0060	0,0050	0,9055	0,569			
Lantai 7	rigid	0,0238	0,0265	0,0048	0,0049	1,0177	0,719			
Lantai 6	rigid	0,0191	0,0216	0,0042	0,0043	1,0124	0,712			
Lantai 5	rigid	0,0149	0,0172	0,0022	0,0040	1,2944	1,163			
Lantai 4	rigid	0,0127	0,0132	0,0033	0,0035	1,0233	0,727			
Lantai 3	rigid	0,0093	0,0097	0,0036	0,0038	1,0201	0,723			
Lantai 2	rigid	0,0057	0,0059	0,0036	0,0037	1,0182	0,720			
Lantai 1	rigid	0,0021	0,0022	0,0021	0,0022	1,0179	0,719			

Tabel 4.30: Ketidakberaturan torsi biasa dan torsi berlebihan pada gempa arah x.

	Rigid	Arah Y							
Lantai	diafragma	δY_{min}	δY_{max}	ΔY_{min}	ΔY_{max}	Patio	۸V		
	(y/t)	m	m	m	m	кино	AI		
Lantai 15	rigid	0,0634	0,0655	0,0041	0,0037	0,9427	0,617		
Lantai 14	rigid	0,0593	0,0618	0,0049	0,0047	0,9726	0,657		
Lantai 13	rigid	0,0544	0,0572	0,0051	0,0053	1,0147	0,715		
Lantai 12	rigid	0,0492	0,0519	0,0048	0,0053	1,0476	0,762		
Lantai 11	rigid	0,0444	0,0466	0,0044	0,0043	0,9802	0,667		
Lantai 10	rigid	0,0400	0,0423	0,0047	0,0046	0,9941	0,686		
Lantai 9	rigid	0,0353	0,0377	0,0048	0,0048	0,9975	0,691		
Lantai 8	rigid	0,0305	0,0329	0,0049	0,0049	0,9958	0,689		
Lantai 7	rigid	0,0256	0,0281	0,0049	0,0049	1,0027	0,698		
Lantai 6	rigid	0,0207	0,0232	0,0046	0,0047	1,0055	0,702		
Lantai 5	rigid	0,0161	0,0185	0,0020	0,0043	1,3581	1,281		
Lantai 4	rigid	0,0141	0,0142	0,0033	0,0033	1,0050	0,701		
Lantai 3	rigid	0,0108	0,0109	0,0038	0,0038	1,0050	0,701		
Lantai 2	rigid	0,0070	0,0071	0,0041	0,0041	1,0044	0,701		
Lantai 1	rigid	0,0029	0,0030	0,0029	0,0030	1,0037	0,700		

Tabel 4.31: Ketidakberaturan torsi biasa dan torsi berlebihan pada gempa arah y.

Dari Tabel 4.30 dan 4.31 dapat dilihat pada lantai 5 bahwa ada rasio antara simpangan antar lantai tingkat maksimum terhadap simpangan antar lantai tingkat rata-rata yang lebih dari 1,2 tetapi tidak melebihi 1,4 sehingga struktur gedung pada lantai 5 memiliki ketidakberaturan torsi biasa akibat gempa arah x maupun arah y.

4.3.9. Ketidakberaturan Berat (Massa)

Berdasarkan SNI 1726;2012, ketidakberaturan berat (massa) didefinisikan ada jika massa efektif semua tigkat lebih dari 150 persen massa efektif tingkat didekatnya. Pemeriksaan ketidakberaturan berat (massa) dilakukan dengan cara menghitung berat gedung per lantai. Pemeriksaan gedung dengan ketidakberaturan massa dapat dilihat pada Tabel 4.32.

					Cek	Cek
Lantai	$W_{x}(Kg)$	$W_{y}(Kg)$	$\%W_{x\pm1}$	$\%W_{y\pm1}$	$\%W_{x\pm1}>$	$\%W_{y\pm1}>$
					150%	150%
Lantai 15	879468,36	879468,4	86,82%	86,82%	Tidak Ada	Tidak Ada
Lantai 14	1013023,21	1013023	99,76%	99,76%	Tidak Ada	Tidak Ada
Lantai 13	1015477,16	1015477	100,23%	100,23%	Tidak Ada	Tidak Ada
Lantai 12	1013159,76	1013160	98,26%	98,26%	Tidak Ada	Tidak Ada
Lantai 11	1031127,15	1031127	98,22%	98,22%	Tidak Ada	Tidak Ada
Lantai 10	1049762,89	1049763	100,00%	100,00%	Tidak Ada	Tidak Ada
Lantai 9	1049762,89	1049763	100,00%	100,00%	Tidak Ada	Tidak Ada
Lantai 8	1049762,89	1049763	100,00%	100,00%	Tidak Ada	Tidak Ada
Lantai 7	1049762,89	1049763	100,00%	100,00%	Tidak Ada	Tidak Ada
Lantai 6	1049762,89	1049763	100,00%	100,00%	Tidak Ada	Tidak Ada
Lantai 5	2118643,47	2118643	76,36%	76,36%	Tidak Ada	Tidak Ada
Lantai 4	2774631,64	2774632	98,21%	98,21%	Tidak Ada	Tidak Ada
Lantai 3	2825244,96	2825245	101,82%	101,82%	Tidak Ada	Tidak Ada
Lantai 2	2825244,96	2825245	100,00%	100,00%	Tidak Ada	Tidak Ada
Lantai 1	3011103,53	3011104	106,58%	106,58%	Tidak Ada	Tidak Ada

Tabel 4.32: Ketidakberaturan berat (massa).

Pada Tabel 4.32 didapat nilai % $W_{\pm 1}$ lebih kecil dari 150%. Sesuai SNI 1726;2012 gedung didefinisikan sebagai tanpa ketidakberaturan berat (massa).

4.3.10. Sudut Rotasi dan Jenis Elemen Perangkai Berdasarkan Panjangnya

Sudut rotasi elemen perangkai adalah sudut inelastic antara elemen perangkai dan balok diluar dari elemen perangkai bila total simpangan tingkat adalah sama dengan simpangan tingkat desain, Δ . Perhitungan sudut rotasi elemen perangkai dapat diliat pada table 4.33.

Lt	h (m)	L (m)	e (m)	ΔX (m)	ΔY (m)	Θрх°	Θру°	γpx°	۷ру°
15	3,5	5,5	1	0,0143	0,0214	0,0041	0,0061	0,0224	0,0336
14	3,5	5,5	1	0,0202	0,0272	0,0058	0,0078	0,0317	0,0427
13	3,5	5,5	1	0,0236	0,0307	0,0067	0,0088	0,0371	0,0483
12	3,5	5,5	1	0,0257	0,0310	0,0073	0,0088	0,0403	0,0487
11	3,5	5,5	1	0,0245	0,0249	0,0070	0,0071	0,0386	0,0391

Tabel 4.33: Sudut Rotasi Elemen Perangkai.

Lt	h (m)	L (m)	e (m)	ΔX (m)	ΔY (m)	Θрх°	Θру°	γрх ^о	۷ру°
10	3,5	5,5	1	0,0255	0,0270	0,0073	0,0077	0,0400	0,0424
9	3,5	5,5	1	0,0262	0,0279	0,0075	0,0080	0,0412	0,0439
8	3,5	5,5	1	0,0267	0,0286	0,0076	0,0082	0,0420	0,0450
7	3,5	5,5	1	0,0265	0,0289	0,0076	0,0083	0,0416	0,0455
6	3,5	5,5	1	0,0243	0,0275	0,0069	0,0079	0,0381	0,0432
5	4	5,5	1	0,0218	0,0250	0,0055	0,0063	0,0300	0,0344
4	4	5,5	1	0,0191	0,0195	0,0048	0,0049	0,0263	0,0268
3	4	5,5	1	0,0207	0,0224	0,0052	0,0056	0,0285	0,0308
2	4	5,5	1	0,0205	0,0241	0,0051	0,0060	0,0281	0,0331
1	4	5,5	1	0,0120	0,0173	0,0030	0,0043	0,0166	0,0238

Tabel 4.33: Lanjutan.

Pada Tabel 4.33 hanya menunjukkan, nilai sudut rotasi elemen perangkai pada sumbu x dan y, serta menunjukan nilai sudut penyimpangan plastis pada kolom yang diakibatkan terjadinya sudut rotasi perangkai.

Untuk mengetahui jenis elemen perangkai berdasarkan panjangnya dapat ditentukan berdasarkan kekuatan lentur dan geser elemen perangkai, dalam tabel 4.34.

Lt	h (m)	L (m)	e (m)	M _p (kn.m)	V _p (kn)	V _n (kn)	$1,6M_p/V_p$	$2,6M_p/V_p$	$5M_p/V_p$
15	3,5	5,5	1	50,038	151,800	100,076	0,527	0,857	1,648
14	3,5	5,5	1	50,038	151,800	100,076	0,527	0,857	1,648
13	3,5	5,5	1	50,038	151,800	100,076	0,527	0,857	1,648
12	3,5	5,5	1	87,965	208,800	175,931	0,674	1,095	2,106
11	3,5	5,5	1	87,965	208,800	175,931	0,674	1,095	2,106
10	3,5	5,5	1	87,965	208,800	175,931	0,674	1,095	2,106
9	3,5	5,5	1	87,965	208,800	175,931	0,674	1,095	2,106
8	3,5	5,5	1	87,965	208,800	175,931	0,674	1,095	2,106
7	3,5	5,5	1	87,965	208,800	175,931	0,674	1,095	2,106
6	3,5	5,5	1	87,965	208,800	175,931	0,674	1,095	2,106
5	4	5,5	1	87,965	208,800	175,931	0,674	1,095	2,106
4	4	5,5	1	130,519	274,950	261,038	0,760	1,234	2,374
3	4	5,5	1	130,519	274,950	261,038	0,760	1,234	2,374
2	4	5,5	1	130,519	274,950	261,038	0,760	1,234	2,374
1	4	5,5	1	130,519	274,950	261,038	0,760	1,234	2,374

Tabel 4.34: Kekuatan lentur dan geser elemen perangkai.

Pada lantai 1 sampai lantai 12 dapat diasumsikan jenis elemen perangkai ini dominan geser, jenis link ini leleh akibat dominsi geser (pada kombinasi geser dan lentur) pada respon/deformasi inelastik. Sedangkan pada lantai 13 sampai lantai 15 dapat diasumsikan jenis elemen perangkai ini dominan lentur, jenis link ini leleh akibat dominasi lentur (pada kombinasi geser dan lentur) pada respon/deformasi inelastik.

4.3.11. Kapasitas Struktur

Dari output analisis *pushover* didapatkan kurva kapasitas dari struktur, selanjutnya dari kurva kapasitas akan dievaluasi berdasarkan FEMA 356. Kurva kapasitas hasil analisa *pushover* untuk masing-masing arah adalah sebagai berikut:

a. Kapasitas Sistem Rangka (Arah x-x)

Dari hasil *running pushover analysis* dengan program ETABS v16 untuk arah x-x didapatkan 118 Step pola beban dorong yang diberikan pada struktur hingga struktur mengalami keruntuhan. Dari 118 Step beban dorong tersebut dapat digambarkan dalam grafik hubungan gaya dan perpindahan terhadap struktur. 118 Step pola beban dorong hasil *running* dengan ETABS dapat dilihat pada Lampiran B4 Tabel B27. Dari Tabel tersebut dapat dilihat bahwa pada setiap kenaikan beban dorong yang diberikan maka kondisi plastifikasi pada elemen juga akan meningkat secara bertahap hingga mengalami keruntuhan. Pada Gambar 4.11 adalah lokasi terjadinya awal sendi plastis pada elemen struktur yang untuk beban dorong arah x-x sebagai berikut:

Gambar 4.11: Push x Step 81.

Dari Gambar 4.11 dapat dilihat awal terjadinya sendi plastis terdapat pada elemen link pada lantai 7 dengan beban dorong sebesar 5569,4395 Kn.

Untuk terjadinya sendi plastis dengan beban dorong maksimum dapat dilihat pada Gambar 4.12.

Gambar 4.12: Push x Step 117.

Dari Gambar 4.12 dapat dilihat pada lantai 5 sampai lantai 10 terjadi sendi plastis pada elemen link, tetapi belum mengalami kehancuran terhadap beban dorong maksimum sebesar 8129,2356 Kn.

Untuk terjadi sendi plastis maksimum pada elemen link dapat dilihat pada Gambar 4.13.

Gambar 4.13: Push x Step 118.

Dari Gambar 4.13 dapat dilihat pada lantai 7 dan 8 elemen link mengalami sendi plastis maksimum walau hanya menahan beban dorong sebesar 5081,6852 Kn. Hal ini disebabkan karna ketika struktur diberi beban dorong sebesar 8129,2356 Kn pada step 117 pada elemen link masih mampu menahan beban tersebut tetapi ketika kembali pada titik nol lalu diberi lagi beban dorong maka link mengalami sendi plastis maksimum disaat beban dorong sebesar 5081,6852 Kn pada step 118. Hal tersebut dapat dilihat dalam Grafik hubungan gaya vs perpindahan pada Gambar 4.14.

Gambar 4.14: Kurva kapasitas sistem rangka arah x-x.

Untuk nilai-nilai dari step 1 sampai step 118 pada kurva kapasitas system rangka x-x dapat dilihat pada Tabel B27 yang terdapat pada Lampiran B4.

b. Kapasitas Sistem Rangka (Arah y-y)

Pada sistem rangka arah y-y, terdapat 135 step pola beban dorong yang diberikan pada struktur hingga mengalami keruntuhan seperti pada Lampiran B4 Tabel B28. Untuk arah y-y mekanisme terbentuknya sendi plastis awal dapat dilihat pada Gambar 4.15.

Gambar 4.15: Push y Step 89.

Dari Gambar 4.15 dapat dilihat awal terjadinya sendi plastis terdapat pada elemen link pada lantai 6 dan lantai 7 dengan beban dorong sebesar 5341,9312 Kn.

Untuk terjadinya sendi plastis dengan beban dorong maksimum dapat dilihat pada Gambar 4.16.

Gambar 4.16: Push y Step 134.

Dari Gambar 4.16 dapat dilihat pada lantai 5 sampai lantai 9 dan lantai 13 terjadi sendi plastis pada elemen link, tetapi belum mengalami kehancuran terhadap beban dorong maksimum sebesar 7539,9094 Kn.

Untuk terjadi sendi plastis maksimum pada elemen link dapat dilihat pada Gambar 4.17.

Gambar 4.17: Push y Step 135.

Dari Gambar 4.7 dapat dilihat pada lantai 7 elemen link mengalami sendi plastis maksimum walau hanya menahan beban dorong sebesar 3275,0138 Kn. Hal ini disebabkan karna ketika struktur diberi beban dorong sebesar 7539,9094 Kn pada step 134 pada elemen link masih mampu menahan beban tersebut tetapi ketika kembali pada titik nol lalu diberi lagi beban dorong maka link mengalami sendi plastis maksimum disaat beban dorong sebesar 3275,0138 Kn pada step 134. Hal tersebut dapat dilihat dalam Grafik hubungan gaya vs perpindahan pada Gambar 4.18.

Gambar 4.18: Kurva kapasitas sistem rangka arah y-y.

Untuk nilai-nilai dari step 1 sampai step 135 pada kurva kapasitas system rangka y-y dapat dilihat pada Tabel B28 yang terdapat pada Lampiran B4.

4.3.12. Target Perpindahan

a. Target Perpindahan Arah x-x

Hasil dari kurva bilinear pushover arah x-x dapat dilihat pada Gambar 4.19.

Gambar 4.19: Kurva *bilinear pushover* arah x-x.

Dari Gambar 4.19 dapat dilihat nilai target perpindahan berdasarkan Metode ATC-40 secara default sudah built-in terdapat pada ETABS v16 sebesar 0,6402 m.

Maka dari nilai-nilai yang terdapat dari Gambar 4.19 dapat dihitung nilai target perpindahan berdasarkan Metode FEMA 356 dengan Pers.2.33 seperti dibawah ini.

$$\delta_T = C_0 C_1 C_2 C_3 S_a \frac{T_e^2}{4\pi^2} g$$

= 1,387365 × 1 × 1 × 1 × 0,167007 × $\frac{3,345^2}{4\pi^2}$ × 9,81
= 0,6442 m

c. Target Perpindahan Arah y-y

Hasil dari kurva *bilinear pushover* arah y-y dapat dilihat pada Gambar 4.20.

Gambar 4.20: Kurva bilinear Pushover arah y-y.

Dari Gambar 4.20 dapat dilihat nilai target perpindahan berdasarkan Metode ATC-40 secara default sudah built-in terdapat pada ETABS v16 sebesar 0,7094 m.

Maka dari nilai-nilai yang terdapat dari Gambar 4.20 dapat dihitung nilai target perpindahan berdasarkan Metode FEMA 356 dengan Pers.2.33 seperti dibawah ini.
$$\delta_T = C_0 C_1 C_2 C_3 S_a \frac{T_e^2}{4\pi^2} g$$

= 1,44891 × 1 × 1 × 1 × 0,15659 × $\frac{3,568^2}{4\pi^2}$ × 9,81
= 0,7177 m

4.4. Evaluasi Kinerja Struktur

Berdasarkan hasil dari sub Bab 4.2 dan 4.3 dapat kita liat perbandingan target perpindahan pada masing-masing Model berdasakan SNI 1726;2012, ATC-40 dan FEMA 356 seperti pada Tabel 4.35.

