TUGAS AKHIR

DEFORMASI STRUKTUR JEMBATAN GANTUNG RANGKA BAJA KHUSUS PEJALAN KAKI MEMAKAI MENARA BAJA DAN KOMPOSIT

Diajukan Untuk Memenuhi Syarat-Syarat Memperoleh Gelar Sarjana Teknik Sipil Pada Fakultas Teknik Universitas Muhammadiyah Sumatera Utara

Disusun Oleh:

JUNI INDRIANI 1407210214

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA MEDAN 2018

HALAMAN PENGESAHAN

Tugas Akhir ini diajukan oleh:

Nama : Juni Indriani

NPM : 1407210214

Program Studi: Teknik Sipil

Judul Skripsi : Deformasi Struktur Jembatan Gantung Rangka Baja Khusus

Pejalan Kaki Memakai Menara Baja dan Menara Komposit.

Bidang ilmu : Struktur.

Telah berhasil dipertahankan dihadapan Tim Penguji dan diterima sebagai salah satu syarat yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, 27 September 2018

Mengetahui dan menyetujui:

g I / Penguji Dosen Pembimb

htera, S.T, M.T

Tondi

Dosen Pembimbing II / Penguji

Rhini Wulan Dary, S.T, M.T

Dosen Pembanding I / Penguji

Dr. Ade Vaisal, S.T, M.Sc

Dosen Pembanding II / Penguji

Dr. Fahrizal Zulkarnain, S.T, M.Sc

HAMMAD Program Studi Teknik Sipil

PER Pahrizal Zulkarnain, S.T., M.Sc

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Saya yang bertanda tangan di bawah ini:

Nama Lengkap : Juni Indriani

Tempat /Tanggal Lahir: Simpang Kanan / 27 Juni, 1996

NPM : 1407210214

Fakultas : Teknik

Program Studi : Teknik Sipil

Menyatakan dengan sesungguhnya dan sejujurnya, bahwa laporan Tugas Akhir saya yang berjudul:

"Deformasi Struktur Jembatan Gantung Rangka Baja Khusus Pejalan Kaki Memakai Menara Baja dan Komposit"

Bukan merupakan plagiarisme, pencurian hasil karya milik orang lain, hasil kerja orang lain untuk kepentingan saya karena hubungan material dan non-material, ataupun segala kemungkinan lain, yang pada hakekatnya bukan merupakan karya tulis Tugas Akhir saya secara orisinil dan otentik.

Bila kemudian hari diduga kuat ada ketidaksesuaian antara fakta dengan kenyataan ini, saya bersedia diproses oleh Tim Fakultas yang dibentuk untuk melakukan verifikasi, dengan sanksi terberat berupa pembatalan kelulusan/kesarjanaan saya.

Demikian Surat Pernyataan ini saya buat dengan kesadaran sendiri dan tidak atas tekanan ataupun paksaan dari pihak manapun demi menegakkan integritas akademik di Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, 27 September 2018

Saya yang menyatakan,

Juni Indriani

AFF41368353

ABSTRAK

DEFORMASI STRUKTUR JEMBATAN GANTUNG RANGKA BAJA KHUSUS PEJALAN KAKI MEMAKAI MENARA BAJA DAN KOMPOSIT

Juni Indriani 1407210214 Tondi Amirysah Putera P, S.T, M.T Rhini Wulan Dary, S.T, M.T

Jembatan gantung khusus pejalan kaki kelas I adalah struktur jembatan yang dapat digunakan untuk penyebrangan orang dan kendaraan ringan. Jembatan ini memiliki nilai estetika yang tinggi dan ekonomis dalam pembuatannya. Dalam tugas akhir ini, bertujuan untuk membandingkan jembatan gantung yang menggunakan menara rangka baja dengan menara rangka baja komposit beton yang direncanakan di daerah Kampar, Riau yang menghubungkan antara Desa Pulau Belimbing dengan Desa Pulau Jambu dengan panjang bentang tengah 100 m, panjang bentang kiri/kanan 15 m dan lebar 1,8 m yang dilakukan dengan bantuan perangkat lunak dan menggunakan standar acuan utama yaitu Surat Edaran Menteri Pekerjaan Umum No. 02/SE/M/2010. Analisis yang dilakukan menghasilkan nilai perbandingan yang kecil, dimana jembatan gantung dengan menara rangka baja komposit beton berperilaku lebih kuat dan kaku dibandingkan dengan menara rangka baja. Hasil dari analisis memenuhi syarat batas izin dengan selisih nilai perbandingan deformasi maksimum sebesar 0,000034 m, selisih nilai lendutan maksimum sebesar 0,000003 m dan selisih nilai tegangan kabel maksimum sebesar 125.81 kN/m².

Kata kunci: deformasi, lendutan, tegangan kabel.

ABSTRACT

DEFORMATION OF A STEEL FRAME SUSPENSION BRIDGE STRUCTURE A PEDESTRIAN USED STEEL PYLON AND COMPOSITE

Juni Indriani 1407210214 Tondi Amirysah Putera P, S.T, M.T Rhini Wulan Dary, S.T, M.T

The first class pedestrian suspension bridge is a bridge structure that can be used for crossing people and light vehicles. This bridge has a high aesthetic value and is economical in its manufacture. In this final project, it is aims to compare suspension bridges using steel frame pylons with concrete composite steel frame pylons planned in the Kampar area, Riau which connects between Belimbing Island Village and Jambu Island Village with a middle span of 100 m, left/right span lengths of 15 m and 1.8 m wide are done with the help of software System Analysis and using the main reference standard, namely the Minister of Public Works Circular No. 02/SE/M/2010. The analysis carried out produced a thin comparison value, where suspension bridges with concrete composite steel frame towers behave stronger and stiffer compared to steel frame towers. The results of the analysis meet the permit limit requirements with the difference in the maximum deformation ratio value of 0.000034 m, the maximum deflection value is 0.000003 m and the difference in the maximum tensile value of the cable is 125,81 kN/m².

Keywords: deformation, deflection, cable tension.

KATA PENGANTAR

Dengan nama Allah Yang Maha Pengasih lagi Maha Penyayang. Segala puji dan syukur penulis ucapkan kehadirat Allah SWT yang telah memberikan karunia dan nikmat yang tiada terkira. Salah satu dari nikmat tersebut adalah keberhasilan penulis dalam menyelesaikan laporan Tugas Akhir ini yang berjudul "Deformasi Struktur Jembatan Gantung Rangka Baja Khusus Pejalan Kaki Memakai Menara Baja dan Komposit" sebagai syarat untuk meraih gelar akademik Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara (UMSU), Medan.

Banyak pihak telah membantu dalam menyelesaikan laporan Tugas Akhir ini, untuk itu penulis menghaturkan rasa terimakasih yang tulus dan dalam kepada:

- Bapak Tondi Amirsyah Putera, S.T, M.T selaku Dosen Pembimbing I dan Penguji yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- 2. Ibu Rhini Wulan Dary, S.T, M.T selaku Dosen Pembimbing II dan Penguji yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- 3. Dr. Ade Faisal, S.T, M.Sc selaku Dosen Pembanding I dan Penguji yang telah banyak memberikan koreksi dan masukan kepada penulis dalam menyelesaikan Tugas Akhir ini, sekaligus sebagai Ketua Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara.
- 4. Dr. Fahrizal Zulkarnain, S.T, M.Sc selaku Dosen Pembanding II dan Penguji yang telah banyak memberikan koreksi dan masukan kepada penulis dalam menyelesaikan Tugas Akhir ini.
- 5. Bapak Munawar Alfansury Siregar, S.T, M.T selaku Dekan Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- 6. Seluruh Bapak/Ibu Dosen di Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara yang telah banyak memberikan ilmu ketekniksipilan kepada penulis.

- 7. Orang tua penulis: Bapak Sodikin dan Ibu Samiah, yang telah bersusah payah membesarkan dan membiayai studi penulis, yang sabar dan pengertian memberi dukungan, nasehat, mendoakan serta memotivasi dalam menyelesaikan perkuliahan di Jurusan Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- 8. Kakanda dan adinda tercinta Nur Nilam Hafsari dan Tri Nur Khotimah yang telah menyemangati penulis dalam menyelesaikan perkuliahan di Jurusan Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- Bapak/Ibu Staf Administrasi di Biro Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- 10. Sahabat-sahabat penulis: Hanifah Zahra, Indah Prastiwi, Retno Friana Dewi, Adisti, Rizki, Yuwinda Arthika, M. Prawira, M. Iqbal Batubara, Agung Prayekno, Andika Hadiningrat, Setiana Dewi, S.Sos, Wildatun Jannah S.Pd, Agung Prayogi S.Pd.
- 11. Semua pihak yang telah membantu tanpa pamrih yang tidak dapat disebutkan secara keseluruhan satu persatu, teman-teman seperjuangan kelas C1 pagi dan kelas A2 siang, semoga kita semua berhasil menggapai impian.

Laporan Tugas Akhir ini tentunya masih jauh dari kesempurnaan, untuk itu penulis berharap kritik dan masukan yang konstruktif untuk menjadi bahan pembelajaran berkesinambungan penulis di masa depan. Semoga laporan Tugas Akhir ini dapat bermanfaat bagi dunia konstruksi teknik sipil.

Medan, 27 September 2018

Juni Indriani

DAFTAR ISI

HALAMA	N PENGESAHAN	ii
SURAT PE	ERNYATAAN KEASLIAN TUGAS AKHIR	iii
ABSTRAK		iv
ABSTRACT		\mathbf{v}
KATA PEN	NGANTAR	vi
DAFTAR I	SI	viii
DAFTAR 7	ΓABEL .	xii
DAFTAR (GAMBAR	xiv
DAFTAR I	NOTASI	xvii
DAFTAR S	SINGKATAN	xix
BAB 1 PEN	NDAHULUAN	1
1.1	Latar Belakang Masalah	1
1.2	Rumusan Masalah	2
1.3	Ruang Lingkup Penelitian	2
1.4	Tujuan Penelitian	3
1.5	Manfaat Penelitian	3
1.6	Sistematika Penulisan	4
BAB 2 TIN	IJAUAN PUSTAKA	<u>5</u>
2.1	Jembatan Gantung	5
	2.1.1 Bentuk Bentang Luar Bebas (Side Span Free)	6
	2.1.2 Bentuk Bentang Luar digantungi (Side Span Suspended)	6
	2.1.2.1 Jembatan Gantung Tanpa Pengaku	6
	2.1.2.2 Jembatan Gantung Dengan Pengaku	6
2.2	Struktur Atas Jembatan Gantung	8
	2.2.1 Menara (Pylon/Tower)	9
	2.2.1.1 Kolom Komposit	9
2.3	Struktur Pelengkung Kabel	10
	2.3.1 Bentuk Funikular	10
	2.3.2 Sag Kabel atau Tinggi Pelengkung	15
	2.3.3 Sistem Kabel	15

	2.3.4	Lantai (Deck) Jembatan	18
	2.3.5	Gelagar Melintang	21
	2.3.6	Gelagar Memanjang	21
	2.3.7	Pagar Pengaman	21
	2.3.8	Pengangkuran	21
2.4	Syarat	Bahan	23
	2.4.1	Beton	23
	2.4.2	Baja	24
	2.4.3	Tali Kawat Baja	25
2.5	Pembe	ebanan Struktur Jembatan Gantung	28
	2.5.1	Filosofi Pembebanan	28
	2.5.2	Keadaan Batas Daya Lahan	29
	2.5.3	Keadaan Batas Fatik dan Fraktur	29
	2.5.4	Keadaan Batas Kekuatan	30
	2.5.5	Keadaan Batas Ekstrem	30
	2.5.6	Daktilitas	30
	2.5.7	Redundansi (Prediksi)	31
	2.5.8	Kepentingan operasional	31
	2.5.9	Beban Vertikal	31
		2.5.9.1 Beban Mati	31
		2.5.9.2 Beban Hidup	33
	2.5.10	Beban Samping	34
		2.5.10.1 Beban Angin	34
		2.5.10.2 Beban Gempa	36
2.6	Komł	pinasi Pembebanan	47
2.7	Struk	tur Pengaku	47
2.8	Gaya	Tarik Kabel Utama	48
2.9	Lend	utan	49
2.10) Mom	en Maksimum Struktur Pengaku dan Komponen Gaya	
	Hori	zontal Kabel	49
2.11	l Panja	ng Kabel Angkur	49
2.12	2 Panja	ng Kabel Utama	50

2.13	3 Panja	ing Kabel Penggantung (Hanger)	51
2.1	4 Kelar	ndaian Memanjang Jembatan	51
BAB 3 PE	RANC	ANGAN UMUM	53
3.1	Metod	dologi Penelitian	53
3.2	Lokas	i Perencanaan Jembatan Gantung	54
3.3	Peren	canaan Struktur Jembatan Gantung	55
3.4	Data U	Ukuran Jembatan	55
3.5	Spesif	fikasi Material Struktur Jembatan Gantung	55
3.6	Spesif	fikasi Perencanaan Struktur Jembatan Gantung	56
3.7	Pemo	delan Struktur Jembatan Gantung	57
3.8	Beban	n Kerja Pada Jembatan	60
	3.8.1	Beban Hidup	60
	3.8.2	Beban Mati	61
	3.8.3	Beban Mati Tambahan (Beban Sandaran)	68
	3.8.4	Beban Angin	71
	3.8.5	Beban Gempa	74
3.	9 Lang	kah-Langkah Pemodelan Struktur Jembatan Gantung	
	(Susp	ension Bridge) Menggunakan Software	79
	3.9.1	Desain dan Pemodelan	79
	3.9.2	Mengidentifikasi Material yang Digunakan	80
	3.9.3	Mengidentifikasi Materials Property Data	81
	3.9.4	Mengidentifikasi Define Load Pettern	83
	3.9.5	Mengidentifikasi Kombinasi Pembebanan	84
	3.9.6	Mengidentifikasi Pembebanan	85
BAB 4 HA	SIL D	AN PEMBAHASAN	86
4.1	Tinjau	uan Umum	86
4.2	Hasil	analisis	86
	4.2.1	Hasil Analisis Tegangan Kabel Utama dan Kabel	
		Backstays	86
		4.2.1.1 Kabel Utama	87
		4.2.1.2 Kabel <i>Backstays</i>	89
	4.2.2	Hasil Analisis Lendutan	91

		4.2.2.1	Hasil Analisis Lendutan pada Gelagar	91
		4.2.2.2	Hasil Analisis Lendutan pada Kabel	93
4	4.2.3	Hasil Ar	nalisis Deformasi Arah X dan Atah Y	94
		4.2.3.1	Deformasi Akibat Beban Gempa	95
		4.2.3.2	Deformasi Akibat Beban Angin	96
۷	4.2.4	Hasil Ar	nalisis Besarnya Gaya Geser (V2)	97
۷	4.2.5	Hasil Ar	nalisis Gaya Aksial Kabel Utama dan Kabel	
		Backsta	ys	98
		4.2.5.1	Kabel Utama	98
		4.2.5.2	Kabel Backstays	99
۷	4.2.6	Hasil Ar	nalisis Besarnya Momen (M3)	100
∠	4.2.7	Teganga	n Pada Menara	102
BAB 5 KES	IMPU	JLAN DA	AN SARAN	103
5.1	Kesin	npulan		103
5.2	Saran			103
DAFTAR PI	USTA	KA		104
LAMPIRAN	1			
DAFTAR R	IWAY	YAT HID	NT IP	

DAFTAR TABEL

Tabel 2.1: Konstruksi dan penampang tali kawat baja	17
Tabel 2.2: Mutu beton dan pedoman proporsi takaran campuran	23
Tabel 2.3 : Sifat mekanis baja struktural	24
Tabel 2.4 : Klasifikasi berdasarkan kuat tarik kawat	25
Tabel 2.5: Beban patah minimum konstruksi 6 x Fi(29) IWRC, 6 x W(31)	
IWRC, 6 x WS(36) IWRC dan 6 x WS(41) IWRC	25
Tabel 2.6: Toleransi diameter kawat baja	26
Tabel 2.7 : Toleransi diameter tali kawat baja	27
Tabel 2.8 : Jumlah puntiran minimumkawat baja	27
Tabel 2.9: Berat lapisan seng minimum kawat baja penyusun	27
Tabel 2.10: Berat isi untuk beban mati.	32
Tabel 2.11: Beban hidup yang dipikul dan lendutan izin jembatan gantung	
pejalan kaki.	33
Tabel 2.12: Nilai V_0 dan Z_0 untuk berbagai variasi kondisi permukaan hulu.	35
Tabel 2.13: Tekanan angin dasar.	35
Tabel 2.14: Faktor amplifikasi untuk periode 0 detik dan 0,2 detik (F _{PGA} /F _a)	41
Tabel 2.15: Faktor amplifikasi untuk periode 0 detik dan 0,2 detik (F _{PGA} /F _a)	41
Tabel 2.16: Zona Gempa	44
Tabel 2.17: Faktor modifikasi repons (R) untuk hubungan antar elemen	
struktur	44
Tabel 2.18: Faktor modifikasi repons (R) untuk bangunan bawah	45
Tabel 3.1 : Data penampang yang digunakan untuk jembatan	67
Tabel 3.2: Dimensi sandaran profil UPN 65	69
Tabel 3.3: Penampang yang diterpa angin	71
Tabel 3.4: Penampang yang diterpa angin	72
Tabel 4.1 : Tegangan maksimum (σ_{maks}) pada kabel utama akibat beban mati	
dan beban hidup	87
Tabel 4.2: Tegangan maksimum (σ_{maks}) pada kabel utama akibat kombinasi	
pembebanan	87

Tabel 4.3 : Tegangan maksumum (σ_{maks}) pada <i>backstays</i> akibat beban mati	
dan beban hidup	89
Tabel 4.4 : Tegangan maksumum (σ_{maks}) pada $\textit{backstays}$ akibat kombinasi	
pembebanan	89
Tabel 4.5: Hasil analisis nilai lendutan maksimum ¼ bentang pada gelagar	
jembatan gantung akibat pembebanan	91
Tabel 4.6: Hasil analisis nilai lendutan ¼ bentang pada gelagar jembatan	
gantung akibat kombinasi pembebanan	91
Tabel 4.7 : Hasil analisis nilai lendutan ¼ bentang pada kabel jembatan	
gantung akibat pembebanan	93
Tabel 4.8 : Hasil analisis nilai lendutan ¼ bentang pada kabel jembatan	
gantung akibat kombinasi pembebanan	93
Tabel 4.9: Hasil analisis nilai deformasi pada gelagar arah x dan y	95
Tabel 4.10: Hasil analisis nilai deformasi pada menara arah x dan y	95
Tabel 4.11: Hasil analisis nilai deformasi maksimum arah x dan y akibat	
beban angin	96
Tabel 4.12: Hasil analisis Gaya geser (V2 _{maks})	97
Tabel 4.13: Gaya aksial maksimum pada kabel utama akibat beban mati	
dan beban hidup	98
Tabel 4.14: Gaya aksial maksimum pada kabel utama akibat kombinasi	99
Tabel 4.15: Gaya aksial pada <i>backstays</i> akibat beban mati dan beban hidup	99
Tabel 4.16: Gaya aksial pada backstays akibat kombinasi pembebanan	99
Tabel 4.17: Hasil analisis Momen maksimum (M3 _{maks})	100

DAFTAR GAMBAR

Gambar 2.1:	Bentuk umum jembatan gantung (a) side span free, (b) side	
	span suspended	5
Gambar 2.2:	Tipe jembatan gantung dengan pengaku (a) tipe stiffening	
	truss, (b) tipe braced chain	7
Gambar 2.3:	Komponen struktur atas jembatan gantung	8
Gambar 2.4:	Tipe menara	9
Gambar 2.5:	Penampang kolom komposit	10
Gambar 2.6:	Kurva catenary versus parabolik (a) beban terdistribusi	
	merata disepanjang kabel. (b) beban terdistribusi merata	
	pada proyeksi horizontal, (c) perbedaan curva cartenary	
	versus parabolik	11
Gambar 2.7:	Bentuk funikular tipikal untuk beban terpusat dan distribusi	
	merata (a) beban terpusat: kumpulan bentuk funikular untuk	
	beban tipikal, (b) kumpulan beban terdistribusi secara	
	horizontal dan bentuk struktur funikular	12
Gambar 2.8:	Distribusi gaya pelengkung dan kabel (a) gara-gaya	
	pelengkung hanya gaya tekan yang timbul pada pelengkung	
	ideal dan gaya maksimum terjadi reaksi, (b) gaya-gaya kabel	
	hanya gaya tarik yang timbul pada kabel dan gaya maksimum	
	terjadi pada reaksi	13
Gambar 2.9:	Kabel sebagai poligon funikular	14
Gambar 2.10:	Penampang melintang kabel	16
Gambar 2.11:	Penampang melintang jembatan pejalan kaki untuk berbagai	
	pengguna	19
Gambar 2.12:	Lantai (deck) beton bertulang dan pelat baja ortotropik.	20
Gambar 2.13:	Tipe dari stiffening girder (a) i-girder, (b) truss girder,	
	(c) box girder	20
Gambar 2.14:	Tipe pengangkuran (a) blok angkur tipe tunnel, (b) blok	
	angkur tipe gravity	22

Gambar 2.15:	Peta percepatan puncak di batuan dasar (PGA) untuk	
	probabilitas terlampaui 7% dalam 75 tahun	38
Gambar 2.16:	Peta respons spektra percepatan 0,2 detik di batuan dasar	
	untuk probabilitas terlampaui 7% dalam 75 tahun	39
Gambar 2.17:	Peta respons spektra percepatan 1 detik di batuan dasar untuk	
	probabilitas terlampaui 7% dalam 75 tahun	40
Gambar 2.18:	Bentuk tipikal respons spektra di permukaan tanah	42
Gambar 2.19:	(a) tampak atas pembebanan melintang dan (b) tampak	
	memanjang pembebanan longitudinal.	46
Gambar 2.20:	Jembatan gantung dengan truss kaku	47
Gambar 2.21:	Pembebanan simetris	50
Gambar 3.1:	Bagan alir perencanaan jembatan gantung (suspension bridge)	53
Gambar 3.2:	Peta lokasi perencanaan pembangunan jembatan gantung	54
Gambar 3.3:	Titik perencanaan jembatan gantung (suspension bridge)	54
Gambar 3.4:	Dimensi dan spesifikasi perencanaan jembatan gantung	
	(suspension bridge)	56
Gambar 3.5:	3D jembatan gantung	57
Gambar 3.6:	Tampak samping jembatan gantung	57
Gambar 3.7:	Tampak atas jembatan gantung	58
Gambar 3.8:	Tampak depan jembatan gantung	58
Gambar 3.9:	Detail pipa baja diameter 660 mm	58
Gambar 3.10:	Detail pipa baja komposit beton	59
Gambar 3.11:	Penambahan inersia momen beton pada penampang menara	60
Gambar 3.12:	<i>Input</i> beban hidup simetris	61
Gambar 3.13:	<i>Input</i> beban hidup asimetris	61
Gambar 3.14:	(a) perencanaan sandaran dan (b) detail penampang sandaran	68
Gambar 3.15:	Baja ringan UPN 65	68
Gambar 3.16:	Nilai p1, p2 dan p3	70
Gambar 3.17:	Input beban mati tambahan	70
Gambar 3.18:	Input beban angin kanan arah y	73
Gambar 3.19:	Perilaku beban gempa	74

Gambar 3.20:	Peta percepatan puncak di batuan dasar (PGA) untuk	
	probabilitas terlampaui 7% dalam 75 tahun	75
Gambar 3.21:	Peta respons spektra percepatan 0,2 detik di batuan dasar	
	untuk probabilitas terlampaui 7% dalam 75 tahun	75
Gambar 3.22:	Peta respons spektra percepatan 1 detik di batuan dasar	
	untuk probabilitas terlampaui 7% dalam 75 tahun	75
Gambar 3.23:	<i>Input</i> beban gempa kanan arah y	79
Gambar 3.24:	Pemodelan jembatan gantung (susspension bridge) bentang	
	100 menggunakan software	79
Gambar 3.25:	Pengaplikasian ke software	80
Gambar 3.26:	Edit grid data bentang struktur	80
Gambar 3.27:	Identifikasi materials mutu baja BJ 55	81
Gambar 3.28:	Penampang baja (steel) menara diameter 406,64 m	81
Gambar 3.29:	Penampang kabel utama straind rope 6 x Fi(29) IWRC	82
Gambar 3.30:	Perencanaan pelat lantai	82
Gambar 3.31:	Penggambaran kabel utama dan ikatan angin	83
Gambar 3.32:	Mengidentifikasi define load petterns	83
Gambar 3.33:	Kombinasi pembebanan jembatan gantung	84
Gambar 3.34:	Memasukkan nilai beban hidup	85
Gambar 4.1:	(a) Hasil tegangan aksial model 1 akibat kombinasi 2,	
	(b) Hasil tegangan aksial model 2 akibat kombinasi 2	86
Gambar 4.2:	Tegangan maksimum kabel utama (a) model 1, (b) model 2	88
Gambar 4.3:	Tegangan maksimum kabel <i>backstays</i> (a) model 1, (b) model 2	90
Gambar 4.4:	Grafik perbandingan nilai lendutan (Δ) pada gelagar $\frac{1}{4}$	
	bentang model 1 dengan model 2	92
Gambar 4.5:	Grafik perbandingan nilai lendutan (Δ) pada kabel $\frac{1}{4}$	
	bentang model 1 dengan model 2	94
Gambar 4.6:	Gaya geser maksimum (v2 _{maks})	98

DAFTAR NOTASI

V_{DZ} = Kecepatan angin recana pada elevasi rencana, Z (km/jam).

V₁₀ = Kecepatan angin pada elevasi 10000 mm di atas permukaan tanah atau di atas permukaan air rencana (km/jam).

V_B = Kecepatan angin rencana yaitu 90 – 126 km/jam pada elevasi 1000 mm, yang akan menghasikan tekanan.

Z = Elevasi struktur yang diukur dari permukaan tanah atau dari permukaan air dimana beban dihitung (Z > 10000 mm).

V₀ = Kecepatan gesekan angin, yang merupakan karakteristik metereologi, untuk berbagai macam tipe permukaan di hulu jembatan (km/jam).

Z₀ = Panjang gesekan di hulu jembatan, yang merupakan karakteristik meteorologi, ditentukan (mm).

P_B = Tekanan angin dasar seperti yang dientukan (MPa).

DL = Beban mati yang bekerja(kN).

 $_{\gamma EO}$ = Faktor beban hidup kondisi gempa.

LL = Beban hidup yang bekerja (kN).

 EQ_x = Beban gempa yang bekerja pada arah x.

 EQ_v = Beban gempa yang bekerja pada arah y.

 $g = Gravitasi (m/detik^2).$

L = Panjang total jembatan (m).

 P_0 = Beban merata sama dengan 1 (kN/mm).

 $V_{S \text{ maks}} = \text{Nilai deformasi maksimum akibat } P_0$ (m).

w(x) = Beban mati tidak terfaktor pada bangunan atas (kN/mm).

 M_{maks} = Momen maksimum gelagar pengaku (kNm).

 C_{sm} = Respons elastik.

R = Modifikasi respons.

 $S_s = Batuan dasar.$

 S_1 = Batuan dasar.

T = Periode.

 F_{PGA} = Periode nol detik.

 F_a = Periode pendek.

 F_v = Periode 1 detik.

 A_S = Koefisien percepatan puncak muka tanah (g).

 F_v = Tegangan leleh baja (MPa).

 $F_u = Kuat tarik baja (MPa).$

I = Momen inersia.

 S_{D1} = Spektra permukaan tanah pada periode 1,0 detik.

 S_{DS} = Spektra permukaan tanah pada periode pendek.

E = Modus elastisitas (Mpa).

G = Modulus geser (Mpa).

t_w = Ketebalan pelat badan profil pelat baja (mm).

t = Ketebalan.

H = Tinggi (mm).

 $t_{\rm f}$ = Ketebalan pelat baja pada serat atas (mm).

 δ = Deformasi (m).

 Δ = Lendutan (m)

g = Gaya gravitasi (9.8 m/s^2) .

K = Konstanta kekakuan (tf/m).

W = Berat bangunan bawah jembatan dan bagian bangunan atas (tf).

 $\eta_{\rm I}$ = Faktor pengubah respon berkaitan dengan klasifikasi operasional.

 η_D = Faktor pengubah respon berkaitan dengan daktilitas.

 η_R = Faktor pengubah respon berkaitan dengan redundansi.

M3 = Momen (kNm).

V2 = Gaya geser.

DAFTAR SINGKATAN

AISC = American Institue of Steel Construction

IWRC = Independent Wire Strand Core

PGA = Peak Ground Acceleration

RSNI = Revisi Standar Nasional Indonesia

SNI = Standar Nasional Indonesia

BAB 1

PENDAHULUAN

1.1 Latar Belakang Masalah

Jembatan adalah suatu struktur yang berfungsi sebagai lintasan untuk memperpendek jarak dengan menyebrangi suatu rintangan tanpa menutup rintangan itu sendiri. Lintasan yang dimaksud disini adalah berupa suatu jalan raya/jalan rel, pejalan kaki, kanal atau pipa-pipa penyalur. Rintangan yang dimaksud adalah dapat berupa sungai, jalan raya atau lembah.

Pada saat ini jembatan terus mengalami perkembangan, baik dari bentuk yang sederhana sampai yang paling kompleks, contohnya yaitu jembatan gantung. Jembatan gantung sangat dibutuhkan bagi masyarakat khususnya di suatu pedesaan terpencil yang terpisahkan oleh sungai guna untuk memperlancar akses tranportasi dan ekonomi dari suatu desa ke desa lain.

Jembatan gantung sederhana untuk pejalan kaki memiliki keunggulan nilai estetika, lebih ekonomis serta kemudaan dalam pelaksanaannya. Keamanan dalam merancang struktur jembatan pejalan kaki menjadi faktor utama yang harus diperhatikan. Beban vertikal, beban samping dan beban hidup yang direncanakan harus diperhitungkan dalam perancangan jembatan agar memiliki kestabilan dan ketahanan dalam menopang beban-beban tersebut. Begitupula material yang dipergunakan harus sesuai dengan yang dibutuhkan. Keselamatan dan keamanan pengguna jembatan menjadi hal penting yang harus diutamakan.

Dalam mendesain struktur jembatan, struktur yang sering digunakan adalah struktur baja, struktur baja komposit beton, struktur beton bertulang dan struktur beton prategang. Keunggulan dari struktur jembatan gantung rangka baja adalah memiliki kekuatan yang tinggi, proses konstruksi lebih cepat dan mudah, dari segi kekuatan bahan baja lebih murah dibandingkan dari beton sebab dengan kekuatannya memerlukan volume bahan yang lebih sedikit. Sedangkan keunggulan dari jembatan gantung struktur baja komposit beton adalah profil baja dapat dihemat dan kekuatannya semakin tinggi karena pengaruh komposit.

Dari keunggulan material yang ada dalam konstruksi jembatan gantung, maka penulis akan mengulas dan membandingkan perencanaan jembatan gantung (suspension bridge) menggunakan menara baja dengan komposit tipe I yang digunakan untuk pejalan kaki dan dapat digunakan untuk kendaraan ringan.

1.2 Rumusan Masalah

Berdasarkan latar belakang tersebut, rumusan masalah dapat diuraikan sebagai berikut:

- 1. Bagaimana pengaruh jenis material yang digunakan dalam jembatan gantung rangka baja memakai menara baja dan komposit?
- 2. Berapa nilai perbandingan deformasi yang terjadi pada struktur jembatan gantung rangka baja memakai menara baja dan komposit untuk pejalan kaki?
- 3. Berapa nilai perbandingan lendutan yang terjadi pada lantai (*deck*) yang jembatan gantung rangka baja memakai menara baja dan komposit untuk pejalan kaki?
- 4. Berapa nilai perbandingan tegangan pada kabel yang ditimbulkan oleh struktur jembatan gantung rangka baja memakai menara baja dan komposit untuk pejalan kaki?