 Tabel 4.35: Persentase perbandingan target perpindahan.

		Target Perp	Nilai	
Model	Kriteria	х	У	Batas 0,020hsx
	SNI 1726;2012	0,3316 (30,14%)	0,3834 (34,85%)	
1	ATC-40	0,6276 (57,05%)	0,6997 (63,61%)	
	FEMA 356	0,6308 (57,34%)	0,7054 (64,12%)	1,1
	SNI 1726;2012	0,3316 (30,14%)	0,3834 (34,85%)	(100%)
2	ATC-40	0,6402 (58,20%)	0,7094 (64,49%)	
	FEMA 356	0,6442 (61,56%)	0,7177 (65,24%)	

Dari Tabel 4.35 dapat kita liat nilai target perpindahan terbesar dihasilkan dari metode FEMA 356 pada Model 1 maupun Model 2 terhadap arah sumbu x dan y masih dikatagorikan aman karena tidak melebihi nilai batas maksimum.

Berdasarkan dari analisis *pushover* dapat dilihat nilai daktilitas pada struktur yang terdapat pada Tabel 4.36 arah x dan Tabel 4.37 arah y.

Model	Metode	$\delta_{y}(m)$	V _y (Kn)	δ_t (m)	$V_{t}(Kn)$	Daktilitas (μ_{Δ})
1	ATC-40	0,1607	4947,8761	0,6276	6817,1442	3,9058
1	FEMA 356	0,1607	4947,8761	0,6308	6817,1442	3,9253
2	ATC-40	0,192	5912,7072	0,6402	8129,2356	3,3336
	FEMA 356	0,192	5912,7072	0,6442	8129,2356	3,3552

Tabel 4.36: Daktilitas peralihan aktual arah x.

Model	Metode	$\delta_{y}(m)$	V _y (Kn)	δ_t (m)	$V_{t}(Kn)$	Daktilitas (μ_{Δ})
1	ATC-40	0,174	4659,6592	0,6997	6338,28	4,0213
1	FEMA 356	0,174	4659,6592	0,7054	6338,28	4,054
2	ATC-40	0,2076	5558,1283	0,7094	7539,9094	3,4173
Z	FEMA 356	0,2076	5558,1283	0,7177	7539,9094	3,4571

Tabel 4.37: Daktilitas peralihan aktual arah y.

Dari Tabel 4.36 dan Tabel 4.37 diperoleh nilai daktilitas terbesar pada Model 1 dengan metode FEMA 356 yaitu sebesar 3,9253 arah x dan 4,054 arah y, maka pada kedua arah telah memenuhi syarat dengan tidak melewati batas daktilitas maksimum sebesar 4,3 yang disyaratkan dalam tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan non gedung.

Berdasarkan dari analisis *pushover* dapat diperhitungkan tingkat kinerja struktur yang terdapat pada Tabel.4.38 untuk arah x dan Tabel 4.39 untuk arah y.

Tabel 4.38: Tingkat kinerja struktur arah x.

Model	Metode	$\delta_{t}(m)$	Drift	Tingkat kinerja
1	ATC-40	0,6276	0,0114	Demage Control
	FEMA 356	0,6308	0,0115	Demage Control
2	ATC-40	0,6402	0,0116	Demage Control
	FEMA 356	0,6442	0,0117	Demage Control

Tabel 4.39: Tingkat kinerja struktur arah y.

Model	Metode	$\delta_{t}(m)$	Drift	Tingkat kinerja
1	ATC-40	0,6997	0,0127	Demage Control
	FEMA 356	0,7054	0,0128	Demage Control
2	ATC-40	0,7094	0,0129	Demage Control
	FEMA 356	0,7177	0,013	Demage Control

Dari Tabel 4.38 dan Tabel 4.39 dapat dilihat tingkat kinerja struktur untuk kedua metode tersebut diperoleh yaitu tingkat kinerja *Demage Control/SP-2*. Hal ini menunjukan bahwa target fungsi bangunan sebagai gedung mall beserta apartement pada prediksi awal yaitu *Lift Safety/SP-3* terpenuhi.

BAB 5

KESIMPULAN DAN SARAN

5.1. Kesimpulan

Sesuai hasil analisis dan pembahasan yang telah dilakukan dari kedua Model tersebut yaitu struktur rangka berpengaku eksentrik dengan berat jenis pengaku menggunakan Bj-34 dan struktur rangka berpengaku eksentrik dengan berat jenis pengaku menggunakan Bj-41, sehingga dapat diambil kesimipulan yaitu:

- 1. Dari hasil analisis kedua Model, maka perilaku seismik dengan analisis beban dorong masing-masing kedua Model tersebut adalah:
 - Perilaku seismic dengan analisis beban dorong pada model 1 mengalami sendi plastis maksimum pada elemen link dengan jumlah step beban dorong sebanyak 96 kali pada arah x-x dengan beban maksimum sebesar 6817,1442 KN, sedangkan pada arah y-y elemen link mengalami sendi plastis maksimum dengan jumlah step beban dorong sebanyak 112 kali dengan beban maksimum sebesar 6338,28 KN.
 - Perilaku seismic dengan analisis beban dorong pada model 2 mengalami sendi plastis maksimum pada elemen link dengan jumlah step beban dorong sebanyak 118 kali pada arah x-x dengan beban maksimum sebesar 8129,2356 KN, sedangkan pada arah y-y elemen link mengalami sendi plastis maksimum dengan jumlah step beban dorong sebanyak 135 kali dengan beban maksimum sebesar 7539,9094 KN.

Dari kedua Model tersebut dapat disimpulkan bahwa Model 2 mampu menahan jumblah beban dorong yang lebih besar dari pada Model 1.

- 2. Tingkat kinerja struktur pada kedua Model dengan analisis *pushover* tersebut adalah:
 - Tingkat kinerja struktur untuk Model 1 dengan nilai drift sebesar 0,0115 pada arah x yaitu tingkat kinerja *Demage Control/SP-2*, sedangkan pada ayah y dengan nilai drift sebesar 0,0128 yaitu tingkat kinerja *Demage Control/SP-2*.

• Tingkat kinerja struktur untuk Model 2 dengan nilai drift sebesar 0,0117 pada arah x yaitu tingkat kinerja *Demage Control/SP-2*, sedangkan pada ayah y dengan nilai drift sebesar 0,013 yaitu tingkat kinerja *Demage Control/SP-2*.

Dari kedua Model tersebut dapat dilihat dari arah x maupun y kedua Model tersebut sama-sama memiliki tingkat kinerja *Demage Control/SP-2*, hal ini menunjukan bahwa target fungsi bangunan pada kedua Model sebagai gedung mall beserta apartement pada prediksi awal yaitu *Lift Safety/SP-3* terpenuhi.

- Metode koefisien perpindahan FEMA 356 memberikan hasil daktilitas aktual tertinggi pada kedua Model tersebut, dapat dilihat pada masing-masing arah pada kedua Model tersebut adalah:
 - Nilai daktilitas aktual pada Model 1 sebesar 3,9253 untuk arah x, dan sebesar 4,054 untuk arah y. Pada kedua arah hal ini menunjukan nilai yang lebih kecil dibandingkan prekdisi daktilitas rencana sebesar 4,3.
 - Nilai daktilitas aktual pada Model 2 sebesar 3,3552 untuk arah x, dan sebesar 3,4571 untuk arah y. Pada kedua arah hal ini menunjukan nilai yang lebih kecil dibandingkan prekdisi daktilitas rencana.
- 4. Nilai target perpindahan yang dihasilkan dari masing-masing kedua Model yang berdasarkan metode koefisien perpindahan (FEMA 356) tersebut adalah:
 - Target perpindahan untuk Model 1 yaitu 0,6308 m untuk arah x, dan 0,7054 m untuk arah y.
 - Target perpindahan untuk Model 2 yaitu 0,6442 m untuk arah x, dan 0,7177 m untuk arah y.

Walaupu kedua struktur memili beban-beban yang sama dan komponenkomponen struktur yang sama tetapi kekuatan kedua struktur berbeda, sehingga memiliki selisih target perpindahan dari kedua Model tersebut adalah 2,08% untuk arah x dan 1,714% untuk arah y. Hal ini disebabkan karena nilai kekuatan pengaku Model 2 lebih besar dari pada Model 1 dikarnakan pengaku pada Model 2 memiliki kuat leleh (fy) 250 Mpa dan kuat tarik (fu) 410 Mpa, sedangkan pada Model 1 hanya menggunakan pengaku yang memiliki kuat leleh (fy) 210 Mpa dan kuat tarik (fu) 340 Mpa.

5.2. Saran

Interaksi struktur dengan pondasi perlu dikaji dengan FEMA 440 yang didalamnya terdapat bahasan mengenai interaksi struktur dengan pondasi untuk konsep *Perfomance Based Seismic Design*, dan perlu peninjauan lanjut dengan dinamik non-linier yaitu NLTHA (*non-linier time history analisys*) yang berdasarkan dengan konsep PBSD (*performance based seismic design*).

DAFTAR PUSTAKA

- Badan Standarisasi Nasional (2012). "*Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung*", *SNI 1726:2012*. Jakarta: Departemen Pekerjaan Umum.
- Badan Standarisasi Nasional (2013). "Beban Minimum Untuk Perancangan Bangunan Gedung dan Struktur Lain", SNI 1727;2013. Jakarta: Departemen Pekerjaan Umum.
- Badan Standarisasi Nasional (2015). "Spesifikasi Untuk Banguan Gedung Baja Struktural", SNI 1729;2015. Jakarta: Departemen Pekerjaan Umum.
- Badan Standarisasi Nasional (2015). "Ketentuan Seismik Untuk Struktur Baja Bangunan Gedung", SNI 7860;2015. Jakarta: Departemen Pekerjaan Umum.
- Basha, H.S. and Subhash C. Goel. (1996). "Seismic Resistant Truss Moment Frames with Ductile VierendeelSegment", Paper No.487. Eleventh World Conference on Earthquake Engineering, Elsevier Science Ltd.
- Budiono, B. dan Supriatna, L. (2011). "Studi Komparasi Desain Bangunan Tahan Gempa", Dengan Menggunakan SNI 03-1726;2002 dan SNI 1726;2012. Bandung: ITB.
- Departemen Pekerjaan Umum (1987). "Pedoman Perencanaan Pembebanan Untuk Rumah dan Gedung", Jakarta: Yayasan Badan Penerbit PU.
- Dewobroto, W. (2012). "Menyongsong Era Bangunan Tinggi dan Bentang Panjang". Universitas Pelita Harapan.
- Dewobroto, W. (2016). "Struktur Baja Perilaku, Analisis & Desain AISC 2010", Edisi Ke-2. Tangerang: Universitas Pelita Harapan.
- Faisal, A. (2014). "Catatan Kuliah M.K. Vibrasi dan Teori Gempa". Medan: UMSU.
- FEMA 356. (2000). "Prestandard and Commentary for the Seismic Rehabilitation of Buildings". Wasingtom, D.C.: Federal Emergency Management Agency.
- Hamburger, R.O, Helmut Krawinkler, James O. Malley, Scott M. Adan. (2009)."NIST GCR 09-917-3 : Seismic Design of Steel Special Moment Frames: A Guide for Practicing Engineers ", U.S. Department of Commerce and The National Institute of Standards and Technology (NIST)
- Meoestopo, M. (2012). "Struktur Bangunan Baja Tahan Gempa. Short Course", Himpunan Ahli Konstruksi Indonesia, Jakarta: Indonesia.

- Pawirodikromo, W. (2012). "Seismologi Teknik & Rekayasa Kegempaan". Yogyakarta: Universitas Islam Indonesia.
- Sabelli, R, and Walterio López. (2004). "Design of Buckling-Restrained Braced Frames", Modern Steel Construction.
- Seilie, I.F, and John D. Hooper.(2005). "Steel Plate Shear Walls: Practical Design and Construction", April 2005 Modern Steel Construction.

Suharjanto. (2013) Rekayasa Gempa.

Tavio & Usman Wijaya. (2018). "Desain Rekayasa Gempa Berbasis Kinerja (Performance Based Design)".

LAMPIRAN

LAMPIRAN

A. Perencanaan Struktur

A1. Perhitungan Tebal Pelat Lantai

Perencanaan tebal pelat lantai mengacu kepada SNI 2847;2013, pelat lantai menggunakan sistem pelat dua arah dimana rasio perbandingan antara ly/lx \leq 2. Berikut ini adalah perhitungan tebal pelat pelat dua arah:

Data-data:

- Lx1	=	5000	mm	- ln1	=	5000	mm
- Ly1	=	5000	mm	- β1	=	1	
- Lx2	=	5500	mm	- ln2	=	5500	mm
- Ly2	=	5000	mm	- β2	=	0,91	
- Lx3	=	5500	mm	- ln3	=	5500	mm
- Ly3	=	5500	mm	- β3	=	1	
- Fy	=	400	Mpa				

$$h_{min} = \frac{l_n \left(0, 8 + \frac{f_y}{1400}\right)}{36 + 9\beta} \qquad h_{max} = \frac{l_n \left(0, 8 + \frac{f_y}{1400}\right)}{36}$$

$$h_{min} l = \frac{5000 \left(0, 8 + \frac{400}{1400}\right)}{36 + 9(1)} \qquad h_{max} l = \frac{5000 \left(0, 8 + \frac{400}{1400}\right)}{36}$$

$$= 118,5184 \text{ mm} \qquad = 148,1481 \text{ mm}$$

$$h_{min} 2 = \frac{5500 \left(0, 8 + \frac{400}{1400}\right)}{36 + 9(0,91)} \qquad h_{max} 2 = \frac{5500 \left(0, 8 + \frac{400}{1400}\right)}{36}$$

$$= 132,7846 \text{ mm} \qquad = 162,963 \text{ mm}$$

$$h_{min} 3 = \frac{5500 \left(0, 8 + \frac{400}{1400}\right)}{36 + 9(1)} \qquad h_{max} 3 = \frac{5500 \left(0, 8 + \frac{400}{1400}\right)}{36}$$

Maka, tebal yang digunakan yaitu:

- Lantai 1-4:
- \circ H1 = 145 mm
- \circ H2 = 155 mm
- \circ H3 = 155 mm
- Lantai 5-14:
- \circ H1 = 140 mm
- \circ H2 = 145 mm
- \circ H3 = 145 mm
- Lantai 5 & 15 (atap):
- \circ H1 = 120 mm
- \circ H2 = 135 mm
- \circ H3 = 135 mm

A2. Perhitungan Beban Tambahan Beban Mati

A2.1. Beban Mati Tambahan Pelat Lantai

Berikut ini perhitungan beban mati tambahan pada lantai yang dibedakan menjadi pelat lantai atap, apartemen beserta mall dan area parker.

- Beban Mati Tambahan Pada Pelat Lantai 15 (atap) dan Lantai 5 (atap mall)

0	Plafon + penggantung	=	$18 \text{ Kg/m}^2 =$	0,18	KN/m ²
0	Plaster	=	42 Kg/m ² =	0,42	KN/m ²
0	Waterproof	=	$4 \text{ Kg/m}^2 =$	0,04	KN/m ²
0	M & E	=	$40 \ {\rm Kg/m^2} =$	0,4	KN/m ²
	Total beban mati	=	104 Kg/m^2 =	1,04	KN/m ²

- Beban Mati Tambahan Pada Lantai 1-4 Mall dan Lantai 5-14 Apartemen

0	Spesi lantai keramik (t = 2 cm)	=	42 Kg/m ² =	0,42	KN/m ²
0	Penutup lantai keramik	=	24 Kg/m ² =	0,24	KN/m ²
0	Plafon + penggantung	=	$18 \text{ Kg/m}^2 =$	0,18	KN/m ²
0	M & E	=	$40 \text{ Kg/m}^2 =$	0,4	KN/m ²
	Total beban mati	=	$124 \text{Kg/m}^2 =$	1,24	KN/m ²

A2.2. Beban Dinding

Beban dinding dijadikan sebagai beban terbagi rata yang ditumpu oleh balokbalok yang berhubungan pada masing-masing lantai. Nilai beban dinding yang didapatkan adalah sebagai berikut:

:	Bs. Dinding Batako 15 cm	=	300	kg/m ²
	Tinggi Lantai 1-5	=	4	m
	Tinggi Lantai 6-15	=	3,5	m
	:	: Bs. Dinding Batako 15 cm Tinggi Lantai 1-5 Tinggi Lantai 6-15	: Bs. Dinding Batako 15 cm = Tinggi Lantai 1-5 = Tinggi Lantai 6-15 =	: Bs. Dinding Batako 15 cm = 300 Tinggi Lantai 1-5 = 4 Tinggi Lantai 6-15 = 3,5

- Beban Mati Tambahan Pada Dinding Lantai 1-4 (mall)

• Dinding batako (15 cm) = 3 KN/m^2

• Beban garis
$$= 3 \times 0.5(4+4) = 12 \text{ KN/m}^2$$

- Beban Mati Tambahan Pada Dinding Lantai 5 (atap mall)
 - Dinding batako (15 cm) = 3 KN/m^2
 - Beban garis $= 3 \times 0.5(4) = 6 \text{ KN/m}^2$

- Beban Mati Tambahan Pada Dinding Lantai 5 (apartemen) & Lantai 15 (atap apartemen)

• Dinding batako (15 cm) = 3 KN/m²
• Beban garis = 3 x 0,5(3,5) =
$$5,25$$
KN/m²

- Beban Mati Tambahan Pada Dinding Lantai 6-14 (apartemen)
 - Dinding batako (15 cm) = 3 KN/m^2
 - Beban garis $= 3 \times 0.5(3.5+3.5) = 10.5 \text{KN/m}^2$

A2.3. Beban Tangga

Berikut ini perhitungan beban tangga dimana beban tangga dibedakan menjadi beban tangga base ke lantai 5 dan beban tangga lantai 5 ke lantai 15 (atap).