1.3 Ruang Lingkup Penelitian

Penelitian dilakukan dengan ruang lingkup sebagai berikut:

- 1. Tinjauan struktur jembatan mencakup bangunan atas jembatan.
- 2. Panjang bentang jembatan gantung yang direncanakan sebesar 100 m.
- 3. Jembatan yang dipergunakan adalah jembatan gantung khusus pejalan kaki kelas I dengan lebar lantai jembatan 1,8 m sehingga dapat dipergunakan untuk kendaraan ringan.
- 4. Perencanaan struktur jembatan dilakukan dengan 2 model yaitu : pertama, jembatan rangka baja memakai menara baja. Kedua, jembatan rangka baja memakai menara komposit.
- 5. Perbandingan hanya dilakukan dari segi menara saja.

- 6. Tidak memperhitungkan sambungan.
- Surat Edaran Menteri Pekerjaan Umum No.02/SE/M/2010 tentang Pemberlakuan pedoman perencanaan jembatan gantung untuk pejalan kaki
- 8. SNI 1725:2016 tentang pembebanan untuk jembatan.
- 9. SNI 2833-2013 tentang perancangan jembatan terhadap beban gempa.
- 10. SNI 03-1729-2002 tentang tata cara perencanaan struktur baja untuk bangunan gedung.
- 11. SNI 03-1974 tentang metode pengujian kuat tekan beton.
- 12. SNI 1727:2013 tentang beban minimum untuk perancangan bangunan gedung dan struktur lain.
- 13. SNI 0076:2008 tentang tali kawat baja.
- 14. Analisis struktur dilakukan dengan menggunakan analisis software.

1.4 Tujuan Penelitian

Penelitian ini memiliki tujuan sebagai berikut:

- 1. Untuk membandingkan pengaruh jenis material yang digunakan dalam jembatan gantung rangka baja memakai menara baja dan komposit.
- 2. Untuk mengetahui perbandingan besarnya deformasi yang terjadi pada struktur jembatan gantung rangka baja memakai menara baja dan komposit untuk pejalan kaki.
- 3. Untuk mengetahui perbandingan besarnya lendutan yang terjadi pada lantai (*deck*) yang jembatan gantung rangka baja memakai menara baja dan komposit untuk pejalan kaki.
- 4. Untuk mengetahui besarnya perbandingan tegangan pada kabel yang ditimbulkan oleh struktur jembatan gantung rangka baja memakai menara baja dan komposit untuk pejalan kaki.

1.5 Manfaat Penelitian

Manfaat dari penelitian ini adalah mengaplikasikan ilmu pengetahuan di bidang Teknik Sipil dan Lingkungan. Hasil dari penelitian ini dapat digunakan sebagai referensi dalam pembangunan jembatan gantung di daerah pedesaan terpencil.

1.6 Sistematika Penulisan

Tugas akhir ini terdiri dari lima bab yang direncanakan dan diharapkan dapat menjelaskan perihal topik bahasan, yaitu :

BAB 1 PENDAHULUAN

Bab ini menguraikan latar belakang permasalahan, identifikasi dan rumusan permasalahan, ruang lingkup pembahasan, tujuan dilakukannya penelitian dan manfaat penelitian.

BAB 2 TINJAUAN PUSTAKA

Bab ini menguraikan teori-teori tentang jembatan, metode analisa yang akan digunakan serta ketentuan dalam desain yang harus dipenuhi sesuai syarat.

BAB 3 METODE PENELITIAN DAN PEMODELAN

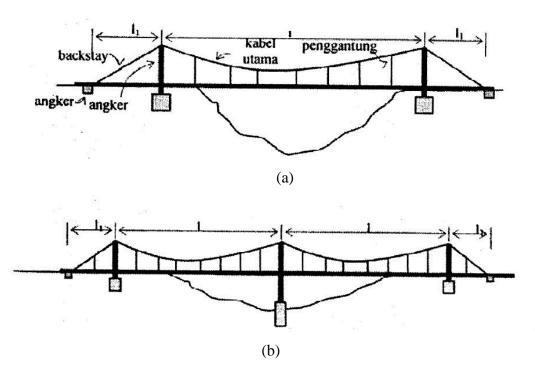
Bab ini menjelaskan rencana atau prosedur yang dilakukan penulis memperoleh jawaban yang sesuai dengan kasus permasalahan.

BAB 4 HASIL DAN PEMBAHASAN

Bab ini menguraikan hasil pembahasan analisis desain dan kinerja struktur.

BAB 5 KESIMPULAN DAN SARAN

Bab ini berisi kesimpulan sesuai dengan analisis terhadap studi literatur dan berisi saran untuk pengembangan lebih lanjut yang baik di masa yang akan datang.


BAB 2

TINJAUAN PUSTAKA

2.1 Jembatan Gantung

Jembatan gantung (Suspension Bridge) adalah jenis jembatan yang menggunakan tumpuan ketegangan kabel daripada tumpuan samping. Sebuah jembatan gantung biasanya memiliki kabel utama (kabel baja atau rantai yang lain) berlabuh disetiap ujung jembatan berfungsi mendukung lalu lintas (deck jembatan).

Selain bentang utama, biasanya jembatan gantung mempunyai bentang luar (*side span*) yang berfungsi untuk mengikat/mengangkerkan kabel utama pada blok angker. Walaupun pada kondisi tertentu terdapat keadaan dimana kabel utama dapat langsung diangkerkan pada ujung jembatan dan tidak memungkinkan adanya bentang luar, bahkan kadangkala tidak membutuhkan dibangunnya pilar. Untuk kejelasannya lihat Gambar 2.1.

Gambar 2.1: Bentuk umum jembatan gantung (a) *side span free*, (b) *side span suspended*.

2.1.1 Bentuk Bentang Luar Bebas (Side Span Free)

Pada bentang luar, kabel utama tidak menahan/dihubungkan dengan lantai jembatan oleh *hanger*, jadi tidak terdapat *hanger* pada bentang luar. Disebut juga dengan tipe *straight backstays* atau kabel utama pada bentang luar berbentuk lurus.

2.1.2 Bentuk Bentang Luar digantungi (Side Span Suspended)

Pada bentuk ini kabel utama pada bentang luar menahan struktur lantai jembatan dengan dihubungkan oleh *hanger*.

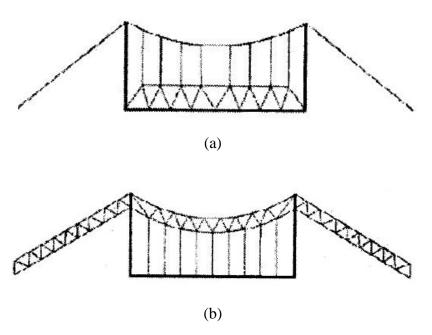
Steinman (1953), membedakan jembatan gantung menjadi 2 jenis yaitu:

2.1.2.1 Jembatan Gantung Tanpa Pengaku

Jembatan gantung tanpa pengaku adalah tipe jembatan gantung dimana seluruh beban sendiri dan lalu lintas didukung penuh oleh kabel. Hal ini dikarenakan tidak terdapatnya elemen struktur kaku pada jembatan. Dalam hal ini bagian lurus yang berfungsi untuk mendukung lantai lalu lintas berupa struktur sederhana, yaitu berupa balok kayu biasa atau bahkan mungkin terbuat dari bambu. Dalam perhitungan struktur secara keseluruhan, struktur pendukung lantai lalu lintas ini kekakuannya (EI) dapat diabaikan, sehingga seluruh beban mati dan beban lalu lintas akan didukung secara penuh oleh kabel baja melalui *hanger*.

2.1.2.2 Jembatan Gantung Dengan Pengaku

Jembatan gantung dengan pengaku adalah tipe jembatan gantung dimana pada salah satu bagian strukturnya mempunyai bagian yang lurus yang berfungsi untuk mendukung lantai lalu lintas. *Deck* pada jembatan gantung jenis ini biasanya berupa struktur rangka yang mempunyai kekakuan (EI) tertentu. Dalam perhitungan struktur secara keseluruhan, beban dari lantai jembatan didukung secara bersama-sama oleh kabel dan gelagar pengaku berdasarkan prinsip kompabilitas lendutan (kerjasama antara kabel dan *deck* dalam mendukung lendutan).


Jembatan Gantung dengan pengaku mempunyai dua dasar bentuk umum, yaitu:

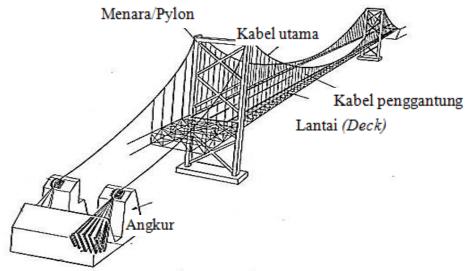
1) Tipe rangka batang kaku (*stiffening truss*)

Pada tipe ini jembatan mempunyai bagian yang kaku atau diperkaku yaitu pada bagian lurus pendukung lantai jembatan (*deck*) yang dengan *hanger* dihubungkan pada kabel utama. Untuk kejelasannya lihat pada Gambar 2.2 (a).

2) Tipe rantai kaku (*braced chain*)

Pada tipe ini bagian yang kaku atau diperkaku adalah bagian yang berfungsi sebagi kabel utama yang dapat dilihat pada Gambar 2.2 (b).

Gambar 2.2: Tipe jembatan gantung dengan pengaku (a) tipe *stiffening truss*, (b) tipe *braced chain*.

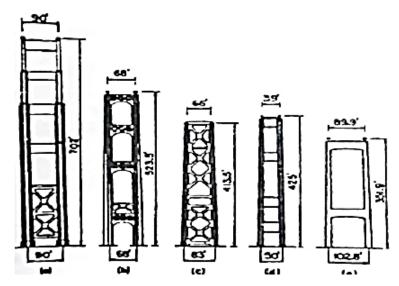

Bangunan atas jembatan yang berfungsi sebagai pemikul langsung beban lalu lintas yang melewati jembatan tersebut, terdiri dari lantai jembatan, gelagar pengaku, batang penggantung, kabel pemikul dan pagar pengaman. Seluruh beban lalu lintas dan gaya-gaya yang bekerja dipikul oleh sepasang kabel pemikul yang menumpu di atas 2 pasang menara dan 2 pasang blok angkur (Surat Edaran Menteri PU, 2010).

Jembatan gantung pada mulanya memiliki kabel berabuh di tanah pada kedua ujung jembatan, tetapi beberapa jembatan gantung yang modern, jangkar kabel ke ujung jembatan itu sendiri. Jembatan gantung awalnya tidak memiliki menara. Seperti halnya jembatan gantung tertua dan terbesar pada abad ke – 18 adalah jembatan *Menai Straits* di Inggris yang di bangun pada tahun 1825 yang masih menggunakan menara batu dan kabel dari rantai besi untuk menggantung jalan raya.

Sampai saat ini jembatan gantung terus mengalami kemajuan. Jembatan gantung terpanjang di dunia saat ini adalah jembatan *Europabruecke* di Swiss yang diresmikan pada 29 Juli 2017 dengan panjang 494 meter pada ketinggian 91,4 meter dari permukaan tanah khusus bagi pejalan kaki.

2.2 Struktur Atas Jembatan Gantung

Komponen atau bagian-bagian atas struktur jembatan gantung meliputi menara (*pylon/tower*), kabel penggantung (*suspension cable/hanger*), kabel utama (*main cable*), kabel ikatan angin, lantai (*deck*) jembatan, gelagar melintang, gelagar memanjang dan pagar pengaman yang dapat dilihat pada Gambar 2.3.


Gambar 2.3: Komponen struktur atas jembatan gantung (Harazaki dkk, 2000).

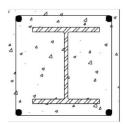
2.2.1 Menara (Pylon/Tower)

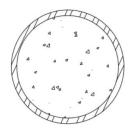
Menara pada sistem jembatan gantung akan menjadi tumpuan kabel utama. Beban yang dipikul oleh kabel selanjutnya diteruskan ke menara yang kemudian disebarkan ke tanah melalui fondasi. Dengan demikian agar dapat menyalurkan beban baik, perlu diketahui pula bentuk atau macam menara yang akan digunakan.

Bentuk menara dapat berupa portal, *multistory*, atau *braced frame* sebagaimana yang ditunjukkan pada Gambar 2.4. Konstruksi menara tersebut juga dapat berupa konstruksi *cellular*, yang terbuat dari pelat baja lembaran, baja berongga atau beton bertulang.

Tumpuan menara baja biasanya dapat diasumsikan jepit atau sendi. Sedangkan tumpuan kabel di bagian atas menara, sering digunakan tumpuan rol untuk mengurangi pengaruh ketidakseimbangan menara akibat lendutan kabel.

Gambar 2.4: Tipe menara (Trotsky, 1994).


Untuk menara jembatan gantung dapat berupa struktur baja dan dapat juga berupa struktur baja komposit beton.


2.2.1.1 Kolom Komposit

Kolom komposit didefinisikan sebagai kolom baja yang dibuat dari potongan baja giling (*rolled*) *built-up* dan di cor di dalam beton struktural yang mengacu pada peraturan SNI 03-1729-2002.

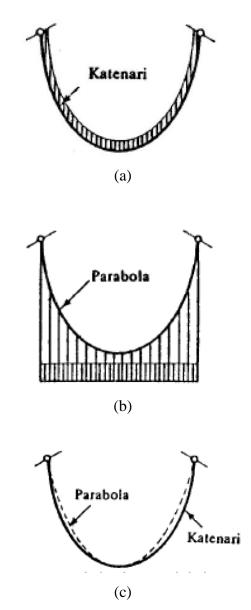
Ada dua tipe kolom komposit yang dapat dilihat pada Gambar 2.5, yaitu:

- 1. Kolom komposit yang terbuat dari profil baja yang diberi selubung beton dan disekelilingnya (kolom baja berselubung beton).
- 2. Kolom komposit terbuat dari penampang baja berongga (kolom baja berintikan beton).

Gambar 2.5: Penampang kolom komposit.

Kriteria untuk kolom komposit bagi komponen struktur tekan:

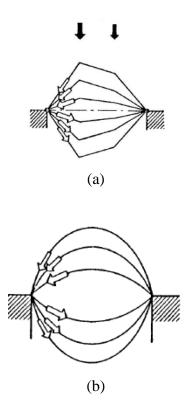
Luas penampang profil baja minimal 4% dari luas penampang komposit total.


- 1. Selubung beton untuk penampang komposit yang berintikan baja harus diberi tulangan baja *longitudinal* dan tulangan pengekang lateral.
- 2. Tulangan baja *longitudinal* harus menerus pada lantai struktur portal, kecuali untuk tulangan *longitudinal* yang hanya berfungsi memberi kekangan pada beton.
- 3. Jarak antar pengikat lateral tidak boleh melebihi 2/3 dari dimensi terkecil penampang kolom komposit. Luas minium penampang tulangan *transversal (longitudinal)* terpasang. Tebal bersih selimut beton daari tepi terluar tulangan *longitudinal* dan *transversal* minimal sebesar 40 mm.
- 4. Tegangan leleh profil dan tulangan baja yang digunakan untuk perhitungan kekuatan kolom komposit tidak boleh lebih dari 380 MPa.

2.3 Struktur Pelengkung Kabel

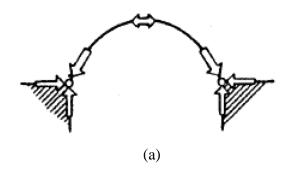
2.3.1 Bentuk Funikular

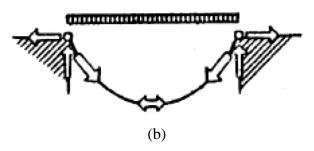
Hal penting yang mendasar dalam mempelajari pelengkung dan kabel ialah pengetahuan mengenai kurva atau kumpulan segmen elemen-garis-lurus yang membentuk *funicular* untuk pembebanan yang diberikan. Secara alami bentuk


funicular akan diperoleh apabila kabel yang bebas berubah bentuk kita bebani. Kabel yang berpenampang melintang konstan dan hanya memikul berat sendirinya dan mempunyai bentuk *catenary*. Untuk kejelasannya dapat dilihat pada Gambar 2.6.

Gamabr 2.6: Kurva *catenary* versus parabolik (a) beban terdistribusi merata disepanjang kabel, (b) beban terdistribusi merata pada proyeksi horizontal, (c) perbedaan *curva cartenary* versus parabolik.

Kabel yang memikul vertikal yang terdistribusi secara horizontal disepanjang kabel, seperti utama pada jembatan gantung yang memikul *deck* horizantal, akan


memepengaruhi bentuk parabola. Kabel yang memikul beban terpusat (dengan mengabaikan sendirinya) akan mempunyai bentuk kombinasi dimana beban terbesar akan memberikan bentuk yang dominan. Apabila tinggi struktur funikular berkurang, maka gaya dalam akan bertambah, begitupula sebaliknya. Bentuk pelengkung untuk beban yang merupakan kebalikan sederhana dan bentuk yang telah disebutkan di atas dapat dilihat pada Gambar 2.7.



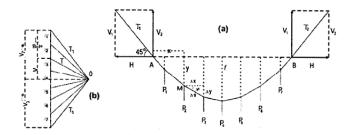
Gambar 2.7: Bentuk funikular tipikal untuk beban terpusat dan distribusi merata (a) beban terpusat: kumpulan bentuk funikular untuk beban tipikal, (b) kumpulan beban terdistribusi secara horizontal dan bentuk struktur funikular.

Seperti terlihat pada Gambar 2.7, ada kelompok bentuk funikular untuk beban-beban tertentu padanannya karena hanya bentuklah yang merupakan respons furnikular, bukan nilai absolutnya.

Besar gaya yang timbul pada pelengkung ataupun kabel bergantung pada tinggi relatif bentuk funikular dibandingkan dengan panjangnya. Selain itu, besarnya juga tergantung pada lokasi dan besarnya beban yang bekerja seperti yang terlihat pada Gambar 2.8. Semakin tinggi pelengkung atau kabel, berarti semakin kecil gaya yang akan timbul pada struktur, begitu pula sebaliknya. Gaya reaksi yang timbul pada ujung-ujung pelengkung atau kabel juga bergantung pada parameter-parameter tersebut. Reaksi ujung mempunyai komponen vertikal dan horizontal yang harus di tahan oleh pondasi atau oleh elemen struktural lainnya, misalnya batang tarik.

Gambar 2.8: Distribusi gaya pelengkung dan kabel (a) gaya-gaya pelengkung hanya gaya tekan yang timbul pada pelengkung ideal dan gaya maksimum terjadi reaksi, (b) gaya-gaya kabel hanya gaya tarik yang timbul pada kabel dan gaya maksimum terjadi pada reaksi.

Jika beban vertikal dikenakan pada kabel gantung yang diikatkan pada dua tumpuan, maka akan memberikan bentuk segi banyak terbatas yang ditentukan oleh hubungan antar beban seperti tampak pada Gambar 2.9.


Reaksi tumpuan (T₁ dan T₂) akan miring membentuk sudut sehingga akan menimbulkan reaksi arah horizontal/komponen horizontal ke H. H disebut juga sederhana, yang dijabarkan sehingga menghasilkan Pers. 2.3.

$$M = M' - H.y \tag{2.1}$$

Dengan M' adalah momen lentur pada berbagai titik batang akibat dari beban vertikal dan reaksi, Momen pada Pers. 2.1 harus berharga nol, karena kabel diasumsikan fleksibel. Maka:

$$M' = H.y \tag{2.2}$$

Pers 2.2 memberikan ordinat kelengkungan kabel untuk setiap pemebebanan, jika gaya horizontal H diketahui.

Gambar 2.9: Kabel sebagai poligon funikular.

Jika f adalah kedalaman lengkungan/simpangan kabel (sag) atau ordinat dari titik terendah adalah C dan M_c adalah momen lentur balok sederhana pada titik C, maka H didapat Pers. 2.3.

$$H = \frac{M_c}{f} \tag{2.3}$$

Besarnya tegangan pada kabel T dapat dilihat pada Pers. 2.4.

$$T = \frac{\Delta_{S}}{\Delta_{X}} = H. \operatorname{Sec} \phi \tag{2.4}$$

Dengan ϕ adalah sudut kabel terhadap horizontal pada setiap titik. Dimana tegangan T berturut-turut dari setiap anggota poligon meningkat ke arah tumpuan dan mencapai maksimum pada ujung kabel (tumpuan). Komponen vertikal V dapat diperoleh dari Pers. 2.5 dan Pers. 2.6.

$$V = V1 - \sum_{0}^{00} P \tag{2.5}$$

$$V = H \frac{\Delta_y}{\Delta_x} = H. \tan \phi$$
 (2.6)

Persamaan diferensial untuk kurva kabel dapat dilihat pada Pers. 2.7.

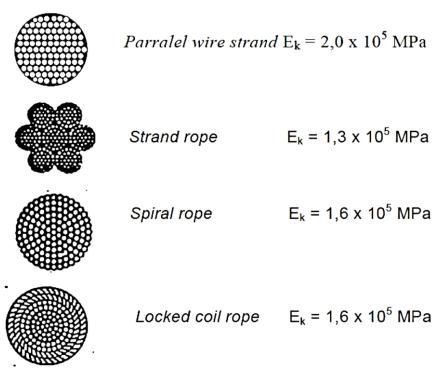
$$\frac{d^2y}{d_x^2} = \frac{W}{H} \tag{2.7}$$

2.3.2 Sag Kabel atau Tinggi Pelengkung

Salah satu dari variabel-variabel desain yang penting pada pelengkung dan kabel adalah tinggi maksimum struktur.

Penentuan sag pada kabel atau tinggi pada pelengkung merupakan masalah optomasi. Apabila h_{maks} bertambah, gaya pada kabel berkurang sehingga luas penampang yang diperlukan juga berkurang. Akan tetapi, panjang kabel secara simultan bertambah.

Jelas bahwa kabel yang panjangnya tak terhingga memerlukan volume tak hingga juga. Sebaliknya apabila h_{maks} berkurang, gaya kabel dan luas penampang melintang bertambah sedangkan panjangnya berkurang. Dengan demikian, ada nilai optimum h_{mks} . Nilai optimum ini dapat diperoleh secara mudah dengan cara menuliskan ekspresi volume kabel yang dinyatakan dalam h_{maks} , dengan menggunakan ekspresi analitik, kemudian kita minimumkan nilai ekspresi tersebut hingga kita peroleh h_{maks} yang optimum.


Secara umum, tinggi sekitar 2/3 dari bentangnya memberikan nilai volume minimum.

Untuk struktur yang dibebani terbagi rata, bagaimanapun sag kabel atau tinggi pelengkung yang tepat selalu bergantung pada berbagai konteks dimana kabel atau pelengkung tersebut digunakan.

2.3.3 Sistem Kabel

Kabel merupakan bahan atau material utama dalam struktur jembatan gantung. Struktur kabel pada jembatan gantung terdiri dari kabel utama (main cable), kabel penggantung (suspension cable/hanger) dan kabel ikatan angin. Kabel utama adalah kabel yang berfungsi sebagai pemikul bebandan gaya-gaya yang bekerja pada kabel penggantung serta melimpahkan beban dan gaya-gaya tersebut ke menara pemikul dan blok angkur. Kabel penggantung adalah kabel yang berfungsi sebagai pemikul gelagar utama serta melimpahkan beban-beban dan gaya-gaya yang bekerja ke kabel utama. Kabel ikatan angin adalah kabel yang berfungsi untuk memikul gaya angin yang bekerja pada bangunan atas jembatan gantung.

Kabel utama yang digunakan berupa untaian (*strand*), kabel dengan inti yang lunak tidak diizinkan digunakan pada jembatan gantung ini, kabel harus memiliki tegangan leleh minimal sebesar 1500 MPa. Jenis-jenis kabel utama ditunjukkan pada Gambar 2.10.

Gambar 2.10: Penampang melintang kabel (Surat Edaran Menteri Pekerjaan Umum No. 02/SE/M/2010).

Tali kawat baja dikelompokkan kedalam tali kawat baja tanpa lapisan seng dan tali kawat baja berlapis seng. Dimana tali kawat baja terdiri dari susunan jumlah pilinan kawat baja, jumlah kawat yang digunakan dari pilinan kawat baja dan inti pusat yang menjadi tumpuan pilinan kawat baja seperti yang terlihat pada Tabel 2.1.

Tabel 2.1: Konstruksi dan penampang tali kawat baja (SNI 0076:2008).

Desain / konstruksi	6 x 7 FC 6 x 7(6/1) FC	6 x 12 + 7FC	6 x 19 FC 6 x 19(12/6/1) FC	6 x 24 + 7FC 6 x 24(15/9)+7FC
Penampang melintang	88 88 88 88			
Susunan kawat	6 straind masing- masing terdiri dari 7 kawat diameter sama, core dari fiber	6 straind masing- masing terdiri dari 12 kawat diameter sama dan 1 king dari serat, core dari fiber	6 staind masing- masing terdiri dari 19 kawat diameter sama, core dari fiber	6 straind masing- masing terdiri dari 25 kawat diameter sama dan 1 king dari serat, core dari fiber
Desain / konstruksi	6 x 37 FC 6 x 37(18/12/6/1) FC	6 x 37 IWRC 6 x 37(18/12/6/1) IWRC	6 x S(19) FC 6 x 19(9/9/1) Seale FC	6 x S(19) IWRC 6 x 19(9/9/1) Seale IWRC
Penampang melintang				
Susunan kawat	6 straind masing- masing terdiri 37 kawat diameter sama, core dan fiber	6 straind masing- masing terdiri 37 kawat diameter sama, core dari IWRC	6 straind masing- masing terdiri 19 kawat diameter beda, core dari fiber	6 straind masing- masing terdiri 19 kawat diameter beda, core dari IWRC
Desain / konstruksi	6 x W(19) FC 6 x 19(6&6/6/1) Warrington FC	6 x W(19) IWRC 6 x 19(6&6/6/1) Warrington IWRC	6 x Fi(25) FC 6 x 25(12/6+6/1) Filler FC	6 x Fi(25) IWRC 6 x 25(12/6+6/1) Filler IWRC
Penampang melintang				
Susunan kawat	6 straind masing- masing terdiri 19 kawat diameter beda, core dari fiber	6 straind masing- masing terdiri 19 kawat diameter beda, core dari IWRC	6 straind masing- masing terdiri 25 kawat diameter beda, core dan fiber	6 straind masing- masing terdiri 25 kawat diameter beda, core dari IWRC

Tabel 2.1: Lanjutan.

Desain / konstruksi	6 x Fi(29) FC 6 x 29(14/7+7/1) Filler FC	6 x Fi(29) IWRC 6 x 29(14/7+7/1) Filler IWRC	6 x WS(26) FC 6 x 26(10/5&5/5/1) Filler FC	6 x WS(26) IWRC 6 x 26(10/5&5/5/1) Filler IWRC
Penampang melintang				*
Susunan kawat	6 straind masing- masing terdiri 29 kawat diameter beda, core dari fiber	6 straind masing- masing terdiri 29 kawat diameter beda, core dari IWRC	6 straind masing- masing terdiri 26 kawat diameter beda, core dari fiber	6 straind masing- masing terdiri 26 kawat diameter beda, core dari IWRC

Karakteristik kabel kaitannya dengan struktur jembatan gantung antara lain :

- 1. Memempunyai penampang yang seragam/homogen pada seluruh bentang.
- 2. Tidak dapat menahan momen dan gaya desak.
- 3. Gaya-gaya dalam yang bekerja selalu merupakan gaya tarik aksial.
- 4. Bentuk kabel tergantung pada beban yang bekerja padanya.
- 5. Bila kabel menderita beban terbagi merata, maka wujudnya akan merupakan lengkung parabola.
- 6. Pada jembatan gantung kabel menderita beberapa beban titik sepanjang beban mendatar.

Schodek (1991) menyatakan bahwa kabel bersifat fleksibel cenderung berubah bentuk drastis apabila pembebanan berubah. Dalam hal pemakaiannya kabel berfungsi sebagai batang tarik.

Pada jembatan gantung, karena perubahan beban selalu menyebabkan kabel utama mengalami perubahan bentuk, maka pada dek jembatan perlu dibuat kaku yang dimaksudkan agar permukaan lantai jembatan tetap datar dan beban yang diterima oleh kabel tetap.

2.3.4 Lantai (Deck) Jembatan

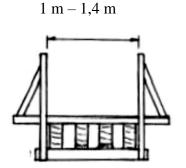
Lantai (deck) Jembatan berfungsi untuk memikul beban lalu lintas yang melewati jembatan serta menyalurkan beban dan gaya-gaya tersebut ke gelagar melintang.

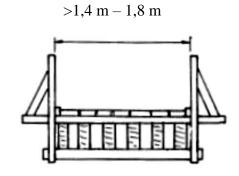
Pengguna jembatan dan tingkat lalu lintas harus diidentifikasi secara jelas karena akan menentukan lebar lantai jembatan yang diperlukan dan beban hidup jembatan yang akhirnya akan menentukan biaya konstruksi.

Dua lebar standar yang dianjurkan untuk jembatan gantung khusus pejalan kaki:

- 1. 1 meter sampai dengan 1,4 meter untuk pejalan kaki dua arah (jembatan pejalan kaki kelas II)
- 2. 1,4 meter sampai dengan 1,8 meter untuk tiga pejalan kaki yang beriringan (jembatan pejalan kaki kelas I).

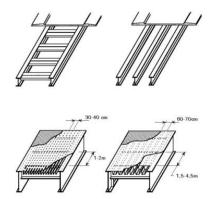
Lebar ini hanya akan memberikan akses satu arah pada beberapa tipe lalu lintas dan peringatan yang sesuai harus diletakkan setiap ujung jembatan. Untuk jembatan kelas I dianjurkan lebar lantai jembatan dibuat 1,8 meter seperti tampak pada Gambar 2.11, akses kendaraan bermotor lebih besar harus dicegah, misalnya dengan memasang tiang besi atau patok diujung jembatan.


Lebar 1 m Satu arah pejalan kaki


Lebar 1,2 m Dua arah pejalan kaki

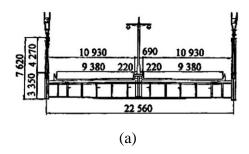
Lebar 1,4 m - 1,8 m Tiga pejalan kaki

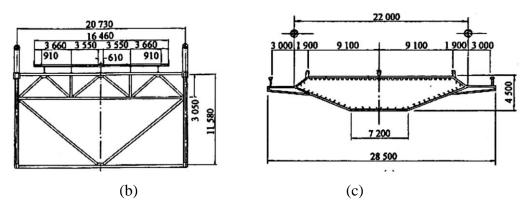
Dua arah : pejalan kaki Jembatan pejalan kaki kelas II



Tiga pejalan kaki Jembatan pejalan kaki kelas I

Gambar 2.11: Penampang melintang jembatan pejalan kaki untuk berbagai pengguna (Surat Edaran Menteri Pekerjaan Umum No. 02/SE/M/2010).


Material yang biasanya digunakan pada lantai (deck) jembatan berupa beton bertulang dengan berat yang relatif ringan, deck orthotropic, atau baja berongga yang sebagian diisi dengan beton (komposit baja-beton). Pada lantai (deck) ini pengaruh kembang-susut material baja atau beton perlu diperhatikan dengan cermat. Apabila kembang susut tidak terkontrol akan dapat menyebabkan penambahan tegangan pada struktur lantai itu sendiri, selain itu dapat pula menimbulkan kerusakan pada kontruksi lantai (deck). Untuk itu penggunaan expantion joint sebaiknya diberikan setiap 30 – 40 m untuk mencegah kerusakan lantai (deck) dan struktur utama seperti pada Gambar 2.12.


Bila menggunakan sistem lantai dengan dek yang diperkuat (*stiffening floor*), balok-balok *stringer* sebaiknya dibuat secara komposit dengan dek agar mendapatkan kekuatan dan kekakuan yang lebih besar. Sebagai balok lantai (*floor beam*) boleh digunakan *plate girder* (*box girder* dan *I-girder*) atau *truss*.

Gambar 2.12: Lantai (deck) beton bertulang dan pelat baja ortotropik.

Penggunaan *box girder* kini lebih banyak digunakan karena *truss* memerlukan pabrikasi yang besar dan perawatannya yang sulit seperti tampak pada Gambar 2.13.

Gambar 2.13: Tipe dari *stiffening girder* (a) *i-girder*, (b) *truss girder*, (c) *box girder* (Harazaki dkk, 2000).

2.3.5 Gelagar Melintang

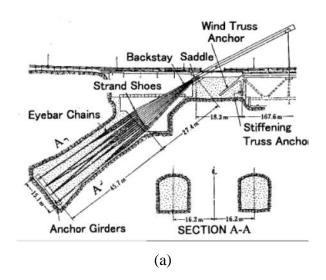
Gelagar melintang merupakan gelagar yang berfungsi sebagai pemikul lantai dan sandaran serta menyalurkan beban dan gaya-gaya tersebut ke gelagar memanjang.

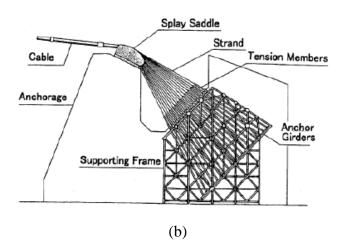
2.3.6 Gelagar Memanjang

Gelagar memanjang merupakan gelagar yang berfungsi sebagai pemikul gelagar serta menyalurkan beban dan gaya-gaya tersebut ke batang penggantung.

2.3.7 Pagar Pengaman

Pagar pengaman berfungsi untuk mengamankan pejalan kaki.


2.3.8 Pengangkuran


Pengangkuran tipe gravitasi digunakan untuk semua jenis tanah yang berfungsi sebagai penahan ujung-ujung kabel utama serta menyalurkan gaya-gaya yang dipikul ke pondasi.

Dimensi dari blok angkur harus didesain sedemikian rupa sehingga memiliki kapasitas yang lebih besar dari gaya pada kabel *backstays* (menahan minimum 20% gaya tarik kabel *backstays*).

Garis kerja gaya kabel, tekanan pasif tanah dan gaya gravitasi blok angkur harus bertemu pada satu titik tangkap agar tidak terguling. Blok angkur harus tertanam dalam tanah asli.

Blok angkur jembatan gantung berupa balok beton yang sangat besar yang menjadi angkur kabel utama dan berperan sebagai penyokong akhir sebuah jembatan. Pengangkuran jembatan dapat berupa pengangkuran *gravity* atau *tunnel*. Pengangkuran *gravity* bergantung pada massa angkur itu sendiri untuk menahan tegangan dari kabel utama. Tipe ini sering digunakan pada banyak jembatan gantung. Pengangkuran *tunnel* membawa tegangan dari kabel utama langsung ke dalam tanah. Kondisi geoteknik yang memadai dibutuhkan untuk pengangkuran tipe ini yang dapat dilihat pada Gambar 2.14.

Gambar 2.14: Tipe pengangkuran (a) blok angkur tipe *tunnel*, (b) blok angkur tipe *gravity* (Harazaki dkk, 2000).

2.4 Syarat Bahan

2.4.1 Beton

Mutu beton harus sesuai dengan SNI 03-1974 seperti tampak pada Tabel 2.2.

Tabel 2.2: Mutu beton dan pedoman proporsi takaran campuran (SNI 03-1974).

	Mut	u beton	T.11	D • • • •	Kadar semen
Jenis beton	fc' (MPa)	σ_{bk}' (kgf/cm^2)	Ukuran agregat maksimum (mm)	Rasio air/semen maksimum (terhadap berat)	minimum (kg/m³ dari campuran)
	50	600	19	0,350	450
	45	500	37 25 19	0,400 0,400 0,400	395 430 455
Mutu tinggi	38	450	37 25 19	0,425 0,425 0,425	370 405 430
	35	400	37 25 19	0,450 0,450 0,450	350 385 405
	30	350	37 25 19	0,475 0,475 0,475	335 365 385
Mutu sedang	25	300	37 25 19	0,500 0,500 0,500	315 345 365
	20	250	37 25 19	0,550 0,550 0,550	290 315 335
Mutu	15	175	37 25 19	0,600 0,600 0,600	265 290 305
rendah	10	125	37 25 19	0,700 0,700 0,700	225 245 260

2.4.2 Baja

Persyaratan bahan:

- 1. Penyimpanan bahan baja ketika pabrikasi di bengkel maupun di lapangan harus ditumpuk diatas balok pengganjal atau landasan sedemikian rupa sehingga tidak bersentuhan dengan tanah.
- 2. Pengecetan permukaan sebagai lapis pelindung harus bersih dan bebas dari lemak, debu, produk, korosi, residu, garam dan sebagainya.
- 3. Perbaikan lapis pelindung struktur baja yang akan dilapis ulang dengan lapis pelindung harus disesuaikan dengan jenis bahan dasar struktur baja yang telah diberi lapisan pelindung.

Baja yang digunakan sebagai bagian struktur baja harus mempunyai sifat mekanis baja struktural seperti dalam Tabel 2.3.

Mutu baja dan data yang berkaitan lainnya harus ditandai dengan jelas pada unit-unit yang menunjukkan identifikasi selama pabrikasi dan pemasangan.

Tabel 2.3: Sifat mekanis baja struktural.

	Tegangan putus	Tegangan leleh	Regangan
Jenis Baja	minimum, fu	minimum, fy	minimum
	(MPa)	(MPa)	(%)
BJ 34	340	210	22
BJ 37	370	240	20
BJ 41	410	250	18
BJ 50	500	290	16
BJ 55	550	410	13

Sifat-sifat mekanis baja struktural lainnya untuk maksud perencanaan ditetapkan sebagai berikut:

• Modulus elastisitas (E) : 200000 MPa

• Modulus geser (G) : 80000 MPa

• Poisson ratio (μ) : 0,3

• Koefisien pemuaian : $12 \times 10^{-6} \, ^{\circ}\text{C}$

2.4.3 Tali Kawat Baja

Tali kawat baja yang digunakan mengacu pada SNI 0076:2008. Kelas tali kawat baja dibedakan menurut kuat tarik kawat yang digunakan. Untuk kejelasannya lihat Tabel 2.4.

Tabel 2.4: Klasifikasi berdasarkan kuat tarik kawat (SNI 0076:2008).

Kelas	Persyaratan kuat tarik minimum N/mm² (kg/mm²)	Keterangan proses pembuatan kawat
Е	1320 (135)	Tanpa lapisan atau berlapis seng (termasuk proses penarikan dingin setelah pelapisan seng)
G	1470 (150)	Berlapis seng (termasuk proses penarikan dingin setelah pelapisan seng)
A	1620 (165)	Tanpa lapisan atau berlapis seng (termasuk proses penarikan dingin setelah pelapisan seng)
В	1770 (180)	Tanpa lapisan atau berlapis seng (termasuk proses penarikan dingin setelah pelapisan seng)

Untuk semua kawat dari kelompok diameter yang sama dalam satu tali kawat baja, bila diuji tarik sampai putus, perbedaan beban putus masing-masing kawat baja dengan rata-ratanya, harus dalam batas \pm 6 % dari nilai rata-rata. Bila diuji tarik, nilainya tidak boleh kurang dari nilai yang tertara dalam Tabel 2.5.

Tabel 2.5: Beban patah minimum konstruksi 6 x Fi(29) IWRC, 6 x W(31) IWRC, 6 x WS(36) IWRC dan 6 x WS(41) IWRC (SNI 0076:2008).

Diameter Beban patah minimum (kN)		- Perkiraan Berat
Nominal Berlapis seng atau tanpa lapisan seng		
(mm)	Kelas B	(kg/m)
10	67,7	0,440
11	84,9	0,552
13	106	0,688

Tabel 2.5: Lanjutan.

Diameter	Beban patah minimum (kN)	Perkiraan Berat
Nominal	Berlapis seng atau tanpa lapisan seng	(kg/m)
(mm)	Kelas B	(119, 111)
14	133	0,863
16	173	1,13
18	219	1,43
20	271	1,76
22	340	2,21
25	423	2,75
28	531	3,45
30	609	3,96
32	672	4,37
34	760	4,94
36	853	5,55
38	952	6,19
40	1080	7,04
42	1220	7,95
45	1370	8,91
48	1530	9,93
50	1690	11,0
53	1900	12,4
56	2120	13,8
60	2440	15,8

Catatan:

Diameter nominal dari konstruksi tali kawat baja;

- 6 x Fi(29) IWRC minimum 10 mm
- 6 x W(31) IWRC dan 6 x WS(36) IWRC minimum 20 mm
- 6 x WS(41) IWRC minimum 30 mm

Toleransi diameter kawat baja untuk penyusunan tali kawat baja sesuai pada Tabel 2.6.

Tabel 2.6: Toleransi diameter kawat baja (SNI 0076:2008).

Diameter kawat	Kawat tanpa lapisan seng	Kawat berapis seng
$0.20 \le d \le 1.00$	± 0,02	± 0,03
$1,00 \le d \le 2,24$	± 0,03	$\pm 0,045$
$2,24 \le d \le 3,75$	± 0,04	± 0,06
$3,75 \le d \le 4,50$	± 0,05	± 0,07

Ukuran diameter nominal tali kawat baja seperti pada Tabel 2.5 dengan toleransi pada Tabel 2.7.

Tabel 2.7: Toleransi diameter tali kawat baja (SNI 0076:2008).

Diameter tali kawat (D)	Toleransi (%)	
D < 10 mm	+10 0	
D ≥ 10 mm	+7 0	

Ketahanan puntiran kawat baja penyusun tali kawat baja harus memenuhi jumlah puntiran maksimum seperti pada Tabel 2.8.

Tabel 2.8: Jumlah puntiran minimumkawat baja (SNI 0076:2008).

Diamentan Iranyat	Jumlah puntiran minimum (kali)			
Diameter kawat	Kawat tanpa lapisan seng			Kawat berlapis seng
(mm)	Kelas E	Kelas A	Kelas B	Kelas E, G, A dan B
$0.20 \le d \le 1.00$	29	28	27	21
$1,00 \le d \le 2,24$	28	27	26	20
$2,24 \le d \le 3,75$	-	26	25	18
$3,75 \le d \le 4,50$	-	25	24	17

Kawat baja pada saat diuji lilit tidak boleh retak atau patah. Berat lapisan seng kawat baja penyusun harus memenuhi seperti pada Tabel 2.9.

Tabel 2.9: Berat lapisan seng minimum kawat baja penyusun (SNI 0076:2008).

Diameter kawat	Berat lapisan seng minimum (g/m ²)		
	Kelas		
(mm)	G	E, A dan B	
$0,20 \le d \le 0,25$	15	15	
$0,25 \le d \le 0,40$	20	20	
$0,40 \le d \le 0,50$	40	30	
$0.50 \le d \le 0.63$	60	40	

Tabel 2.9: Lanjutan.

Diameter kawat	Berat lapisan seng minimum (g/m²)		
	Kelas		
(mm)	G	E, A dan B	
$0,63 \le d \le 0,80$	70	50	
$0.80 \le d \le 1.00$	85	70	
$1,00 \le d \le 1,25$	95	80	
$1,25 \le d \le 1,40$	110	90	
$1,40 \le d \le 1,60$	135	100	
$1,60 \le d \le 2,00$	165	110	
$2,00 \le d \le 2,24$	190	110	
$2,24 \le d \le 2,50$	220	110	
$2,50 \le d \le 3,15$	230	125	
$3,15 \le d \le 4,00$	250	135	
$4,00 \le d \le 4,50$	250	150	

2.5 Pembebanan Struktur Jembatan Gantung

Standar pembebanan untuk jembatan mengunakan peraturan Surat Edaran Menteri Pekerjaan Umum No. 02/SE/M/2010 tentang pemberlakuan pedoman perencanaan dan pelaksanaan konstruksi jembatan gantung untuk pejalan kaki. Dalam pembebanan, standar ini menggunakan acuan normatif SNI 1725-2016, tentang pembebanan untuk jembatan jalan raya. Pada tugas akhir ini beban-beban yang direncanakan bekerja pada struktur jembatan harus kuat dan kaku (tanpa lendutan yang berlebih).

2.5.1 Filosofi Pembebanan

Sesuai dengan SNI 1725:2016, jembatan harus direncanakan sesuai dengan keadaan batas yang disyaratkan untuk mencapai target pembangunan keamanan, dan aspek layan, dengan memperhatikan kemudahan inspeksi, faktor ekonomi, dan estetika.

Dalam perencanaan, Pers. 2.8 – Pers. 2.10 harus dipenuhi untuk semua pengaruh gaya yang bekerja beserta kombinasinya, tidak tergantung dari jenis analisis yang digunakan. Untuk keadaan batas layan dan ekstrem, faktor tahanan harus diambil sebesar 1, kecuali untuk baut yang ditentukan dalam perencanaan jembatan baja, serta kolom-kolom beton pada zona gempa 2, 3, dan 4 yang ditentukan dalam perencanaan jembatan beton. Seluruh keadaan batas harus dianggap memiliki tingkat kepentingan yang sama besar dengan ketentuan rumus pada Pers. 2.8.

$$\Sigma \eta_i \gamma_i Q_i < \emptyset R_n = R_r \tag{2.8}$$

Untuk beban-beban dengan nilai maksimum γ₁ lebih sesuai dengan Pers. 2.9

$$\eta_i = \eta_D \eta_R \eta_I > 0.95 \tag{2.9}$$

Untuk beban-beban dengan nilai minimum γ_1 lebih sesuai dengan Pers. 2.10.

$$\eta_{i} = \frac{1}{\eta_{D} \eta_{R} \eta_{I}} < 1 \tag{2.10}$$

2.5.2 Keadaan Batas Daya Lahan

Keadaan batas daya lahan disyaratkan dalam perencanaan dengan melakukan pembatasan pada tegangan, deformasi, dan lebar retak pada kondisi pembebanan layan agar jembatan mempunyai kinerja yang baik selama umur rencana.

2.5.3 Keadaan Batas Fatik dan Fraktur

Keadaan batas fatik disyraratkan agar jembatan tidak mengalami kegagalan akibat fatik selama umur rencana. Keadaan batas fraktur disyaratkan dalam perencanaan dengan menggunakan persyaratan kekuatan material sesuai spesifikasi.

Keadaan batas fatik dan fraktur dimaksudkan untuk membatasi penjalaran retak akibat beban siklik yang pada akhirnya akan menyebabkan terjadinya kegagalan fraktur selama umur desain jembatan.

2.5.4 Keadaan Batas Kekuatan

Keadaan batas kekuatan disyaratkan dalam perencanaan untuk memastikan adanya kekuatan dan kestabilan jembatan yang memadai, baik yg sifatnya lokal maupun global, untuk memikul kombinasi pembebanan yang secara statistik mempunyai kemungkinan cukup besar untuk terjadi selama masa layan jembatan. Pada keadaan batas ini, dapat terjadi kelebihan tegangan ataupun kerusakan struktural, tetapi integritas struktur secara keseluruhan masih terjaga.

2.5.5 Keadaan Batas Ekstrem

Keadaan batas ekstrem diperhitungkan untuk memastikan struktur jembatan dapat bertahan akibat gempa besar. Keadaan batas ekstrem merupakan kejadian dengan frekuensi kemunculan yang unik dengan priode ulang yang lebih besar secara signifikan dibandingkan dengan umur rencana jembatan.

2.5.6 Daktilitas

Sistem struktur jembatan harus diproporsi dan didetailkan agar diperoleh perilaku deformasi inelastik pada keadaan batas ultimit dan ekstrem sebelum mengalami kegagalan. Perangkat disipasi (energi yang hilang dari suatu sistem, berubah menjadi energi lain yang tidak menjadi tujuan suatu sistem) energi gempa dapat digunakan untuk menggantikan sistem pemikul beban gempa konvensional beserta metodologi perencanaan tahan gempa yang dimuat dalam Peraturan Perencanaan Gempa untuk Jembatan.

Untuk keadaan batas ultimit maka:

 $\eta_D = 1,05$ untuk komponen tidak daktail dan sambungan;

 η_D = 1,00 untuk perencanaan konvensional serta pendetailan yang mengikuti peraturan ini;

 $\eta_D = 0.95$ untuk komponen-komponen dan sambungan yang telah dilakukan

tindakan tambahan untuk meningkatkan daktilitas lebih dari yang disyaratkan oleh peraturan ini.

Untuk keadaan batas lain termasuk keadaan batas ekstrem (gempa) maka: $\eta_D = 1$

2.5.7 Redundansi (Prediksi)

Alur gaya mejemuk dan struktur menerus harus digunakan kecuali terdapat alasan kuat yang mengharuskan untuk tidak menggunakan struktur tersebut.

Untuk keadaan batas ultimit maka:

 $\eta_R = 1,05$ untuk komponen non redundan ;

 $\eta_R = 1,00$ untuk komponen redundansi konvensional;

 $\eta_R = 0.95$ untuk komponen dengan redundansi melampaui kontinuitas *girder* dan penampang torsi tertutup.

Untuk keadaan batas lain termasuk keadaan batas ekstrem (gempa) maka: $\eta_R = 1$

2.5.8 Kepentingan operasional

Pemilik pekerjaan dapat menetapkan suatu jembatan atau elemen struktur dan sambungannya sebagai prioritas operasional. Pengklasifikasian harus dilakukan oleh otoritas yang berwenang terhadap jaringan transportasi dan mengetahui kebutuhan operasional.

Untuk keadaan batas ultimit maka:

 $\eta_I = 1,05$ untuk jembatan penting atau sangat penting;

 $\eta_I = 1,00$ untuk jembatan tipikal;

 $\eta_I = 0.95$ untuk jembatan kurang penting.

Untuk keadaan batas lain termasuk keadaan batas ekstrem (gempa) maka: $\eta_I = 1$

2.5.9 Beban Vertikal

2.5.9.1 Beban Mati

Massa setiap bagian bangunan harus dihitung berdasarkan dimensi yang tertara dalam gaambar dan berat jenis yang digunakan. Berat dari bagian-bagian bangunan tersebut adalah massa dikalikan dengan percepatan gravitasi (g). Percepatan gravitasi yang digunakan dalam standar ini adalah 9,81 m/s². Besarnya

kerapatan massa dan berat isi untuk berbagai macam bahan diberikan dalam Tabel 2.10.

Tabel 2.10: Berat isi untuk beban mati.

No.	Bahan	Berat Isi (KN/m³)	Kerapatan Massa (kg/m³)
1	Lapisan permukaan beraspal (bituminous wearing surfaces)	22,0	2245
2	Besi tuang (cast iron)	71,0	7240
3	Timbunan tanah dipadatkan (compacted sand, silt or clay)	17,2	1755
4	Kerikil, dipadatkan (rolled gravel, macadam or ballast)	18,8-22,7	1920-2315
5	Beton aspal (aspalt concrete)	22,0	2245
6	Beton ringan (low density)	12,25 - 19,6	1250 - 2000
7	Beton f'c < 35 MPa	22,0-25,0	2320
7	35 < f'c < 105 MPa	22 + 0,022 f'c	2240 + 2,29 f'c
8	Baja (steel)	78,5	7850
9	Kayu (ringan)	7,8	800
10	Kayu keras (hard wood)	11,0	1125

Pengambilan kerapatan massa yang besar, aman untuk suatu keadaan batas akan tetapi tidak untuk keadaan yang lainnya. Untuk mengatasi hal tersebut dapat digunakan faktor beban terkurangi. Akan tetapi, apabila kerapatan massa diambil dari suatu jajaran nilai, dan nilai yang sebenarnya tidak bisa ditentukan dengan tepat, perencana harus memilih diantara nilai tersebut yang memberikan keadaan yang paling kritis.

Beban mati jembatan merupakan kumpulan berat setiap komponen struktural dan non-struktural. Setiap komponen ini harus dianggap suatu kesatuan aksi yang tidak terpisahkan pada waktu menerapkan faktor faktor beban normal dan faktor beban terkurangi. Perencanaan jembatan harus menggunakan keahliannya di dalam menentukan komponen-komponen tersebut.

2.5.9.2 Beban Hidup

Ada dua aspek beban hidup yang perlu dipertimbangkan:

- 1. Beban terpusat pada lantai jembatan akibat langkah kaki manusia untuk memeriksa kekuatan lantai jembatan.
- 2. Beban yang dipindahkan dari lantai jembatan ke batang struktur yang kemudian dipindahkan ke tumpuan jembatan. Aksi beban ini akan terdistribusi pendek atau menerus sepanjang batang-batang longitudinal yang menahan lantai jembatan.

Beban hidup yang paling kritis yang dipikul karena pengguna jembatan pejalan kaki ditunjukkan pada Tabel 2.11. Dipertimbangkan bahwa beban terpusat 2000 kgf (20 kN) untuk kendaraan ringan/ternak dan beban merata 5 kPa memberikan batas yang cukup untuk keselamatan untuk semua pengguna biasa dari jembatan pejalan kaki.

Tabel 2.11: Beban hidup yang dipikul dan lendutan izin jembatan gantung pejalan kaki.

Kelas Pengguna	Lebar	Beban terpusat	Beban terdistribusi merata	Lendutan izin
Jembatan gantung pejalan kaki kelas I (beban hidup maksimum sampai dengan kendaraan ringan)	1,8 m	20 kN (hanya ada satu kendaraan bermotor ringan pada satu bentang jembatan)	5 kPa	$\frac{1}{200}$ L
Jembatan gantung pejalan kaki kelas II (beban hidup dibatasi hanya untuk pejalan kaki dan sepeda motor)	1,4 m	-	4 kPa	1/100 L

Keterangan:

L adalah bentang utama jembatan

2.5.10 Beban Samping

Beban samping yang harus dipertimbangkan dalam desain adalah beban angin yang terjadi pada sisi depan yang terbuka dari batang-batang jembatan dan beban yang diakibatkan oleh pengguna yang bersandar atau membentur pagar keselamatan dan tiang-tiang penahan. Benturan dari batuan-batuan tidak akan terjadi jika ada jarak bebas yang memadai di bawah jembatan.

2.5.10.1 Beban Angin

Standar perencanaan untuk jembatan gantung pejalan kaki mempertimbangkan standar perencanaan kecepatan angin 35 m/detik, yang mengakibatkan tekanan seragam pada sisi depan yang terbuka dari batang-batang jembatan. Beban angin dipertimbangkan terpisah dari beban hidup vertikal (Surat Edaran Menteri Pekerjaan Umum No. 02/SE/M/2010).

Berdasarkan SNI 1725 - 2016, tekanan angin yang diasumsikan disebabkan oleh angin rencana dengan kecepatan dasar (V_B) sebesar 90 - 126 km/jam atau setara dengan 25 - 35 m/detik.

Beban angin harus diasumsikan terdistribusi secara merata pada permukaan yang terekspos oleh angin. Luas area yang diperhitungkan adalah luas area dari semua komponen, termasuk sistem lantai dan *railing* yang diambil tegak lurus terhadap arah angin. Arah ini harus divariasikan untuk mendapatkan pengaruh yang paling berbahaya terhadap struktur jembatan atau komponen-komponennya. Luasan yang tidak memberikan konstribusi dapat diabaikan dalam perencanaan.

Untuk jembatan atau bagian jembatan dengan elevasi lebih tinggi dari 10.000 mm diatas permukaan tanah atau permukaan air, kecepatan angin rencana V_{DZ} , harus dihitung dengan Pers. 2.11.

$$V_{DZ} = 2.5 V_0 \frac{V_{10}}{V_B} In \frac{Z}{Z_0}$$
 (2.11)

 V_{10} dapat diperoleh dari:

- 1. Grafik kecepatan angin dasar untuk berbagai periode ulang.
- 2. Survei angin pada lokasi jembatan.

3. Jika tidak ada data yang lebih baik, perencana dapat mengasumsikan bahwa $V_{10} = V_B = 90 - 126 \text{ km/jam}$.

Karakteristik metereologi untuk berbagai macam tipe permukaan hulu jembatan ditentukan pada Tabel 2.12.

Tabel 2.12: Nilai V_0 dan Z_0 untuk berbagai variasi kondisi permukaan hulu (SNI 1725-2016).

Kondisi	Lahan Terbuka	Sub Urban	Kota
V ₀ (km/jam)	13,2	17,6	19,3
Z ₀ (mm)	70	1000	2500

A. Beban Angin pada Struktur (EW_S)

Jika dibenarkan oleh kondisi setempat, perencana dapat menggunakan kecepatan angin rencana dasar yang berbeda untuk kombinasi pembebanan yang tidak melibatkan kondisi beban angin yang bekerja pada kendaraan. Arah angin rencana harus diasumsikan horizontal. Dengan tidak adanya data yang lebih tepat, tekanan angin rencana dalam MPa dapat ditetapkan dengan menggunakan Pers. 2.12.

$$P_{\rm D} = P_{\rm B} \left(\frac{V_{\rm DZ}}{V_{\rm B}}\right)^2 \tag{2.12}$$

Dimana, tekanan angin dasar dapat di tentukan dengan melihat Tabel 2.13.

Tabel 2.13: Tekanan angin dasar (SNI 1725-2016).

Komponen bangunan atas	Angin Tekan (MPa)	Angin hisap (MPa)
Rangka, kolom dan pelengkung.	0,0024	0,0012
Balok	0,0024	N/A
Permukaan datar	0,0019	N/A

Gaya total beban angin tidak boleh diambil kurang dari 4,4 kN/mm pada bidang tekan dan 2,2 kN/mm pada bidang hisap pada struktur rangka dan pelengkung, serta tidak kurang dari 4,4 kN/mm pada balok atau gelagar.

2.5.10.2 Beban Gempa

Menurut Surat Edaran Menteri Pekerjaan Umum No. 02/SE/M/2010, beban gempa dihitung secara statik ekuivalen dengan memberikan beban lateral di puncak menara sebesar 15% sampai dengan maksimum 20% beban mati pada puncak menara. Selain itu beban gempa juga dapat dihitung dengan cara statik ekuivalen sesuai aturan SNI-2833-2013 tentang perancangan jembatan terhadap beban gempa.

A. Umum

Jembatan harus direncanakan agar memiliki kemungkinan kecil untuk runtuh namun dapat mengalami kerusakan yang signifikan dan gangguan terhadap pelayanan akibat gemp dengan kemungkinan terlampaui 7% dalam 75 tahun. Penggantian secara parsial atau lengkap pada struktur diperlukan untuk beberapa kasus. Kinerja yang lebih tinggi seperti kinerja operasional dapat ditetapkan oleh pihak yang berwenang.

Beban gempa diambil sebagai gaya horizontal yang ditentukan berdasarkan perkalian antara koefisien respons elastik (C_{sm}) dengan berat struktur ekuivalen yang kemudian dimodifikasi dengan faktor modifikasi respons (R) dengan Pers. 2.13.

$$E_{Q} = \frac{C_{sm}}{R} \times W_{t}$$
 (2.13)

Koefisien respons elastik C_{sm} diperoleh dari peta percepatan batuan dasar dan spektra percepatan yang dapat dilihat pada Gambar 2.14 hingga Gambar 2.16 sesuai dengan daerah gempa dan periode ulang gempa rencana. Koefisien percepatan yang diperoleh berdasarkan peta gempa dikalikan dengan suatu faktor

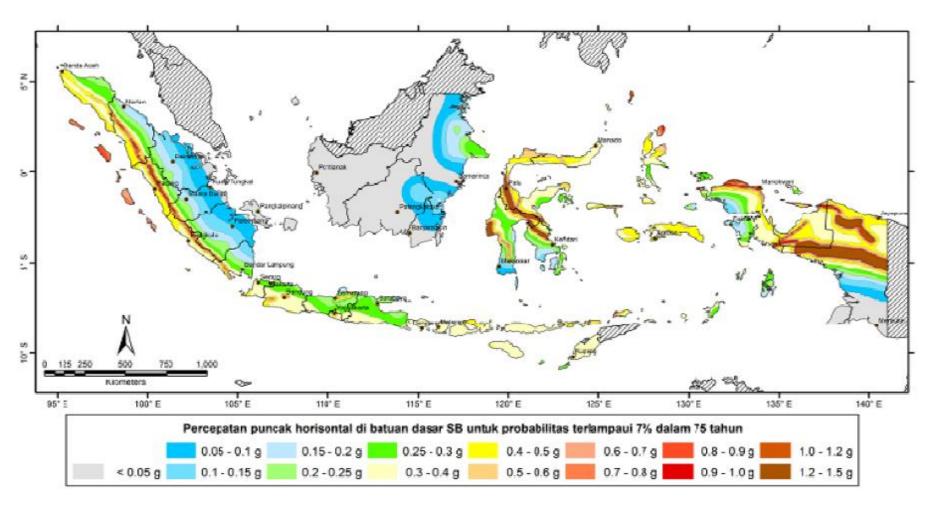
amplifikasi sesuai dengan kondisi tanah sampai kedalaman 30 m di bawah struktur jembatan.

Ketentuan pada standar ini berlaku untuk jembatan konvensinal. Pemilik pekerjaan harus menentukan dan menyetujui ketentun yang sesuai untuk jembatan *non conventional*. Ketentuan ini tidak perlu digunakan untuk struktur bawah tanah, kecuali ditentukan lain oleh pemilik pekerjaan. Pengaruh gempa terhadap gorong-gorong persegi dan bangunan bawah tanah tidak perlu diperhitungkan kecuali struktur tersebut melewati patahan aktif.

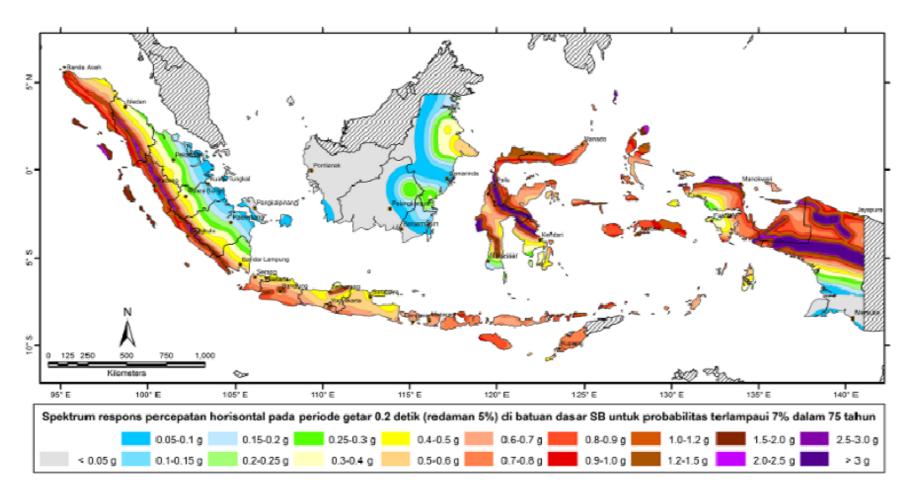
B. Bahaya Gempa

Bahaya gempa pada jembatan harus dikarakterisasi dengan menggunakan respons spektrum percepatan dan faktor situs untuk kelas situs yang sesuai.

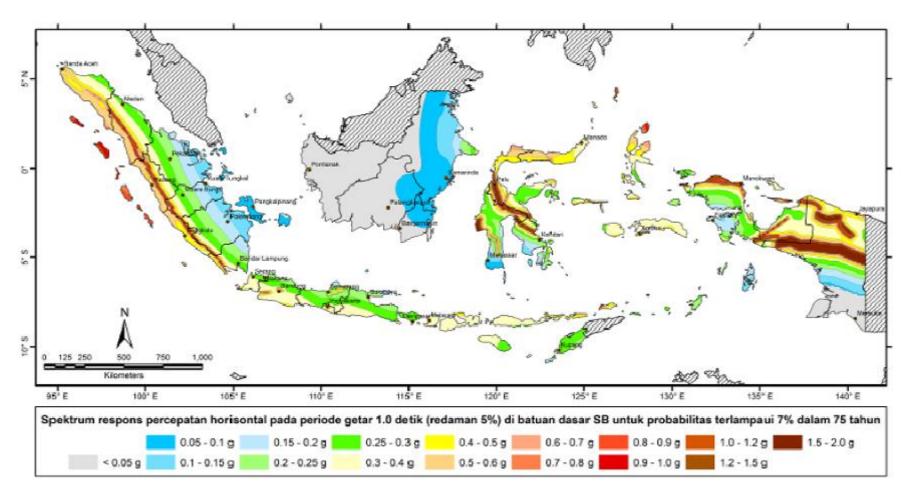
Respons spektrum percepatan dapat ditentukan baik dengan prosedur umum atu berdasarkan prosedur spesifik-situs. Prosedur spesifik-situs dilakukan jika terdapat kondisi sebagai berikut:


- 1. Jembatan berada di dalam 10 km dari patahan aktif.
- Situs termasuk dalam kategori situs kelas F sesuai Tabel 2.14 Tabel 2.15.