Data Perencanaan	Panjang (m)
Tinggi antar lantai ke bordes	2
Lebar tangga	1,5
Kemiringan (α)	29,7449
Panjang Bordes	1,5
Panjang Tangga	3,5
Optrade	0,16
Antrade	0,3

Tabel A1: Data perencanaan tangga dari base ke lantai 5.

Tabel A2: Data perencanaan tangga dari lantai 5 ke lantai 15 (atap).

Data Perencanaan	Panjang (m)
Tinggi antar lantai ke bordes	1,75
Lebar tangga	1,5
Kemiringan (α)	26,5651
Panjang Bordes	1,5
Panjang Tangga	3,5
Optrade	0,16
Antrade	0,3

a. Perhitungan Struktur Tangga

- Tebal pelat tangga base ke lantai 5

$$H_{min} = \frac{Tinggi antar lantai/sin \alpha}{27}$$

$$H_{min} = \frac{2/\sin 29,7449}{27}$$

 $H_{min} = 0,1493 \text{ m}, \text{ diambil } h = 0,15 \text{ m}$

- Tebal pelat tangga lantai 5 ke lantai 15 (atap)

$$H_{min} = \frac{Tinggi antar lantai/\sin \alpha}{27}$$

$$H_{min} = \frac{1,75/\sin 26,5651}{27}$$

 $H_{min} = 0,1449 \text{ m}, \text{ diambil } h = 0,15 \text{ m}$

- Tebal pelat bordes diambil h = 0,13 m (diambil dari interval pelat lantai).

Lt 5 s/d Lt 15					
	Tebal pelat	Profil digunakan	Berat	Panjang	Jumlah/ Section
Pelat tangga	150	150x150x7x10	31,5	3,91	2
Pelat bordes	130	125x125x6,5x9	23,8	1,5	2
Base s/d Lt 5					
	Tebal pelat	Profil digunakan	Berat	Panjang	Jumlah/ Section
Pelat tangga	150	150x150x7x10	31,5	4,03	2
Pelat bordes	130	125x125x6,5x9	23,8	1,5	2

Tabel A3: Profil struktur tangga.

b. Perhitungan berat struktur tangga

-	Beban tangga base ke lantai 5					
	Pelat tangga = $1,5 \ge 0,15 \ge 24$	400 =	540	kg/m	= 5,4	kN/m
	Profil tangga = $2 \times 31,5$	=	<u>63</u>	kg/m	= 0,63	<u>kN/m</u>
			603	kg/m	= 6,03	kN/m
-	Beban tangga lantai 5 ke lantai	15				
	Pelat tangga = $1,5 \ge 0,15 \ge 24$	400 =	540	kg/m	= 5,4	kN/m
	Profil tangga = $2 \times 31,5$	=	<u>63</u>	kg/m	= 0,63	<u>kN/m</u>
			603	kg/m	= 6,03	kN/m
-	Beban pelat bordes					
	Pelat tangga = $1,5 \ge 0,13 \ge 24$	400 =	468	kg/m	= 4,68	kN/m
	Profil tangga = $2 \times 23,8$	=	<u>47,6</u>	kg/m	= 0,476	kN/m
			515,6	kg/m	= 5,156	kN/m

c. Perhitung beban tambahan tangga

Data perencanaan :

1. Berat jenis beton bertulang = 2400 kg/m^3

	2. Berat jenis tulangan	=	7850	kg/m	3		
	3. Adukan semen	=	21	kg/m	2		
	4. Penutup lantai keramik	=	24	kg/m	2		
-	Beban tangga base ke lanta	ui 5					
	Berat anak tangga	= 0,0	69 x 24	00 =	166,703	kg/m ²	$=1,667 \text{kN/m}^2$
	Adukan semen ($t = 2cm$)	= 0,0	2 x 21	=	0,42	kg/m ²	$=0,004 \text{kN/m}^2$
	Penutup lantai			=	24	kg/m ²	$=0,240 \mathrm{kN/m^2}$
				=	191,123	kg/m ²	$=1,911 \text{kN/m}^2$
-	Beban tangga lantai 5 ke la	intai 15					
	Berat anak tangga	= 0,0	72 x 24	00 =	171,730	kg/m ²	$=1,717 \text{kN/m}^2$
	Adukan semen ($t = 2cm$)	= 0,0	2 x 21	=	0,42	kg/m ²	$=0,004 \text{kN/m}^2$
	Penutup lantai			=	24	kg/m ²	$=0,240 \mathrm{kN/m^2}$
				=	196,150	kg/m ²	$=1,962 \text{kN/m}^2$
-	Beban pelat bordes						
	Adukan semen ($t = 2cm$)	= 0,0	2 x 21	=	0,42	kg/m ²	$=0,004 \text{kN/m}^2$
	Penutup lantai			=_	24	kg/m ²	$=0,240 \text{kN/m}^2$
				=	24,42	kg/m ²	$=0,244 \text{kN/m}^2$
	Perhitungan di atas di ubah	i menja	di berat	per sa	ituan panj	jang.	
-	Beban tangga base ke lanta	ui 5					
	Pelat tanggga = 1,5	x 191,	123 = 2	286,68	84 kg/1	m = 2	2,8668 kN/m
-	Beban tangga lantai 5 ke la	ntai 15					
	Pelat tanggga = 1,5	x 196,	15 = 2	294,22	25 kg/1	m = 2	2,9423 kN/m
-	Beban pelat bordes						

Pelat tanggga = $1,5 \ge 24,42 = 36,63$ kg/m = 0,3663 kN/m

Tabel A4: Rekapitulasi beban mati pada tangga.

REKAPITU						
BEBAN MATI PEL						
Berat Sendiri	=		603	kg/m	6,03	kN/m
Beban Tambahan	=		294,2250	kg/m	2,94	kN/m
		TOTAL	897,2250	kg/m	8,97	kN/m
BEBAN MATI PEL						
Berat Sendiri	=		603	kg/m	6,03	kN/m

Tabel A4: Lanjutan.

REKAPITULASI					
Beban Tambahan =	286,6840 kg/m				kN/m
	TOTAL	889,6840	kg/m	8,89	kN/m
BEBAN MATI PELAT E	BORDES				
Berat Sendiri =		515,6	kg/m	5,15	kN/m
Beban Tambahan =		36,63	kg/m	0,36	kN/m
	TOTAL	552,23	kg/m	5,52	kN/m

A2.4. Beban Lift

Beban lift diperhitungkan dengan membuat seluruh beban yang bekerja menjadi beban mati terpusat dan diletakkan yang paling mempengaruhi struktur untuk mendapatkan beban maksimal. Terdapat 2 point yang harus dipenuhi:

1. Beban yang bekerja pada balok penumpu:

Beban yang bekerja merupakan beban akibat dari mesin penggerak lift + berat kereta + perlengkapan (R1) dan berat bandul pemberat + perlengkapan (R2).

 Koefisien kejut oleh keran: Koefisien kejut ditentukan oleh pasal 3.3.(3) PPIUG 1983.

 $\psi = (1+k1 \cdot k2 \cdot v) \ge 1,15$

dimana:

- ψ = Koefisien kejut yang nilainya tidak boleh diambil kurang dari 1,15
- v = Kecepatan angkat maksimum dalam m/det pada pengangkatan muatan maksimum dalam kedudukan keran induk dan keran angkat yang paling menentukan bagi struktur yang ditinjau, tidak perlu diambil lebih dari 1,00m/det.
- k1 = Koefisien yang bergantung pada kekakuan struktur keran induk, keran induk dengan struktur rangka nilainya dapat diambil sebesar 0,6.
- k2 = Koefisien yang bergantung pada ifat mesin angkat dari keran angkatnya, diambil sebesar 1,3.

KAPASITAS		OPENING		CAR SIZE	
PERSON	LOAD (Kg)	widht	height	widht	length
17	1150	1100		2100	1520
TVDE	HOISTWAY		RE	ACTION	SDEED (m/s)
	widht	length	R1	R2	SPEED (III/S)
2 Cars	5200	2030	6600	5100	1

Tabel A5: Spesifikasi lift Hyundai Elevator.

Jadi, beban yang bekerja pada balok penumpu adalah:

 $P = \sum R \cdot \Psi$ = (6600 + 5100) x (1+0,6x1,3x1) = 20826 kg = 208,26 KN

Beban P diletakkan di tengah bentang balok penumpu yang merupakan tempat yang paling mempengaruhi struktur untuk mendapatkan beban maksimal.

A3. Perhitungan Beban Hidup

Pada tugas akhir ini, beban hidup diperoleh dari SNI 1727;2013 tabel 4-1.

BEBAN HIDUP (Lo)							
1. PLAT LANTAI APARTEMEN	=	192	Kg/m ²	1,92	KN/m ²		
2. PLAT ATAP	=	96	Kg/m ²	0,96	KN/m ²		
3. PLAT TANGGA & BORDES	=	479	Kg/m ²	4,79	KN/m ²		
4. PLAT LANTAI 1 MALL	=	479	Kg/m ²	4,79	KN/m ²		
5. PLAT LANTAI DIATASNYA	=	359	Kg/m ²	3,59	KN/m ²		

Tabel A6: Beban hidup merata berdasarkan SNI 1727;2013.

A3.1. Beban Hidup Tangga

Perhitungan beban hidup tangga tidak seperti beban mati tangga. Perhitungan beban hidup tangga digabung menjadi satu bagian. Karena nilai beban hidup tangga nilainya yaitu 4,79 kN/m². Beban hidup tangga diubah menjadi beban per satuan panjang. Berikut ini adalah perhitungan beban hidup tangga.

Data-data:

- Beban hidup tangga = $4,79 \text{ kN/m}^2$
- Beban hidup per satuan panjang (keseluruhan)
 Pelat tangga = 1,5 x 4,79 = 718,5 kg/m = 7,165 kN/m

Pelat bordes = $1,5 \times 4,79 = 718,5 \text{ kg/m} = 7,185 \text{ kN/m}$

Beban pada susuran tangga dan sistem pagar pengaman

P = 0,89 kN

(Beban ini bekerja di setiap titik pegangan tangga atau di sisi atas pegangan tangga)

Beban mati tangga dan beban hidup tangga didistribusikan ke sepanjang pelat tangga dan bordes sebagai beban yang diinput ke program SAP 2000 v.14 untuk mendapatkan reaksi yang akan di input ke program ETABS v.16. Skema pembebanan untuk input ke program SAP 2000 v.14 dapat dilihat pada Gambar A1.

Gambar A1: Pembebanan tangga.

B. Perhitungan Analisa

B1. Perioda Alami Struktur

Penentuan perioda fundamental struktur akan diperlukan dalam analisa prosedur gaya latetal ekivalen yang berdarakan SNI 1726;2012.

Model 1

Data struktur :

- Tinggi Lantai 1 = 4 m
- Tinggi Lantai 2-15 = 3,5 m
- $h_n = 55 m$
- $C_u = 1,4$
- $C_t = 0,0731$
- x = 0,75

Tabel B1: Penentuan perioda fundamental struktur Model 1 berdasarkan SNI 1726;2012.

Syarat Perioda							
Arah	$\begin{array}{c} {\rm T_{a\ min}}\\ {\cal C}_t \times h_n^x \end{array}$	$T_{a \max} T_{a \min} \times C_u$	T _{etabs}	T _{dipakai}			
Х	1,476	2,067	3,515	2,067			
Y	1,476	2,067	3,302	2,067			

Berdasrakan Tabel B.1, perioda alami struktur yang digunakan adalah perioda dari hasil $T_{a max}$ yaitu 2,067 untuk x dan 2,067 untuk arah y. Dikarenakan nilai periode dari hasil analisis ETABS v.16 melebihi periode maksimum yang berdasarkan SNI 1726;2012.

Model 2

Data struktur :

-	Tinggi Lantai 1	=	4	m
-	Tinggi Lantai 2-15	=	3,5	m
-	h _n	=	55	m
-	Cu	=	1,4	
-	Ct	=	0,07	31

- x = 0,75

Tabel B2: Penentuan perioda fundamental struktur Model 2 berdasarkan SNI 1726;2012.

Syarat Perioda							
Arah	$\frac{\mathrm{T_{a\ min}}}{\mathcal{C}_{t}\times h_{n}^{x}}$	$T_{a \max} T_{a \min} \times C_u$	T _{etabs}	T _{dipakai}			
Х	1,476	2,067	3,515	2,067			
Y	1,476	2,067	3,302	2,067			

Berdasrakan Tabel B.2, perioda alami struktur yang digunakan adalah perioda dari hasil $T_{a max}$ yaitu 2,067 untuk x dan 2,067 untuk arah y. Dikarenakan nilai periode dari hasil analisis ETABS v.16 melebihi periode maksimum yang berdasarkan SNI 1726;2012.

B2. Prosedur Gaya Lateral Ekivalen

Berikut ini adalah perhitungan gaya lateral statik ekivalen dari masing-masing model.

a. Model 1

Data-data:

-	S_{DS}	= 0,4	Ie	=	1,0	
-	\mathbf{S}_{D1}	= 0,373	$T_{X} \\$	=	2,067	detik
-	R	= 8	T_{Y}	=	2,067	detik

Dengan menggunakan Pers 2.13 sampai dengan Pers. 2.16 didapatkan nilai C_s yang digunakan yang ditabulasikan pada Tabel B1.

Tabel B3: Perhitungan nilai C _S .
--

Arah	C _S minimum	C _S hitungan	C _s maksimum	C _s yang digunakan
T1(Arah Y)	0,018	0,0226	0,050	0,0226
T2 (Arah X)	0,018	0,0226	0,050	0,0226

Nilai C_S yang digunakan adalah 0,023 karena nilai C_S hitungan terletak di interval C_S minimum dan C_S maksimum. Dengan menggunakan C_S yang digunakan, kemudian menghitung V₁ dengan menggunakan berat total struktur yang dapat dilihat pada Tabel 4.3.

$$V_{X} = C_{S} \times W_{t}$$

$$= 0,0226 \times 23755938,65$$

$$= 536366,38 \text{ kg}$$

$$= 5261,7542 \text{ kN}$$

$$- V_{Y} = C_{S} x W_{t}$$

= 0,0226 x 23755938,65
= 536366,38 kg

= 5261,7542 kN

Distribusi gaya gempa lateral (*F*) yang timbul disemua tingkat harus ditentukan dari Pers 2.19 dan 2.20. Dengan data-data sebagai berikut: Data-data:

- $-V_{\rm X} = 5261,7542 \text{ kN} \qquad T_{\rm X} = 2,067 \text{ detik}$
- $-V_Y = 5261,7542$ kN $T_Y = 2,067$ detik
- W_i = Berat perlantai (Tabel 4.3)
- kx dan ky: (interpolasi)

$$kx = 1 + \frac{(2-1)}{(2,5-0,5)} (T_x - 0,5) \qquad ky = 1 + \frac{(2-1)}{(2,5-0,5)} (T_y - 0,5)$$
$$= 1 + \frac{(2-1)}{(2,5-0,5)} (2,067 - 0,5) \qquad = 1 + \frac{(2-1)}{(2,5-0,5)} (2,067 - 0,5)$$
$$= 1,7834 \qquad = 1,7834$$

Tabel B4: Perhitungan distribusi vertikal gaya gempa dan distribusi horizontal gaya gempa arah x.

Lantai	Tingkat (h _i) (m)	Berat (w _i) (kN)	$\mathbf{w}_{i}\mathbf{h}_{i}^{k}$	C_{vx}	F _x (kN)	V _x (kN)
Lt 15	55	8627,585	10957983,3438	0,1310	689,5325	689,5325
Lt 14	51,5	9937,758	11225422,9798	0,1342	706,3612	1395,8938
Lt 13	48	9961,831	9925232,9470	0,1187	624,5466	2020,4404

Lantai	Tingkat (h _i) (m)	Berat (w _i) (kN)	$w_i h_i^k$	C_{vx}	F _x (kN)	V _x (kN)
Lt 12	44,5	9939,097	8651802,9044	0,1035	544,4158	2564,8562
Lt 11	41	10115,357	7608390,3662	0,0910	478,7590	3043,6152
Lt 10	37,5	10298,174	6606305,6601	0,0790	415,7027	3459,3178
Lt 9	34	10298,174	5547136,8473	0,0663	349,0543	3808,3721
Lt 8	30,5	10298,174	4570119,7759	0,0547	287,5754	4095,9475
Lt 7	27	10298,174	3677214,7673	0,0440	231,3892	4327,3367
Lt 6	23,5	10298,174	2870678,5311	0,0343	180,6378	4507,9746
Lt 5	20	20783,892	4345527,7758	0,0520	273,4429	4781,4175
Lt 4	16	27219,136	3822577,4407	0,0457	240,5362	5021,9537
Lt 3	12	27715,653	2330159,6753	0,0279	146,6256	5168,5793
Lt 2	8	27715,653	1130671,8486	0,0135	71,1477	5239,7269
Lt 1	4	29538,926	350054,5047	0,0042	22,0272	5261,7542
Total		233045,758	83619279,3679	1,0000	5261,7542	

Tabel B4: Lanjutan.

Tabel B5: Perhitungan distribusi vertikal gaya gempa dan distribusi horizontal gaya gempa arah y.

Lantai	Tingkat (h _i) (m)	Berat (w _i) (kN)	$w_i h_i^k$	\mathbf{C}_{vy}	Fy (kN)	V _y (kN)
Lt 15	55	8627,585	10957983,3438	0,1310	689,5325	689,5325
Lt 14	51,5	9937,758	11225422,9798	0,1342	706,3612	1395,8938
Lt 13	48	9961,831	9925232,9470	0,1187	624,5466	2020,4404
Lt 12	44,5	9939,097	8651802,9044	0,1035	544,4158	2564,8562
Lt 11	41	10115,357	7608390,3662	0,0910	478,7590	3043,6152
Lt 10	37,5	10298,174	6606305,6601	0,0790	415,7027	3459,3178
Lt 9	34	10298,174	5547136,8473	0,0663	349,0543	3808,3721
Lt 8	30,5	10298,174	4570119,7759	0,0547	287,5754	4095,9475
Lt 7	27	10298,174	3677214,7673	0,0440	231,3892	4327,3367
Lt 6	23,5	10298,174	2870678,5311	0,0343	180,6378	4507,9746
Lt 5	20	20783,892	4345527,7758	0,0520	273,4429	4781,4175
Lt 4	16	27219,136	3822577,4407	0,0457	240,5362	5021,9537
Lt 3	12	27715,653	2330159,6753	0,0279	146,6256	5168,5793
Lt 2	8	27715,653	1130671,8486	0,0135	71,1477	5239,7269
Lt 1	4	29538,926	350054,5047	0,0042	22,0272	5261,7542
Total		233045,758	83619279,3679	1,0000	5261,7542	

b. Model 2

Data-data:

-	S_{DS}	= 0,4	Ie	=	1,0	
-	\mathbf{S}_{D1}	= 0,373	$T_{X} \\$	=	2,067	detik
-	R	= 8	T_{Y}	=	2,067	detik

Dengan menggunakan Pers 2.13 sampai dengan Pers. 2.16 didapatkan nilai C_s yang digunakan yang ditabulasikan pada Tabel B2.

Tabel B6: Perhitungan nilai C_S.

Arah	C _S minimum	C _s hitungan	C _S maksimum	C _s yang digunakan
T1(Arah Y)	0,018	0,0226	0,050	0,0226
T2 (Arah X)	0,018	0,0226	0,050	0,0226

Nilai C_S yang digunakan adalah 0,023 karena nilai C_S hitungan terletak di interval C_S minimum dan C_S maksimum. Dengan menggunakan C_S yang digunakan, kemudian menghitung V_1 dengan menggunakan berat total struktur yang dapat dilihat pada Tabel 4.3.

- $V_X = C_S x W_t$
 - $= 0,0226 \ge 23755938,65$
 - = 536366,38 kg
 - = 5261,7542 kN

$$- V_Y = C_S x W_t$$

= 0,0226 x 23755938,65

- = 536366,38 kg
- = 5261,7542 kN

Distribusi gaya gempa lateral (*F*) yang timbul disemua tingkat harus ditentukan dari Pers 2.19 dan 2.20. Dengan data-data sebagai berikut: Data-data:

-	V_X	= 5261,7542 kN	$T_X = 2,067 \text{ detik}$
-	V_{Y}	= 5261,7542 kN	$T_{\rm Y} = 2,067$ detik

- W_i = Berat perlantai (Tabel 4.3)
- kx dan ky: (interpolasi)

$$kx = 1 + \frac{(2-1)}{(2,5-0,5)} (T_x - 0,5) \qquad ky = 1 + \frac{(2-1)}{(2,5-0,5)} (T_y - 0,5)$$
$$= 1 + \frac{(2-1)}{(2,5-0,5)} (2,067 - 0,5) \qquad = 1 + \frac{(2-1)}{(2,5-0,5)} (2,067 - 0,5)$$
$$= 1,7834 \qquad = 1,7834$$

0,0	1					
Lantai	Tingkat (h _i) (m)	Berat (w _i) (kN)	$w_i h_i^k$	C_{vx}	F _x (kN)	V _x (kN)
Lt 15	55	8627,585	10957983,3438	0,1310	689,5325	689,5325
Lt 14	51,5	9937,758	11225422,9798	0,1342	706,3612	1395,8938
Lt 13	48	9961,831	9925232,9470	0,1187	624,5466	2020,4404
Lt 12	44,5	9939,097	8651802,9044	0,1035	544,4158	2564,8562
Lt 11	41	10115,357	7608390,3662	0,0910	478,7590	3043,6152
Lt 10	37,5	10298,174	6606305,6601	0,0790	415,7027	3459,3178
Lt 9	34	10298,174	5547136,8473	0,0663	349,0543	3808,3721
Lt 8	30,5	10298,174	4570119,7759	0,0547	287,5754	4095,9475
Lt 7	27	10298,174	3677214,7673	0,0440	231,3892	4327,3367
Lt 6	23,5	10298,174	2870678,5311	0,0343	180,6378	4507,9746
Lt 5	20	20783,892	4345527,7758	0,0520	273,4429	4781,4175
Lt 4	16	27219,136	3822577,4407	0,0457	240,5362	5021,9537
Lt 3	12	27715,653	2330159,6753	0,0279	146,6256	5168,5793
Lt 2	8	27715,653	1130671,8486	0,0135	71,1477	5239,7269
Lt 1	4	29538,926	350054,5047	0,0042	22,0272	5261,7542
Total		233045.758	83619279.3679	1.0000	5261.7542	

Tabel B7: Perhitungan distribusi vertikal gaya gempa dan distribusi horizontal gaya gempa arah x.

Tabel B8: Perhitungan distribusi vertikal gaya gempa dan distribusi horizontal gaya gempa arah y.

Lantai	Tingkat (h _i) (m)	Berat (w _i) (kN)	$w_i h_i^k$	C_{vx}	F _x (kN)	V _x (kN)
Lt 15	55	8627,585	10957983,3438	0,1310	689,5325	689,5325
Lt 14	51,5	9937,758	11225422,9798	0,1342	706,3612	1395,8938
Lt 13	48	9961,831	9925232,9470	0,1187	624,5466	2020,4404
Lt 12	44,5	9939,097	8651802,9044	0,1035	544,4158	2564,8562

Lantai	Tingkat (h _i) (m)	Berat (w _i) (kN)	$w_i h_i^k$	C _{vx}	F _x (kN)	V _x (kN)
Lt 11	41	10115,357	7608390,3662	0,0910	478,7590	3043,6152
Lt 10	37,5	10298,174	6606305,6601	0,0790	415,7027	3459,3178
Lt 9	34	10298,174	5547136,8473	0,0663	349,0543	3808,3721
Lt 8	30,5	10298,174	4570119,7759	0,0547	287,5754	4095,9475
Lt 7	27	10298,174	3677214,7673	0,0440	231,3892	4327,3367
Lt 6	23,5	10298,174	2870678,5311	0,0343	180,6378	4507,9746
Lt 5	20	20783,892	4345527,7758	0,0520	273,4429	4781,4175
Lt 4	16	27219,136	3822577,4407	0,0457	240,5362	5021,9537
Lt 3	12	27715,653	2330159,6753	0,0279	146,6256	5168,5793
Lt 2	8	27715,653	1130671,8486	0,0135	71,1477	5239,7269
Lt 1	4	29538,926	350054,5047	0,0042	22,0272	5261,7542
Total		233045,758	83619279,3679	1,0000	5261,7542	

Tabel B8: Lanjutan.

B3. Hasil Output Analisis ETABS

B3.1. Gaya Geser Dasar

Berikut ini adalah gaya geser lantai untuk setap arah gempa.

a. Model 1

Tingkat	Tinggi	Lokasi	Vx	Vy
e	(m)		(kN)	(kN)
15	FF	Тор	421,1838	122,9731
15	55	Bottom	421,1957	122,9766
14	51 5	Тор	801,9177	232,3858
14	51,5	Bottom	801,9262	232,3882
12	10	Тор	1051,5202	301,4265
15	40	Bottom	1051,5253	301,4279
12	44,5	Тор	1193,7522	337,5208
12		Bottom	1193,7551	337,5216
11	11	Тор	1276,8941	357,4054
11	41	Bottom	1276,9019	357,4074
10	27 5	Тор	1332,1147	374,0827
10	37,5	Bottom	1332,1198	374,0844
0	24	Тор	1373,992	389,5468
7	54	Bottom	1373,997	389,5487

Tabel B9: Nilai gaya geser pada setiap lantai akibat gempa x.

Tabel B9: Lanjutan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
0	20 F	Тор	1425,1907	407,8637
0	30,5	Bottom	1425,1979	407,8661
7	27	Тор	1498,0135	430,9514
/	27	Bottom	1498,023	430,9542
6	<u>ээ г</u>	Тор	1585,4166	456,1046
0	23,5	Bottom	1585,4273	456,1075
5	20	Тор	1823,2022	518,2888
5		Bottom	1823,2238	518,2943
4	16	Тор	2246,9382	628,0309
4		Bottom	2246,9849	628,0436
2	10	Тор	2703,5815	756,4888
5	12	Bottom	2703,6228	756,501
2	o	Тор	3045,0542	861,4168
2	0	Bottom	3045,0785	861,4247
1	4	Тор	3195,4451	914,4539
1	4	Bottom	3195,4511	914,4561
0	0	Тор	0	0
0	0	Bottom	0	0

Tabel B10: Nilai gaya geser pada setiap lantai akibat gempa y.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
15		Тор	126,3573	409,892
15	55	Bottom	126,3609	409,9035
1.4	F1 F	Тор	240,5789	774,6059
14	51,5	Bottom	240,5815	774,6139
12	40	Тор	315,4607	1004,7397
15	48	Bottom	315,4622	1004,7443
10	44,5	Тор	358,1308	1125,0524
12		Bottom	358,1317	1125,0547
11	41	Тор	383,0737	1191,3338
11		Bottom	383,076	1191,3407
10	27 5	Тор	399,6401	1246,9244
10	57,5	Bottom	399,6416	1246,9302
0	24	Тор	412,2034	1298,4709
9	34	Bottom	412,2049	1298,4771
0	20 F	Тор	427,5633	1359,5259
8	30,5	Bottom	427,5654	1359,5339

Tabel B10: Lanjutan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
7	27	Тор	449,4104	1436,4835
/	27	Bottom	449,4133	1436,4932
6	<u>ээ г</u>	Тор	475,6317	1520,3265
0	23,5	Bottom	475,6349	1520,3362
5	20	Тор	546,9684	1727,6043
5	20	Bottom	546,9748	1727,6226
4	16	Тор	674,091	2093,4067
4		Bottom	674,105	2093,4488
2	12	Тор	811,0859	2521,5936
5		Bottom	811,0983	2521,6341
2	8	Тор	913,5292	2871,3485
2		Bottom	913,5365	2871,3748
1	4	Тор	958,6471	3048,1363
1	4	Bottom	958,6489	3048,1437
0	0	Тор	0	0
U	0	Bottom	0	0

Tabel B11: Nilai gaya geser pada setiap lantai akibat gempa x yang telah diskalakan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
1.5		Тор	589,5070	122,9731
15	55	Bottom	589,5236	122,9766
1.4	E1 E	Тор	1122,3986	232,3858
14	51,5	Bottom	1122,4105	232,3882
12	10	Тор	1471,7530	301,4265
15	40	Bottom	1471,7601	301,4279
12	44,5	Тор	1670,8270	337,5208
12		Bottom	1670,8311	337,5216
11	41	Тор	1787,1960	357,4054
11		Bottom	1787,2069	357,4074
10	37,5	Тор	1864,4851	374,0827
10		Bottom	1864,4923	374,0844
9	24	Тор	1923,0984	389,5468
	54	Bottom	1923,1054	389,5487
0	20 F	Тор	1994,7583	407,8637
0	30,5	Bottom	1994,7684	407,8661

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
	27	Тор	2096,6842	430,9514
/	27	Bottom	2096,6975	430,9542
6	22 E	Тор	2219,0174	456,1046
0	23,5	Bottom	2219,0324	456,1075
5	20	Тор	2551,8324	518,2888
5	20	Bottom	2551,8626	518,2943
1	16	Тор	3144,9115	628,0309
4		Bottom	3144,9769	628,0436
3	10	Тор	3784,0492	756,4888
5	12	Bottom	3784,1070	756,501
2	8	Тор	4261,9891	861,4168
2		Bottom	4262,0231	861,4247
1	4	Тор	4472,4826	914,4539
	4	Bottom	4472,4910	914,4561
0	0	Тор	0	0
0	0	Bottom	0	0

Tabel B11: Lanjutan.

Tabel B12: Nilai gaya geser pada setiap lantai akibat gempa y yang telah diskalakan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
15		Тор	126,3573	601,4278
15	55	Bottom	126,3609	601,4447
14	F 1 F	Тор	240,5789	1136,5665
14	51,5	Bottom	240,5815	1136,5782
12	48	Тор	315,4607	1474,2380
15		Bottom	315,4622	1474,2448
10	44,5	Тор	358,1308	1650,7709
12		Bottom	358,1317	1650,7742
11	41	Тор	383,0737	1748,0245
11		Bottom	383,076	1748,0346
10	27.5	Тор	399,6401	1829,5916
10	37,5	Bottom	399,6416	1829,6001
0	24	Тор	412,2034	1905,2250
9	54	Bottom	412,2049	1905,2341

Tabel B12: Lanjutan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
0	20 F	Тор	427,5633	1994,8100
0	30,5	Bottom	427,5654	1994,8217
7	27	Тор	449,4104	2107,7286
/	27	Bottom	449,4133	2107,7428
6	22 F	Тор	475,6317	2230,7500
0	23,5	Bottom	475,6349	2230,7643
5	20	Тор	546,9684	2534,8853
5		Bottom	546,9748	2534,9122
1	16	Тор	674,091	3071,6212
4		Bottom	674,105	3071,6829
2	12	Тор	811,0859	3699,8928
5		Bottom	811,0983	3699,9522
2	0	Тор	913,5292	4213,0824
2	ŏ	Bottom	913,5365	4213,1209
1	4	Тор	958,6471	4472,4802
1	4	Bottom	958,6489	4472,4910
0	0	Тор	0	0
U	U	Bottom	0	0

b. Model 2

Tabel B13: Nilai gaya geser pada setiap lantai akibat gempa x.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
15		Тор	421,1838	122,9731
15	55	Bottom	421,1957	122,9766
1.4	Г1 Г	Тор	801,9177	232,3858
14	51,5	Bottom	801,9262	232,3882
12	48	Тор	1051,5202	301,4265
15		Bottom	1051,5253	301,4279
12	44,5	Тор	1193,7522	337,5208
12		Bottom	1193,7551	337,5216
11	41	Тор	1276,8941	357,4054
11	41	Bottom	1276,9019	357,4074
10	27 5	Тор	1332,1147	374,0827
10	37,5	Bottom	1332,1198	374,0844

Tabel B13: Lanjutan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
0	24	Тор	1373,992	389,5468
9	54	Bottom	1373,997	389,5487
0	20 F	Тор	1425,1907	407,8637
0	50,5	Bottom	1425,1979	407,8661
7	27	Тор	1498,0135	430,9514
/	27	Bottom	1498,023	430,9542
6	22 F	Тор	1585,4166	456,1046
0	23,5	Bottom	1585,4273	456,1075
5	20	Тор	1823,2022	518,2888
5		Bottom	1823,2238	518,2943
4	16	Тор	2246,9382	628,0309
4		Bottom	2246,9849	628,0436
2	12	Тор	2703,5815	756,4888
3		Bottom	2703,6228	756,501
2	0	Тор	3045,0542	861,4168
2	8	Bottom	3045,0785	861,4247
1	4	Тор	3195,4451	914,4539
1	4	Bottom	3195,4511	914,4561
0	0	Тор	0	0
U	U	Bottom	0	0