Bila riwayat percepatan digunakan untuk karakterisasi bahaya gempa pada situs tertentu, maka riwayat percepatan tersebut .


Peta gempa dalam ketentuan ini meliputi peta percepatan puncak batuan dasar (PGA) dan respons spektra percepatan 0,2 detik dan 1 detik di batuan dasar yang mewakili dua level *hazard* (potensi bahaya) gempa 500 dan 1000 dengan kemungkinan terlampaui 10% dalam 50 tahun dan 7% dalam 75 tahun yang dapat dilihat pada Gambar 2.15 – Gambar 2.17.

C. Prosedur Umum


Peta gempa dalam ketentuan ini meliputi peta percepatan puncak batuan dasar (PGA) dan respons spektra percepatan 0,2 detik dan 1 detik di batuan dasar yang mewakili dua level *hazard* (potensi bahaya) gempa 500 dan 1000 dengan kemungkinan terlampaui 10% dalam 50 tahun dan 7% dalam 75 tahun yang dapat dilihat pada Gambar 2.15 – Gambar 2.17.

Gambar 2.15: Peta percepatan puncak di batuan dasar (PGA) untuk probabilitas terlampaui 7% dalam 75 tahun (SNI 2833:2013).

Gambar 2.16: Peta respons spektra percepatan 0,2 detik di batuan dasar untuk probabilitas terlampaui 7% dalam 75 tahun (SNI 2833:2013).

Gambar 2.17: Peta respons spektra percepatan 1 detik di batuan dasar untuk probabilitas terlampaui 7% dalam 75 tahun (SNI 2833:2013

D. Faktor Situs

Untuk penentuan respons spektra di permukaan tanah, diperlukan suatu faktor amplifikasi pada periode nol detik, periode pendek (T=0,2 detik) dan periode 1 detik. Faktor amplifikasi meliputi meliputi faktor amplifikasi getaran terkait percepatan pada getaran periode nol detik (F_{PGA}), faktor amplifikasi periode pendek (F_a) untuk berbagai klasifikasi jenis tanah dapat dilihat pada Tabel 2.14.

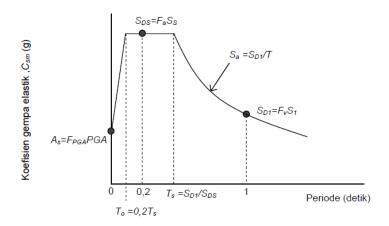
Tabel 2.14: Faktor amplifikasi untuk periode 0 detik dan 0,2 detik (F_{PGA}/F_a) (RSNI 2833:2013).

Kelas Situs	$PGA \le 0,1$	PGA = 0.2	PGA = 0.3	PGA = 0,4	PGA > 0,5
Keias Situs	$S_s \leq 0.25$	$S_{S} = 0.5$	$S_{S} = 0.75$	$S_{S} = 1,0$	$S_S \ge 1,25$
Batuan Keras	0,8	0,8	0,8	0,8	0,8
Batuan	1,0	1,0	1,0	1,0	1,0
Tanah Keras	1,2	1,2	1,1	1,0	1,0
Tanah Sedang	1,6	1,4	1,2	1,1	1,0
Tanah Lunak	2,5	1,7	1,2	0,9	0,9
Tanah Khusus	SS	SS	SS	SS	SS

Catatan: untuk nilai-nilai antara dapat dilakukan interpolasi linier.

Faktor amplifikasi terkait percepatan yang mewakili getaran periode 1 detik (F_v) untuk berbagai klasifikasi jenis tanah dapat dilihat pada Tabel 2.15.

Tabel 2.15: Besarnya nilai faktor amplifikasi untuk periode 1 detik (F_v) (RSNI 2833:2013).


Kelas Situs	PGA ≤ 0,1	$S_1 = 0,2$	$S_1 = 0,3$	$S_1 = 0,4$	$S_1 \ge 0.5$
Batuan Keras (SA)	0,8	0,8	0,8	0,8	0,8
Batuan (SB)	1,0	1,0	1,0	1,0	1,0
Tanah Keras (SC)	1,7	1,6	1,5	1,4	1,3
Tanah Sedang (SD)	2,4	2,0	1,8	1,6	1,5
Tanah Lunak (SE)	3,5	3,2	2,8	2,4	2,4
Tanah Khusus (SF)	SS	SS	SS	SS	SS

Catatan: untuk nilai-nilai antara dapat dilakukan interpolasi linier.

E. Karakterisasi Bahaya Gempa

a. Respons spektrum rencana

Respons spektra adalah nilai yang menggambarkan respons maksimum dari sistem berderajat-kebebasan-tunggal pada berbagai frekuensi alami (periode alami) teredam akibat suatu goyangan tanah. Untuk kebutuhan praktis, maka respons spektra dibuat dalam bentuk respons spektra yang sudah disederhanakan. Bentuk tipikal respons spektra di permukaan tanah dapat dilihat pada Gambar 2.18.

Gambar 2.18: Bentuk tipikal respons spektra di permukaan tanah.

Respons spektra di permukaan tanah ditentukan dari 3 (tiga) nilai percepatan puncak yang mengacu pada peta gempa Indonesia 2010 (PGA, S_s dan S_1), seta nilai faktor amplifikasi F_{PGA} , F_a , F_v . Perumusan respons spektra dapat dilihat pada Pers. 2.14 – Pers. 2.16.

$$A_{S} = F_{PGA} \times PGA \tag{2.14}$$

$$S_{DS} = F_a \times S_s \tag{2.15}$$

$$S_{D1} = F_v \times S_1$$
 (2.16)

b. Koefisien respons gempa elastik

1. Untuk periode lebih kecil dari T_0 , koefisien respons gempa elastik (C_{sm}) didapatkan dari Pers. 2.17.

$$C_{sm} = (S_{DS} - A_S) \frac{T}{T_0} + A_S$$
 (2.17)

- 2. Untuk periode lebih besar atau sama dengan T_0 dan lebih kecil atau sama dengan T_S , respons spektra percepatan, C_{sm} adalah sama dengan S_{DS} .
- 3. Untuk periode lebih besar dari T_s , koefisien respons gempa elastik (C_{sm}) didapatkan dari Pers. 2.18 Pers. 2.20.

$$C_{sm} = \frac{S_{D1}}{T} \tag{2.18}$$

$$T_0 = 0.2 T_s$$
 (2.19)

$$T_{S} = \frac{S_{D1}}{S_{DS}} \tag{2.20}$$

c. Klasifikasi operasioanl

Pemilik pekerjaan atau pihak yang berwenang harus dapat mnegklasifikasikan jembatan ke dalam satu atau tiga kategori sebagai berikut:

- 1. Jembatan sangat penting (*critical bridges*).
- 2. Jembatan penting (essential bridges).
- 3. Jembatan lainnya (other bridges).

Jembatan penting harus dapat dilalui oleh kendaraan darurat dan untuk kepentingan keamanan/pertahanan beberapa hari setelah mengalami gempa rencana dengan periode ulang 1000 tahun). Untuk jembatan sangat penting, maka jembatan harus dapat dilalui oleh semua jenis kendaraan (lalu-lintas normal) dan dapat dilalui oleh kendaraan darurat dan untuk kepentingan keamanan/pertahanan

segera setelah mengalami gempa dengan periode ulang 1000 tahun. Jembatan lainnya adalah jembatan standar pada umumnya menggunakan gempa 500 tahun.

d. Kategori kinerja seismik

Setiap jembatan harus ditetapkan dalam salah satu empat zona gempa berdasarkan spektra percepatan periode 1 detik (S_{D1}) sesuai Tabel 2.16. Kategori tersebut menggambarkan variasi risiko seismik dan digunakan untuk penentuan metode analisis, panjang tumpuan minimum, detail perencanaan kolom dan prosedur desain fondasi dan kepala jembatan.

Tabel 2.16: Zona Gempa (RSNI 2833:2013).

Koefisien percepatan (S _{D1})	Zona gempa
$S_{D1} \le 0.15$	1
$0.15 \le S_{D1} \le 0.30$	2
$0.30 \le S_{D1} \le 0.50$	3
$S_{D1} > 0.50$	4

Catatan: $S_{D1} = F_v \times S_1$ (2.21)

e. Faktor modifikasi respons

Apabila digunakan analisis dinamik riwayat waktu, maka faktor modifikasi respons (R) diambil sebesar 1 untuk seluruh jenis bangunan bawah dan hubungan antar elemen struktur dapat dilihat pada Tabel 2.17 dan Tabel 2.18.

Tabel 2.17: Faktor modifikasi repons (R) untuk hubungan antar elemen struktur (RSNI 2833:2013).

Bangunan bawah	Kategori kepentingan			
Dangulan bawan	Sangat penting	penting	Lainnya	
Pilar tipe dinding	1,5	1,5	2,0	
Tiang/kolom beton bertulang				
Tiang vertikal	1,5	2,0	3,0	
Tiang miring	1,5	1,5	2,0	

Tabel 2.16: Lanjutan.

Bangunan bawah	Kategori kepentingan			
Dangunan bawan	Sangat penting	penting	Lainnya	
Kolom tunggal	1,5	2,0	3,0	
Tiang baja dan komposit				
Tiang vertikal	1,5	3,5	5,0	
Tiang miring	1,5	2,0	3,0	
Kolom majemuk	1,5	3,5	5,0	

Faktor modifikasi respons (R) untuk bangunan bawah dapat dilihat pada Tabel 2.17.

Tabel 2.18: Faktor modifikasi repons (R) untuk bangunan bawah (RSNI 2833:2013).

Hubungan elemen struktur	Semua kategori kepentingan	
Bangunan atas dengan kepala jembatan	0,8	
Sambungan muai (dilatasi) pada bangunan atas	0,8	
Kolom, pilar atau tiang dengan bangunan atas	1,0	
Kolom atau pilar dengan fondasi	1,0	

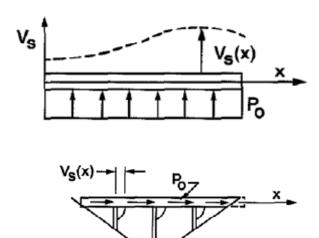
f. Penggunaan

Gaya gempa harus diasumsikan untuk dapat bekerja dari semua arah lateral. Faktor modifikasi respons (R) yang sesuai harus digunakan di kedua arah sumbu ortogonal bangunan bawah. Pilar tipe dinding dapat dianalisis sebagai kolom tunggal dalam arah sumbu lemah.

g. Kombinasi pengaruh gaya gempa

Gaya gempa elastis yang bekerja pada struktur jembatan harus dikombinasi sehingga memiliki 2 tinjauan pembebebanan sebagai berikut:

- 1. 100% gaya gempa pada arah x dikombinasikan dengan 30% gaya gempa pada arah y.
- 2. 100% gaya gempa pada arah y dikombinasikan dengan 30% gaya gempa pada arah x.


Sehingga apabila diaplikasikan dengan memperhitungkan variasi arah maka kombinasi gaya gempa sebagai berikut:

1.
$$DL + {}_{\gamma EQ}LL + EQ_x \pm 0.3 EQ_y$$

2.
$$DL + {}_{\gamma EQ}LL + EQ_x \pm 0.3 EQ_y$$

F. Perhitungan Periode Alami melalui Metode Beban Merata

1. Hitung perpindahan statik $V_S(x)$ akibat beban merata P_0 seperti pada Gambar 2.19.

Gambar 2.19: (a) tampak atas pembebanan melintang dan (b) tampak memanjang pembebanan *longitudinal*.

2. Hitung kekakuan lateral jembatan (K) dan total berat (W) dengan menggunakan Pers. 2.22 dan Pers. 2.23.

$$K = \frac{P_0 L}{V_{S \text{ max}}}$$
 (2.22)

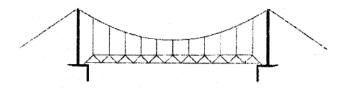
$$W = \int w(x)dx \tag{2.23}$$

3. Hitung periode alami dengan menggunakan ekspresi Pers. 2.24.

$$T_{\rm m} = 2 \pi \sqrt{\frac{W}{g K}} \tag{2.24}$$

2.6 Kombinasi Pembebanan

Kombinasi pembebanan untuk jembatan gantung pejalan kaki mengacu pada SNI 1727:2013 tentang Beban minimum untuk perancangan bangunan gedung dan struktur lain.


Kombinasi dasar:

- 1. 1,4D
- 2. 1,2D + 1,6L + 0,5 (Lr atau S atau R)
- 3. 1,2D + 1,6 (Lr atau S atau R) + (L atau 0,5W)
- 4. 1,2D + 1,0 W + L + 0,5 (Lr atau S atau R)
- 5. 1,2D + 1,0E + L + 0,2S
- 6. 0.9D + 1.0W
- 7. 0.9D + 1.0E

2.7 Struktur Pengaku

Struktur pengaku dapat dilihat pada Gambar 2.20 yang dapat berupa:

- 1. Kabel.
- 2. Profil I.
- 3. Rangka batang.

Gambar 2.20: Jembatan gantung dengan truss kaku.

Untuk struktur pengaku berbentuk rangka batang, inersia gelagar pengaku dihitung dengan Pers. 2.25.

$$I = A_{bta} \cdot (d_{ta})^{2} + A_{btb} \cdot (d_{tb})^{2}$$
 (2.25)

2.8 Gaya Tarik Kabel Utama

- 1. Besarnya komponen horizontal gaya tarik H pada ujung kabel utama adalah:
 - 1) Akibat beban hidup merata penuh dapat dilihat pada Pers. 2.26.

$$H_1 = \frac{P L^2}{8 d} \tag{2.26}$$

2) Akibat beban hidup tidak simetris pada setengah bentang dapat dilihat pada Pers. 2.27.

$$H_2 = \frac{(P/2) L^2}{8 d}$$
 (2.27)

3) Akibat beban mati dapat dilihat pada Pers. 2.28.

$$H_3 = \frac{w L^2}{8 d}$$
 (2.28)

2. Kabel utama dan *backstays* dihitung berdasarkan gaya tarik T maksimum dari Pers. 2.29 dan Pers. 2.30.

untuk backstays :
$$T = \frac{H}{\cos \varphi}$$
 (2.29)

atau

untuk kabel utama :
$$T = \frac{H}{\cos \theta}$$
 (2.30)

2.9 Lendutan

Lendutan akibat beban hidup merata yang bekerja pada seperempat bentang utama, dihitung berdasarkan pembagian beban antara gelagar pengaku sebesar $(1 - \alpha)$ dan kabel utama sebesar (α) yang didapat dari hitung dengan menggunakan Pers. 2.31 dan Pers. 2.32.

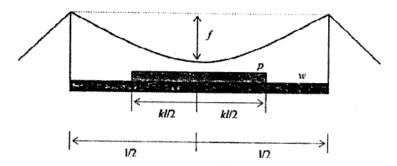
$$\Delta' = \frac{5(1-\alpha) P L^4}{12288 E I}$$
 (2.31)

$$\Delta = \frac{\alpha (P/8)}{w + \alpha (P/2)} d \tag{2.32}$$

2.10 Momen Maksimum Struktur Pengaku dan Komponen Gaya Horizontal Kabel.

Momen maksimum struktur pengaku di seperempat bentang dihitung berdasarkan Pers. 2.27. Dimana pembagian beban antara struktur pengaku sebesar $(1 - \alpha)$ dan kabel utama sebesar (α) .

$$M_{\text{maks}} = \frac{(1-\alpha) P L^2}{64}$$
 (2.27)


2.11 Panjang Kabel Angkur

- 1. Panjang teoritis kabel angkur adalah jarak geometrik antara titik pusat blok angkur dipermukaan tanah dan titik pusat kabel di pelana;
- 2. Panjang bersih kabel angkur pada kondisi bebas beban, yaitu jarak bersih antara sumbu pelana dan titik untuk jangkar, diperoleh dengan mengadakan koreksi terhadap panjang teoritis.
 - 1) Koreksi pengurangan panjang sesuai dengan dimensi blok angkur.

- 2) Koreksi penambahan panjang sesuai dengan lengkungan kabel di pelana.
- 3) Koreksi panjang ulur, yaitu panjang teoritis dikalikan tegangan kabel akibat beban mati penuh dan dibagi dengan nilai modulus elastis.
- 4) Jika digunakan *socket* pada ujung kabel, panjang teoritis yang telah dikoreksi sesuai butir 1 sampai dengan 3, harus ditambah sepanjang keperluan *socket*.
- 5) Koreksi untuk sudut penyebaran kabel ke blok angkur adalah kecil dan di abaikan.

2.12 Panjang Kabel Utama

Pembeban simetris adalah pembebanan pada lantai jembatan yang bersifat seimbang. Untuk kejelasannya lihat pada Gambar 2.21.

Gambar 2.21: Pembebanan simetris.

Panjang teoritis kabel utama (L_k) adalah jarak parabolik antara titik-titik pusat kabel di pelana yang dapat dihitung dengan menggunakan Pers. 2.33.

$$L_{k} = L \left\{ 1 + \frac{8}{3} (n)^{2} \right\}$$
 (2.33)

Dimana nilai n didapat dari Pers. 2.34.

$$n = \left(\frac{f}{L}\right) \tag{2.34}$$

Panjang bersih kabel utama pada kondisi bebas beban diperoleh dengan mengadakan koreksi pengurangan terhadap panjang teoritis:

- 1. Koreksi penambahan panjang sesuai lengkungan di pelana.
- 2. Koreksi pengurangan panjang ulur elastis sebanding dengan tegangan rata-rata akibat beban mati penuh berdasarkan tegangan kabel maksimum di menara dan minimum di tengah bentang.

Pada jembatan gantung dengan bentang luar *straight backstays*, kabel utama akan lurus dan f = 0.

Bentang luar akan berperilaku seperti balok sederhana, tidak terpengaruh oleh beban pada bentang lain. Bentang utama dan tegangan kabel akan tidak terpengaruh oleh beban pada bentang luar sehingga menghasilkan Pers. 2.35.

$$L_{k} = 2 L_{1} \sec \alpha \tag{2.35}$$

2.13 Panjang Kabel Penggantung (Hanger)

Kabel pengantung (*hanger*) dalam desain jembatan gantung menggunakan tipe vertikal. Dimensi batang penggantung harus mampu menahan gaya aksial tarik yang berasal dari lantai kendaraan. Langkah-langkah dalam merencanakan kabel penggantung (*hanger*):

Menghitung panjang kabel penggantung dengan menggunakan Pers. 2.36 dan Pers. 2.37.

$$y = 4f \frac{x}{l^2} (l - x)$$
 (2.36)

$$y' = h_{pylon} - y \tag{2.37}$$

2.14 Kelandaian Memanjang Jembatan

Jembatan dapat dibangun dengan kelandaian maksimum sebesar 1/20 bentang antara menara-menara. Untuk kelandaian sampai 1/100 bentang, tidak ada perubahan dalam pengukuran dan pemasangan jembatan. Penyesuaian dimensi untuk kelandaian n di atas 1/100 adalah:

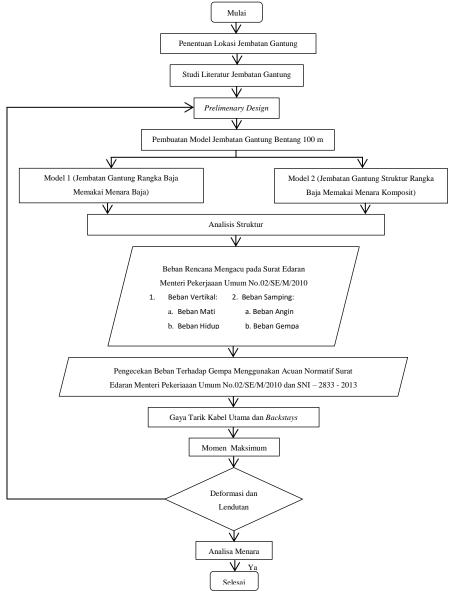
Bentang horizontal aktual antara menara-menara dapat dihitung dengan Pers.
 2.38.

$$L_{a} = L - \frac{n^{2} L}{2}$$
 (2.38)

Pada kelandaian $n \le 1/100$, L_a diambil sama dengan L dan pada kelandaian n > 1/100 bentang horizontal aktual dihitung dengan Pers. 2.38.

2. Koreksi sudut kabel \mathbf{X}^0 terhadap horizontal dapat dihitung dengan menggunakan Pers. 2.39

$$Tan X^0 = 0.63 n (2.39)$$


Sudut kabel angkur untuk kondisi kelandaian n adalah sudut kondisi horizontal yang dikoreksi dengan + X^0 untuk sisi tinggi dan - X^0 untuk sisi rendah.

BAB 3

PERANCANGAN UMUM

3.1 Metodologi Penelitian

Bagan alir perencanaan struktur jembatan gantung (*suspension bridge*) khusus pejalan kaki tipe I berisikan langkah-langkah perencanaan sehingga didapatkan hasil dari tujuan perencanaan yang dapat dilihat pada Gambar 3.1.

Gambar 3.1: Bagan alir perencanaan jembatan gantung (susspension bridge).

3.2 Lokasi Perencanaan Jembatan Gantung

Pada tugas akhir ini, struktur jembatan gantung direncanakan di Sungai Kampar yang berlokasi di Desa Kuok, Kecamatan Kuok, Kabupaten Kampar, Riau yang menghubungkan antara Desa Pulau Belimbing dengan Desa Pulau Jambu yang dapat dilihat pada Gambar 3.2 dan Gambar 3.3.

Gambar 3.2: Peta lokasi perencanaan pembangunan jembatan gantung (*Google Maps*, 2018).

Gambar 3.3: Titik perencanaan jembatan gantung (suspension bridge).

3.3 Perencanaan Struktur Jembatan Gantung

Pada tugas akhir ini, struktur jembatan gantung yang dibandingkan adalah:

- 1. Jembatan gantung rangka baja memakai menara baja
- 2. Jembatan gantung dengan rangka baja memakai menara komposit.

Dari kedua jembatan tersebut, yang di bandingkan adalah dari segi menara, model 1 menggunakan pipa baja sedangkan model 2 menggunakan pipa baja komposit.

3.4 Data Ukuran Jembatan

Data perencanaan struktur jembatan gantung yang digunakan dalam analisis ini antara lain:

Panjang jembatan : 100 meter
 Panjang bentang kiri : 15 meter
 Panjang bentang kanan : 15 meter
 Elevasi lantai jembatan : 7 meter

5. Kelas jembatan gantung : jembatan pejalan kaki kelas I

6. Jumlah segmen tengah : 38

7. Sistem pengkabelan : side span free/backstay

Untuk jembatan gantung dengan panjang bentang sebesar 100 m direncanakan data sesuai dengan peraturan Surat Edaran Menteri Pekerjaan Umum No. 02/SE/M/2010 antara lain:

Lebar jembatan : 1,8 meter
 Lebar menara : 2 meter
 Tinggi Menara : 10 meter
 Ketinggian kabel ditengah bentang : 1,5 meter

3.5 Spesifikasi Material Struktur Jembatan Gantung

Data material struktur bangunan atas yang digunakan dalam struktur jembatan ini antara lain.

1. Baja

• Mutu baja : BJ-55

• Tegangan putus minimum (fu) : 550 MPa

• Tegangan leleh minimum (fy) : 410 MPa

• Regangan minimum : 15 %

Modulus elastisitas (E) : 200000 MPa

• Modulus geser (G) : 80000 MPa

• Poisson ratio (μ) : 0,3

• Koefisien pemuaian : $12 \times 10^{-6} \, ^{\circ}\text{C}$

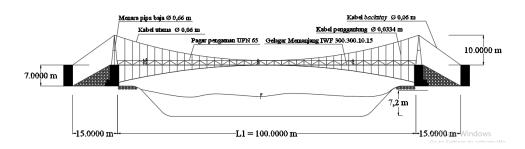
• Berat jenis baja : 7850 kg/m³

2. Beton

a. Mutu beton dengan pelat lantai beton (fc') : 25 MPa

b. Modulus elastisitas (Ec) = $4700 \sqrt{\text{fc}'}$: 23500 MPa

c. Modulus geser (G) = $\frac{Ec}{(2(1+u))}$: 9791,000007 MPa


d. Poisson ratio (μ) : 0,2

e. Koefisien pemuaian : 10×10^{-6} °C

f. Berat jenis beton : 2400 kg/m³

3.6 Spesifikasi Perencanaan Struktur Jembatan Gantung

Dimensi dan spesifikasi perencanaan jembatan gantung dapat dilihat pada Gambar 3.4.

Gambar 3.4: Dimensi dan spesifikasi perencanaan jembatan gantung (*susspension bridge*).

Data struktur jembatan gantung yang digunakan dalam analisis ini antara lain:

1. Dimensi menara

a. Model 1 : Pipa diameter 660 mm

: UPN 100

b. Model 2 : Pipa diameter 660 mm komposit

beton

2. Dimensi gelagar memanjang : IWF 300.300.10.15

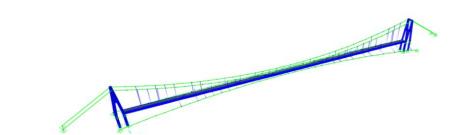
3. Dimensi gelagar melintang : UPN 400

4. Diameter kabel utama : 6 x Fi(29) IWRC diameter 60 mm

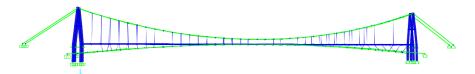
5. Diameter batang penggantung : Baja bundar diameter 33,4 mm

6. Diameter kabel ikatan angin : 6 x Fi(29) IWRC diameter 10 mm

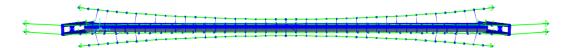
: Baja bundar diameter 21,4 mm

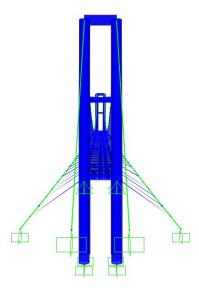

7. Sistem lantai : tanpa pengaku

8. Ketebalan plat lantai baja : 5 mm

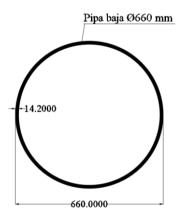

9. Letak geografis : Zona 4, pedesaan

3.7 Pemodelan Struktur Jembatan Gantung

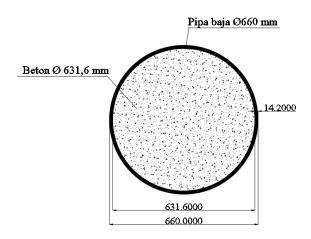

Untuk pemodelan struktur jembatan gantung pada analisis *software* dapat dilihat pada Gambar 3.5 – Gambar 3.8.


Gambar 3.5: 3D jembatan gantung

Gambar 3.6: Tampak samping jembatan gantung.


Gambar 3.7: Tampak atas jembatan gantung.

Gambar 3.8: Tampak depan jembatan gantung.


Dalam hal ini yang membedakan adalah dari segi menara. Dimana model 1 menggunakan menara pipa baja diameter 660 mm, sedangkan model 2 menggunakan menara pipa baja diameter 660 mm komposit beton. Untuk penjelasan model dapat dilihat pada Gambar 3.9 dan Gambar 3.10.

1. Model 1 (menara pipa baja).

Gambar 3.9: Detail pipa baja diameter 660 mm.

2. Model 2 (menara pipa baja komposit beton).

Gambar 3.10: Detail pipa baja komposit beton.

Untuk menara komposit, perhitungan beton (*concrete*) di hitung secara manual dengan cara menambahkan kekakuan pada menara jembatan, yaitu dengan menambahkan momen inersia beton pada menara pipa baja yang kemudian di *input stiffness modification factors* pada analisis *software* yang dapat dilihat pada Gambar 3.11.

Luas (A) penampang beton:

$$A = \frac{1}{4} \pi d^{2}$$
$$= \frac{1}{4} \pi 0,6316^{2}$$
$$= 0,3133 \text{ m}^{2}$$

Syarat:

Luas penampang baja (A) minimal 4% dari luas penampang komposit total.

Maka:

Luas minimum penampang baja = 4% x Luas penampang beton = 4% x 0,3133

$$= 0.0125 \text{ m}^2 < 0.02881 \text{ m}^2$$
 (memenuhi syarat)

Perhitungan momen inersia penampang beton:

$$I_x = I_y = \frac{1}{64} \pi d^4$$

$$= \frac{1}{64} \pi 0,6316^4$$

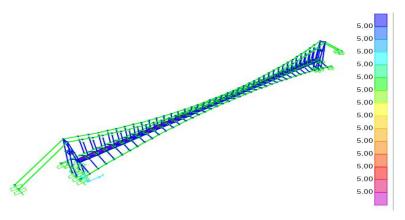
$$= 0,007811570993 \text{ mm}^4$$

Property/Stiffness Modifiers for Analysis	-
Cross-section (axial) Area	1
Shear Area in 2 direction	1
Shear Area in 3 direction	1
Torsional Constant	1
Moment of Inertia about 2 axis	1,007811570993
Moment of Inertia about 3 axis	1,007811570993
Mass	1
Weight	1

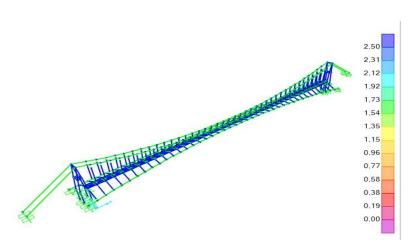
Gambar 3.11: Penambahan inersia momen beton pada penampang menara.

3.8 Beban Kerja Pada Jembatan

3.8.1 Beban Hidup


Menurut Surat Edaran Menteri Pekerjaan Umum No.02/SE/M/2010 beban hidup yang bekerja pada jembatan gantung sesuai dengan Tabel 2.11, beban hidup yang dipikul jembatan gantung pejalan kaki adalah:

- 1. Beban hidup (qh)
 - a. Beban merata = $5 \text{ kPa} = 5 \text{ kN/m}^2$


Maka:

• Beban hidup simetris= 5 kPa

• Beban hidup asimetris
$$= \frac{1}{2} x \text{ beban hidup simetris}$$
$$= \frac{1}{2} x 5$$
$$= 2.5 \text{ kPa}$$

Gambar 3.12: *Input* beban hidup simetris.

Gambar 3.13: *Input* beban hidup asimetris.