Tabel B14: Nilai gaya geser pada setiap lantai akibat gempa y.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
15		Тор	126,3573	409,892
15	55	Bottom	126,3609	409,9035
1.4	Г1 Г	Тор	240,5789	774,6059
14	51,5	Bottom	240,5815	774,6139
12	48	Тор	315,4607	1004,7397
13		Bottom	315,4622	1004,7443
12	44,5	Тор	358,1308	1125,0524
12		Bottom	358,1317	1125,0547
11	41	Тор	383,0737	1191,3338
11		Bottom	383,076	1191,3407
10	27 F	Тор	399,6401	1246,9244
10	37,5	Bottom	399,6416	1246,9302
0	24	Тор	412,2034	1298,4709
7	34	Bottom	412,2049	1298,4771

Tabel B14: Lanjutan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
0	20 F	Тор	427,5633	1359,5259
0	30,5	Bottom	427,5654	1359,5339
7	77	Тор	449,4104	1436,4835
/	27	Bottom	449,4133	1436,4932
6	22 F	Тор	475,6317	1520,3265
0	23,5	Bottom	475,6349	1520,3362
5	20	Тор	546,9684	1727,6043
5		Bottom	546,9748	1727,6226
4	16	Тор	674,091	2093,4067
4		Bottom	674,105	2093,4488
2	12	Тор	811,0859	2521,5936
5		Bottom	811,0983	2521,6341
2	0	Тор	913,5292	2871,3485
2	0	Bottom	913,5365	2871,3748
1	4	Тор	958,6471	3048,1363
	4	Bottom	958,6489	3048,1437
0	0	Тор	0	0
U	U	Bottom	0	0

Tabel B15: Nilai gaya geser pada setiap lantai akibat gempa x yang telah diskalakan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
15	66	Тор	589,5070	122,9731
15	55	Bottom	589,5236	122,9766
1.4	F1 F	Тор	1122,3986	232,3858
14	51,5	Bottom	1122,4105	232,3882
12	48	Тор	1471,7530	301,4265
15		Bottom	1471,7601	301,4279
10	44,5	Тор	1670,8270	337,5208
12		Bottom	1670,8311	337,5216
11	41	Тор	1787,1960	357,4054
11		Bottom	1787,2069	357,4074
10	27 5	Тор	1864,4851	374,0827
10	37,5	Bottom	1864,4923	374,0844
0	24	Тор	1923,0984	389,5468
7	34	Bottom	1923,1054	389,5487

Tabel B15: Lanjutan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
0	20 F	Тор	1994,7583	407,8637
0	30,5	Bottom	1994,7684	407,8661
7	27	Тор	2096,6842	430,9514
/	27	Bottom	2096,6975	430,9542
6	22 E	Тор	2219,0174	456,1046
0	23,5	Bottom	2219,0324	456,1075
5	20	Тор	2551,8324	518,2888
5	20	Bottom	2551,8626	518,2943
4	16	Тор	3144,9115	628,0309
4		Bottom	3144,9769	628,0436
2	10	Тор	3784,0492	756,4888
5	12	Bottom	3784,1070	756,501
2	o	Тор	4261,9891	861,4168
L	8	Bottom	4262,0231	861,4247
1	Δ	Тор	4472,4826	914,4539
	4	Bottom	4472,4910	914,4561
0	0	Тор	0	0
0	0	Bottom	0	0

Tabel B16: Nilai gaya geser pada setiap lantai akibat gempa y yang telah diskalakan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
15		Тор	126,3573	601,4278
15	55	Bottom	126,3609	601,4447
14	E1 E	Тор	240,5789	1136,5665
14	51,5	Bottom	240,5815	1136,5782
12	48	Тор	315,4607	1474,2380
15		Bottom	315,4622	1474,2448
12	44,5	Тор	358,1308	1650,7709
12		Bottom	358,1317	1650,7742
11	41	Тор	383,0737	1748,0245
11	41	Bottom	383,076	1748,0346
10	27 5	Тор	399,6401	1829,5916
10	37,5	Bottom	399,6416	1829,6001

Tabel B16: Lanjutan.

Tingkat	Tinggi (m)	Lokasi	Vx (kN)	Vy (kN)
0	24	Тор	412,2034	1905,2250
9	34	Bottom	412,2049	1905,2341
0	20 F	Тор	427,5633	1994,8100
8	30,5	Bottom	427,5654	1994,8217
7	27	Тор	449,4104	2107,7286
/	27	Bottom	449,4133	2107,7428
6	22 г	Тор	475,6317	2230,7500
0	23,5	Bottom	475,6349	2230,7643
5	20	Тор	546,9684	2534,8853
5	20	Bottom	546,9748	2534,9122
4	16	Тор	674,091	3071,6212
4	10	Bottom	674,105	3071,6829
2	10	Тор	811,0859	3699,8928
3	12	Bottom	811,0983	3699,9522
2	o	Тор	913,5292	4213,0824
2	0	Bottom	913,5365	4213,1209
1	Λ	Тор	958,6471	4472,4802
1	4	Bottom	958,6489	4472,4910
0	0	Тор	0	0
U	U	Bottom	0	0

B3.2. Simpangan Antar Lantai

Berikut ini adalah nilai perpindahan dan simpangan antar lantai untuk setia arah gempa.

a. Model 1

Lt	h (m)	Perpindahan Elastis (δe)		Perpindahan Total (δe*Cd)/Ie		Simpang Lanta	an Antar ai (Δ)	Syarat	C	ek
	(111)	X (m)	Y (m)	X (m)	Y (m)	X (m)	Y (m)	0,02hsx	X	Y
15	3,5	0,0592	0,0196	0,2369	0,0784	0,0102	0,0044	1,100	OKE	OKE
14	3,5	0,0567	0,0185	0,2267	0,0740	0,0144	0,0056	1,030	OKE	OKE
13	3,5	0,0531	0,0171	0,2123	0,0685	0,0169	0,0063	0,960	OKE	OKE
12	3,5	0,0489	0,0155	0,1954	0,0622	0,0183	0,0063	0,890	OKE	OKE
11	3,5	0,0443	0,0140	0,1771	0,0559	0,0175	0,0051	0,820	OKE	OKE

Tabel B17: Nilai simpangan antar lantai akibat gempa x.

Lt	h (m)	Perpindahan Elastis (δe)		Perpindahan Total (δe*Cd)/Ie		Simpang Lanta	an Antar ai (Δ)	Syarat	C	ek
	(111)	X (m)	Y (m)	X (m)	Y (m)	X (m)	Y (m)	0,02hsx	X	Y
10	3,5	0,0399	0,0127	0,1595	0,0508	0,0182	0,0055	0,750	OKE	OKE
9	3,5	0,0353	0,0113	0,1413	0,0452	0,0187	0,0057	0,680	OKE	OKE
8	3,5	0,0306	0,0099	0,1226	0,0395	0,0191	0,0059	0,610	OKE	OKE
7	3,5	0,0259	0,0084	0,1035	0,0337	0,0189	0,0059	0,540	OKE	OKE
6	3,5	0,0211	0,0069	0,0846	0,0278	0,0173	0,0056	0,470	OKE	OKE
5	3,5	0,0168	0,0055	0,0672	0,0221	0,0156	0,0051	0,400	OKE	OKE
4	3,5	0,0129	0,0043	0,0517	0,0170	0,0136	0,0040	0,320	OKE	OKE
3	3,5	0,0095	0,0033	0,0380	0,0130	0,0148	0,0046	0,240	OKE	OKE
2	3,5	0,0058	0,0021	0,0232	0,0085	0,0146	0,0049	0,160	OKE	OKE
1	4	0,0022	0,0009	0,0086	0,0035	0,0086	0,0035	0,080	OKE	OKE

Tabel B17: Lanjutan.

Tabel B18: Nilai simpangan antar lantai akibat gempa y.

Lt	Lt $\begin{pmatrix} h \\ (m) \end{pmatrix}$	Perpindahan Elastis (δe)		Perpindahan Total (δe*Cd)/Ie		Simpangan Antar Lantai (Δ)		Syarat	Cek	Cek
	(111)	X (m)	Y (m)	X (m)	Y (m)	X (m)	Y (m)	0,02hsx	Х	Y
15	3,5	0,0178	0,0653	0,0711	0,2613	0,0031	0,0146	1,100	OKE	OKE
14	3,5	0,0170	0,0617	0,0680	0,2468	0,0043	0,0185	1,030	OKE	OKE
13	3,5	0,0159	0,0571	0,0637	0,2282	0,0051	0,0209	0,960	OKE	OKE
12	3,5	0,0147	0,0518	0,0586	0,2073	0,0055	0,0211	0,890	OKE	OKE
11	3,5	0,0133	0,0465	0,0531	0,1862	0,0053	0,0170	0,820	OKE	OKE
10	3,5	0,0120	0,0423	0,0479	0,1692	0,0055	0,0184	0,750	OKE	OKE
9	3,5	0,0106	0,0377	0,0424	0,1508	0,0056	0,0190	0,680	OKE	OKE
8	3,5	0,0092	0,0329	0,0368	0,1318	0,0057	0,0195	0,610	OKE	OKE
7	3,5	0,0078	0,0281	0,0310	0,1123	0,0057	0,0197	0,540	OKE	OKE
6	3,5	0,0063	0,0231	0,0254	0,0925	0,0052	0,0188	0,470	OKE	OKE
5	3,5	0,0050	0,0184	0,0202	0,0738	0,0047	0,0171	0,400	OKE	OKE
4	3,5	0,0039	0,0142	0,0155	0,0567	0,0041	0,0133	0,320	OKE	OKE
3	3,5	0,0029	0,0109	0,0114	0,0435	0,0044	0,0153	0,240	OKE	OKE
2	3,5	0,0017	0,0070	0,0070	0,0282	0,0044	0,0164	0,160	OKE	OKE
1	4	0,0006	0,0029	0,0026	0,0118	0,0026	0,0118	0,080	OKE	OKE

Lt	Lt h (m)	Perpindahan Elastis (δe)		Perpindahan Total (δe*Cd)/Ie		Simpangan Antar Lantai (Δ)		Syarat Cel		ek
	(111)	X (m)	Y (m)	X (m)	Y (m)	X (m)	Y (m)	0,02hsx	X	Y
15	3,5	0,0829	0,0196	0,3316	0,0784	0,0143	0,0044	1,1000	OKE	OKE
14	3,5	0,0793	0,0185	0,3173	0,0740	0,0202	0,0056	1,0300	OKE	OKE
13	3,5	0,0743	0,0171	0,2971	0,0685	0,0236	0,0063	0,9600	OKE	OKE
12	3,5	0,0684	0,0155	0,2735	0,0622	0,0257	0,0063	0,8900	OKE	OKE
11	3,5	0,0620	0,0140	0,2478	0,0559	0,0245	0,0051	0,8200	OKE	OKE
10	3,5	0,0558	0,0127	0,2233	0,0508	0,0255	0,0055	0,7500	OKE	OKE
9	3,5	0,0495	0,0113	0,1978	0,0452	0,0262	0,0057	0,6800	OKE	OKE
8	3,5	0,0429	0,0099	0,1716	0,0395	0,0267	0,0059	0,6100	OKE	OKE
7	3,5	0,0362	0,0084	0,1449	0,0337	0,0265	0,0059	0,5400	OKE	OKE
6	3,5	0,0296	0,0069	0,1184	0,0278	0,0243	0,0056	0,4700	OKE	OKE
5	3,5	0,0235	0,0055	0,0941	0,0221	0,0218	0,0051	0,4000	OKE	OKE
4	3,5	0,0181	0,0043	0,0723	0,0170	0,0191	0,0040	0,3200	OKE	OKE
3	3,5	0,0133	0,0033	0,0532	0,0130	0,0207	0,0046	0,2400	OKE	OKE
2	3,5	0,0081	0,0021	0,0325	0,0085	0,0205	0,0049	0,1600	OKE	OKE
1	4	0,0030	0,0009	0,0120	0,0035	0,0120	0,0035	0,0800	OKE	OKE

Tabel B19: Nilai simpangan antar lantai akibat gempa x yang telah diskalakan.

Tabel B20: Nilai simpangan antar lantai akibat gempa y yang telah diskalakan.

Lt	h (m)	Perpindahan Elastis (δe)		Perpindahan Total (δe*Cd)/Ie		Simpangan Antar Lantai (Δ)		Syarat Ce		ek
	(III)	X (m)	Y (m)	X (m)	Y (m)	X (m)	Y (m)	0,02hsx	X	Y
15	3,5	0,0178	0,0959	0,0711	0,3834	0,0031	0,0214	1,1000	OKE	OKE
14	3,5	0,0170	0,0905	0,0680	0,3621	0,0043	0,0272	1,0300	OKE	OKE
13	3,5	0,0159	0,0837	0,0637	0,3349	0,0051	0,0307	0,9600	OKE	OKE
12	3,5	0,0147	0,0760	0,0586	0,3041	0,0055	0,0310	0,8900	OKE	OKE
11	3,5	0,0133	0,0683	0,0531	0,2732	0,0053	0,0249	0,8200	OKE	OKE
10	3,5	0,0120	0,0621	0,0479	0,2483	0,0055	0,0270	0,7500	OKE	OKE
9	3,5	0,0106	0,0553	0,0424	0,2213	0,0056	0,0279	0,6800	OKE	OKE
8	3,5	0,0092	0,0483	0,0368	0,1933	0,0057	0,0286	0,6100	OKE	OKE
7	3,5	0,0078	0,0412	0,0310	0,1647	0,0057	0,0289	0,5400	OKE	OKE
6	3,5	0,0063	0,0339	0,0254	0,1358	0,0052	0,0275	0,4700	OKE	OKE
5	3,5	0,0050	0,0271	0,0202	0,1083	0,0047	0,0250	0,4000	OKE	OKE
4	3,5	0,0039	0,0208	0,0155	0,0832	0,0041	0,0195	0,3200	OKE	OKE
3	3,5	0,0029	0,0159	0,0114	0,0638	0,0044	0,0224	0,2400	OKE	OKE
2	3,5	0,0017	0,0103	0,0070	0,0414	0,0044	0,0241	0,1600	OKE	OKE
1	4	0,0006	0,0043	0,0026	0,0173	0,0026	0,0173	0,0800	OKE	OKE

b. Model 2

Lt	h (m)	Perpindahan Elastis (δe)		Perpindahan Total (δe*Cd)/Ie		Simpangan Antar Lantai (Δ)		Syarat	arat Ce	
	(111)	X (m)	Y (m)	X (m)	Y (m)	X (m)	Y (m)	0,02hsx	Х	Y
15	3,5	0,0592	0,0196	0,2369	0,0784	0,0102	0,0044	1,100	OKE	OKE
14	3,5	0,0567	0,0185	0,2267	0,0740	0,0144	0,0056	1,030	OKE	OKE
13	3,5	0,0531	0,0171	0,2123	0,0685	0,0169	0,0063	0,960	OKE	OKE
12	3,5	0,0489	0,0155	0,1954	0,0622	0,0183	0,0063	0,890	OKE	OKE
11	3,5	0,0443	0,0140	0,1771	0,0559	0,0175	0,0051	0,820	OKE	OKE
10	3,5	0,0399	0,0127	0,1595	0,0508	0,0182	0,0055	0,750	OKE	OKE
9	3,5	0,0353	0,0113	0,1413	0,0452	0,0187	0,0057	0,680	OKE	OKE
8	3,5	0,0306	0,0099	0,1226	0,0395	0,0191	0,0059	0,610	OKE	OKE
7	3,5	0,0259	0,0084	0,1035	0,0337	0,0189	0,0059	0,540	OKE	OKE
6	3,5	0,0211	0,0069	0,0846	0,0278	0,0173	0,0056	0,470	OKE	OKE
5	3,5	0,0168	0,0055	0,0672	0,0221	0,0156	0,0051	0,400	OKE	OKE
4	3,5	0,0129	0,0043	0,0517	0,0170	0,0136	0,0040	0,320	OKE	OKE
3	3,5	0,0095	0,0033	0,0380	0,0130	0,0148	0,0046	0,240	OKE	OKE
2	3,5	0,0058	0,0021	0,0232	0,0085	0,0146	0,0049	0,160	OKE	OKE
1	4	0,0022	0,0009	0,0086	0,0035	0,0086	0,0035	0,080	OKE	OKE

Tabel B21: Nilai simpangan antar lantai akibat gempa x.

Tabel B22: Nilai simpangan antar lantai akibat gempa y.

Lt	h (m)	Perpindahan Elastis (δe)		Perpindahan Total (δe*Cd)/Ie		Simpangan Antar Lantai (Δ)		Syarat	Cek	Cek
	(111)	X (m)	Y (m)	X (m)	Y (m)	X (m)	Y (m)	0,02hsx	X	Y
15	3,5	0,0178	0,0653	0,0711	0,2613	0,0031	0,0146	1,100	OKE	OKE
14	3,5	0,0170	0,0617	0,0680	0,2468	0,0043	0,0185	1,030	OKE	OKE
13	3,5	0,0159	0,0571	0,0637	0,2282	0,0051	0,0209	0,960	OKE	OKE
12	3,5	0,0147	0,0518	0,0586	0,2073	0,0055	0,0211	0,890	OKE	OKE
11	3,5	0,0133	0,0465	0,0531	0,1862	0,0053	0,0170	0,820	OKE	OKE
10	3,5	0,0120	0,0423	0,0479	0,1692	0,0055	0,0184	0,750	OKE	OKE
9	3,5	0,0106	0,0377	0,0424	0,1508	0,0056	0,0190	0,680	OKE	OKE
8	3,5	0,0092	0,0329	0,0368	0,1318	0,0057	0,0195	0,610	OKE	OKE
7	3,5	0,0078	0,0281	0,0310	0,1123	0,0057	0,0197	0,540	OKE	OKE
6	3,5	0,0063	0,0231	0,0254	0,0925	0,0052	0,0188	0,470	OKE	OKE
5	3,5	0,0050	0,0184	0,0202	0,0738	0,0047	0,0171	0,400	OKE	OKE
4	3,5	0,0039	0,0142	0,0155	0,0567	0,0041	0,0133	0,320	OKE	OKE
3	3,5	0,0029	0,0109	0,0114	0,0435	0,0044	0,0153	0,240	OKE	OKE

Tabel B22: Lanjutan.