3.8.2 Beban Mati

1. Lantai Jembatan

Menggunakan plat bordes baja berdimensi (1,8 x 2,5 x 0,05) mm

a. Berat Lantai / meter = panjang x tebal x berat jenis baja
=
$$1.8 \times 0.05 \times 76,9822$$

= 0.6928 kN/m

b. Berat Lantai
$$= \frac{\text{Berat lantai / meter}}{\text{Lebar jembatan}}$$
$$= \frac{0.69284}{100}$$
$$= 69,2840 \text{ kN}$$

2. Gelagar memanjang

- a. Dimensi = IWF 300.300.10.15
- b. Lebar (b) = 0.3 m
- c. Tinggi (h) = 0.3 m
- d. Tebal flans (tf) = 0,015 m
- e. Tebal web (tw) = 0,010 m
- f. Luas (Ag) = 0.0117 m^2
- g. Jumlah gelagar = 5 buah (panjang = 100 m)
- h. Total panjang $= 5 \times 100 = 500 \text{ m}$
- i. Berat / meter = $76,9822 \times 0,0117$ = 0,9007 kN/m
- j. Berat = $0,9007 \times 500$ = 450,3459 kN

3. Gelagar melintang

- a. Dimensi = UPN 400
- b. Lebar (b) = 0.11 m
- c. Tinggi (h) = 0.4 m
- d. Tebal flans (tf) = 0,018 m
- e. Tebal web (tw) = 0,014 m
- f. Luas (Ag) = 0.009056 m^2
- g. Jumlah gelagar = 41 buah (panjang = 2 m)
- h. Total panjang $= 41 \times 2 = 82 \text{ m}$
- i. Berat / meter = 76,9822 x 0,009056= 57,166 kN/m

- k. Berat = $57,166 \times 82$ = $57,166 \times N$
- 4. Gelagar penahan lateral
 - a. Dimensi = UPN 200
 - b. Lebar (b) = 0.075 m
 - c. Tinggi (h) = 0.2 m
 - d. Tebal flans (tf) = 0,0115 m
 - e. Tebal *web* (tw) = 0.0085 m
 - f. Luas (Ag) = 0.00323 m^2
 - g. Jumlah gelagar = 80 buah (panjang = 3,0806 m)
 - h. Total panjang $= 80 \times 3,0806 = 246,448 \text{ m}$
 - i. Berat / meter = 76,9822 x 0,00323
 - = 0.2486 kN/m
 - j. Berat = $0.2486 \times 246,448$
 - = 61,27 kN
- 5. Menara

Pipa Diameter 660 mm

- a. Diameter (d) = 0.66 m
- b. Tebal flens (tf) = 0.0142 m
- c. Luas (Ag) = 0.02881 m^2
- d. Jumlah = 2 buah (panjang = 42,1992 m)
- e. Total panjang = $42,1992 \times 2 = 84,3984 \text{ m}$
- f. Berat / meter = 1,6867 kN/m
- g. Berat = 187,0524 kN

UPN 100

a. Lebar (b)
$$= 0.1 \text{ m}$$

b. Tinggi (h)
$$= 0.05 \text{ m}$$

c. Tebal *flans*
$$= 0,0085 \text{ m}$$

d. Tebal
$$web = 0,006 \text{ m}$$

e. Luas (Ag) =
$$0.001348 \text{ m}^2$$

f. Total panjang
$$= 12 \text{ m}$$

g. Berat / meter
$$= 76,9822 \times 0,0013$$

$$= 0.1038 \text{ kN/m}$$

h. Berat
$$= 0,1038 \times 12$$

$$= 1,2453 \text{ kN}$$

UPN 80

a. Lebar (b)
$$= 0.1 \text{ m}$$

b. Tinggi (h)
$$= 0.05 \text{ m}$$

c. Tebal
$$flans = 0,008 \text{ m}$$

d. Tebal
$$web = 0,006 \text{ m}$$

e. Luas (Ag) =
$$0.0011 \text{ m}^2$$

f. Total panjang
$$= 8,94444 \text{ m}$$

g. Berat / meter =
$$76,9822 \times 0,0011$$

$$= 0.085 \text{ kN/m}$$

h. Berat
$$= 0.0850 \times 8.94444$$

$$= 0,7602 \text{ kN}$$

6. Kabel Utama

a. Luas kabel utama =
$$\frac{1}{4} \pi D^2$$

$$= \frac{1}{4} \pi (0.06)^2$$

$$= 0.0028 \text{ m}^2$$

Dimana:

$$n = \left(\frac{f}{L}\right)$$
$$= \left(\frac{7}{100}\right)$$

Maka:

$$L_k = L\left\{1 + \frac{8}{3} (7/100)^2\right\}$$
$$= 100 \left\{1 + \frac{8}{3} (7/100)^2\right\}$$
$$= 101,307 \text{ m}$$

- b. Jumlah kabel = 2 buah
- c. Panjang total kabel = 101,307 x 2 = 202,613 m
- d. Berat kabel utama / meter $= 76,9822 \times 0,0028$ = 0,2177 kN/m
- e. Berat kabel utama = $0,2177 \times 202,613$ = 45,2208 kN
- 7. Kabel backstay
 - a. Luas kabel *backstay* $= \frac{1}{4}\pi D^{2}$ $= \frac{1}{4}\pi (0,06)^{2}$ $= 0,0028 \text{ m}^{2}$
 - b. Panjang total kabel = 17,4929 x 4 = 69,9716 m
 - c. Berat kabel *backstay* / meter = $76,9822 \times 0,0028$ = 0,2177 kN/m
 - d. Berat kabel *backstay* = $0,2177 \times 69,9716$

8. Kabel Penggantung

Baja bundar diameter 33,4 mm

a. Diameter (d) = 0.0334 m

b. Tebal *flens* (tf) = 0.0017 m

c. Luas (Ag) = $0,0002 \text{ m}^2$

d. Jumlah = 2 buah (panjang = 269,4048 m)

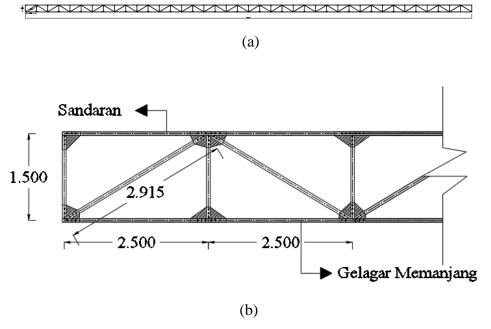
e. Total panjang = $269,4048 \times 2 = 538,8098 \text{ m}$

f. Berat / meter = 0.00744 kN/m

g. Berat = 4,007 kN

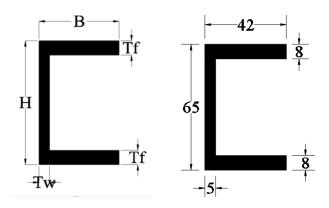
Untuk kejelasan dari data penampang yang digunakan untuk jembatan gantung pada analisis *software* dapat dilihat pada Tabel 3.1.

Tabel 3.1: Data penampang yang digunakan untuk jembatan.


Donompong	t3	t2	Tf	tw	D	A	TorsConst	I33	I22
Penampang	(m)	(m)	(m)	(m)	(m)	(m^2)	(m^4)	(m^4)	(m^4)
Baja bundar Ø 33,4 m	0,0334	-	-	0,0017	ı	0,0002	0,00000004159	0,0000000208	0,00000002079
IWF 300.300.10.15	0,3	0,3	0,015	0,01	ı	0,0117	0,0000007416	0,000199	0,000068
Baja bundar Ø 21,4 mm	0,0214	-	-	0,0017	ı	0,0001	0,0000000101	0,0000000505	0,00000000505
Pipa baja Ø 660 mm	0,66	-	-	0,0142	1	0,0288	0,003005	0,001503	0,001503
UPN 100	0,1	0,05	0,009	0,006	1	0,0013	0,00000002398	0,00000207	0,0000003306
UPN 200	0,2	0,075	0,012	0,0085	ı	0,0032	0,0000001038	0,000019	0,000001706
UPN 400	0,4	0,11	0,018	0,014	ı	0,0091	0,0000007085	0,000201	0,00000921
UPN 80	0,08	0,045	0,008	0,006	ı	0,0011	0,00000001798	0,00000107	0,0000002179
Kabel utama	-	-	-	ı	0,06	-	-	-	-
Kabel ikatan angin	-	-	-	-	0,01	-	-	-	-

Tabel 3.1: Lanjutan.

Danamana	AS2	AS3	S33	S22	Z33	Z22	R33	R22	W
Penampang	(m^2)	(m^2)	(m^3)	(m^3)	(m^3)	(m^3)	(m)	(m)	(kN)
Baja bundar Ø 33,4 m	0,000082	0,00008	0,000001	0,000001	0,000002	0,00000166	0,01124	0,01124	4,007
IWF 300.300.10.15	0,003	0,0075	0,001	0,0005	0,0015	0,000682	0,130524	0,075968	450,346
Baja bundar Ø 21,4 mm	0,000052	0,00005	0,0000005	0,0000005	0,0000006	0,000000648	0,007004	0,007004	1,39
Pipa baja Ø 660 mm	0,01441	0,0144	0,005	0,0046	0,0059	0,005923	0,22838	0,22838	275,895
UPN 100	0,0006	0,0009	0,00004	0,00001	0,00005	0,000018	0,039188	0,01566	1,245
UPN 200 mm	0,0017	0,0017	0,0002	0,00003	0,0002	0,000058	0,077246	0,022984	61,27
UPN 400	0,0056	0,004	0,001	0,0001	0,0012	0,000202	0,148921	0,031891	57,166
UPN 80	0,00048	0,0007	0,00003	0,000007	0,00003	0,000013	0,031103	0,014048	0,76
Kabel utama	-	-	-	-	-	-	-	-	60,199
Kabel ikatan angin	_	-	-	-	-	-	-	-	1,275
Total									913,5530


3.8.3 Beban Mati Tambahan (Beban Sandaran)

Beban mati sandaran di asumsikan sebagai beban terpusat pada analisis *software* yang di tumpukan memanjang arah x di joint per 2,5 meter. Untuk pendatailan ukuran lihat Gambar (a) dan (b).

Gambar 3.14: (a) perencanaan sandaran dan (b) detail penampang sandaran.

Dimensi sandaran di rencanakan menggunakan profil baja UNP 65 mm yang dapat dilihat pada Gambar 3.15 dan pada Tabel 3.2.

Gambar 3.15: Baja ringan UPN 65.

Tabel 3.2: Dimensi sandaran profil UPN 65.

В	Н	Tf	Tw	Luas (A)	Berat (W)
(m)	(m)	(m)	(m)	(m^2)	(kg/m)
0,065	0,042	0,0075	0,0055	0,0009875	0,076019925

Dimana:

1. Panjang penampang yang di rencanakan adalah:

a. Panjang penampang horizontal: 2,5 m

b. Panjang penampang vertikal: 1,5 m

c. Panjang penampang diagonal: 2,9155 m

2. Jumlah batang:

a. Penampang horizontal: 160

b. Penampang vertikal: 82

c. Penampang diagonal: 80

3. Berat (W) per panjang penampang:

a. Berat batang horizontal = W per meter x panjang

 $= 0.076019925 \times 2.5$

= 0,190049812 kN

b. Berat batang vertikal = W per meter x panjang

 $= 0.076019925 \times 1.5$

= 0,114029887 kN

c. Berat batang diagonal = W per meter x panjang

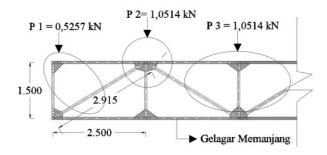
 $= 0.076019925 \times 2.9155$

= 0.221636091 kN

4. Berat total penampang

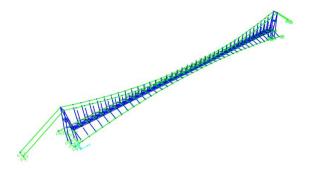
=
$$(160 \times 0,190049812) + (82 \times 0,114029887) + (80 \times 0,221636091)$$

= $57,4893 \text{ kN}$


Maka besarnya beban adalah:

1.
$$P1 = 0,190049812 + 0,114029887 + 0,221636091$$

= 0,5257 kN


2.
$$P2 = (2 \times 0.190049812) + (2 \times 0.221636091) + 0.114029887$$

= 1.0514 kN

3.
$$P3 = (2 \times 0.190049812) + (2 \times 0.221636091) + 0.114029887$$

= 1.0514 kN

Untuk penjelasan tentang nilai p1, p2 dan p3 dapat dilihat pada Gambar 3.16 dan untuk *input* pada *software* dapat dilihat pada Gambar 3.17.

Gambar 3.16: Nilai p1, p2 dan p3.

Gambar 3.17: *Input* beban mati tambahan.

3.8.4 Beban Angin

1. Berdasarkan SNI 1725-2016:

Kecepatan dasar (V_B) = 90 – 126 km/jam (25 – 35 m/detik).

2. Berdasarkan surat edaran menteri pekerjaan umum No.02/SE/M/2010:

Kecepatan dasar $(V_B) = 35$ m/detik.

Maka:

 $(V_B) = 35 \text{ m/detik}$

Karena elevasi lantai jembatan adalah 7 m diatas permukaan tanah atau permukaan air, maka:

kecepatan angin rencana $V_{DZ}=(V_B)=W=35 \text{ m/detik}.$

 Untuk gelagar memanjang dan gelagar melintang berupa permukaan datar, maka hanya ada angin tekan. Untuk kejelasannya lihat pada Tabel 3.3.

Tabel 3.3: Penampang yang diterpa angin.

Danampana	Tinggi (H)
Penampang	(m)
Gelagar memanjang (IWF 300.300.10.15)	0,3
Gelagar melintang (UPN 400)	0,4

Dimana:

a. Angin Tekan =
$$0,0019 \text{ MPa}$$

= 1.9 kN/m^2

Maka:

Angin tekan untuk gelagar melintang:

a. Angin tekan kanan arah
$$x = y = 1.9 \times 0.4$$

= 0.76 kN/m

b. Angin tekan kiri arah
$$x = y$$
 = - (1,9 x 0,4)
= - 0,76 kN/m

Angin tekan untuk gelagar memanjang:

a. Angin tekan kanan arah
$$x = y = 1.9 \times 0.3$$

= 0.57 kN/m

b. Angin tekan kiri arah
$$x = y$$
 = - (1,9 x 0,3)
= - 0,57 kN/m

2. Untuk menara berupa rangka, maka ada angin tekan dan angin hisap yang dapat dilihat pada Tabel 3.4 dan untuk *input* beban angin dapat dilihat pada Gambar 3.18.

Tabel 3.4: Penampang yang diterpa angin.

Donompong	Tinggi (H)
Penampang	(m)
Menara diameter 660 mm	0,660
Penampang horizontal (UPN 100)	0,1

Dimana:

a. Angin tekan =
$$0,0024 \text{ MPa}$$

= $2,4 \text{ kN/m}^2$

b. Angin hisap =
$$0,0012 \text{ MPa}$$

= $1,2 \text{ kN/m}^2$

Maka:

Angin tekan untuk menara diameter 660 m

a. Angin tekan kanan arah
$$x = y = 2.4 \times 0,660$$

= 1,584 kN/m

b. Angin tekan kiri arah
$$x = y = -(2.4 \times 0.660)$$

= -1.584 kN/m

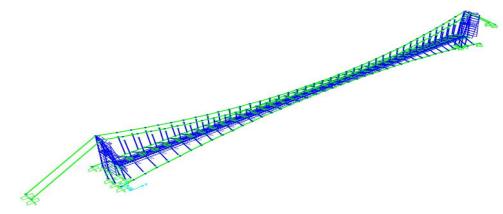
Angin tekan untuk penampang horizontal (UPN 100)

a. Angin tekan kanan arah
$$x = y = 2.4 \times 0.1$$

= 0.24 kN/m

b. Angin tekan kiri arah
$$x = y$$
 = - (2,4 x 0,1)
= - 0,24 kN/m

Angin hisap untuk menara diameter 660 mm


c. Angin hisap kanan arah
$$x = y = 1.2 \times 0.660$$

= 0.792 kN/m

d. Angin hisap kiri arah
$$x = y = -(1,2 \times 0,660)$$

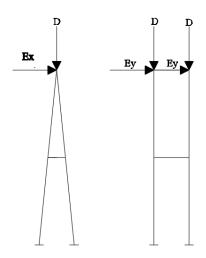
= -0,792 kN/m

Angin tekan untuk penampang horizontal (UPN 100)

e. Angin tekan kanan arah
$$x = y = 1.2 \times 0.1$$

= 0.12 kN/m

f. Angin tekan kiri arah
$$x = y$$
 = - (1,2 x 0,1)
= - 0,12 kN/m



Gambar 3.18: *Input* beban angin kanan arah y.

3.8.5 Beban Gempa

Perhitungan beban gempa menggunakan standar acuan Surat Edaran Menteri Pekerjaaan Umum No.02/SE/M/2010 dilakukan dengan cara statik ekivalen dimana beban lateral di limpahkan di puncak menara sebesar 15% sampai dengan maksimum 20% beban mati pada puncak menara.

Karena lokasi jembatan direncanakan di Sungai Kampar yang berlokasi di Desa Kuok, Kecamatan Kuok, Kabupaten Kampar, Riau. Maka di asumsukan menggunakan 15%. Perlaku pembebanan gempa dapat dilihat pada Gambar 3.19.

Gambar 3.19: Perilaku beban gempa.

Gaya kabel di puncak menara akibat beban mati = 1094,4600 kNE = 1094,4600 x 15% = 164,1690 kN

Dari hasil beban gempa yang didapat tersebut, memiliki selisih nilai yang tipis dengan perhitungan gempa sesuai aturan SNI-2833-2013. Berikut adalah perhitungan beban gempa secara statik ekivalen menurut SNI-2833-2013 yang di analisis melalui metode ekpresi dengan memberikan beban merata (p_0) .

Lokasi perencanaan pembangunan jembatan gantung khusus pekalan kaki:

Desa : Pulau belimbing – Pulau Jambu.

Kecamatan : Kuok. Kabupaten : Kampar. Provinsi : Pekanbaru.

Kondisi tanah : tanah lunak (SE)

Klasifikasi operasional: jembatan penting (essential bridges)

Karena jembatan yang digunakan jembatan penting, maka periode rencana dengan perioda ulang 1000 tahun. Untuk kejelasannya lihat Gambar 3.20, Gambar 3.21, dan Gambar 3.22.

Gambar 3.20: Peta percepatan puncak di batuan dasar (PGA) untuk probabilitas terlampaui 7% dalam 75 tahun (SNI-2833-2013).

Gambar 3.21: Peta respons spektra percepatan 0,2 detik di batuan dasar untuk probabilitas terlampaui 7% dalam 75 tahun (SNI-2833-2013).

Gambar 3.22: Peta respons spektra percepatan 1 detik di batuan dasar untuk probabilitas terlampaui 7% dalam 75 tahun (SNI-2833-2013).

Dari Gambar 3,8 – Gambar 3.10 diperoleh:

1.
$$PGA = 0.15 g$$

2. Ss =
$$0.3 g$$

3.
$$S_1 = 0.25 g$$

Dimana:

Nilai F_{PGA}, F_a dan F_v didapat dengan cara interpolasi.

1.
$$F_{PGA} = \frac{(1.7 - 2.5)}{(0.2 - 0.1)} \times (0.15 - 0.1) + (2.5) = 2.1 \text{ g}$$

2.
$$F_a = \frac{(1.7 - 2.5)}{(0.3 - 0.25)} \times (0.5 - 0.25) + (2.5) = 2.34 g$$

3.
$$F_v = \frac{(2.8 - 3.2)}{(0.25 - 0.2)} \times (0.3 - 0.2) + (3.2) = 3 g$$

Maka:

1.
$$A_S = F_{PGA} \times PGA = 2.1 \times 0.15 = 0.315 \text{ g}$$

2.
$$S_{DS} = F_a \times S_s = 2,34 \times 0,3 = 0,702 g$$

3.
$$S_{D1} = F_v \times S_1 = 3 \times 0.25 = 0.75 g$$

4.
$$T_S = \frac{S_{D1}}{S_{DS}} = \frac{0.75}{0.702} = 1.0684 \text{ s}$$

5.
$$T_0 = 0.2 T_s = 0.2 x 1.0684 = 0.2137 s$$

Perhitungan periode fundamental:

1. Model 1

Dimana jembatan di beri ekpresi beban lateral merata (p_0) sebesar 1000 kN/m. Dengan demikian di dapat nilai deformasi (Vx) maksimum akibat beban merata (p_0) sebesar 0,170855 m.

$$Wt = 1109,6133 \text{ kN}$$

$$L = 100 \text{ m}$$

$$g = 9.81 \text{ m/s}^2$$

$$K = \frac{P_0 L}{V_{S \text{ max}}} = \frac{1000 \text{ x } 100}{0,170855} = 585291,6216 \text{ kN/m}$$

Jadi, nilai periode fundamental adalah:

$$T_{\rm m} = 2 \pi \sqrt{\frac{W}{g \, K}} = 2 \pi \sqrt{\frac{1109,6133}{9,81 \, x \, 585291,6216}} = 0,0873 \, s$$

Karena nilai $T_m < T_0$, maka:

$$C_{sm} = (S_{DS} - A_S) \frac{T}{T_0} + A_S$$
$$= (0,702 - 0,315) \times \frac{0,0873}{0,2137} + 0,315$$
$$= 0,4682$$

Jembatan penting

$$R = 3.5$$

Sehingga:

$$E_Q = \frac{C_{sm}}{R} \times W_t = \frac{0,4682}{3,5} \times 1109,6133 = 148,8586 \text{ kN}$$

Untuk pengaplikasian di analisis *software* menggunakan peroleh nilai gempa yang terbesar yaitu menurut Surat Edaran Menteri Pekerjaaan Umum No.02/SE/M/2010 yaitu sebesar 164,1690 kN.

2. Model 2

Dimana jembatan diberi ekpresi beban lateral merata (p₀) sebesar 1000 kN/m. Dengan demikian di dapat nilai deformasi (Vx) maksimum akibat beban merata (p₀) sebesar 0,169784 m.

$$Wt = 1109,6133 \text{ kN}$$

$$L = 100 \text{ m}$$

$$g = 9.81 \text{ m/s}^2$$

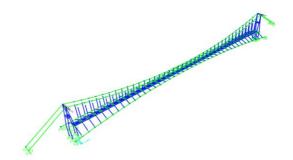
$$K = \frac{P_0 L}{V_{S \text{ max}}} = \frac{1000 \text{ x } 100}{0,169784} = 588973,6498 \text{ kN/m}$$

Jadi, nilai periode fundamental adalah:

$$T_{\rm m} = 2 \pi \sqrt{\frac{W}{g \, K}} = 2 \pi \sqrt{\frac{1109,6133}{9,81 \, x \, 588973,6498}} = 0,0846 \, s$$

Karena nilai $T_m < T_{0,m}$ maka:

$$C_{sm} = (S_{DS} - A_S) \frac{T}{T_0} + A_S$$
$$= (0,702 - 0,315) \times \frac{0,0846}{0,2137} + 0,315$$
$$= 0,4682$$

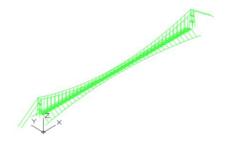

Jembatan penting

$$R = 3,5$$

Sehingga:

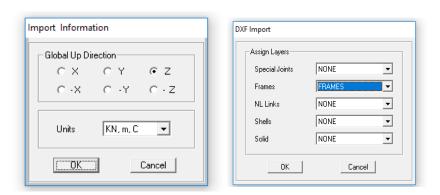
$$E_Q = \frac{C_{sm}}{R} \times W_t = \frac{0.4682}{3.5} \times 1109,6133 = 148,8586 \text{ kN}$$

Untuk pengaplikasian di analisis *software* menggunakan peroleh nilai gempa yang terbesar yaitu menurut Surat Edaran Menteri Pekerjaaan Umum No.02/SE/M/2010 yaitu sebesar 164,1690 kN. Untuk kejelasannya lihat Gambar 3.23.



Gambar 3.23: *Input* beban gempa kanan arah y.

3.9 Langkah-Langkah Pemodelan Struktur Jembatan Gantung (Susspension Bridge) Menggunakan Analisis Software.


3.9.1 Desain dan Pemodelan

Dalam merencanakan struktur jembatan gantung (*suspension bridge*), diperlukan perangkat lunak tambahan berbentuk 3D untuk mempermudah pemodelan. Dilakukan dengan cara membuat pemodelan lalu memindahkannya ke analisis *software* yang dapat dilihat Gambar 3.24.

Gambar 3.24: Pemodelan jembatan gantung (*suspension bridge*) bentang 100 menggunakan *software*.

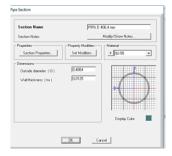
Dalam hal ini menggunakan 1 layer agar frame nantinya akan terbaca di perangkat analisis *software* dan UCS harus dipindahkan ke titik sesuai yang akan di edit grid yang dapat dilihat pada Gambar 3.22, serta menyimpannya dalam format DXF. Lalu mengimport desain ke perangkat analisis *software* dengan cara membuka menu *file, import, AutoCAD.dxf file,* lalu pilih arah global sumbu Z dan memilih satuan yang diinginkan serta memilih pilih *frames* pada *assign layers* sesuai dengan layer di *software* yang dapat dilihat pada Gambar 3.25 dan Gambar 3.26.

Gambar 3.25: Pengaplikasian ke analisis software.

Gambar 3.26: Edit grid data bentang struktur.

3.9.2 Mengidentifikasi Material yang Digunakan

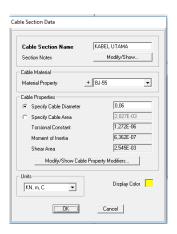
Langkah berikutnya yang harus dilakukan adalah mengidentifikasi material yang digunakan pada struktur jembatan yang di rencanakan yang berupa struktur baja dengan menggunakan mutu yang direncanakan yaitu BJ-55 yang dapat dilihat pada Gambar 3.27. Cara mengidentifikasi material yang digunakan ini yaitu dengan memilih menu *define*, *materials*, *add new materials*. Lalu isi data sesuai dengan ketentuan yang berlaku yang dapat dilihat pada Tabel 2.3.


Gambar 3.27: Identifikasi materials mutu baja BJ 55.

3.9.3 Mengidentifikasi Materials Property Data

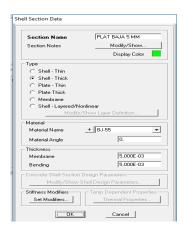
Pada tahapan ini dilakukan untuk Mengidentifikasi ukuran penampang (*materials property*) yang akan direncanakan untuk struktur jembatan gantung (*suspension bridge*) yang berupa menara (*pylon*), gelagar memanjang, gelagar melintang, lantai (*deck*) jembatan, kabel pengantung, kabel utama dan kabel ikatan angin.

1. Frame section


Untuk menginput penampang yang direncanakan, dilakukan dengan cara membuka menu *define - section propertie - frame sections - add new properties* lalu input data sesuai dengan yang direncanakan. Misal untuk penampang menara dapat dilihat pada Gambar 3.28.

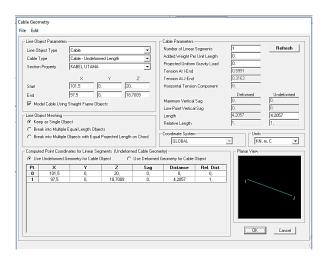
Gambar 3.28: Penampang baja (steel) menara diameter 406,64 m.

2. Cable section


Untuk menginput kabel utama dan kabel ikatan angin yang menggunakan untaian baja yang digunakan berupa *straind rope* dapat dilakaukan dengan cara membuka menu *define - section properties - cable sections - add new sections*, lalu input data sesuai dengan yang direncanakan. Untuk kejelasannya dapat dilihat pada Gambar 3.29.

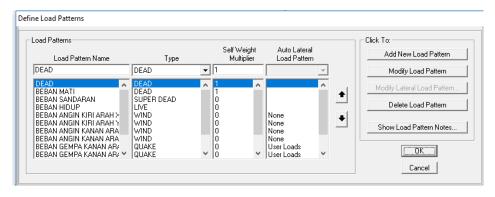
Gambar 3.29: Penampang kabel utama straind rope 6 x Fi(29) IWRC.

3. Pelat lantai


Untuk menginput pelat lantai yang direncanakan, dapat dilakaukan dengan cara membuka menu *define - section properties - Area sections*, lalu input data sesuai dengan yang direncanakan. Untuk kejelasannya dapat dilihat pada Gambar 3.30.

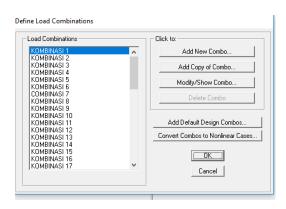
Gambar 3.30: Perencanaan pelat lantai.

Setelah data-data selesai di *input*, maka langkah selanjutnya adalah mengidentifikasi penampang yang direncanakan dengan mengklik penampang yang akan di ubah menjadi penampang yang direncanakan, dengan cara klik penampang, buka menu *asign* – *section properties* – *frame sections*, lalu pilih properti yang telah di rencanakan.


Untuk kabel utama dan kabel ikatan angin pengaplikasian dilakukan pengambaran yang dapat dilihat pada Gambar 3.31.

Gambar 3.31: Penggambaran kabel utama dan ikatan angin.

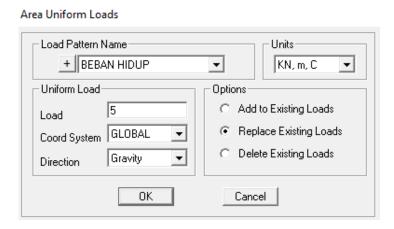
3.9.4 Mengidentifikasi Define Load Pettern


Pada tahapan ini dilakukan identifikasi beban yang bekerja pada jembatan gantung pejalan kaki yang berupa beban mati, beban hidup, beban angin dan beban gempa yang dpat dilihat pada Gambar 3.32.

Gambar 3.32: Mengidentifikasi define load petterns.

3.9.5 Mengidentifikasi Kombinasi Pembebanan

Pada tahapan ini dilakukan kombinasi pembebean sesuai dengan peraturan SNI 1727:2013 yang dapat dilihat pada Gambar 3.33.



Gambar 3.33: Kombinasi pembebanan jembatan gantung.

- 1. Kombinasi 1: 1,4D
- 2. Kombinasi 2: 1,2D + 1,6L asimetris
- 3. Kombinasi 3: 1,2D + 1,6 L
- 4. Kombinasi 4: 1,2D + L asimetris
- 5. Kombinasi 5: 1,2D + L
- 6. Kombinasi 6: $1,2D + 0,5 W_X + 0,5 W_y$
- 7. Kombinasi 7: 1,2D 0,5 W_X 0,5 W_y
- 8. Kombinasi 8: 1,2D +1,0 W_X +1,0 W_V
- 9. Kombinasi 9: 1,2D 1,0 W_x 1,0 W_y
- 10. Kombinasi 10: $0.9D + 1.0 W_X + 1.0 W_y$
- 11. Kombinasi 11: 0,9D 1,0 W_X 1,0 W_y
- 12. Kombinasi 12: $1,2D + 1,0 E_X + 1,0 (0,3) E_v + L$ asimetris
- 13. Kombinasi 13: $1,2D + 1,0 E_X + 1,0 (0,3) E_v + L$
- 14. Kombinasi 14: 1,2D 1,0 (0,3) E_X 1,0 E_y L asimetris
- 15. Kombinasi 15: 1,2D 1,0 (0,3) E_X 1,0 E_y L
- 16. Kombinasi 16: $0.9D + 1.0(0.3) E_X + 1.0 E_y$
- 17. Kombinasi 17: 0,9D 1,0 (0,3) E_X 1,0 E_V
- 18. Kombinasi 18: KOMBINASI KESELURUHAN

3.9.6 Mengidentifikasi Pembebanan

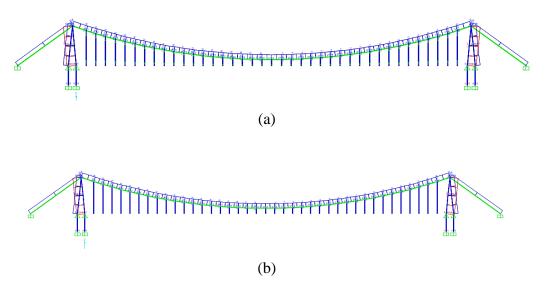
Pada tahapan ini beban yang telah dihitung kemudian di *input* ke analisis *software*. Misal memasukkan beban hidup simetris. Untuk pengaplikasiannya buka menu *asign* – *area loads* – *uniform* (*shell*) yang dapat dilihat pada Gambar 3.34.

Gambar 3.34: Memasukkan nilai beban hidup.

BAB 4

HASIL DAN PEMBAHASAN

4.1 Tinjauan Umum


Pada bab ini akan membahas tentang hasil studi dan membandingkan hasil analisis dari *software* berdasarkan dua jenis struktur jembatan yaitu, jembatan gantung struktur baja memakai menara baja dan jembatan gantung struktur baja memakai menara komposit.

4.2 Hasil analisis

Dari hasil analisis terhadap struktur jembatan gantung pejalan kaki kelas I struktur baja memakai menara baja dan menara komposit, dari pembebanan yang telah di berikan, maka didapatkan nilai deformasi yang berbanding kecil.

4.2.1 Hasil Analisis Tegangan Kabel Utama dan Kabel Backstays

Hasil analisis tegangan pada kabel utama dan kabel *backstays* model 1 dan model 2 berbanding kecil. Untuk kejelasannya lihat Gambar 4.1.

Gambar 4.1: (a) Hasil tegangan aksial model 1 akibat kombinasi 3, (b) Hasil tegangan aksial model 2 akibat kombinasi 3.

4.2.1.1 Kabel Utama

Hasil analisis nilai tegangan (σ) maksimum akibat beban mati dan beban hidup pada kabel utama terletak pada *frames* 472, 511, 551 dan 590 yang terletak tepat di pucuk menara dapat dilihat pada Tabel 4.1.

Tabel 4.1: Tegangan maksimum (σ_{maks}) pada kabel utama akibat beban mati dan beban hidup.

Case Type	$\sigma_{\text{maks}} (kN/m^2)$		
cuse Type	Model 1	Model 2	
Beban Mati	193542,3	193542,34	
Beban Hidup Simetris	254688,84	254688,9	
Beban Hidup Asimetris	64029,13	64029,15	
Beban Mati Tambahan (Sandaran)	11822,18	11822,19	

Untuk kabel utama tegangan (σ) maksimum akibat kombinasi dari beban mati dan beban hidup terletak pada kombinasi 3 yang dapat dilihat pada Tabel 4.2.

Tabel 4.2: Tegangan maksimum (σ_{maks}) pada kabel utama akibat kombinasi pembebanan.

Case Type	σ _{maks} (k	(N/m^2)		
Cuse Type	Model 1	Model 2		
kombinasi 1	287510,2800	287510,3400		
kombinasi 2	347741,8400	347741,9200		
kombinasi 3	653939,5200	653939,6700		
kombinasi 4	309756,9600	309752,7400		
kombinasi 5	501126,2200	501126,3300		

Untuk diagram maksimum dari tegangan kabel utama dapat dilihat pada Gambar 4.2. Dimana tegangan maksimum pada kabel utama memenuhi syarat dari peraturan Surat Edaran Menteri Pekerjaan Umum No. 02/SE/M/2010.

Gambar 4.2: Tegangan maksimum kabel utama (a) model 1, (b) model 2.

Dimana:

 σ ultimit = σ leleh minimum

= 1500 MPa

 $= 1500000 \text{ kN/m}^2$

Untuk jembatan pejalan kaki dapat di ambil faktor keamanan lebih kecil dari 3 yang umum digunakan, yaitu sebesar 2.

$$\sigma_{izin} = \frac{Tegangan ultimit}{faktor keamanan yang diizinkan}$$

$$= \frac{1500000}{2}$$

$$= 750000 \text{ kN/m}^2$$

Kontrol:

Model 1

 σ_{maks} < σ_{izin}

 $653939,5200 \text{ kN/m}^2 < 750000 \text{ kN/m}^2 \dots \text{OKE } !$

Model 2

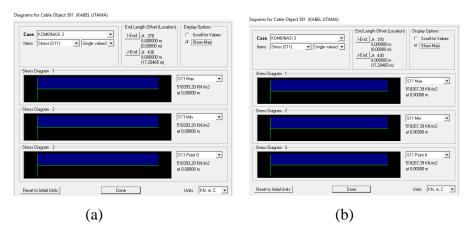
 σ_{maks} < σ_{izin}

 $653939,6700 \text{ kN/m}^2 < 750000 \text{ kN/m}^2 \dots \text{OKE } !$

4.2.1.2 Kabel Backstays

Hasil analisis nilai tegangan (σ) maksimum akibat beban mati dan beban hidup pada kabel *backstays* berbanding kecil. Dimana untuk kabel *backstays* tegangan (σ) terletak *frames* 591, 592, 593 dan 594 yang dapat dilihat pada Tabel 4.3.

Tabel 4.3: Tegangan maksumum (σ_{maks}) pada *backstays* akibat beban mati dan beban hidup.


Case Type	$\sigma_{\text{maks}} (kN/m^2)$		
cuse Type	Model 1	Model 2	
Beban Mati	153506,31	153469,1	
Beban Hidup Simetris	201839,26	201790,25	
Beban Hidup Asimetris	49408,92	49396,73	
Beban Mati Tambahan (Sandaran)	9369	9366,73	

Hasil analisis tegangan (σ) pada kabel *backstays* pada model 1 dan model 2 terletak pada kombinasi 3 yang dapat dilihat pada Tabel 4.4.

Tabel 4.4: Tegangan maksumum (σ_{maks}) pada backstays akibat kombinasi pembebanan.

Case Type	σ _{maks} ($\kappa N/m^2$)		
Cuse Type	Model 1	Model 2		
Kombinasi 1	228025,4400	227970,1500		
Kombinasi 2	274504,6500	274437,7600		
Kombinasi 3	518393,2000	518267,3900		
Kombinasi 4	244859,3000	244799,7200		
Kombinasi 5	397289,6400	397193,2400		

Untuk diagram maksimum dari tegangan kabel *backstays* dapat dilihat pada Gambar 4.3. Dimana tegangan maksimum pada kabel *backstays* memenuhi syarat dari peraturan Surat Edaran Menteri Pekerjaan Umum No. 02/SE/M/2010.

Gambar 4.3: Tegangan maksimum kabel backstays (a) model 1, (b) model 2

Dimana:

 σ ultimit = σ leleh minimum

= 1500 MPa

 $= 1500000 \text{ kN/m}^2$

Untuk jembatan pejalan kaki dapat di ambil faktor keamanan lebih kecil dari 3 yang umum digunakan, yaitu sebesar 2.

$$\sigma_{izin} = \frac{Tegangan ultimit}{faktor keamanan yang diizinkan}$$

$$= \frac{1500000}{2}$$

$$= 750000 \text{ kN/m}^2$$

Kontrol:

Model 1

 σ_{maks} < σ_{izin}

 $518393,2000 \text{ kN/m}^2 < 750000 \text{ kN/m}^2 \dots \text{OKE } !$

Model 1

 $\sigma_{maks} \qquad \qquad < \qquad \sigma_{izin}$

 $518267,3900 \text{ kN/m}^2 < 750000 \text{ kN/m}^2 \dots \text{OKE } !$

4.2.2 Hasil Analisis Lendutan

Hasil analisis lendutan yang bekerja terhadap perencanaan pemodelan 1 dan pemodelan 2 berbanding kecil. Dalam hal ini, hasil analisis lendutan pada 1/4 bentang tidak boleh melebihi lendutan izin yang disyaratkan, yaitu sebesar L/200 meter. Lendutan gelagar 1/4 bentang terletak pada *joint* 51, 167, 168, 169, 170, 171 dan 172, yang bernilai sama. Untuk Lendutan pada gelagar dapat dilihat pada Tabel 4.3 dan Tabel 4.4 dan lendutan pada kabel dapat dilihat pada Tabel 4.5 dan Table 4.6.

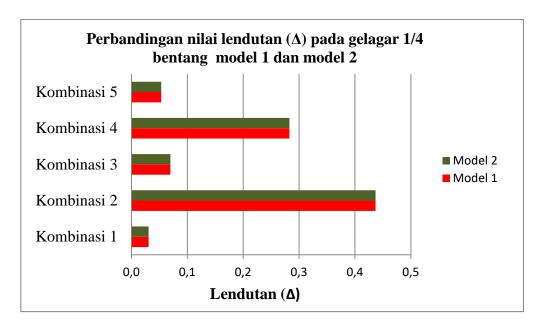
4.2.2.1 Hasil Analisis Lendutan pada Gelagar

Hasil analisis nilai lendutan maksimum pada 1/4 bentang gelagar jembatan gantung akibat pembebanan dapat dilihat pada Tabel 4.5.

Tabel 4.5: Hasil analisis nilai lendutan maksimum pada 1/4 bentang gelagar jembatan gantung akibat pembebanan.

Output Case	Lendutan (u3)		
Output Case	Model 1	Model 2	
Beban Mati	0,020789	0,020788	
Beban Hidup Simetris	0,027081	0,027079	
Beban Hidup Asimetris	0,256445	0,256444	
Beban Mati Tambahan (Sandaran)	0,001257	0,001257	

Hasil analisis nilai lendutan maksimum pada 1/4 bentang gelagar jembatan gantung akibat kombinasi beban mati dan beban hidup dapat dilihat pada Tabel 4.6.


Tabel 4.6: Hasil analisis nilai lendutan pada 1/4 bentang gelagar jembatan gantung akibat kombinasi pembebanan.

Output Case	Lendutan (u3)		
Ouipui Case	Model 1	Model 2	
Kombinasi 1	0,0308650	0,0308630	
Kombinasi 2	0,4367670	0,4367640	

Tabel 4.6: Lanjutan.

Output Case	Lendutan (u3)		
ouipui cusc	Model 1	Model 2	
Kombinasi 3	0,0697850	0,0697810	
Kombinasi 4	0,2829010	0,2828980	
Kombinasi 5	0,0535370	0,0535330	

Grafik perbandingan nilai lendutan (Δ) pada gelagar $\frac{1}{4}$ bentang model 1 dan model 2 dapat dilihat pada Gambar 4.4.

Gambar 4.4: Grafik perbandingan nilai lendutan (Δ) pada gelagar ¼ bentang model 1 dengan model 2.

Dari hasil analisis tersebut, nilai lendutan maksimum gelagar pada ¼ bentang adalah terdapat pada Kombinasi 2 yang diakibatkan oleh beban mati dan beban hidup asimetris yang dalam bentuk kombinasi berupa 1,2D + 1,6L asimetris.

Model 1:

$$\Delta_{maks}$$
 $\leq \frac{1}{200} L$ 0,4367670 m \leq 0,5 m..... OKE!

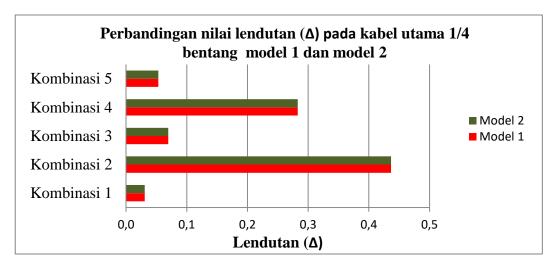
$$\Delta_{\text{maks}} \leq \frac{1}{200} I$$

 $0,4367640 \text{ m} \leq 0,5 \text{ m..... OKE!}$

4.2.2.2 Hasil Analisis Lendutan pada Kabel

Hasil analisis nilai lendutan maksimum pada 1/4 pada kabel jembatan gantung akibat pembebanan dapat dilihat pada Tabel 4.7.

Tabel 4.7: Hasil analisis nilai lendutan 1/4 bentang pada kabel jembatan gantung akibat pembebanan.


Output Case	Lendutan (u3)		
Ouipui Cuse	Model 1	Model 2	
Beban Mati	0,020676	0,020675	
Beban Hidup Simetris	0,026926	0,026924	
Beban Hidup Asimetris	0,256406	0,256405	
Beban Mati Tambahan (Sandaran)	0,001250	0,001250	

Hasil analisis nilai lendutan maksimum pada 1/4 pada kabel jembatan gantung akibat kombinasi beban mati dan beban hidup dapat dilihat pada Tabel 4.8.

Tabel 4.8: Hasil analisis nilai lendutan 1/4 bentang pada kabel jembatan gantung akibat kombinasi pembebanan.

Output Case	Lendutan (u3)		
Output Case	Model 1	Model 2	
Kombinasi 1	0,030696	0,030694	
Kombinasi 2	0,43656	0,436557	
Kombinasi 3	0,069392	0,069388	
Kombinasi 4	0,282717	0,282714	
Kombinasi 5	0,053237	0,053233	

Grafik perbandingan nilai lendutan (Δ) pada kabel $\frac{1}{4}$ bentang model 1 dan model 2 dapat dilihat pada Gambar 4.5.

Gambar 4.5: Grafik perbandingan nilai lendutan (Δ) pada kabel ½ bentang model 1 dengan model 2.

Dari hasil analisis tersebut, nilai lendutan maksimum gelagar pada ¼ bentang adalah terdapat pada Kombinasi 2 yang diakibatkan oleh beban mati dan beban hidup asimetris yang dalam bentuk kombinasi berupa 1,2D + 1,6L asimetris.

Model 1:

$$\Delta_{\text{maks}} \leq \frac{1}{200} L$$
0,43656 m \leq 0,5 m..... OKE!

Model 2

$$\Delta_{maks}$$
 $\leq \frac{1}{200} L$ 0,436557 m \leq 0,5 m..... OKE!

4.2.3 Hasil Analisis Deformasi Arah X dan Arah Y

Hasil analisis deformasi yang bekerja terhadap perencanaan pemodelan 1 dan pemodelan 2 berbanding kecil. Untuk deformasi akibat beban gempa dapat dilihat pada Tabel 4.9 dan Tabel 4.10 dan untuk deformasi akibat beban angin dapat dilihat pada Tabel 4.11.

4.2.3.1 Deformasi Akibat Beban Gempa

Hasil analisis nilai deformasi maksimum pada gelagar arah x dan y dapat dilihat pada Tabel 4.9.

Tabel 4.9: Hasil analisis nilai deformasi maksimum pada gelagar arah x dan y.

Output Case	Deformasi (arah x)		Deformasi	i (arah y)
Kombinasi 12	4,959E-09	3,108E-10	4,97E-09	3,11E-10
Kombinasi 13	1,076E-10	3,108E-10	1,076E-10	3,11E-10
Kombinasi 14	4,954E-09	3,108E-10	4,96E-09	3,11E-10
Kombinasi 15	1,122E-10	3,108E-10	1,122E-10	3,11E-10
Kombinasi 16	8,006E-11	2,33E-10	8,006E-11	2,33E-10
Kombinasi 17	8,476E-11	2,331E-10	8,476E-11	2,33E-10

Hasil analisis nilai deformasi maksimum pada menara arah x dan y dapat dilihat pada Tabel 4.10.

Tabel 4.10: Hasil analisis nilai deformasi maksimum pada menara arah x dan y.

	Deformasi		Deformasi	
Output Case	(Arah X)		(Arah Y)	
	Model 1	Model 2	Model 1	Model 2
Kombinasi 12	0,002881	0,00288	0,001627	0,001617
Kombinasi 13	0,004535	0,004534	0,001627	0,001617
Kombinasi 14	0,002563	0,002562	0,001627	0,001617
Kombinasi 15	0,004217	0,004216	0,001627	0,001617
Kombinasi 16	0,001795	0,001794	0,005423	0,005390
Kombinasi 17	0,001477	0,001476	0,005423	0,005390

Dari hasil analisis tersebut, nilai deformasi pada puncak menara terbesar pada model 1 terletak pada arah y yaitu sebesar 0,004535 m dan nilai deformasi terbesar pada model 1 terletak pada arah y yaitu sebesar 0,005423 m. Deformasi harus memuni syarat deformasi izin L/240 menurut AISC. Dari nilai deformasi tersebut menunjukkan bahwa menara sudah cukup kaku.

a.
$$\delta_{maks}$$
 arah x
$$\delta_{maks} \leq \delta_{izin}$$

$$\delta_{maks} \leq \frac{1}{240} L$$

$$0,004535 \text{ m} \leq 0,4167 \text{ m......} \text{ OKE!}$$

b.
$$\delta_{maks}$$
 arah y
$$\delta_{maks} \leq \delta_{izin}$$

$$\delta_{maks} \leq \frac{1}{240} L$$

$$0.005423 \text{ m} \leq 0.4167 \text{ m......} \text{ OKE!}$$

4.2.3.2 Deformasi Akibat Beban Angin

Hasil analisis nilai deformasi maksimum arah x dan y akibat beban angin dapat dilihat pada Tabel 4.11.

Tabel 4.11: Hasil analisis nilai deformasi maksimum arah x dan y akibat beban angin.

		Model 1		Mod	lel 1
Joint	Output Case	Deformasi	Deformasi	Deformasi	Deformasi
		(Arah X)	(Arah Y)	(Arah X)	(Arah Y)
Joint 108	Komb 9	0,002517		0,002516	
Joint 108	Komb 10		0,000390		0,000387

Dari hasil analisis tersebut, nilai deformasi pada jembatan terbesar pada model 1 terletak pada arah x yaitu sebesar 0,002517 m dan nilai deformasi

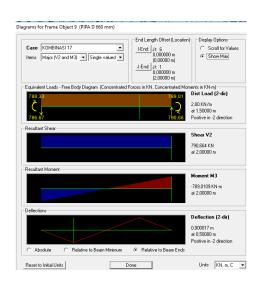
terbesar pada model 2 terletak pada arah x yaitu sebesar 0,002516 m yang terletak pada kombinasi 9. Deformasi harus memenuhi syarat deformasi izin L/240 menurut AISC. Dari nilai deformasi tersebut menunjukkan bahwa menara sudah cukup kaku.

a. Model 1:

$$\begin{array}{lll} \delta_{maks} & \leq & \delta_{izin} \\ \\ \delta_{maks} & \leq & \frac{1}{240}\,L \\ \\ 0,\!002517\,\,m & \leq & 0,\!4167\,\,m.....\,\,OKE! \end{array}$$

b. Model 2

$$\begin{array}{lll} \delta_{maks} & \leq & \delta_{izin} \\ \\ \delta_{maks} & \leq & \frac{1}{240} \, L \\ \\ 0,002516 \, m & \leq & 0,4167 \, m..... \, OKE! \end{array}$$


4.2.4 Hasil Analisis Besarnya Gaya Geser (V2)

Hasil analisis terhadap pemodelan struktur jembatan gantung pejalan kaki kelas I struktur rangka baja dengan struktur rangka baja komposit beton menghasilkan nilai gaya geser maksimum pada Tabel 4.12.

Tabel 4.12: Hasil analisis Gaya geser ($V2_{maks}$).

	Momen maks	Momen maksimum (V2 _{maks})	
Output Case	(kN)		
	Model 1	Model 2	
Kombinasi 17	790,6640	790,3390	

Diagram untuk gaya geser maksimum hasil dari analisis *software* dapat dilihat pada Gambar 4.6.

Gambar 4.6: Gaya geser maksimum ($v2_{maks}$).

4.2.5 Hasil Analisis Gaya Aksial Kabel Utama dan Kabel Backstays

Hasil analisis gaya aksial pada kabel utama dan kabel *backstays* model 1 dan model 2 berbanding kecil.

4.2.5.1 Kabel Utama

Hasil analisis nilai gaya aksial maksimum pada kabel utama akibat beban mati dan beban hidup terletak pada *frames* 472, 511, 551 dan 590 yang terletak tepat di pucuk menara yang dapat dilihat pada Tabel 4.13.

Tabel 4.13: Gaya aksial maksimum pada kabel utama akibat beban mati dan beban hidup.

Case Type	Gaya Aksial (kN)		
cuse Type	Model 1	Model 2	
Beban Mati	547,228	547,228	
Beban Hidup Simetris	720,116	720,116	
Beban Hidup Asimetris	179,02	179,02	
Beban Mati Tambahan (Sandaran)	33,426	33,426	

Untuk kabel utama gaya aksial maksimum akibat beban mati dan beban hidup terletak pada kombinasi 3 yang dapat dilihat pada Tabel 4.14.

Tabel 4.14: Gaya aksial maksimum pada kabel utama akibat kombinasi.

Case Type	Gaya Aksial (kN)		
cuse Type	Model 1	Model 2	
Kombinasi 1	812,9160	812,9160	
Kombinasi 2	983,2170	983,2170	
Kombinasi 3	1848,9700	1848,9710	
Kombinasi 4	875,8170	875,5040	
Kombinasi 5	1416,9010	1416,9010	

4.2.5.2 Kabel Backstays

Hasil analisis nilaigaya aksial maksimum pada kabel utama akibat beban mati dan beban hidup terletak pada *frames* 591, 592, 593 dan 594 yang terletak tepat di pucuk menara yang dapat dilihat pada Tabel 4.15.

Tabel 4.15: Gaya aksial pada backstays akibat beban mati dan beban hidup.

Case Type	Gaya Aksial (kN)		
cuse Type	Model 1	Model 2	
Beban Mati	434,029	433,924	
Beban Hidup Simetris	570,687	570,548	
Beban Hidup Asimetris	145,643	145,608	
Beban Mati Tambahan (Sandaran)	26,49	26,484	

Untuk *backstays* gaya aksial maksimum akibat beban mati dan beban hidup terletak pada kombinasi 3 yang dapat dilihat pada Tabel 4.16.

Tabel 4.16: Gaya aksial pada *backstays* akibat kombinasi pembebanan.

Case Type	Gaya Aksial (kN)			
Cuse Type	Model 1	Model 2		
Kombinasi 1	644,7270	644,5700		
Kombinasi 2	776,1440	775,9540		

Tabel 4.16: Lanjutan.

Case Type	Gaya Aksial (kN)			
Cuse Type	Model 1	Model 2		
Kombinasi 3	1465,7220	1465,3670		
Kombinasi 14	692,3230	692,1550		
Kombinasi 15	1123,3100	1123,0370		

4.2.6 Hasil Analisis Besarnya Momen (M3)

Hasil analisis terhadap pemodelan struktur jembatan gantung pejalan kaki kelas I struktur rangka baja memakai menara dan komposit menghasilkan nilai momen maksimum pada Tabel 4.17.

Tabel 4.17: Hasil analisis Momen maksimum (M3_{maks}).

	Momen maksimum (M3 _{maks})			
Output Case	(kNm)			
	Model 1	Model 2		
Kombinasi 17	788,3257	788,0009		

Cek:

Mu = 788,3257 kNm

Syarat: $Mp > \phi Mu$

 ϕ Mu = 0,90 x 788,3257 = 709,49313 kNm

1. Tekuk lokal:

Untuk profil pipa baja D 660 mm

$$\lambda_f = \frac{D}{tf} = \frac{0.66}{0.0142} = 46,4789$$

$$\lambda_{pf} = 0.07 \frac{E}{Fy} = 0.07 \frac{200000}{410} = 34,146$$

$$\lambda_{\rm fr} = 0.31 \frac{E}{Fy} = 0.31 \frac{200000}{410} = 151.2195$$

Karena $\lambda_f \! > \! \lambda_{pf}$ maka penampang dinyatakan non kompak, maka:

Mp
$$= \left(\frac{0,021 \text{ E}}{\left(\frac{D}{t}\right)} + F_y\right) \text{ S}$$

$$= \left(\frac{0,021 \text{ x } 200000}{46,4789} + 410\right) 0,005$$

$$= 2,5018 \text{ MPa}$$

$$= 2501,8179 \text{ kNm}$$

2. Material leleh (momen plastis):

Menurut AISC kriteria pada bagian perencanaan profil berongga bentuk lingkaran atau pipa dengan rasio:

$$\frac{D}{tf}$$
 \leq 0,45 $\frac{E}{Fy}$

$$\frac{0,66}{0,0142} \leq$$
 0,45 x $\frac{200000}{410}$

$$46,4789 <$$
 219,512 (memnuhi syarat)

Maka:

Mp =
$$Zx x Fy$$

= 0.0059 x 410000 = 2419 kNm

Nilai Mp di ambil nilai nominal yaitu akibat kondisi material leleh (momen plastis) sebesar 2419 kNm

Kontrol:

$$\frac{Mn}{\phi Mu} = \frac{709,49313 \text{ kNm}}{2419 \text{ kNm}} = 0,2933 \dots OKE!$$

4.2.7 Tegangan Pada Menara

Sesuai dengan peraturan Surat Edaran Menteri Pekerjaan Umum No. 02/SE/M/2010, tegangan pada menara harus lebih kecil dari tegangan izin (σ_{izin}) sebesar 160 MPa.

1. Model 1:

Dimana:

 $M_{maks} = 788,3257 \text{ kNm}$

 $Sx = 0.005 \text{ m}^3$

Maka:

$$\sigma_{\text{maks}} = \frac{M}{Sx} = \frac{788,3257}{0,005} = 157665,14 \text{ kN/mm}^2$$

Kontrol:

 $\begin{array}{lll} \sigma_{maks} & < & \sigma_{izin} \\ \\ 157665,14 \; kN/mm^2 & < & 160000 \; kN/mm^2......OK! \end{array}$

2. Model 2:

Dimana:

= 788,0009 kNm M_{maks}

 $Sx = 0.005 \text{ m}^3$

Maka:

$$\sigma_{maks} = \frac{M}{Sx} = \frac{788,0009}{0,005} = 157600,1800 \text{ kN/mm}^2$$

Kontrol:

 $\begin{array}{llll} \sigma_{maks} & < & \sigma_{izin} \\ \\ 157600,1800 \; kN/mm^2 & < & 1600 \; 00 \; kN/mm^2......OK! \end{array}$

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari studi yang telah dibuat, maka dapat diambil kesimpulan sebagai berikut:

- 1. Berdasarkan respon struktur setelah dilakukan analisis pada *software*, jembatan gantung dengan menggunakan menara rangka baja komposit beton berperilaku lebih kaku dalam menerima beban.
- 2. Berdasarkan hasil analisis pada *software*, diperoleh nilai deformasi maksimum yang diakibatkan oleh beban gempa pada model 1 sebesar 0,005423 m dan pada model 2 sebesar 0,005389 m dengan selisih nilai perbandingan sebesar 0,000034 m. Nilai deformasi maksimum yang diakibatkan oleh beban angin pada model 1 sebesar 0,002517 m dan pada model 2 sebesar 0,002516 m dengan selisih nilai perbandingan sebesar 0,000001 m.
- 3. Berdasarkan hasil analisis pada *software* diperoleh nilai lendutan maksimum pada lantai (*deck*) jembatan gantung pada model 1 sebesar 0,4367670 m dan pada model 2 sebesar 0,4367640 m dengan selisih nilai perbandingan sebesar 0,000003 m.
- 4. Berdasarkan hasil analisis pada *software* diperoleh nilai tegangan kabel utama pada model 1 sebesar 653939,5200 kN/m² dan pada model 2 sebesar 653939,6700 kN/m² dengan selisih nilai perbandingan sebesar 0,15 kN/m². Tegangan kabel *backstays* pada model 1 sebesar 518393,2000 kN/m² dan pada model 2 sebesar 518267,3900 kN/m² dengan selisih nilai perbandingan sebesar 125,81 kN/m²

5.2 Saran

 Disarankan agar memberi portal batas tinggi maksimum setinggi 5 m sebelum memasuki area jembatan untuk menghindari benturan terhadap kabel *backstays*.

- 2. Penulis menyarankan dalam membuat tugas akhir jembatan gantung (*suspension bridge*) dapat dilakukan dengan membandingkan banyaknya kabel penggantung di tengah bentang.
- 3. Penulis menyarankan untuk melakukan analisis jembatan gantung (suspension bridge) dengan sistem lantai menggunakan stiffening truss agar dapat mengurangi lendutan dan deformasi yang terjadi akibat pembebanan.
- 4. Penulis menyarankan dalam membuat tugas akhir jembatan gantung (suspension bridge) dapat dilakukan dengan membandingkan perbedaan menara. Dengan adanya perbedaan menara maka akan berbeda hasil analisisnya.

DAFTAR PUSTAKA

- Badan Standarisasi Indonesia (2013) Beban Minimum Untuk Perancangan Bangunan Gedung Dan Struktur Lain SNI 1727:2013.
- Badan Standarisasi Indonesia (2008) Tali Kawat Baja SNI 0076:2008.
- Badan Standarisasi Indonesia (2016) Pembebanan Untuk Jembatan SNI 1725:2016.
- Badan Standarisasi Indonesia (2013) *Perancangan Jembatan Terhadap Beban Gempa SNI 2833:2013*.
- Badan Standarisasi Indonesia (2002) *Tata Cara Perencanaan Struktur Baja Untuk Bangunan Gedung SNI 03-1729-2002*.
- Badan Standarisasi Indonesia (1974) Metode Pengujian Kuat Tekan Beton SNI 03-1974.
- Departemen Pekerjaan Umum (2010) Perencanaan dan Pelaksanaan Konstruksi Jembatan Gantung untuk Pejalan Kaki Surat Edaran Menteri Pekerjaaan Umum No.02/SE/M/2010. Bandung: Menteri Pekerjaan Umum.
- Dewobroto, W. (2015) *Struktur Baja Perilaku, Analisis & Desain AISC 2010 Edisi Ke-1*. Tangerang: Universitas Pelita Harapan.
- Harazaki dkk (2000) *Bridge Engineering Handbook: Suspension Bridges*. CRC Press: Boca Raton.
- Permata, I. (2017) Struktur Kabel, Membrane, Cangkang dan Plat Lipat. ADOC.SITE.
- Rosi, Respa (2017) *Perencanaan Struktur Kabel pada Jembatan Gantung*. Laporan Tugas akhir. Program Studi Teknik Sipil Bandar Lampung.
- Bambang, S. dan Agus S. (2007) *Jembatan*. Yogyakarta: Beta Offset.
- Schodek (1991) Struktur (Alih Bahasa: Suryoatmojo). Jakarta: PT. Eresco.
- Steinman, D.B. (1953) A Partical Treatise on Suspension Bridges. New York, USA: Jhon Wiley & Sons Inc.
- Troitsky, M. (1997) Cable Stayed Bridges Theory and Design. London: BSP Professional Book.

Tabel L.1: Hasil *displacement output* u3 analisis *software* pada gelagar di seperempat bentang (model 1).

7	0 4 4 6	U3	0 1 10	U3
Joint	Output Case	(m)	Output Case	(m)
167	Beban Mati	-0,020789	Kombinasi 2	-0,436767
168	Beban Mati	-0,020788	Kombinasi 2	-0,436766
170	Beban Mati	-0,020785	Kombinasi 2	-0,436762
171	Beban Mati	-0,020785	Kombinasi 2	-0,436762
172	Beban Mati	-0,020788	Kombinasi 2	-0,436766
167	Beban Hidup Simetris	-0,027081	Kombinasi 3	-0,069785
168	Beban Hidup Simetris	-0,027081	Kombinasi 3	-0,069784
170	Beban Hidup Simetris	-0,02708	Kombinasi 3	-0,069778
171	Beban Hidup Simetris	-0,02708	Kombinasi 3	-0,069778
172	Beban Hidup Simetris	-0,027081	Kombinasi 3	-0,069784
167	Beban Hidup Asimetris	-0,256445	Kombinasi 4	-0,282901
168	Beban Hidup Asimetris	-0,256445	Kombinasi 4	-0,282899
170	Beban Hidup Asimetris	-0,256444	Kombinasi 4	-0,282895
171	Beban Hidup Asimetris	-0,256444	Kombinasi 4	-0,282895
172	Beban Hidup Asimetris	-0,256445	Kombinasi 4	-0,282899
167	Beban Sandaran	-0,001257	Kombinasi 5	-0,053537
168	Beban Sandaran	-0,001257	Kombinasi 5	-0,053535
170	Beban Sandaran	-0,001257	Kombinasi 5	-0,053531
171	Beban Sandaran	-0,001257	Kombinasi 5	-0,053531
172	Beban Sandaran	-0,001257	Kombinasi 5	-0,053535
167	Kombinasi 1	-0,030865	-	-
168	Kombinasi 1	-0,030863	-	-
170	Kombinasi 1	-0,030859	-	-
171	Kombinasi 1	-0,030859	-	-
172	Kombinasi 1	-0,030863	-	-

Tabel L.2: Hasil *displacement output* u3 analisis *software* pada gelagar di seperempat bentang (model 2).