Lt	h (m)	Perpindahan Elastis (δe)		Perpindahan Total (δe*Cd)/Ie		Simpangan Antar Lantai (Δ)		Syarat	Cek	Cek
		X (m)	Y (m)	X (m)	Y (m)	X (m)	Y (m)	0,02hsx	Х	Y
2	3,5	0,0017	0,0070	0,0070	0,0282	0,0044	0,0164	0,160	OKE	OKE
1	4	0,0006	0,0029	0,0026	0,0118	0,0026	0,0118	0,080	OKE	OKE

Tabel B23: Nilai simpangan antar lantai akibat gempa x yang telah diskalakan.

Lt	Lt h (m)	Perpindahan Elastis (δe)		Perpindahan Total (δe*Cd)/Ie		Simpangan Antar Lantai (Δ)		Syarat Cel		ek
	(111)	X (m)	Y (m)	X (m)	Y (m)	X (m)	Y (m)	0,02hsx	X	Y
15	3,5	0,0829	0,0196	0,3316	0,0784	0,0143	0,0044	1,1000	OKE	OKE
14	3,5	0,0793	0,0185	0,3173	0,0740	0,0202	0,0056	1,0300	OKE	OKE
13	3,5	0,0743	0,0171	0,2971	0,0685	0,0236	0,0063	0,9600	OKE	OKE
12	3,5	0,0684	0,0155	0,2735	0,0622	0,0257	0,0063	0,8900	OKE	OKE
11	3,5	0,0620	0,0140	0,2478	0,0559	0,0245	0,0051	0,8200	OKE	OKE
10	3,5	0,0558	0,0127	0,2233	0,0508	0,0255	0,0055	0,7500	OKE	OKE
9	3,5	0,0495	0,0113	0,1978	0,0452	0,0262	0,0057	0,6800	OKE	OKE
8	3,5	0,0429	0,0099	0,1716	0,0395	0,0267	0,0059	0,6100	OKE	OKE
7	3,5	0,0362	0,0084	0,1449	0,0337	0,0265	0,0059	0,5400	OKE	OKE
6	3,5	0,0296	0,0069	0,1184	0,0278	0,0243	0,0056	0,4700	OKE	OKE
5	3,5	0,0235	0,0055	0,0941	0,0221	0,0218	0,0051	0,4000	OKE	OKE
4	3,5	0,0181	0,0043	0,0723	0,0170	0,0191	0,0040	0,3200	OKE	OKE
3	3,5	0,0133	0,0033	0,0532	0,0130	0,0207	0,0046	0,2400	OKE	OKE
2	3,5	0,0081	0,0021	0,0325	0,0085	0,0205	0,0049	0,1600	OKE	OKE
1	4	0,0030	0,0009	0,0120	0,0035	0,0120	0,0035	0,0800	OKE	OKE

Tabel B24: Nilai simpangan antar lantai akibat gempa y yang telah diskalakan.

Lt	h (m)	Perpindahan Elastis (δe)		Perpindahan Total (δe*Cd)/Ie		Simpang Lanta	an Antar ai (Δ)	Syarat	C	ek
	(111)	X (m)	Y (m)	X (m)	Y (m)	X (m)	Y (m)	0,02hsx	Х	Y
15	3,5	0,0178	0,0959	0,0711	0,3834	0,0031	0,0214	1,1000	OKE	OKE
14	3,5	0,0170	0,0905	0,0680	0,3621	0,0043	0,0272	1,0300	OKE	OKE
13	3,5	0,0159	0,0837	0,0637	0,3349	0,0051	0,0307	0,9600	OKE	OKE
12	3,5	0,0147	0,0760	0,0586	0,3041	0,0055	0,0310	0,8900	OKE	OKE
11	3,5	0,0133	0,0683	0,0531	0,2732	0,0053	0,0249	0,8200	OKE	OKE
10	3,5	0,0120	0,0621	0,0479	0,2483	0,0055	0,0270	0,7500	OKE	OKE
9	3,5	0,0106	0,0553	0,0424	0,2213	0,0056	0,0279	0,6800	OKE	OKE
Lt	h (m)	Perpin Elasti	ıdahan s (δe)	Perpindal (δe*C	han Total Cd)/Ie	Simpang Lanta	an Antar ai (Δ)	Syarat	C	ek
----	----------	------------------	------------------	--------------------	---------------------	------------------	--------------------	---------	-----	-----
	(111)	X (m)	Y (m)	X (m)	Y (m)	X (m)	Y (m)	0,02hsx	Х	Y
8	3,5	0,0092	0,0483	0,0368	0,1933	0,0057	0,0286	0,6100	OKE	OKE
7	3,5	0,0078	0,0412	0,0310	0,1647	0,0057	0,0289	0,5400	OKE	OKE
6	3,5	0,0063	0,0339	0,0254	0,1358	0,0052	0,0275	0,4700	OKE	OKE
5	3,5	0,0050	0,0271	0,0202	0,1083	0,0047	0,0250	0,4000	OKE	OKE
4	3,5	0,0039	0,0208	0,0155	0,0832	0,0041	0,0195	0,3200	OKE	OKE
3	3,5	0,0029	0,0159	0,0114	0,0638	0,0044	0,0224	0,2400	OKE	OKE
2	3,5	0,0017	0,0103	0,0070	0,0414	0,0044	0,0241	0,1600	OKE	OKE
1	4	0,0006	0,0043	0,0026	0,0173	0,0026	0,0173	0,0800	OKE	OKE

Tabel B24: Lanjutan.

B4. Hasil Output Analisis Pushover

Berikut ini adalah output beban dorong hasil running dengan ETABS.

a. Model 1

Tabel B25: Output Beban Dorong Arah x-x.

Step	Monitored Displ mm	Base Force kN	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
0	0,057	0	9972	0	0	0	0	9972	0	0	0	9972
1	-2,143	67,6786	9972	0	0	0	0	9972	0	0	0	9972
2	-4,343	135,3572	9972	0	0	0	0	9972	0	0	0	9972
3	-6,543	203,0358	9972	0	0	0	0	9972	0	0	0	9972
4	-8,743	270,7144	9972	0	0	0	0	9972	0	0	0	9972
5	-10,943	338,393	9972	0	0	0	0	9972	0	0	0	9972
6	-13,143	406,0716	9972	0	0	0	0	9972	0	0	0	9972
7	-15,343	473,7503	9972	0	0	0	0	9972	0	0	0	9972
8	-17,543	541,4289	9972	0	0	0	0	9972	0	0	0	9972
9	-19,743	609,1075	9972	0	0	0	0	9972	0	0	0	9972
10	-21,943	676,7861	9972	0	0	0	0	9972	0	0	0	9972
11	-24,143	744,4647	9972	0	0	0	0	9972	0	0	0	9972
12	-26,343	812,1433	9972	0	0	0	0	9972	0	0	0	9972
13	-28,543	879,8219	9972	0	0	0	0	9972	0	0	0	9972

Step	Monitored Displ	Base Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	kN										
14	-30,743	947,5005	9972	0	0	0	0	9972	0	0	0	9972
15	-32,943	1015,1791	9972	0	0	0	0	9972	0	0	0	9972
16	-35,143	1082,8578	9972	0	0	0	0	9972	0	0	0	9972
17	-37,343	1150,5364	9972	0	0	0	0	9972	0	0	0	9972
18	-39,543	1218,215	9972	0	0	0	0	9972	0	0	0	9972
19	-41,743	1285,8936	9972	0	0	0	0	9972	0	0	0	9972
20	-43,943	1353,5722	9972	0	0	0	0	9972	0	0	0	9972
21	-46,143	1421,2509	9972	0	0	0	0	9972	0	0	0	9972
22	-48,343	1488,9295	9972	0	0	0	0	9972	0	0	0	9972
23	-50,543	1556,6081	9972	0	0	0	0	9972	0	0	0	9972
24	-52,743	1624,2868	9972	0	0	0	0	9972	0	0	0	9972
25	-54,943	1691,9654	9972	0	0	0	0	9972	0	0	0	9972
26	-57,143	1759,644	9972	0	0	0	0	9972	0	0	0	9972
27	-59,343	1827,3227	9972	0	0	0	0	9972	0	0	0	9972
28	-61,543	1895,0013	9972	0	0	0	0	9972	0	0	0	9972
29	-63,743	1962,6799	9972	0	0	0	0	9972	0	0	0	9972
30	-65,943	2030,3586	9972	0	0	0	0	9972	0	0	0	9972
31	-68,143	2098,0372	9972	0	0	0	0	9972	0	0	0	9972
32	-70,343	2165,7842	9972	0	0	0	0	9972	0	0	0	9972
33	-72,543	2233,4629	9972	0	0	0	0	9972	0	0	0	9972
34	-74,743	2301,1416	9972	0	0	0	0	9972	0	0	0	9972

	Monitored	Base										
Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	kN										
35	-76,943	2368,8203	9972	0	0	0	0	9972	0	0	0	9972
36	-79,143	2436,4991	9972	0	0	0	0	9972	0	0	0	9972
37	-81,343	2504,1778	9972	0	0	0	0	9972	0	0	0	9972
38	-83,543	2571,8565	9972	0	0	0	0	9972	0	0	0	9972
39	-85,743	2639,5352	9972	0	0	0	0	9972	0	0	0	9972
40	-87,943	2707,214	9972	0	0	0	0	9972	0	0	0	9972
41	-90,143	2774,8927	9972	0	0	0	0	9972	0	0	0	9972
42	-92,343	2842,5715	9972	0	0	0	0	9972	0	0	0	9972
43	-94,543	2910,2502	9972	0	0	0	0	9972	0	0	0	9972
44	-96,743	2977,929	9972	0	0	0	0	9972	0	0	0	9972
45	-98,943	3045,6077	9972	0	0	0	0	9972	0	0	0	9972
46	-101,143	3113,2865	9972	0	0	0	0	9972	0	0	0	9972
47	-103,343	3180,9653	9972	0	0	0	0	9972	0	0	0	9972
48	-105,543	3248,644	9972	0	0	0	0	9972	0	0	0	9972
49	-107,743	3316,3228	9972	0	0	0	0	9972	0	0	0	9972
50	-109,943	3384,0016	9972	0	0	0	0	9972	0	0	0	9972
51	-112,143	3451,6804	9972	0	0	0	0	9972	0	0	0	9972
52	-114,343	3519,3592	9972	0	0	0	0	9972	0	0	0	9972
53	-116,543	3587,038	9972	0	0	0	0	9972	0	0	0	9972
54	-118,743	3654,7168	9972	0	0	0	0	9972	0	0	0	9972
55	-120,943	3722,3956	9972	0	0	0	0	9972	0	0	0	9972

	Monitored	Base										
Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	kN										
56	-123,143	3790,0744	9972	0	0	0	0	9972	0	0	0	9972
57	-125,343	3857,7532	9972	0	0	0	0	9972	0	0	0	9972
58	-127,543	3925,432	9972	0	0	0	0	9972	0	0	0	9972
59	-129,619	3989,3797	9970	2	0	0	0	9972	0	0	0	9972
60	-133,593	4111,0171	9967	5	0	0	0	9972	0	0	0	9972
61	-135,793	4178,1728	9967	5	0	0	0	9972	0	0	0	9972
62	-139,982	4305,5297	9959	13	0	0	0	9972	0	0	0	9972
63	-142,182	4371,8472	9955	17	0	0	0	9972	0	0	0	9972
64	-146,014	4486,3477	9950	22	0	0	0	9972	0	0	0	9972
65	-149,493	4589,2095	9944	28	0	0	0	9970	2	0	0	9972
66	-153,542	4707,379	9937	35	0	0	0	9968	4	0	0	9972
67	-156,584	4795,0225	9931	41	0	0	0	9965	7	0	0	9972
68	-159,211	4869,2304	9924	48	0	0	0	9960	12	0	0	9972
69	-161,411	4930,368	9922	50	0	0	0	9956	16	0	0	9972
70	-164,286	5009,4914	9918	54	0	0	0	9950	22	0	0	9972
71	-167,579	5098,801	9913	59	0	0	0	9944	28	0	0	9972
72	-170,647	5180,7625	9909	63	0	0	0	9939	33	0	0	9972
73	-173,888	5266,2452	9906	66	0	0	0	9930	42	0	0	9972
74	-177,566	5362,2086	9904	68	0	0	0	9922	50	0	0	9972
75	-179,766	5419,2964	9904	68	0	0	0	9918	54	0	0	9972
76	-181,966	5476,3842	9901	71	0	0	0	9916	56	0	0	9972

	Monitored	Base										
Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	kN										
77	-185,539	5568,0816	9893	79	0	0	0	9911	61	0	0	9972
78	-189,863	5677,6075	9890	82	0	0	0	9907	65	0	0	9972
79	-192,063	5733,0551	9889	83	0	0	0	9905	67	0	0	9972
80	-194,263	5788,4405	9886	86	0	0	0	9904	68	0	0	9972
81	-196,463	5843,5727	9886	86	0	0	0	9904	68	0	0	9972
82	-200,358	5940,9017	9883	89	0	0	0	9902	70	0	0	9972
83	-203,904	6029,0045	9880	92	0	0	0	9899	73	0	0	9972
84	-206,104	6083,2352	9880	92	0	0	0	9898	74	0	0	9972
85	-208,304	6137,4658	9880	92	0	0	0	9897	75	0	0	9972
86	-212,519	6241,1938	9877	95	0	0	0	9891	81	0	0	9972
87	-214,719	6295,0241	9875	97	0	0	0	9891	81	0	0	9972
88	-218,455	6386,0344	9872	100	0	0	0	9886	86	0	0	9972
89	-222,344	6480,0361	9869	103	0	0	0	9881	91	0	0	9972
90	-224,544	6532,9982	9866	106	0	0	0	9880	92	0	0	9972
91	-226,744	6585,6914	9861	111	0	0	0	9880	92	0	0	9972
92	-228,944	6637,9935	9858	114	0	0	0	9879	93	0	0	9972
93	-231,144	6690,102	9856	116	0	0	0	9878	94	0	0	9972
94	-233,344	6742,1289	9854	118	0	0	0	9878	94	0	0	9972
95	-236,525	6817,1442	9852	119	1	0	0	9875	97	0	0	9972
96	-208,932	5558,899	9852	97	1	0	22	9875	74	1	22	9972

	Monitored	Base										
Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	kN										
0	-0,066	0	9972	0	0	0	0	9972	0	0	0	9972
1	2,134	58,8558	9972	0	0	0	0	9972	0	0	0	9972
2	4,334	117,7116	9972	0	0	0	0	9972	0	0	0	9972
3	6,534	176,5674	9972	0	0	0	0	9972	0	0	0	9972
4	8,734	235,4299	9972	0	0	0	0	9972	0	0	0	9972
5	10,934	294,2857	9972	0	0	0	0	9972	0	0	0	9972
6	13,134	353,1415	9972	0	0	0	0	9972	0	0	0	9972
7	15,334	411,9973	9972	0	0	0	0	9972	0	0	0	9972
8	17,534	470,8599	9972	0	0	0	0	9972	0	0	0	9972
9	19,734	529,7156	9972	0	0	0	0	9972	0	0	0	9972
10	21,934	588,5714	9972	0	0	0	0	9972	0	0	0	9972
11	24,134	647,4272	9972	0	0	0	0	9972	0	0	0	9972
12	26,334	706,2899	9972	0	0	0	0	9972	0	0	0	9972
13	28,534	765,1457	9972	0	0	0	0	9972	0	0	0	9972
14	30,734	824,0015	9972	0	0	0	0	9972	0	0	0	9972
15	32,934	882,8624	9972	0	0	0	0	9972	0	0	0	9972
16	35,134	941,7183	9972	0	0	0	0	9972	0	0	0	9972
17	37,334	1000,5741	9972	0	0	0	0	9972	0	0	0	9972
18	39,534	1059,4351	9972	0	0	0	0	9972	0	0	0	9972
19	41,734	1118,2909	9972	0	0	0	0	9972	0	0	0	9972
20	43,934	1177,1467	9972	0	0	0	0	9972	0	0	0	9972

Tabel B26: Output Beban Dorong Arah y-y.