1	0.45.46	U3	0 1 1 0	U3
Joint	Output Case	(m)	Output Case	(m)
167	Beban Mati	-0,02079	Kombinasi 2	-0,436764
168	Beban Mati	-0,02079	Kombinasi 2	-0,436763
170	Beban Mati	-0,02078	Kombinasi 2	-0,436759
171	Beban Mati	-0,02078	Kombinasi 2	-0,436759
172	Beban Mati	-0,02079	Kombinasi 2	-0,436763
167	Beban Hidup Simetris	-0,02708	Kombinasi 3	-0,069781
168	Beban Hidup Simetris	-0,02708	Kombinasi 3	-0,069779
170	Beban Hidup Simetris	-0,02708	Kombinasi 3	-0,069774
171	Beban Hidup Simetris	-0,02708	Kombinasi 3	-0,069774
172	Beban Hidup Simetris	-0,02708	Kombinasi 3	-0,069779
167	Beban Hidup Asimetris	-0,25644	Kombinasi 4	-0,282898
168	Beban Hidup Asimetris	-0,25644	Kombinasi 4	-0,282897
170	Beban Hidup Asimetris	-0,25644	Kombinasi 4	-0,282893
171	Beban Hidup Asimetris	-0,25644	Kombinasi 4	-0,282893
172	Beban Hidup Asimetris	-0,25644	Kombinasi 4	-0,282897
167	Beban Sandaran	-0,00126	Kombinasi 5	-0,053533
168	Beban Sandaran	-0,00126	Kombinasi 5	-0,053532
170	Beban Sandaran	-0,00126	Kombinasi 5	-0,053527
171	Beban Sandaran	-0,00126	Kombinasi 5	-0,053527
172	Beban Sandaran	-0,00126	Kombinasi 5	-0,053532
167	Kombinasi 1	-0,030863	-	-
168	Kombinasi 1	-0,030861	-	-
170	Kombinasi 1	-0,030857	-	-
171	Kombinasi 1	-0,030857	-	-
172	Kombinasi 1	-0,030861	-	-

Tabel L.3: Hasil *displacement output* u3 analisis *software* pada kabel di seperempat bentang (model 1).

I a i a 4	Outsut Core	U3
Joint	Output Case	(m)
52	Beban Mati	-0,020676
52	Beban Hidup Simetris	-0,026926
52	Beban Hidup Asimetris	-0,256406
52	Beban Sandaran	-0,00125
52	Kombinasi 1	-0,030696
52	Kombinasi 2	-0,069392
52	Kombinasi 3	-0,053237
52	Kombinasi 4	-0,43656
52	Kombinasi 5	-0,282717
396	Beban Mati	-0,020676
396	Beban Hidup Simetris	-0,026926
396	Beban Hidup Asimetris	-0,256406
396	Beban Sandaran	-0,00125
396	Kombinasi 1	-0,030696
396	Kombinasi 2	-0,069392
396	Kombinasi 3	-0,053237
396	Kombinasi 4	-0,43656
396	Kombinasi 5	-0,282717

Tabel L.4: Hasil *displacement output* u3 analisis *software* pada kabel di seperempat bentang (model 2).

7	0.1.10	U3
Joint	Output Case	(m)
52	Beban Mati	-0,02068
52	Beban Hidup Simetris	-0,02692
52	Beban Hidup Asimetris	-0,25641
52	Beban Sandaran	-0,00125
52	Kombinasi 1	-0,030696
52	Kombinasi 2	-0,069392
52	Kombinasi 3	-0,053237
52	Kombinasi 4	-0,43656
52	Kombinasi 5	-0,282717
396	Beban Mati	-0,02068
396	Beban Hidup Simetris	-0,02692
396	Beban Hidup Asimetris	-0,25641
396	Beban Sandaran	-0,00125
396	Kombinasi 1	-0,030696
396	Kombinasi 2	-0,069392
396	Kombinasi 3	-0,053237
396	Kombinasi 4	-0,43656
396	Kombinasi 5	-0,282717

Tabel L.5: Hasil *displacement output* u1 dan u2 analisis *software* ketika di beri beban lateral sebesar 1 kN/mm (model 1).

Joint	Output Case	U1 (m)	U2 (m)	Joint	Output Case	U1 (m)	U2 (m)
1	PO	-0,0007	0,17086	54	PO	-0,000118	0,1179
6	PO	0,00067	0,17076	55	PO	-5,59E-13	0,00018
19	PO	-6E-13	0,00018	56	PO	-0,000082	0,11526
20	PO	-6E-13	0,00018	57	PO	-5,59E-13	0,00018
21	PO	5,7E-11	0,10539	58	PO	-0,000055	0,11294
24	PO	-3E-13	0,00018	59	PO	-5,59E-13	0,00018
26	PO	1,2E-06	2,9E-05	60	PO	-0,000035	0,11093
27	PO	-3E-05	0,0003	61	PO	-5,59E-13	0,00018
28	PO	-8E-05	0,00073	62	PO	-0,00002	0,10924
29	PO	-0,0001	0,00113	63	PO	-5,58E-13	0,00018
30	PO	-0,0001	0,0015	64	PO	-0,000011	0,10785
32	PO	2,9E-05	0,0003	65	PO	-5,57E-13	0,00018
33	PO	-6E-13	0,00018	66	PO	-4,64E-06	0,10677
34	PO	-0,0013	0,162	67	PO	-5,57E-13	0,00018
35	PO	-6E-13	0,00018	68	PO	-1,55E-06	0,106
36	PO	-0,0011	0,1561	69	PO	-5,57E-13	0,00018
37	PO	-6E-13	0,00018	70	PO	-3,13E-07	0,10554
38	PO	-0,0009	0,15053	71	PO	-5,58E-13	0,00018
39	PO	-6E-13	0,00018	72	PO	3,13E-07	0,10554
40	PO	-0,0007	0,1453	73	PO	-5,58E-13	0,00018
41	PO	-6E-13	0,00018	74	PO	1,55E-06	0,106
42	PO	-0,0006	0,14041	75	PO	-5,58E-13	0,00018
43	PO	-6E-13	0,00018	76	PO	4,65E-06	0,10677
44	PO	-0,0005	0,13585	77	PO	-5,57E-13	0,00018
45	PO	-6E-13	0,00018	78	PO	0,000011	0,10785
46	PO	-0,0004	0,13162	79	PO	-5,57E-13	0,00018
47	PO	-6E-13	0,00018	80	PO	0,00002	0,10924
48	PO	-0,0003	0,12771	81	PO	-5,56E-13	0,00018
49	PO	-6E-13	0,00018	82	PO	0,000035	0,11093
50	PO	-0,0002	0,12412	83	PO	-5,56E-13	0,00018
51	PO	-6E-13	0,00018	84	PO	0,000055	0,11294
52	PO	-0,0002	0,12085	85	PO	-5,56E-13	0,00018
53	PO	-6E-13	0,00018	86	PO	0,000082	0,11526

Tabel L.6: Hasil *displacement output* u1 dan u2 analisis *software* ketika di beri beban lateral sebesar 1 kN/mm (model 2).

Joint	Output Case	U1 (m)	U2 (m)	Joint	Output Case	U1 (m)	U2 (m)
1	PO	-0,0006	0,16978	54	PO	-0,0001	0,11799
6	PO	0,00064	0,16968	55	PO	-6E-13	0,00018
19	PO	-6E-13	0,00018	56	PO	-8E-05	0,11541
20	PO	-6E-13	0,00018	57	PO	-6E-13	0,00018
21	PO	5,6E-11	0,10575	58	PO	-5E-05	0,11314
24	PO	1,7E-12	0,00018	59	PO	-6E-13	0,00018
26	PO	1,2E-06	2,8E-05	60	PO	-3E-05	0,11118
27	PO	-3E-05	0,0003	61	PO	-6E-13	0,00018
28	PO	-8E-05	0,00072	62	PO	-2E-05	0,10952
29	PO	-0,0001	0,00112	63	PO	-6E-13	0,00018
30	PO	-0,0001	0,00148	64	PO	-1E-05	0,10816
32	PO	2,8E-05	0,0003	65	PO	-6E-13	0,00018
33	PO	-6E-13	0,00018	66	PO	-5E-06	0,10711
34	PO	-0,0013	0,16113	67	PO	-6E-13	0,00018
35	PO	-6E-13	0,00018	68	PO	-2E-06	0,10635
36	PO	-0,0011	0,15535	69	PO	-6E-13	0,00018
37	PO	-5E-13	0,00018	70	PO	-3E-07	0,1059
38	PO	-0,0009	0,14991	71	PO	-6E-13	0,00018
39	PO	-6E-13	0,00018	72	PO	3E-07	0,1059
40	PO	-0,0007	0,14479	73	PO	-6E-13	0,00018
41	PO	-6E-13	0,00018	74	PO	1,5E-06	0,10635
42	PO	-0,0006	0,14001	75	PO	-6E-13	0,00018
43	PO	-6E-13	0,00018	76	PO	4,5E-06	0,10711
44	PO	-0,0005	0,13555	77	PO	-6E-13	0,00018
45	PO	-6E-13	0,00018	78	PO	0,00001	0,10816
46	PO	-0,0004	0,1314	79	PO	-6E-13	0,00018
47	PO	-6E-13	0,00018	80	PO	0,00002	0,10952
48	PO	-0,0003	0,12758	81	PO	-6E-13	0,00018
49	PO	-6E-13	0,00018	82	PO	3,4E-05	0,11118
50	PO	-0,0002	0,12407	83	PO	-6E-13	0,00018
51	PO	-6E-13	0,00018	84	PO	5,4E-05	0,11314
52	PO	-0,0002	0,12087	85	PO	-6E-13	0,00018
53	PO	-6E-13	0,00018	86	PO	0,00008	0,11541

Tabel L.7: Hasil *displacement output* u1 dan u2 analisis *software* pada menara (model 1).

7	0 0	U1	U2	7	0	U1	U2
Joint	Output Case	(m)	(m)	Joint	Output Case	(m)	(m)
1	Kombinasi 13	0,00452	0,001627	449	Kombinasi 13	0,001666	0,000795
1	Kombinasi 15	0,004217	-0,001627	449	Kombinasi 15	0,001564	-0,000795
1	Kombinasi 16	0,001745	0,005423	449	Kombinasi 16	0,000631	0,00265
1	Kombinasi 17	0,001477	-0,005423	449	Kombinasi 17	0,000563	-0,00265
1	Kombinasi 12	0,002866	0,001627	449	Kombinasi 12	0,001075	0,000795
1	Kombinasi 14	0,002563	-0,001627	449	Kombinasi 14	0,000972	-0,000795
6	Kombinasi 13	0,004535	0,001627	450	Kombinasi 13	0,00168	0,000785
6	Kombinasi 15	0,004202	-0,001627	450	Kombinasi 15	0,001548	-0,000785
6	Kombinasi 16	0,001795	0,005423	450	Kombinasi 16	0,00068	0,002615
6	Kombinasi 17	0,001427	-0,005423	450	Kombinasi 17	0,000514	-0,002615
6	Kombinasi 12	0,002881	0,001627	450	Kombinasi 12	0,001091	0,000784
6	Kombinasi 14	0,002548	-0,001627	450	Kombinasi 14	0,000959	-0,000785
368	Kombinasi 13	0,001665	0,000785	474	Kombinasi 13	0,001681	0,000795
368	Kombinasi 15	0,001563	-0,000785	474	Kombinasi 15	0,001549	-0,000795
368	Kombinasi 16	0,000631	0,002615	474	Kombinasi 16	0,00068	0,00265
368	Kombinasi 17	0,000563	-0,002615	474	Kombinasi 17	0,000514	-0,00265
368	Kombinasi 12	0,001076	0,000785	474	Kombinasi 12	0,001089	0,000795
368	Kombinasi 14	0,000974	-0,000784	474	Kombinasi 14	0,000958	-0,000795
370	Kombinasi 13	-0,004202	0,001627	490	Kombinasi 13	-0,001549	0,000795
370	Kombinasi 15	-0,004535	-0,001627	490	Kombinasi 15	-0,001681	-0,000795
370	Kombinasi 16	-0,001427	0,005423	490	Kombinasi 16	-0,000514	0,00265
370	Kombinasi 17	-0,001795	-0,005423	490	Kombinasi 17	-0,00068	-0,00265
370	Kombinasi 12	-0,002525	0,001627	490	Kombinasi 12	-0,000912	0,000795
370	Kombinasi 14	-0,002858	-0,001627	490	Kombinasi 14	-0,001044	-0,000795
372	Kombinasi 13	-0,004217	0,001627	496	Kombinasi 13	-0,001548	0,000785
372	Kombinasi 15	-0,00452	-0,001627	496	Kombinasi 15	-0,00168	-0,000785
372	Kombinasi 16	-0,001477	0,005423	496	Kombinasi 16	-0,000514	0,002615
372	Kombinasi 17	-0,001745	-0,005423	496	Kombinasi 17	-0,00068	-0,002615
372	Kombinasi 12	-0,00254	0,001627	496	Kombinasi 12	-0,000909	0,000784
372	Kombinasi 14	-0,002843	-0,001627	496	Kombinasi 14	-0,001041	-0,000785
443	Kombinasi 13	0,001666	0,000795	-	-	-	-
443	Kombinasi 15	0,001564	-0,000795	-	-	-	-
443	Kombinasi 16	0,000631	0,00265	-	-	-	-
443	Kombinasi 17	0,000563	-0,00265	-	-	-	-
443	Kombinasi 12	0,001075	0,000795	-	-	-	-
443	Kombinasi 14	0,000972	-0,000795	-	-	-	-

Tabel L.8: Hasil *displacement output* u1 dan u2 analisis *software* pada menara (model 2).

		U1	U2			U1	U2
Joint	Output Case	(m)	(m)	Joint	Output Case	(m)	(m)
1	Kombinasi 13	0,004519	0,001617	449	Kombinasi 13	0,00168	0,00078
1	Kombinasi 15	0,004216	-0,001617	449	Kombinasi 15	0,001548	-0,000779
1	Kombinasi 16	0,001744	0,00539	449	Kombinasi 16	0,00068	0,002598
1	Kombinasi 17	0,001476	-0,00539	449	Kombinasi 17	0,000514	-0,002598
1	Kombinasi 12	0,002865	0,001617	449	Kombinasi 12	0,001091	0,000779
1	Kombinasi 14	0,002562	-0,001617	449	Kombinasi 14	0,000959	-0,00078
6	Kombinasi 13	0,004534	0,001617	450	Kombinasi 13	0,00168	0,00079
6	Kombinasi 15	0,004201	-0,001617	450	Kombinasi 15	0,001548	-0,00079
6	Kombinasi 16	0,001794	0,00539	450	Kombinasi 16	0,00068	0,002633
6	Kombinasi 17	0,001426	-0,00539	450	Kombinasi 17	0,000514	-0,00263
6	Kombinasi 12	0,00288	0,001617	450	Kombinasi 12	0,001089	0,00079
6	Kombinasi 14	0,002547	-0,001617	450	Kombinasi 14	0,000957	-0,00079
368	Kombinasi 13	0,001665	0,000779	474	Kombinasi 13	-0,00155	0,00079
368	Kombinasi 15	0,001563	-0,00078	474	Kombinasi 15	-0,00168	-0,00079
368	Kombinasi 16	0,000631	0,002598	474	Kombinasi 16	-0,00051	0,002633
368	Kombinasi 17	0,000562	-0,002598	474	Kombinasi 17	-0,00068	-0,00263
368	Kombinasi 12	0,001076	0,00078	474	Kombinasi 12	-0,00091	0,00079
368	Kombinasi 14	0,000974	-0,000779	474	Kombinasi 14	-0,00104	-0,00079
370	Kombinasi 13	-0,004201	0,001617	490	Kombinasi 13	-0,00155	0,000779
370	Kombinasi 15	-0,004534	-0,001617	490	Kombinasi 15	-0,00168	-0,00078
370	Kombinasi 16	-0,001426	0,00539	490	Kombinasi 16	-0,00051	0,002598
370	Kombinasi 17	-0,001794	-0,00539	490	Kombinasi 17	-0,00068	-0,0026
370	Kombinasi 12	-0,002524	0,001617	490	Kombinasi 12	-0,00091	0,000779
370	Kombinasi 14	-0,002857	-0,001617	490	Kombinasi 14	-0,00104	-0,00078
372	Kombinasi 13	-0,004216	0,001617	496	Kombinasi 13	-0,00156	0,00079
372	Kombinasi 15	-0,004519	-0,001617	496	Kombinasi 15	-0,00167	-0,00079
372	Kombinasi 16	-0,001476	0,00539	496	Kombinasi 16	-0,00056	0,002633
372	Kombinasi 17	-0,001744	-0,00539	496	Kombinasi 17	-0,00063	-0,00263
372	Kombinasi 12	-0,002539	0,001617	496	Kombinasi 12	-0,00093	0,00079
372	Kombinasi 14	-0,002842	-0,001617	496	Kombinasi 14	-0,00103	-0,00079
443	Kombinasi 13	0,001666	0,00079	-	-	-	-
443	Kombinasi 15	0,001563	-0,00079	-	-	-	-
443	Kombinasi 16	0,000631	0,002633	-	-	-	-
443	Kombinasi 17	0,000563	-0,002633	-	-	-	-
443	Kombinasi 12	0,001074	0,00079	-	-	-	-
443	Kombinasi 14	0,000972	-0,00079	-	-	-	-

Tabel L.9: Hasil *element stresses output* analisis *software* pada kabel utama (model 1).

E	Station	Outros Care	S11
Frames	(m)	Output Case	(kN/m^2)
511	0	Beban Mati	193453,5
511	1,84272	Beban Mati	193497,9
511	3,68545	Beban Mati	193542,3
511	0	Beban Hidup Simetris	254688,9
511	1,84272	Beban Hidup Simetris	254688,9
511	3,68545	Beban Hidup Simetris	254688,9
511	0	Beban Hidup Asimetris	64029,15
511	1,84272	Beban Hidup Asimetris	64029,15
511	3,68545	Beban Hidup Asimetris	64029,15
511	0	Beban Sandaran	11822,19
511	1,84272	Beban Sandaran	11822,19
511	3,68545	Beban Sandaran	11822,19
511	0	Kombinasi 1	287386
511	1,84272	Kombinasi 1	287448
511	3,68545	Kombinasi 1	287510
511	0	Kombinasi 2	348777
511	1,84272	Kombinasi 2	348831
511	3,68545	Kombinasi 2	348884
511	0	Kombinasi 3	653833
511	1,84272	Kombinasi 3	653886
511	3,68545	Kombinasi 3	653940
511	0	Kombinasi 4	310360
511	1,84272	Kombinasi 4	310413
511	3,68545	Kombinasi 4	310467
511	0	Kombinasi 5	501020
511	1,84272	Kombinasi 5	501073
591	3,68545	Kombinasi 5	501126

Tabel L.10: Hasil *element stresses output* analisis *software* pada kabel utama (model 2).

Engmag	Station	Output Casa	S11
Frames	(m)	Output Case	(kN/m^2)
511	0	Beban Mati	193453,5
511	1,84272	Beban Mati	193497,9
511	3,68545	Beban Mati	193542,3
511	0	Beban Hidup Simetris	254688,9
511	1,84272	Beban Hidup Simetris	254688,9
511	3,68545	Beban Hidup Simetris	254688,9
511	0	Beban Hidup Asimetris	64029,15
511	1,84272	Beban Hidup Asimetris	64029,15
511	3,68545	Beban Hidup Asimetris	64029,15
511	0	Beban Sandaran	11822,19
511	1,84272	Beban Sandaran	11822,19
511	3,68545	Beban Sandaran	11822,19
511	0	Kombinasi 1	287385,93
511	1,84272	Kombinasi 1	287448,14
511	3,68545	Kombinasi 1	287510,34
511	0	Kombinasi 2	348777,43
511	1,84272	Kombinasi 2	348830,75
511	3,68545	Kombinasi 2	348884,07
511	0	Kombinasi 3	653833,03
511	1,84272	Kombinasi 3	653886,35
511	3,68545	Kombinasi 3	653939,67
511	0	Kombinasi 4	310359,94
511	1,84272	Kombinasi 4	310413,26
511	3,68545	Kombinasi 4	310466,58
511	0	Kombinasi 5	501019,69
511	1,84272	Kombinasi 5	501073,01
511	3,68545	Kombinasi 5	501126,33

Tabel L.11: Hasil *element stresses output* analisis *software* pada kabel pada *backstays* (model 1).

E	Station	0.4.4.6	S11
Frames	(m)	Output Case	(kN/m^2)
591	0	Beban Mati	193453,44
591	1,84272	Beban Mati	193497,87
591	3,68545	Beban Mati	193542,3
591	0	Beban Hidup Simetris	254688,84
591	1,84272	Beban Hidup Simetris	254688,84
591	3,68545	Beban Hidup Simetris	254688,84
591	0	Beban Hidup Asimetris	64029,13
591	1,84272	Beban Hidup Asimetris	64029,13
591	3,68545	Beban Hidup Asimetris	64029,13
591	0	Beban Sandaran	11822,18
591	1,84272	Beban Sandaran	11822,18
591	3,68545	Beban Sandaran	11822,18
591	0	Kombinasi 1	228025,44
591	1,84272	Kombinasi 1	227486,57
591	3,68545	Kombinasi 1	226947,69
591	0	Kombinasi 2	274504,65
591	1,84272	Kombinasi 2	274042,76
591	3,68545	Kombinasi 2	273580,87
591	0	Kombinasi 3	518393,2
591	1,84272	Kombinasi 3	517931,3
591	3,68545	Kombinasi 3	517469,41
591	0	Kombinasi 4	244859,3
591	1,84272	Kombinasi 4	244397,41
591	3,68545	Kombinasi 4	243935,51
591	0	Kombinasi 5	397289,64
591	1,84272	Kombinasi 5	396827,75
591	3,68545	Kombinasi 5	396365,85

Tabel L.12: Hasil *element stresses output* analisis *software* pada kabel pada *backstays* (model 2).

E	Station	0.42.46	S11
Frames	(m)	Output Case	(kN/m^2)
591	0	Beban Mati	193453,5
591	1,84272	Beban Mati	193497,9
591	3,68545	Beban Mati	193542,3
591	0	Beban Hidup Simetris	254688,9
591	1,84272	Beban Hidup Simetris	254688,9
591	3,68545	Beban Hidup Simetris	254688,9
591	0	Beban Hidup Asimetris	64029,15
591	1,84272	Beban Hidup Asimetris	64029,15
591	3,68545	Beban Hidup Asimetris	64029,15
591	0	Beban Sandaran	11822,19
591	1,84272	Beban Sandaran	11822,19
591	3,68545	Beban Sandaran	11822,19
591	0	Kombinasi 1	227970,15
591	1,84272	Kombinasi 1	227431,28
591	3,68545	Kombinasi 1	226892,4
591	0	Kombinasi 2	274437,76
591	1,84272	Kombinasi 2	273975,87
591	3,68545	Kombinasi 2	273513,98
591	0	Kombinasi 3	518267,39
591	1,84272	Kombinasi 3	517805,5
591	3,68545	Kombinasi 3	517343,6
591	0	Kombinasi 4	244799,72
591	1,84272	Kombinasi 4	244337,83
591	3,68545	Kombinasi 4	243875,94
591	0	Kombinasi 5	397193,24
591	1,84272	Kombinasi 5	396731,35
591	3,68545	Kombinasi 5	396269,45

Tabel L.13: Hasil momen maksimum analisis software pada menara (model 1).

-		M3		M3		M3
Frame	Output Case	(KN-m)	Output Case	(kN-m)	Output Case	(kN-m)
9	Kombinasi 1	-0,5329	Kombinasi 7	20,0289	Kombinasi 13	-237,0571
9	Kombinasi 1	0,6314	Kombinasi 7	10,5487	Kombinasi 13	-117,7589
9	Kombinasi 1	1,0195	Kombinasi 7	0,403	Kombinasi 13	0,874
9	Kombinasi 1	0,6314	Kombinasi 7	-10,4079	Kombinasi 13	118,8416
9	Kombinasi 1	-0,5329	Kombinasi 8	-21,8842	Kombinasi 13	236,1438
9	Kombinasi 2	-0,5366	Kombinasi 8	-43,3606	Kombinasi 14	236,0937
9	Kombinasi 2	0,4615	Kombinasi 8	-21,3633	Kombinasi 14	118,7915
9	Kombinasi 2	0,7941	Kombinasi 8	-0,0315	Kombinasi 14	0,8239
9	Kombinasi 2	0,4615	Kombinasi 8	20,635	Kombinasi 14	-117,809
9	Kombinasi 2	-0,5366	Kombinasi 8	40,6362	Kombinasi 14	-237,1072
9	Kombinasi 3	-0,4568	Kombinasi 9	40,5146	Kombinasi 15	236,1436
9	Kombinasi 3	0,5412	Kombinasi 9	20,5561	Kombinasi 15	118,8414
9	Kombinasi 3	0,8739	Kombinasi 9	-0,0678	Kombinasi 15	0,8738
9	Kombinasi 3	0,5412	Kombinasi 9	-21,357	Kombinasi 15	-117,7591
9	Kombinasi 3	-0,4568	Kombinasi 9	-43,3116	Kombinasi 15	-237,0574
9	Kombinasi 4	-0,5067	Kombinasi 10	-43,2464	Kombinasi 16	-789,0107
9	Kombinasi 4	0,4914	Kombinasi 10	-21,4986	Kombinasi 16	-393,9281
9	Kombinasi 4	0,824	Kombinasi 10	-0,25	Kombinasi 16	0,6555
9	Kombinasi 4	0,4914	Kombinasi 10	20,4997	Kombinasi 16	394,7401
9	Kombinasi 4	-0,5067	Kombinasi 10	40,7504	Kombinasi 16	788,3257
9	Kombinasi 5	-0,4568	Kombinasi 11	40,6288	Kombinasi 17	788,3255
9	Kombinasi 5	0,5412	Kombinasi 11	20,4208	Kombinasi 17	394,7399
9	Kombinasi 5	0,8739	Kombinasi 11	-0,2863	Kombinasi 17	0,6553
9	Kombinasi 5	0,5412	Kombinasi 11	-21,4923	Kombinasi 17	-393,9283
9	Kombinasi 5	-0,4568	Kombinasi 11	-43,1974		
9	Kombinasi 6	-21,9087	Kombinasi 12	-237,107	-	-
9	Kombinasi 6	-10,4111	Kombinasi 12	-117,8088	-	-
9	Kombinasi 6	0,4212	Kombinasi 12	0,8242	-	-
9	Kombinasi 6	10,5881	Kombinasi 12	118,7917	-	-
9	Kombinasi 6	20,0897	Kombinasi 12	236,0939	-	-

Tabel L.14: Hasil momen maksimum analisis software pada menara (model 1).

_		M3		M3		M3
Frame	Output Case	(kN-m)	Output Case	(kN-m)	Output Case	(kN-m)
9	Kombinasi 1	-0,5327	Kombinasi 7	20,0221	Kombinasi 13	-236,9594
9	Kombinasi 1	0,6317	Kombinasi 7	10,5449	Kombinasi 13	-117,7099
9	Kombinasi 1	1,0198	Kombinasi 7	0,4023	Kombinasi 13	0,8743
9	Kombinasi 1	0,6317	Kombinasi 7	-10,4056	Kombinasi 13	118,7931
9	Kombinasi 1	-0,5327	Kombinasi 8	-21,8788	Kombinasi 13	236,0465
9	Kombinasi 2	-0,5375	Kombinasi 8	-43,3498	Kombinasi 15	236,0463
9	Kombinasi 2	0,4606	Kombinasi 8	-21,3587	Kombinasi 15	118,7928
9	Kombinasi 2	0,7932	Kombinasi 8	-0,033	Kombinasi 15	0,874
9	Kombinasi 2	0,4606	Kombinasi 8	20,6274	Kombinasi 15	-117,7101
9	Kombinasi 2	-0,5374	Kombinasi 8	40,6225	Kombinasi 15	-236,9596
9	Kombinasi 3	-0,4565	Kombinasi 9	40,5007	Kombinasi 16	-788,6855
9	Kombinasi 3	0,5415	Kombinasi 9	20,5483	Kombinasi 16	-393,7654
9	Kombinasi 3	0,8742	Kombinasi 9	-0,0695	Kombinasi 16	0,6557
9	Kombinasi 3	0,5415	Kombinasi 9	-21,3526	Kombinasi 16	394,5778
9	Kombinasi 3	-0,4565	Kombinasi 9	-43,3011	Kombinasi 16	788,0009
9	Kombinasi 4	-0,5071	Kombinasi 10	-43,2356	Kombinasi 17	788,0006
9	Kombinasi 4	0,4909	Kombinasi 10	-21,4941	Kombinasi 17	394,5776
9	Kombinasi 4	0,8236	Kombinasi 10	-0,2515	Kombinasi 17	0,6555
9	Kombinasi 4	0,4909	Kombinasi 10	20,4921	Kombinasi 17	-393,7656
9	Kombinasi 4	-0,5071	Kombinasi 10	40,7366	Kombinasi 17	-788,6857
9	Kombinasi 5	-0,4565	Kombinasi 11	40,6148	Kombinasi 14	235,9957
9	Kombinasi 5	0,5415	Kombinasi 11	20,4129	Kombinasi 14	118,7423
9	Kombinasi 5	0,8742	Kombinasi 11	-0,288	Kombinasi 14	0,8235
9	Kombinasi 5	0,5415	Kombinasi 11	-21,488	Kombinasi 14	-117,7607
9	Kombinasi 5	-0,4565	Kombinasi 11	-43,1869	Kombinasi 14	-237,0102
9	Kombinasi 6	-21,9032	Kombinasi 12	-237,01	-	-
9	Kombinasi 6	-10,4086	Kombinasi 12	-117,7605	-	-
9	Kombinasi 6	0,4206	Kombinasi 12	0,8237	-	-
9	Kombinasi 6	10,5844	Kombinasi 12	118,7425	-	-
9	Kombinasi 6	20,0829	Kombinasi 12	235,996	-	-

Tabel L.15: Hasil gaya aksial analisis *software* pada kabel utama (model 1).