	Monitored	Base										
Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	kN										
21	46,134	1236,0078	9972	0	0	0	0	9972	0	0	0	9972
22	48,334	1294,8637	9972	0	0	0	0	9972	0	0	0	9972
23	50,534	1353,7195	9972	0	0	0	0	9972	0	0	0	9972
24	52,734	1412,5807	9972	0	0	0	0	9972	0	0	0	9972
25	54,934	1471,4365	9972	0	0	0	0	9972	0	0	0	9972
26	57,134	1530,2924	9972	0	0	0	0	9972	0	0	0	9972
27	59,334	1589,1536	9972	0	0	0	0	9972	0	0	0	9972
28	61,534	1648,0095	9972	0	0	0	0	9972	0	0	0	9972
29	63,734	1706,8654	9972	0	0	0	0	9972	0	0	0	9972
30	65,934	1765,7267	9972	0	0	0	0	9972	0	0	0	9972
31	68,134	1824,5826	9972	0	0	0	0	9972	0	0	0	9972
32	70,334	1883,4385	9972	0	0	0	0	9972	0	0	0	9972
33	72,534	1942,3	9972	0	0	0	0	9972	0	0	0	9972
34	74,734	2001,1559	9972	0	0	0	0	9972	0	0	0	9972
35	76,934	2060,0118	9972	0	0	0	0	9972	0	0	0	9972
36	79,134	2118,8734	9972	0	0	0	0	9972	0	0	0	9972
37	81,334	2177,7293	9972	0	0	0	0	9972	0	0	0	9972
38	83,534	2236,5852	9972	0	0	0	0	9972	0	0	0	9972
39	85,734	2295,447	9972	0	0	0	0	9972	0	0	0	9972
40	87,934	2354,3029	9972	0	0	0	0	9972	0	0	0	9972
41	90,134	2413,1589	9972	0	0	0	0	9972	0	0	0	9972

Step	Monitored Displ mm	Base Force kN	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
42	92,334	2472,0208	9972	0	0	0	0	9972	0	0	0	9972
43	94,534	2530,8767	9972	0	0	0	0	9972	0	0	0	9972
44	96,734	2589,7327	9972	0	0	0	0	9972	0	0	0	9972
45	98,934	2648,5948	9972	0	0	0	0	9972	0	0	0	9972
46	101,134	2707,4508	9972	0	0	0	0	9972	0	0	0	9972
47	103,334	2766,3067	9972	0	0	0	0	9972	0	0	0	9972
48	105,534	2825,169	9972	0	0	0	0	9972	0	0	0	9972
49	107,734	2884,025	9972	0	0	0	0	9972	0	0	0	9972
50	109,934	2942,881	9972	0	0	0	0	9972	0	0	0	9972
51	112,134	3001,7435	9972	0	0	0	0	9972	0	0	0	9972
52	114,334	3060,5995	9972	0	0	0	0	9972	0	0	0	9972
53	116,534	3119,4602	9972	0	0	0	0	9972	0	0	0	9972
54	118,734	3178,3162	9972	0	0	0	0	9972	0	0	0	9972
55	120,934	3237,1768	9972	0	0	0	0	9972	0	0	0	9972
56	123,134	3296,0329	9972	0	0	0	0	9972	0	0	0	9972
57	125,334	3354,8935	9972	0	0	0	0	9972	0	0	0	9972
58	127,534	3413,7496	9972	0	0	0	0	9972	0	0	0	9972
59	129,734	3472,6103	9972	0	0	0	0	9972	0	0	0	9972
60	131,934	3531,4665	9972	0	0	0	0	9972	0	0	0	9972
61	134,134	3590,3273	9972	0	0	0	0	9972	0	0	0	9972
62	136,334	3649,1835	9972	0	0	0	0	9972	0	0	0	9972

	Monitored	Base										
Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	kN										
63	138,534	3708,0444	9972	0	0	0	0	9972	0	0	0	9972
64	140,734	3766,9006	9968	4	0	0	0	9972	0	0	0	9972
65	142,934	3825,3107	9967	5	0	0	0	9972	0	0	0	9972
66	144,286	3861,1125	9963	9	0	0	0	9972	0	0	0	9972
67	147,215	3937,89	9949	23	0	0	0	9972	0	0	0	9972
68	150,972	4034,0413	9948	24	0	0	0	9972	0	0	0	9972
69	153,172	4090,3058	9948	24	0	0	0	9972	0	0	0	9972
70	155,372	4146,5605	9948	24	0	0	0	9972	0	0	0	9972
71	157,572	4202,8233	9948	24	0	0	0	9972	0	0	0	9972
72	159,772	4259,078	9946	26	0	0	0	9968	4	0	0	9972
73	161,972	4315,1898	9945	27	0	0	0	9965	7	0	0	9972
74	165,25	4398,3375	9935	37	0	0	0	9962	10	0	0	9972
75	167,663	4457,5964	9926	46	0	0	0	9949	23	0	0	9972
76	170,872	4533,504	9924	48	0	0	0	9948	24	0	0	9972
77	173,072	4585,3598	9924	48	0	0	0	9948	24	0	0	9972
78	175,272	4637,2223	9924	48	0	0	0	9948	24	0	0	9972
79	177,472	4689,078	9924	48	0	0	0	9943	29	0	0	9972
80	179,672	4740,9406	9915	57	0	0	0	9939	33	0	0	9972
81	181,965	4793,6427	9908	64	0	0	0	9930	42	0	0	9972
82	184,165	4843,1439	9908	64	0	0	0	9924	48	0	0	9972
83	186,365	4892,6381	9908	64	0	0	0	9924	48	0	0	9972

	Monitored	Base										
Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	kN										
84	188,565	4942,1383	9903	69	0	0	0	9924	48	0	0	9972
85	192,66	5033,3048	9900	72	0	0	0	9924	48	0	0	9972
86	194,86	5082,1633	9898	74	0	0	0	9918	54	0	0	9972
87	197,06	5130,8928	9896	76	0	0	0	9916	56	0	0	9972
88	199,26	5179,4985	9895	77	0	0	0	9916	56	0	0	9972
89	201,46	5228,0269	9894	78	0	0	0	9916	56	0	0	9972
90	205,641	5319,8998	9890	82	0	0	0	9908	64	0	0	9972
91	208,36	5378,2439	9876	96	0	0	0	9908	64	0	0	9972
92	210,56	5424,0561	9876	96	0	0	0	9908	64	0	0	9972
93	212,76	5469,8751	9876	96	0	0	0	9900	72	0	0	9972
94	214,96	5515,6873	9874	98	0	0	0	9900	72	0	0	9972
95	218,278	5584,246	9871	101	0	0	0	9900	72	0	0	9972
96	221,096	5641,5685	9868	104	0	0	0	9900	72	0	0	9972
97	223,296	5685,4648	9868	104	0	0	0	9891	81	0	0	9972
98	225,496	5729,3663	9864	108	0	0	0	9881	91	0	0	9972
99	227,696	5773,0415	9860	112	0	0	0	9877	95	0	0	9972
100	229,896	5816,4646	9856	116	0	0	0	9876	96	0	0	9972
101	232,096	5859,6367	9852	120	0	0	0	9876	96	0	0	9972
102	234,296	5902,563	9852	120	0	0	0	9873	99	0	0	9972
103	236,496	5945,4818	9852	120	0	0	0	9870	102	0	0	9972
104	238,696	5988,4086	9852	120	0	0	0	9868	104	0	0	9972

		Monitored	Base										
	Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
		mm	kN										
	105	240,896	6031,3274	9852	120	0	0	0	9868	104	0	0	9972
	106	243,096	6074,2543	9852	120	0	0	0	9868	104	0	0	9972
	107	245,296	6117,1731	9851	121	0	0	0	9868	104	0	0	9972
	108	247,496	6160,0844	9850	122	0	0	0	9868	104	0	0	9972
	109	249,696	6202,9711	9847	125	0	0	0	9868	104	0	0	9972
	110	254,042	6286,9143	9823	149	0	0	0	9868	104	0	0	9972
	111	256,809	6338,28	9817	150	5	0	0	9863	108	1	0	9972
ſ	112	176,141	3822,0826	9817	127	1	0	27	9863	82	0	27	9972

b. Model 2

Tabel B27: Output Beban Dorong Arah x-x.

Step	Monitored Displ mm	Base Force kN	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
0	0,057	0	9972	0	0	0	0	9972	0	0	0	9972
1	-2,143	67,6786	9972	0	0	0	0	9972	0	0	0	9972
2	-4,343	135,3572	9972	0	0	0	0	9972	0	0	0	9972
3	-6,543	203,0358	9972	0	0	0	0	9972	0	0	0	9972

Step	Monitored Displ mm	Base Force kN	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
4	-8,743	270,7144	9972	0	0	0	0	9972	0	0	0	9972
5	-10,943	338,393	9972	0	0	0	0	9972	0	0	0	9972
6	-13,143	406,0716	9972	0	0	0	0	9972	0	0	0	9972
7	-15,343	473,7503	9972	0	0	0	0	9972	0	0	0	9972
8	-17,543	541,4289	9972	0	0	0	0	9972	0	0	0	9972
9	-19,743	609,1075	9972	0	0	0	0	9972	0	0	0	9972
10	-21,943	676,7861	9972	0	0	0	0	9972	0	0	0	9972
11	-24,143	744,4647	9972	0	0	0	0	9972	0	0	0	9972
12	-26,343	812,1433	9972	0	0	0	0	9972	0	0	0	9972
13	-28,543	879,8219	9972	0	0	0	0	9972	0	0	0	9972
14	-30,743	947,5005	9972	0	0	0	0	9972	0	0	0	9972
15	-32,943	1015,1791	9972	0	0	0	0	9972	0	0	0	9972
16	-35,143	1082,8578	9972	0	0	0	0	9972	0	0	0	9972
17	-37,343	1150,5364	9972	0	0	0	0	9972	0	0	0	9972
18	-39,543	1218,215	9972	0	0	0	0	9972	0	0	0	9972
19	-41,743	1285,8936	9972	0	0	0	0	9972	0	0	0	9972
20	-43,943	1353,5722	9972	0	0	0	0	9972	0	0	0	9972
21	-46,143	1421,2509	9972	0	0	0	0	9972	0	0	0	9972
22	-48,343	1488,9295	9972	0	0	0	0	9972	0	0	0	9972
23	-50,543	1556,6081	9972	0	0	0	0	9972	0	0	0	9972
24	-52,743	1624,2868	9972	0	0	0	0	9972	0	0	0	9972

	Monitored	Base										
Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	kN										
25	-54,943	1691,9654	9972	0	0	0	0	9972	0	0	0	9972
26	-57,143	1759,644	9972	0	0	0	0	9972	0	0	0	9972
27	-59,343	1827,3227	9972	0	0	0	0	9972	0	0	0	9972
28	-61,543	1895,0013	9972	0	0	0	0	9972	0	0	0	9972
29	-63,743	1962,6799	9972	0	0	0	0	9972	0	0	0	9972
30	-65,943	2030,3586	9972	0	0	0	0	9972	0	0	0	9972
31	-68,143	2098,0372	9972	0	0	0	0	9972	0	0	0	9972
32	-70,343	2165,7842	9972	0	0	0	0	9972	0	0	0	9972
33	-72,543	2233,4629	9972	0	0	0	0	9972	0	0	0	9972
34	-74,743	2301,1416	9972	0	0	0	0	9972	0	0	0	9972
35	-76,943	2368,8203	9972	0	0	0	0	9972	0	0	0	9972
36	-79,143	2436,4991	9972	0	0	0	0	9972	0	0	0	9972
37	-81,343	2504,1778	9972	0	0	0	0	9972	0	0	0	9972
38	-83,543	2571,8565	9972	0	0	0	0	9972	0	0	0	9972
39	-85,743	2639,5352	9972	0	0	0	0	9972	0	0	0	9972
40	-87,943	2707,214	9972	0	0	0	0	9972	0	0	0	9972
41	-90,143	2774,8927	9972	0	0	0	0	9972	0	0	0	9972
42	-92,343	2842,5715	9972	0	0	0	0	9972	0	0	0	9972
43	-94,543	2910,2502	9972	0	0	0	0	9972	0	0	0	9972
44	-96,743	2977,929	9972	0	0	0	0	9972	0	0	0	9972
45	-98,943	3045,6077	9972	0	0	0	0	9972	0	0	0	9972

Stop	Monitored	Base		РС			\ F	A 10				Total
Step	mm	kN	A-D	Б-С	C-D	D-E	>E	A-10	10-L3	L3-CP	>CP	TOLAT
46	-101,143	3113,2865	9972	0	0	0	0	9972	0	0	0	9972
47	-103,343	3180,9653	9972	0	0	0	0	9972	0	0	0	9972
48	-105,543	3248,644	9972	0	0	0	0	9972	0	0	0	9972
49	-107,743	3316,3228	9972	0	0	0	0	9972	0	0	0	9972
50	-109,943	3384,0016	9972	0	0	0	0	9972	0	0	0	9972
51	-112,143	3451,6804	9972	0	0	0	0	9972	0	0	0	9972
52	-114,343	3519,3592	9972	0	0	0	0	9972	0	0	0	9972
53	-116,543	3587,038	9972	0	0	0	0	9972	0	0	0	9972
54	-118,743	3654,7168	9972	0	0	0	0	9972	0	0	0	9972
55	-120,943	3722,3956	9972	0	0	0	0	9972	0	0	0	9972
56	-123,143	3790,0744	9972	0	0	0	0	9972	0	0	0	9972
57	-125,343	3857,7532	9972	0	0	0	0	9972	0	0	0	9972
58	-127,543	3925,432	9972	0	0	0	0	9972	0	0	0	9972
59	-129,743	3993,1751	9972	0	0	0	0	9972	0	0	0	9972
60	-131,943	4060,854	9972	0	0	0	0	9972	0	0	0	9972
61	-134,143	4128,533	9972	0	0	0	0	9972	0	0	0	9972
62	-136,343	4196,212	9972	0	0	0	0	9972	0	0	0	9972
63	-138,543	4263,891	9972	0	0	0	0	9972	0	0	0	9972
64	-140,743	4331,57	9972	0	0	0	0	9972	0	0	0	9972
65	-142,943	4399,249	9972	0	0	0	0	9972	0	0	0	9972
66	-145,143	4466,928	9972	0	0	0	0	9972	0	0	0	9972

Step	Monitored Displ mm	Base Force kN	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
67	-147,343	4534,607	9972	0	0	0	0	9972	0	0	0	9972
68	-149,543	4602,286	9972	0	0	0	0	9972	0	0	0	9972
69	-151,743	4669,9651	9972	0	0	0	0	9972	0	0	0	9972
70	-153,943	4737,6441	9972	0	0	0	0	9972	0	0	0	9972
71	-156,143	4805,3232	9971	1	0	0	0	9972	0	0	0	9972
72	-158,039	4863,5768	9969	3	0	0	0	9972	0	0	0	9972
73	-160,239	4930,9437	9968	4	0	0	0	9972	0	0	0	9972
74	-162,439	4998,2022	9967	5	0	0	0	9972	0	0	0	9972
75	-164,639	5065,3581	9964	8	0	0	0	9972	0	0	0	9972
76	-166,839	5132,191	9962	10	0	0	0	9972	0	0	0	9972
77	-169,039	5198,8129	9958	14	0	0	0	9972	0	0	0	9972
78	-171,239	5264,9778	9956	16	0	0	0	9972	0	0	0	9972
79	-175,333	5387,1366	9950	22	0	0	0	9972	0	0	0	9972
80	-179,331	5505,2643	9942	30	0	0	0	9971	1	0	0	9972
81	-181,531	5569,4395	9939	33	0	0	0	9970	2	0	0	9972
82	-183,731	5633,0742	9938	34	0	0	0	9968	4	0	0	9972
83	-186,894	5723,9542	9930	42	0	0	0	9965	7	0	0	9972
84	-190,574	5827,2232	9923	49	0	0	0	9960	12	0	0	9972
85	-194,2	5927,1883	9918	54	0	0	0	9954	18	0	0	9972
86	-197,855	6026,4409	9916	56	0	0	0	9946	26	0	0	9972
87	-200,575	6099,7195	9911	61	0	0	0	9945	27	0	0	9972

	Monitored	Base										
Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	kN										
88	-202,775	6158,1347	9910	62	0	0	0	9937	35	0	0	9972
89	-205,713	6235,6644	9906	66	0	0	0	9931	41	0	0	9972
90	-209,956	6346,3727	9904	68	0	0	0	9926	46	0	0	9972
91	-212,156	6403,4598	9904	68	0	0	0	9920	52	0	0	9972
92	-214,356	6460,5468	9903	69	0	0	0	9917	55	0	0	9972
93	-216,556	6517,4172	9901	71	0	0	0	9916	56	0	0	9972
94	-218,756	6573,976	9900	72	0	0	0	9912	60	0	0	9972
95	-220,956	6630,3159	9899	73	0	0	0	9911	61	0	0	9972
96	-224,614	6723,5039	9893	79	0	0	0	9908	64	0	0	9972
97	-228,941	6832,8124	9891	81	0	0	0	9904	68	0	0	9972
98	-231,141	6888,32	9889	83	0	0	0	9904	68	0	0	9972
99	-233,341	6943,8209	9886	86	0	0	0	9903	69	0	0	9972
100	-237,671	7052,0885	9883	89	0	0	0	9901	71	0	0	9972
101	-239,871	7106,776	9883	89	0	0	0	9901	71	0	0	9972
102	-244,065	7210,575	9880	92	0	0	0	9899	73	0	0	9972
103	-246,265	7264,8042	9880	92	0	0	0	9898	74	0	0	9972
104	-248,465	7319,0335	9879	93	0	0	0	9898	74	0	0	9972
105	-250,665	7373,0839	9879	93	0	0	0	9897	75	0	0	9972
106	-255,003	7479,3823	9875	97	0	0	0	9892	80	0	0	9972
107	-257,203	7532,9393	9873	99	0	0	0	9891	81	0	0	9972
108	-261,488	7636,7161	9870	102	0	0	0	9887	85	0	0	9972

	Monitored	Base										
Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	kN										
109	-263,688	7689,7542	9870	102	0	0	0	9882	90	0	0	9972
110	-267,243	7775,2413	9863	109	0	0	0	9881	91	0	0	9972
111	-269,443	7827,6564	9863	109	0	0	0	9879	93	0	0	9972
112	-271,643	7880,0715	9859	113	0	0	0	9879	93	0	0	9972
113	-273,843	7932,2226	9857	115	0	0	0	9878	94	0	0	9972
114	-276,043	7984,2637	9853	119	0	0	0	9877	95	0	0	9972
115	-278,243	8036,0688	9853	119	0	0	0	9876	96	0	0	9972
116	-280,443	8087,8739	9850	122	0	0	0	9875	97	0	0	9972
117	-282,207	8129,2356	9847	124	1	0	0	9874	98	0	0	9972
118	-192,362	5081,6852	9838	115	0	0	19	9874	79	0	19	9972

Tabel B28: Output Beban Dorong Arah y-y.

Step	Monitored Displ mm	Base Force kN	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
0	-0,066	0	9972	0	0	0	0	9972	0	0	0	9972
1	2,134	58,8558	9972	0	0	0	0	9972	0	0	0	9972
2	4,334	117,7116	9972	0	0	0	0	9972	0	0	0	9972
3	6,534	176,5674	9972	0	0	0	0	9972	0	0	0	9972
4	8,734	235,4299	9972	0	0	0	0	9972	0	0	0	9972

	Monitored	Base										
Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	kN										
5	10,934	294,2857	9972	0	0	0	0	9972	0	0	0	9972
6	13,134	353,1415	9972	0	0	0	0	9972	0	0	0	9972
7	15,334	411,9973	9972	0	0	0	0	9972	0	0	0	9972
8	17,534	470,8599	9972	0	0	0	0	9972	0	0	0	9972
9	19,734	529,7156	9972	0	0	0	0	9972	0	0	0	9972
10	21,934	588,5714	9972	0	0	0	0	9972	0	0	0	9972
11	24,134	647,4272	9972	0	0	0	0	9972	0	0	0	9972
12	26,334	706,2899	9972	0	0	0	0	9972	0	0	0	9972
13	28,534	765,1457	9972	0	0	0	0	9972	0	0	0	9972
14	30,734	824,0015	9972	0	0	0	0	9972	0	0	0	9972
15	32,934	882,8624	9972	0	0	0	0	9972	0	0	0	9972
16	35,134	941,7183	9972	0	0	0	0	9972	0	0	0	9972
17	37,334	1000,5741	9972	0	0	0	0	9972	0	0	0	9972
18	39,534	1059,4351	9972	0	0	0	0	9972	0	0	0	9972
19	41,734	1118,2909	9972	0	0	0	0	9972	0	0	0	9972
20	43,934	1177,1467	9972	0	0	0	0	9972	0	0	0	9972
21	46,134	1236,0078	9972	0	0	0	0	9972	0	0	0	9972
22	48,334	1294,8637	9972	0	0	0	0	9972	0	0	0	9972
23	50,534	1353,7195	9972	0	0	0	0	9972	0	0	0	9972
24	52,734	1412,5807	9972	0	0	0	0	9972	0	0	0	9972
25	54,934	1471,4365	9972	0	0	0	0	9972	0	0	0	9972

	Monitored	Base										
Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	kN										
26	57,134	1530,2924	9972	0	0	0	0	9972	0	0	0	9972
27	59,334	1589,1536	9972	0	0	0	0	9972	0	0	0	9972
28	61,534	1648,0095	9972	0	0	0	0	9972	0	0	0	9972
29	63,734	1706,8654	9972	0	0	0	0	9972	0	0	0	9972
30	65,934	1765,7267	9972	0	0	0	0	9972	0	0	0	9972
31	68,134	1824,5826	9972	0	0	0	0	9972	0	0	0	9972
32	70,334	1883,4385	9972	0	0	0	0	9972	0	0	0	9972
33	72,534	1942,3	9972	0	0	0	0	9972	0	0	0	9972
34	74,734	2001,1559	9972	0	0	0	0	9972	0	0	0	9972
35	76,934	2060,0118	9972	0	0	0	0	9972	0	0	0	9972
36	79,134	2118,8734	9972	0	0	0	0	9972	0	0	0	9972
37	81,334	2177,7293	9972	0	0	0	0	9972	0	0	0	9972
38	83,534	2236,5852	9972	0	0	0	0	9972	0	0	0	9972
39	85,734	2295,447	9972	0	0	0	0	9972	0	0	0	9972
40	87,934	2354,3029	9972	0	0	0	0	9972	0	0	0	9972
41	90,134	2413,1589	9972	0	0	0	0	9972	0	0	0	9972
42	92,334	2472,0208	9972	0	0	0	0	9972	0	0	0	9972
43	94,534	2530,8767	9972	0	0	0	0	9972	0	0	0	9972
44	96,734	2589,7327	9972	0	0	0	0	9972	0	0	0	9972
45	98,934	2648,5948	9972	0	0	0	0	9972	0	0	0	9972
46	101,134	2707,4508	9972	0	0	0	0	9972	0	0	0	9972

	Monitored	Base										
Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	KIN										
47	103,334	2766,3067	9972	0	0	0	0	9972	0	0	0	9972
48	105,534	2825,169	9972	0	0	0	0	9972	0	0	0	9972
49	107,734	2884,025	9972	0	0	0	0	9972	0	0	0	9972
50	109,934	2942,881	9972	0	0	0	0	9972	0	0	0	9972
51	112,134	3001,7435	9972	0	0	0	0	9972	0	0	0	9972
52	114,334	3060,5995	9972	0	0	0	0	9972	0	0	0	9972
53	116,534	3119,4602	9972	0	0	0	0	9972	0	0	0	9972
54	118,734	3178,3162	9972	0	0	0	0	9972	0	0	0	9972
55	120,934	3237,1768	9972	0	0	0	0	9972	0	0	0	9972
56	123,134	3296,0329	9972	0	0	0	0	9972	0	0	0	9972
57	125,334	3354,8935	9972	0	0	0	0	9972	0	0	0	9972
58	127,534	3413,7496	9972	0	0	0	0	9972	0	0	0	9972
59	129,734	3472,6103	9972	0	0	0	0	9972	0	0	0	9972
60	131,934	3531,4665	9972	0	0	0	0	9972	0	0	0	9972
61	134,134	3590,3273	9972	0	0	0	0	9972	0	0	0	9972
62	136,334	3649,1835	9972	0	0	0	0	9972	0	0	0	9972
63	138,534	3708,0444	9972	0	0	0	0	9972	0	0	0	9972
64	140,734	3766,9006	9972	0	0	0	0	9972	0	0	0	9972
65	142,934	3825,7617	9972	0	0	0	0	9972	0	0	0	9972
66	145,134	3884,6179	9972	0	0	0	0	9972	0	0	0	9972
67	147,334	3943,4791	9972	0	0	0	0	9972	0	0	0	9972

	Monitored	Base										
Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	kN										
68	149,534	4002,3353	9972	0	0	0	0	9972	0	0	0	9972
69	151,734	4061,1966	9972	0	0	0	0	9972	0	0	0	9972
70	153,934	4120,0529	9972	0	0	0	0	9972	0	0	0	9972
71	156,134	4178,9143	9972	0	0	0	0	9972	0	0	0	9972
72	158,334	4237,7706	9972	0	0	0	0	9972	0	0	0	9972
73	160,534	4296,6322	9972	0	0	0	0	9972	0	0	0	9972
74	162,734	4355,4885	9972	0	0	0	0	9972	0	0	0	9972
75	164,934	4414,3502	9972	0	0	0	0	9972	0	0	0	9972
76	167,134	4473,2065	9971	1	0	0	0	9972	0	0	0	9972
77	168,89	4520,1042	9968	4	0	0	0	9972	0	0	0	9972
78	171,09	4578,5099	9966	6	0	0	0	9972	0	0	0	9972
79	174,818	4676,6077	9962	10	0	0	0	9972	0	0	0	9972
80	177,018	4734,2027	9953	19	0	0	0	9972	0	0	0	9972
81	180,983	4836,011	9948	24	0	0	0	9972	0	0	0	9972
82	183,183	4892,2658	9948	24	0	0	0	9972	0	0	0	9972
83	185,383	4948,5295	9948	24	0	0	0	9972	0	0	0	9972
84	187,583	5004,7843	9948	24	0	0	0	9972	0	0	0	9972
85	189,783	5061,0484	9948	24	0	0	0	9969	3	0	0	9972
86	191,983	5117,3033	9948	24	0	0	0	9966	6	0	0	9972
87	194,183	5173,5676	9946	26	0	0	0	9964	8	0	0	9972
88	197,757	5262,8939	9928	44	0	0	0	9964	8	0	0	9972

	Monitored	Base										
Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	kN										
89	201,087	5341,9312	9924	48	0	0	0	9948	24	0	0	9972
90	203,287	5393,7931	9924	48	0	0	0	9948	24	0	0	9972
91	205,487	5445,6453	9924	48	0	0	0	9948	24	0	0	9972
92	207,687	5497,5057	9924	48	0	0	0	9948	24	0	0	9972
93	209,887	5549,3578	9924	48	0	0	0	9948	24	0	0	9972
94	212,087	5601,2181	9924	48	0	0	0	9940	32	0	0	9972
95	215,109	5671,7921	9916	56	0	0	0	9932	40	0	0	9972
96	217,309	5721,9103	9908	64	0	0	0	9932	40	0	0	9972
97	219,509	5771,3998	9908	64	0	0	0	9925	47	0	0	9972
98	221,709	5820,8968	9908	64	0	0	0	9924	48	0	0	9972
99	223,909	5870,3864	9908	64	0	0	0	9924	48	0	0	9972
100	226,109	5919,8832	9906	66	0	0	0	9924	48	0	0	9972
101	228,309	5969,2225	9900	72	0	0	0	9924	48	0	0	9972
102	230,509	6018,0746	9900	72	0	0	0	9919	53	0	0	9972
103	232,709	6066,9183	9900	72	0	0	0	9916	56	0	0	9972
104	234,909	6115,7714	9898	74	0	0	0	9916	56	0	0	9972
105	237,109	6164,4961	9897	75	0	0	0	9916	56	0	0	9972
106	239,309	6213,1627	9895	77	0	0	0	9916	56	0	0	9972
107	241,509	6261,6864	9894	78	0	0	0	9916	56	0	0	9972
108	243,709	6310,1393	9888	84	0	0	0	9916	56	0	0	9972
109	246,684	6373,897	9876	96	0	0	0	9908	64	0	0	9972

	Monitored	Base										
Step	Displ	Force	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
	mm	kN										
110	248,884	6419,7161	9876	96	0	0	0	9908	64	0	0	9972
111	251,084	6465,5242	9876	96	0	0	0	9908	64	0	0	9972
112	253,284	6511,3407	9876	96	0	0	0	9904	68	0	0	9972
113	255,484	6557,1488	9873	99	0	0	0	9900	72	0	0	9972
114	257,684	6602,5254	9872	100	0	0	0	9900	72	0	0	9972
115	261,749	6685,4303	9868	104	0	0	0	9900	72	0	0	9972
116	263,949	6729,3214	9868	104	0	0	0	9896	76	0	0	9972
117	266,149	6773,2194	9868	104	0	0	0	9884	88	0	0	9972
118	268,349	6817,1104	9868	104	0	0	0	9882	90	0	0	9972
119	270,549	6861,0087	9866	106	0	0	0	9878	94	0	0	9972
120	272,749	6904,7904	9864	108	0	0	0	9876	96	0	0	9972
121	274,949	6948,4677	9860	112	0	0	0	9876	96	0	0	9972
122	277,149	6991,879	9856	116	0	0	0	9873	99	0	0	9972
123	279,349	7035,0546	9852	120	0	0	0	9870	102	0	0	9972
124	281,549	7077,968	9852	120	0	0	0	9868	104	0	0	9972
125	283,749	7120,8916	9852	120	0	0	0	9868	104	0	0	9972
126	285,949	7163,805	9852	120	0	0	0	9868	104	0	0	9972
127	288,149	7206,7287	9852	120	0	0	0	9868	104	0	0	9972
128	290,349	7249,6421	9852	120	0	0	0	9868	104	0	0	9972
129	292,549	7292,5661	9851	121	0	0	0	9868	104	0	0	9972
130	294,749	7335,4187	9848	124	0	0	0	9868	104	0	0	9972

Step	Monitored Displ mm	Base Force kN	A-B	B-C	C-D	D-E	>E	A-IO	IO-LS	LS-CP	>CP	Total
131	296,949	7378,1024	9847	125	0	0	0	9868	104	0	0	9972
132	299,149	7420,6769	9843	129	0	0	0	9868	104	0	0	9972
133	303,523	7503,2655	9823	149	0	0	0	9868	104	0	0	9972
134	305,523	7539,9094	9819	149	4	0	0	9868	104	0	0	9972
135	153,376	3275,0138	9813	138	0	0	21	9868	83	0	21	9972

Tabel B28: Lanjutan.

TUGAS AKHIR PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA

LEMBAR ASISTENSI

Link Dengan Analisis Pushover.

Nama: Wahyu Bimantara AnwarNPM: 1307210123Judul: Evaluasi Kinerja Struktur Baja Tahan Gempa Dengan Struktur
Rangka Berpengaku Eksentrik Perbandingan kuat Mekanis

NO	KETERANGAN	PARAF/TANGGAL
Ø	- Balo II -> kori usahaban pembahan perklasifikas, conroh: -genyan - Str. th genyn - Buar Model (Aralism duly Model Flarrs)	Man
Q	* tori Dasar » perklasipikan * hypur Colon Sernen' dyn Aanlar	Many
Ì	Lonjusten persodelen den Baar Bas III	ben

TUGAS AKHIR PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA PARAFTANGGAL NO KETERANGAN Coba perilsa Banjunan th 4. seemen genjer benbrast 5. Lanjurkan kondin Fuber bys 19-1001v Perilen link & jgn gunda 6. H-barran tops gunalen - Lajurtan Juchovan bardsake Fem FEMA 440, ARCT. YO Are 7 Dijar Rishover Aunlysi's 7 Munh purhover p-a atilar besan gravissi didepension - Fahemi weester daleratica * Lonjustion he Model 2

TUGAS AKHIR PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA

PARAFTANGGAL NO **KETERANGAN** 10 T.A leng aporm 10 Suar - Dry. Li gbr, tabe - leeringrulen - Lenglagoi Acc Semiorum 7.201 2010 Diperiksa Oleh Dosen Pembimbing 1 (Tondi Ar h Putera, S.T., M.T)

TUGAS AKHIR PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA

LEMBAR ASISTENSI

Nama	: Wahyu Bimantara Anwar
NPM	: 1307210123
Judul	: Evaluasi Kinerja Struktur Baja Tahan Gempa Dengan Struktur Rangka Berpengaku Eksentrik Perbandingan kuat Mekanis Link Dengan Analisis Pushover.

NO	KETERANGAN	PARAF/TANGGAL
	- perbailer dab 7 - larjoit be dab 2) //	240
	- denti format permisin ut (Jab I k Dab 2, perbuiki' - anjuthe ke dab 3	All 53 18
	- persuite format gor & Takel Bab 2 k 3 // - lempithe be dab y	A 54 08
	- pertrike pemlin GA; Al Bal 3 & 4	1 A Dry 10
	- perbauler errater peullosan - lendeupi Daet pustalea den kutipen ? y dipalai på isi	All 58'18
	- ace ute seminar alefairen	9 778 10

DAFTAR RIWAYAT HIDUP

DATA DIRI PESERTA

Nama Lengkap	: Wahyu Bimantara Anwar
Nama Panggilan	: Wahyu
Tempat, Tanggal Lahir	: Medan, 28 Mei 1995
Jenis Kelamin	: Laki-laki
Alamat	: Jl Suasa Selatan Pasar 3 LK X Kel. Mabar Hilir
	Kec. Medan Deli, Sumatera Utara
Agama	: Islam
Nama Orang Tua	
Ayah	: Chairil Anwar
Ibu	: Indria Sari
No. Telp	: 0822-7200-0422
Email	: wahyubimantara2805@gmail.com

RIWAYAT PENDIDIKAN

1.	SD Negeri NO.05600	Tahun Lulus	2006
2.	SMP Negeri 24 Medan	Tahun Lulus	2009
3.	SMA Swasta Harapan Stabat	Tahun Lulus	2012
4.	Universitas Muhammadiyah Sumatera Utara	2013 – Selesai	i