Frame (m) Output Case (kN) Output Case (kN) 472 0 Beban Mati 547,228 Kombinasi 8 696,783 472 1,84272 Beban Mati 547,102 Kombinasi 8 696,633 472 3,68545 Beban Mati 546,977 Kombinasi 8 696,482 472 0 Beban Hidup Simetris 720,116 Kombinasi 9 696,631 472 3,68545 Beban Hidup Simetris 720,116 Kombinasi 9 696,631 472 0 Beban Hidup Asimetris 179,02 Kombinasi 10 522,587 472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,587 472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,474 472 0 Beban Sandaran 33,426 Kombinasi 11 522,586 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,361 472 3,68545 Beban Sandaran 33,426 <td< th=""><th></th><th>Station</th><th></th><th>P</th><th></th><th>P</th></td<>		Station		P		P
472 1,84272 Beban Mati 547,102 Kombinasi 8 696,633 472 3,68545 Beban Mati 546,977 Kombinasi 8 696,482 472 0 Beban Hidup Simetris 720,116 Kombinasi 9 696,782 472 1,84272 Beban Hidup Simetris 720,116 Kombinasi 9 696,631 472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,587 472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,474 472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,474 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,361 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,361 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,361 472 1,84272 Kombinasi 1 812,916 Kombinasi 12 875,817 472 1,84272 Kombinasi 1	Frame	(m)	Output Case	(kN)	Output Case	(kN)
472 3,68545 Beban Mati 546,977 Kombinasi 8 696,482 472 0 Beban Hidup Simetris 720,116 Kombinasi 9 696,782 472 1,84272 Beban Hidup Simetris 720,116 Kombinasi 9 696,631 472 3,68545 Beban Hidup Asimetris 720,116 Kombinasi 10 522,587 472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,587 472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,474 472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,361 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,586 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,473 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,361 472 1,84272 Kombinasi 1 812,916 Kombinasi 12 875,817 472 1,84272 Kombinasi 1<	472	0	Beban Mati	547,228	Kombinasi 8	696,783
472 0 Beban Hidup Simetris 720,116 Kombinasi 9 696,782 472 1,84272 Beban Hidup Simetris 720,116 Kombinasi 9 696,631 472 3,68545 Beban Hidup Simetris 720,116 Kombinasi 9 696,481 472 0 Beban Hidup Asimetris 179,02 Kombinasi 10 522,587 472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,474 472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,361 472 0 Beban Sandaran 33,426 Kombinasi 11 522,361 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,361 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,373 472 1,84272 Kombinasi 1 812,916 Kombinasi 12 875,817 472 1,84272 Kombinasi 1 812,916 Kombinasi 12 875,664 472 3,68545 Kombinasi 2	472	1,84272	Beban Mati	547,102	Kombinasi 8	696,633
472 1,84272 Beban Hidup Simetris 720,116 Kombinasi 9 696,631 472 3,68545 Beban Hidup Simetris 720,116 Kombinasi 10 522,587 472 0 Beban Hidup Asimetris 179,02 Kombinasi 10 522,587 472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,474 472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,474 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,361 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,473 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,361 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,473 472 1,84272 Kombinasi 1 812,916 Kombinasi 12 875,666 472 3,68545 Kombinasi 1 812,744 Kombinasi 12 875,516 472 1,84272 Kombinasi 2	472	3,68545	Beban Mati	546,977	Kombinasi 8	696,482
472 3,68545 Beban Hidup Simetris 720,116 Kombinasi 9 696,481 472 0 Beban Hidup Asimetris 179,02 Kombinasi 10 522,587 472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,474 472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,361 472 0 Beban Sandaran 33,426 Kombinasi 11 522,586 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,361 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,361 472 0 Kombinasi 1 812,916 Kombinasi 11 522,361 472 0 Kombinasi 1 812,74 Kombinasi 12 875,817 472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,516 472 0 Kombinasi 2 983,017 Kombinasi 13 1416,913 472 1,84272 Kombinasi 2 982,915 <t< td=""><td>472</td><td>0</td><td>Beban Hidup Simetris</td><td>720,116</td><td>Kombinasi 9</td><td>696,782</td></t<>	472	0	Beban Hidup Simetris	720,116	Kombinasi 9	696,782
472 0 Beban Hidup Asimetris 179,02 Kombinasi 10 522,587 472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,474 472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,361 472 0 Beban Sandaran 33,426 Kombinasi 11 522,586 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,361 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,361 472 0 Kombinasi 1 812,916 Kombinasi 11 522,366 472 1,84272 Kombinasi 1 812,916 Kombinasi 12 875,817 472 3,68545 Kombinasi 1 812,74 Kombinasi 12 875,516 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,913 472 1,84272 Kombinasi 2 982,915 Kombinasi 13 1416,612 472 3,68545 Kombinasi 3 1848,97 <td< td=""><td>472</td><td>1,84272</td><td>Beban Hidup Simetris</td><td>720,116</td><td>Kombinasi 9</td><td>696,631</td></td<>	472	1,84272	Beban Hidup Simetris	720,116	Kombinasi 9	696,631
472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,474 472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,361 472 0 Beban Sandaran 33,426 Kombinasi 11 522,586 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,36 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,36 472 0 Kombinasi 1 812,916 Kombinasi 12 875,817 472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,666 472 3,68545 Kombinasi 1 812,74 Kombinasi 12 875,516 472 0 Kombinasi 1 812,564 Kombinasi 12 875,516 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,762 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,612 472 0 Kombinasi 3 1848,97 Kombinasi 14	472	3,68545	Beban Hidup Simetris	720,116	Kombinasi 9	696,481
472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,361 472 0 Beban Sandaran 33,426 Kombinasi 11 522,586 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,473 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,36 472 0 Kombinasi 1 812,916 Kombinasi 12 875,817 472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,666 472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,516 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,913 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,762 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,612 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,793 472 1,84272 Kombinasi 3 1848,669 Kombinasi 14 <td>472</td> <td>0</td> <td>Beban Hidup Asimetris</td> <td>179,02</td> <td>Kombinasi 10</td> <td>522,587</td>	472	0	Beban Hidup Asimetris	179,02	Kombinasi 10	522,587
472 0 Beban Sandaran 33,426 Kombinasi 11 522,586 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,473 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,36 472 0 Kombinasi 1 812,916 Kombinasi 12 875,817 472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,666 472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,516 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,913 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,762 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,612 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,793 472 1,84272 Kombinasi 3 1848,82 Kombinasi 14 875,442 472 0 Kombinasi 4 875,654 Kombinasi 15 14	472	1,84272	Beban Hidup Asimetris	179,02	Kombinasi 10	522,474
472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,473 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,36 472 0 Kombinasi 1 812,916 Kombinasi 12 875,817 472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,666 472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,516 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,913 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,762 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,612 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,793 472 1,84272 Kombinasi 3 1848,82 Kombinasi 14 875,642 472 3,68545 Kombinasi 3 1848,669 Kombinasi 14 875,491 472 0 Kombinasi 4 875,504 Kombinasi 15 <	472	3,68545	Beban Hidup Asimetris	179,02	Kombinasi 10	522,361
472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,36 472 0 Kombinasi 1 812,916 Kombinasi 12 875,817 472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,666 472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,516 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,913 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,762 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,612 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,793 472 1,84272 Kombinasi 3 1848,82 Kombinasi 14 875,642 472 3,68545 Kombinasi 4 875,805 Kombinasi 15 1416,889 472 1,84272 Kombinasi 4 875,504 Kombinasi 15 1416,738 472 1,84272 Kombinasi 5 1416,790 Kombinasi 16	472	0	Beban Sandaran	33,426	Kombinasi 11	522,586
472 0 Kombinasi 1 812,916 Kombinasi 12 875,817 472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,666 472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,516 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,913 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,762 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,612 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,793 472 1,84272 Kombinasi 3 1848,82 Kombinasi 14 875,642 472 3,68545 Kombinasi 3 1848,669 Kombinasi 14 875,491 472 1,84272 Kombinasi 4 875,805 Kombinasi 15 1416,889 472 1,84272 Kombinasi 4 875,504 Kombinasi 15 1416,788 472 1,84272 Kombinasi 5 1416,901 Kombinasi 16	472	1,84272	Beban Sandaran	33,426	Kombinasi 11	522,473
472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,666 472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,516 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,913 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,612 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,612 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,793 472 1,84272 Kombinasi 3 1848,82 Kombinasi 14 875,642 472 3,68545 Kombinasi 3 1848,669 Kombinasi 14 875,491 472 0 Kombinasi 4 875,805 Kombinasi 15 1416,889 472 1,84272 Kombinasi 4 875,654 Kombinasi 15 1416,889 472 3,68545 Kombinasi 4 875,504 Kombinasi 15 1416,889 472 0 Kombinasi 5 1416,901 Kombinasi 16	472	3,68545	Beban Sandaran	33,426	Kombinasi 11	522,36
472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,516 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,913 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,762 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,612 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,793 472 1,84272 Kombinasi 3 1848,82 Kombinasi 14 875,642 472 3,68545 Kombinasi 3 1848,669 Kombinasi 14 875,491 472 0 Kombinasi 4 875,805 Kombinasi 15 1416,889 472 1,84272 Kombinasi 4 875,504 Kombinasi 15 1416,738 472 3,68545 Kombinasi 4 875,504 Kombinasi 15 1416,738 472 1,84272 Kombinasi 5 1416,901 Kombinasi 16 522,622 472 1,84272 Kombinasi 5 1416,599 Kombinasi 16	472	0	Kombinasi 1	812,916	Kombinasi 12	875,817
472 0 Kombinasi 2 983,217 Kombinasi 13 1416,913 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,762 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,612 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,793 472 1,84272 Kombinasi 3 1848,82 Kombinasi 14 875,642 472 3,68545 Kombinasi 3 1848,669 Kombinasi 14 875,491 472 0 Kombinasi 4 875,805 Kombinasi 15 1416,889 472 1,84272 Kombinasi 4 875,654 Kombinasi 15 1416,738 472 3,68545 Kombinasi 4 875,504 Kombinasi 15 1416,587 472 0 Kombinasi 5 1416,901 Kombinasi 16 522,622 472 1,84272 Kombinasi 5 1416,75 Kombinasi 16 522,509 472 3,68545 Kombinasi 6 696,784 Kombinasi 17	472	1,84272	Kombinasi 1	812,74	Kombinasi 12	875,666
472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,762 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,612 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,793 472 1,84272 Kombinasi 3 1848,82 Kombinasi 14 875,642 472 3,68545 Kombinasi 3 1848,669 Kombinasi 14 875,491 472 0 Kombinasi 4 875,805 Kombinasi 15 1416,889 472 1,84272 Kombinasi 4 875,654 Kombinasi 15 1416,738 472 3,68545 Kombinasi 4 875,504 Kombinasi 15 1416,587 472 0 Kombinasi 5 1416,901 Kombinasi 16 522,622 472 1,84272 Kombinasi 5 1416,75 Kombinasi 16 522,509 472 3,68545 Kombinasi 6 696,784 Kombinasi 17 522,555 472 1,84272 Kombinasi 6 696,634 Kombinasi 17	472	3,68545	Kombinasi 1	812,564	Kombinasi 12	875,516
472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,612 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,793 472 1,84272 Kombinasi 3 1848,82 Kombinasi 14 875,642 472 3,68545 Kombinasi 3 1848,669 Kombinasi 14 875,491 472 0 Kombinasi 4 875,805 Kombinasi 15 1416,889 472 1,84272 Kombinasi 4 875,654 Kombinasi 15 1416,738 472 3,68545 Kombinasi 4 875,504 Kombinasi 15 1416,587 472 0 Kombinasi 5 1416,901 Kombinasi 16 522,622 472 1,84272 Kombinasi 5 1416,75 Kombinasi 16 522,509 472 3,68545 Kombinasi 6 696,784 Kombinasi 17 522,396 472 1,84272 Kombinasi 6 696,634 Kombinasi 17 522,329 472 3,68545 Kombinasi 6 696,634 Kombinasi 17	472	0	Kombinasi 2	983,217	Kombinasi 13	1416,913
472 0 Kombinasi 3 1848,97 Kombinasi 14 875,793 472 1,84272 Kombinasi 3 1848,82 Kombinasi 14 875,642 472 3,68545 Kombinasi 3 1848,669 Kombinasi 14 875,491 472 0 Kombinasi 4 875,805 Kombinasi 15 1416,889 472 1,84272 Kombinasi 4 875,654 Kombinasi 15 1416,738 472 3,68545 Kombinasi 4 875,504 Kombinasi 15 1416,587 472 0 Kombinasi 5 1416,901 Kombinasi 16 522,622 472 1,84272 Kombinasi 5 1416,75 Kombinasi 16 522,509 472 3,68545 Kombinasi 6 696,784 Kombinasi 17 522,396 472 1,84272 Kombinasi 6 696,634 Kombinasi 17 522,442 472 3,68545 Kombinasi 6 696,483 Kombinasi 17 522,329 472 0 Kombinasi 7 696,633 - -	472	1,84272	Kombinasi 2	983,066	Kombinasi 13	1416,762
472 1,84272 Kombinasi 3 1848,82 Kombinasi 14 875,642 472 3,68545 Kombinasi 3 1848,669 Kombinasi 14 875,491 472 0 Kombinasi 4 875,805 Kombinasi 15 1416,889 472 1,84272 Kombinasi 4 875,654 Kombinasi 15 1416,738 472 3,68545 Kombinasi 4 875,504 Kombinasi 15 1416,587 472 0 Kombinasi 5 1416,901 Kombinasi 16 522,622 472 1,84272 Kombinasi 5 1416,75 Kombinasi 16 522,509 472 3,68545 Kombinasi 5 1416,599 Kombinasi 16 522,396 472 0 Kombinasi 6 696,784 Kombinasi 17 522,555 472 1,84272 Kombinasi 6 696,483 Kombinasi 17 522,329 472 0 Kombinasi 7 696,784 - - 472 1,84272 Kombinasi 7 696,633 - -	472	3,68545	Kombinasi 2	982,915	Kombinasi 13	1416,612
472 3,68545 Kombinasi 3 1848,669 Kombinasi 14 875,491 472 0 Kombinasi 4 875,805 Kombinasi 15 1416,889 472 1,84272 Kombinasi 4 875,654 Kombinasi 15 1416,738 472 3,68545 Kombinasi 4 875,504 Kombinasi 15 1416,587 472 0 Kombinasi 5 1416,901 Kombinasi 16 522,622 472 1,84272 Kombinasi 5 1416,75 Kombinasi 16 522,509 472 3,68545 Kombinasi 5 1416,599 Kombinasi 16 522,396 472 0 Kombinasi 6 696,784 Kombinasi 17 522,555 472 1,84272 Kombinasi 6 696,634 Kombinasi 17 522,329 472 0 Kombinasi 7 696,784 - - 472 1,84272 Kombinasi 7 696,633 - - 472 1,84272 Kombinasi 7 696,633 - -	472	0	Kombinasi 3	1848,97	Kombinasi 14	875,793
472 0 Kombinasi 4 875,805 Kombinasi 15 1416,889 472 1,84272 Kombinasi 4 875,654 Kombinasi 15 1416,738 472 3,68545 Kombinasi 4 875,504 Kombinasi 15 1416,587 472 0 Kombinasi 5 1416,901 Kombinasi 16 522,622 472 1,84272 Kombinasi 5 1416,75 Kombinasi 16 522,509 472 3,68545 Kombinasi 5 1416,599 Kombinasi 16 522,396 472 0 Kombinasi 6 696,784 Kombinasi 17 522,555 472 1,84272 Kombinasi 6 696,634 Kombinasi 17 522,329 472 3,68545 Kombinasi 6 696,483 Kombinasi 17 522,329 472 0 Kombinasi 7 696,784 - - 472 1,84272 Kombinasi 7 696,633 - -	472	1,84272	Kombinasi 3	1848,82	Kombinasi 14	875,642
472 1,84272 Kombinasi 4 875,654 Kombinasi 15 1416,738 472 3,68545 Kombinasi 4 875,504 Kombinasi 15 1416,587 472 0 Kombinasi 5 1416,901 Kombinasi 16 522,622 472 1,84272 Kombinasi 5 1416,75 Kombinasi 16 522,509 472 3,68545 Kombinasi 5 1416,599 Kombinasi 16 522,396 472 0 Kombinasi 6 696,784 Kombinasi 17 522,555 472 1,84272 Kombinasi 6 696,634 Kombinasi 17 522,329 472 0 Kombinasi 7 696,784 - - 472 1,84272 Kombinasi 7 696,633 - - 472 1,84272 Kombinasi 7 696,633 - -	472	3,68545	Kombinasi 3	1848,669	Kombinasi 14	875,491
472 3,68545 Kombinasi 4 875,504 Kombinasi 15 1416,587 472 0 Kombinasi 5 1416,901 Kombinasi 16 522,622 472 1,84272 Kombinasi 5 1416,75 Kombinasi 16 522,509 472 3,68545 Kombinasi 5 1416,599 Kombinasi 16 522,396 472 0 Kombinasi 6 696,784 Kombinasi 17 522,555 472 1,84272 Kombinasi 6 696,634 Kombinasi 17 522,329 472 0 Kombinasi 7 696,784 - - 472 1,84272 Kombinasi 7 696,633 - - 472 1,84272 Kombinasi 7 696,633 - -	472	0	Kombinasi 4	875,805	Kombinasi 15	1416,889
472 0 Kombinasi 5 1416,901 Kombinasi 16 522,622 472 1,84272 Kombinasi 5 1416,75 Kombinasi 16 522,509 472 3,68545 Kombinasi 5 1416,599 Kombinasi 16 522,396 472 0 Kombinasi 6 696,784 Kombinasi 17 522,555 472 1,84272 Kombinasi 6 696,634 Kombinasi 17 522,442 472 3,68545 Kombinasi 6 696,483 Kombinasi 17 522,329 472 0 Kombinasi 7 696,784 - - 472 1,84272 Kombinasi 7 696,633 - -	472	1,84272	Kombinasi 4	875,654	Kombinasi 15	1416,738
472 1,84272 Kombinasi 5 1416,75 Kombinasi 16 522,509 472 3,68545 Kombinasi 5 1416,599 Kombinasi 16 522,396 472 0 Kombinasi 6 696,784 Kombinasi 17 522,555 472 1,84272 Kombinasi 6 696,634 Kombinasi 17 522,442 472 3,68545 Kombinasi 6 696,483 Kombinasi 17 522,329 472 0 Kombinasi 7 696,784 - - 472 1,84272 Kombinasi 7 696,633 - -	472	3,68545	Kombinasi 4	875,504	Kombinasi 15	1416,587
472 3,68545 Kombinasi 5 1416,599 Kombinasi 16 522,396 472 0 Kombinasi 6 696,784 Kombinasi 17 522,555 472 1,84272 Kombinasi 6 696,634 Kombinasi 17 522,442 472 3,68545 Kombinasi 6 696,483 Kombinasi 17 522,329 472 0 Kombinasi 7 696,784 - - 472 1,84272 Kombinasi 7 696,633 - -	472	0	Kombinasi 5	1416,901	Kombinasi 16	522,622
472 0 Kombinasi 6 696,784 Kombinasi 17 522,555 472 1,84272 Kombinasi 6 696,634 Kombinasi 17 522,442 472 3,68545 Kombinasi 6 696,483 Kombinasi 17 522,329 472 0 Kombinasi 7 696,784 - - 472 1,84272 Kombinasi 7 696,633 - -	472	1,84272	Kombinasi 5	1416,75	Kombinasi 16	522,509
472 1,84272 Kombinasi 6 696,634 Kombinasi 17 522,442 472 3,68545 Kombinasi 6 696,483 Kombinasi 17 522,329 472 0 Kombinasi 7 696,784 - - 472 1,84272 Kombinasi 7 696,633 - -	472	3,68545	Kombinasi 5	1416,599	Kombinasi 16	522,396
472 3,68545 Kombinasi 6 696,483 Kombinasi 17 522,329 472 0 Kombinasi 7 696,784 - - 472 1,84272 Kombinasi 7 696,633 - -	472	0	Kombinasi 6	696,784	Kombinasi 17	522,555
472 0 Kombinasi 7 696,784 - - 472 1,84272 Kombinasi 7 696,633 - -	472	1,84272	Kombinasi 6	696,634	Kombinasi 17	522,442
472 1,84272 Kombinasi 7 696,633	472	3,68545	Kombinasi 6	696,483	Kombinasi 17	522,329
	472	0	Kombinasi 7	696,784	-	-
472 3,68545 Kombinasi 7 696,482	472	1,84272	Kombinasi 7	696,633	-	-
	472	3,68545	Kombinasi 7	696,482	-	-

Tabel L.16: Hasil gaya aksial analisis *software* pada kabel utama (model 2).

Frame (m) Output Case (kN) Output Case (kN) 472 0 Beban Mati 547,228 Kombinasi 8 696,7 472 1,84272 Beban Mati 547,102 Kombinasi 8 696,6 472 3,68545 Beban Mati 546,977 Kombinasi 8 696,4 472 0 Beban Hidup Simetris 720,116 Kombinasi 9 696,6 472 1,84272 Beban Hidup Simetris 720,116 Kombinasi 9 696,6 472 3,68545 Beban Hidup Simetris 720,116 Kombinasi 9 696,6 472 0 Beban Hidup Asimetris 179,02 Kombinasi 10 522,5 472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,4 472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,3 472 0 Beban Sandaran 33,426 Kombinasi 11 522,3 472 1,84272 Beban Sandaran 33,426 Kombinasi 11<	
472 1,84272 Beban Mati 547,102 Kombinasi 8 696,6 472 3,68545 Beban Mati 546,977 Kombinasi 8 696,4 472 0 Beban Hidup Simetris 720,116 Kombinasi 9 696,6 472 1,84272 Beban Hidup Simetris 720,116 Kombinasi 9 696,6 472 3,68545 Beban Hidup Simetris 720,116 Kombinasi 9 696,4 472 0 Beban Hidup Asimetris 179,02 Kombinasi 10 522,5 472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,4 472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,3 472 0 Beban Sandaran 33,426 Kombinasi 11 522,3 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,4 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,3 472 1,84272 Kombinasi 1 812,916	
472 3,68545 Beban Mati 546,977 Kombinasi 8 696,4 472 0 Beban Hidup Simetris 720,116 Kombinasi 9 696,7 472 1,84272 Beban Hidup Simetris 720,116 Kombinasi 9 696,6 472 3,68545 Beban Hidup Simetris 720,116 Kombinasi 9 696,4 472 0 Beban Hidup Asimetris 179,02 Kombinasi 10 522,5 472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,4 472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,3 472 0 Beban Sandaran 33,426 Kombinasi 11 522,3 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,4 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,3 472 1,84272 Kombinasi 1 812,916 Kombinasi 12 875,6 472 1,84272 Kombinasi 1 812,74	33
472 0 Beban Hidup Simetris 720,116 Kombinasi 9 696,7 472 1,84272 Beban Hidup Simetris 720,116 Kombinasi 9 696,6 472 3,68545 Beban Hidup Simetris 720,116 Kombinasi 9 696,4 472 0 Beban Hidup Asimetris 179,02 Kombinasi 10 522,5 472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,4 472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,3 472 0 Beban Sandaran 33,426 Kombinasi 11 522,3 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,4 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,3 472 0 Kombinasi 1 812,916 Kombinasi 12 875,8 472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,6 472 3,68545 Kombinasi 2 983,217 <td< td=""><td>33</td></td<>	33
472 1,84272 Beban Hidup Simetris 720,116 Kombinasi 9 696,6 472 3,68545 Beban Hidup Simetris 720,116 Kombinasi 9 696,4 472 0 Beban Hidup Asimetris 179,02 Kombinasi 10 522,5 472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,4 472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,3 472 0 Beban Sandaran 33,426 Kombinasi 11 522,5 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,4 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,3 472 0 Kombinasi 1 812,916 Kombinasi 12 875,8 472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,6 472 3,68545 Kombinasi 1 812,564 Kombinasi 13 1416,9 472 1,84272 Kombinasi 2 983,066	32
472 3,68545 Beban Hidup Simetris 720,116 Kombinasi 9 696,4 472 0 Beban Hidup Asimetris 179,02 Kombinasi 10 522,5 472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,4 472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,3 472 0 Beban Sandaran 33,426 Kombinasi 11 522,5 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,4 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,3 472 0 Kombinasi 1 812,916 Kombinasi 12 875,8 472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,6 472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,5 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,5 472 3,68545 Kombinasi 2 983,066 Kombinasi 13 </td <td>32</td>	32
472 0 Beban Hidup Asimetris 179,02 Kombinasi 10 522,5 472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,4 472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,3 472 0 Beban Sandaran 33,426 Kombinasi 11 522,5 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,4 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,3 472 0 Kombinasi 1 812,916 Kombinasi 12 875,8 472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,6 472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,5 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,9 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,6 472 3,68545 Kombinasi 2 982,915 Kombinasi 14	31
472 1,84272 Beban Hidup Asimetris 179,02 Kombinasi 10 522,4 472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,3 472 0 Beban Sandaran 33,426 Kombinasi 11 522,5 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,4 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,3 472 0 Kombinasi 1 812,916 Kombinasi 12 875,8 472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,6 472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,5 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,5 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,6 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,6 472 0 Kombinasi 3 1848,97 Kombinasi 14 <td< td=""><td>31</td></td<>	31
472 3,68545 Beban Hidup Asimetris 179,02 Kombinasi 10 522,3 472 0 Beban Sandaran 33,426 Kombinasi 11 522,5 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,4 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,3 472 0 Kombinasi 1 812,916 Kombinasi 12 875,8 472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,6 472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,5 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,3 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,3 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,6 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,7	37
472 0 Beban Sandaran 33,426 Kombinasi 11 522,5 472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,4 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,3 472 0 Kombinasi 1 812,916 Kombinasi 12 875,8 472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,6 472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,5 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,9 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,9 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,6 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,7	74
472 1,84272 Beban Sandaran 33,426 Kombinasi 11 522,4 472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,3 472 0 Kombinasi 1 812,916 Kombinasi 12 875,8 472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,6 472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,5 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,9 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,9 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,6 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,7	51
472 3,68545 Beban Sandaran 33,426 Kombinasi 11 522,3 472 0 Kombinasi 1 812,916 Kombinasi 12 875,8 472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,6 472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,5 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,9 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,6 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,6 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,7	36
472 0 Kombinasi 1 812,916 Kombinasi 12 875,8 472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,6 472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,5 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,9 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,6 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,6 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,7	73
472 1,84272 Kombinasi 1 812,74 Kombinasi 12 875,6 472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,5 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,9 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,7 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,6 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,7	6
472 3,68545 Kombinasi 1 812,564 Kombinasi 12 875,5 472 0 Kombinasi 2 983,217 Kombinasi 13 1416,9 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,7 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,6 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,7	17
472 0 Kombinasi 2 983,217 Kombinasi 13 1416,9 472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,7 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,6 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,7	66
472 1,84272 Kombinasi 2 983,066 Kombinasi 13 1416,7 472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,6 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,7	16
472 3,68545 Kombinasi 2 982,915 Kombinasi 13 1416,6 472 0 Kombinasi 3 1848,97 Kombinasi 14 875,7	13
472 0 Kombinasi 3 1848,97 Kombinasi 14 875,7	62
	12
	93
472 1,84272 Kombinasi 3 1848,82 Kombinasi 14 875,6	12
472 3,68545 Kombinasi 3 1848,669 Kombinasi 14 875,4	91
472 0 Kombinasi 4 875,805 Kombinasi 15 1416,8	89
472 1,84272 Kombinasi 4 875,654 Kombinasi 15 1416,7	38
472 3,68545 Kombinasi 4 875,504 Kombinasi 15 1416,5	87
472 0 Kombinasi 5 1416,901 Kombinasi 16 522,6	22
472 1,84272 Kombinasi 5 1416,75 Kombinasi 16 522,5)9
472 3,68545 Kombinasi 5 1416,599 Kombinasi 16 522,3	96
472 0 Kombinasi 6 696,784 Kombinasi 17 522,5	55
472 1,84272 Kombinasi 6 696,634 Kombinasi 17 522,4	12
472 3,68545 Kombinasi 6 696,483 Kombinasi 17 522,3	29
472 0 Kombinasi 7 696,784	
472 1,84272 Kombinasi 7 696,633	
472 3,68545 Kombinasi 7 696,482	

Tabel L.17: Hasil gaya aksial analisis software pada kabel backstays (model 1).

	Station	0	P		P
Frame	(m)	Output Case	(kN)	Output Case	(kN)
593	0	Beban Mati	434,029	Kombinasi 8	562,778
593	1,84272	Beban Mati	432,941	Kombinasi 8	561,473
593	3,68545	Beban Mati	431,852	Kombinasi 8	560,167
593	0	Beban Hidup Simetris	570,687	Kombinasi 9	551,471
593	1,84272	Beban Hidup Simetris	570,687	Kombinasi 9	550,165
593	3,68545	Beban Hidup Simetris	570,687	Kombinasi 9	548,859
593	0	Beban Hidup Asimetris	145,643	Kombinasi 10	424,623
593	1,84272	Beban Hidup Asimetris	145,643	Kombinasi 10	423,643
593	3,68545	Beban Hidup Asimetris	145,643	Kombinasi 10	422,664
593	0	Beban Sandaran	26,490	Kombinasi 11	413,315
593	1,84272	Beban Sandaran	26,490	Kombinasi 11	412,335
593	3,68545	Beban Sandaran	26,490	Kombinasi 11	411,356
593	0	Kombinasi 1	644,727	Kombinasi 12	742,427
593	1,84272	Kombinasi 1	643,203	Kombinasi 12	741,121
593	3,68545	Kombinasi 1	641,679	Kombinasi 12	739,815
593	0	Kombinasi 2	785,652	Kombinasi 13	1167,471
593	1,84272	Kombinasi 2	784,346	Kombinasi 13	1166,165
593	3,68545	Kombinasi 2	783,04	Kombinasi 13	1164,859
593	0	Kombinasi 3	1465,722	Kombinasi 14	654,105
593	1,84272	Kombinasi 3	1464,416	Kombinasi 14	652,799
593	3,68545	Kombinasi 3	1463,11	Kombinasi 14	651,493
593	0	Kombinasi 4	698,266	Kombinasi 15	1079,149
593	1,84272	Kombinasi 4	696,96	Kombinasi 15	1077,843
593	3,68545	Kombinasi 4	695,654	Kombinasi 15	1076,537
593	0	Kombinasi 5	1123,31	Kombinasi 16	465,552
593	1,84272	Kombinasi 5	1122,004	Kombinasi 16	464,573
593	3,68545	Kombinasi 5	1120,698	Kombinasi 16	463,593
593	0	Kombinasi 6	557,701	Kombinasi 17	363,382
593	1,84272	Kombinasi 6	556,395	Kombinasi 17	362,403
593	3,68545	Kombinasi 6	555,089	Kombinasi 17	361,423
593	0	Kombinasi 7	552,047	-	-
593	1,84272	Kombinasi 7	550,741	-	-
593	3,68545	Kombinasi 7	549,435	-	-

Tabel L.18: Hasil gaya aksial analisis software pada kabel backstays (model2).

_	Station	0	P		P
Frame	(m)	Output Case	(kN)	Output Case	(kN)
593	0	Beban Mati	433,924	Kombinasi 8	562,778
593	1,84272	Beban Mati	432,835	Kombinasi 8	561,473
593	3,68545	Beban Mati	431,747	Kombinasi 8	560,167
593	0	Beban Hidup Simetris	570,548	Kombinasi 9	551,471
593	1,84272	Beban Hidup Simetris	570,548	Kombinasi 9	550,165
593	3,68545	Beban Hidup Simetris	570,548	Kombinasi 9	548,859
593	0	Beban Hidup Asimetris	145,608	Kombinasi 10	424,623
593	1,84272	Beban Hidup Asimetris	145,608	Kombinasi 10	423,643
593	3,68545	Beban Hidup Asimetris	145,608	Kombinasi 10	422,664
593	0	Beban Sandaran	26,484	Kombinasi 11	413,315
593	1,84272	Beban Sandaran	26,484	Kombinasi 11	412,335
593	3,68545	Beban Sandaran	26,484	Kombinasi 11	411,356
593	0	Kombinasi 1	644,727	Kombinasi 12	742,427
593	1,84272	Kombinasi 1	643,203	Kombinasi 12	741,121
593	3,68545	Kombinasi 1	641,679	Kombinasi 12	739,815
593	0	Kombinasi 2	785,652	Kombinasi 13	1167,471
593	1,84272	Kombinasi 2	784,346	Kombinasi 13	1166,165
593	3,68545	Kombinasi 2	783,04	Kombinasi 13	1164,859
593	0	Kombinasi 3	1465,722	Kombinasi 14	654,105
593	1,84272	Kombinasi 3	1464,416	Kombinasi 14	652,799
593	3,68545	Kombinasi 3	1463,11	Kombinasi 14	651,493
593	0	Kombinasi 4	698,266	Kombinasi 15	1079,149
593	1,84272	Kombinasi 4	696,96	Kombinasi 15	1077,843
593	3,68545	Kombinasi 4	695,654	Kombinasi 15	1076,537
593	0	Kombinasi 5	1123,31	Kombinasi 16	465,552
593	1,84272	Kombinasi 5	1122,004	Kombinasi 16	464,573
593	3,68545	Kombinasi 5	1120,698	Kombinasi 16	463,593
593	0	Kombinasi 6	557,701	Kombinasi 17	363,382
593	1,84272	Kombinasi 6	556,395	Kombinasi 17	362,403
593	3,68545	Kombinasi 6	555,089	Kombinasi 17	361,423
593	0	Kombinasi 7	552,047	-	-
593	1,84272	Kombinasi 7	550,741	-	-
593	3,68545	Kombinasi 7	549,435	-	-

DAFTAR RIWAYAT HIDUP

DATA DIRI PESERTA

Nama Lengkap : Juni Indriani

Panggilan : Juni

Tempat, Tanggal Lahir : Simpang Kanan, 27 Juni 1996

Jenis Kelamin : Perempuan

Alamat : Simpang Kanan, Kec. Simpang Kanan, Kab. Rokan

Hilir, Prov. Riau

Agama : Islam

Nama Orang Tua

Ayah : Sodikin Ibu : Samiah

No.HP : 081277986290

E-Mail : juniindriyani@gmail.com

RIWAYAT PENDIDIKAN

Nomor Pokok Mahasiswa : 1407210214
Fakultas : Teknik
Program Studi : Teknik Sipil

Perguruan Tinggi : Universitas Muhammadiyah Sumatera Utara

Alamat Perguruan Tinggi : Jl. Kapten Muchtar Basri BA. No. 3 Medan 20238

No	Tingkat Pendidikan	Nama dan Tempat	Tahun Kelulusan			
1	SD	SD N 1 Simpang Kanan	2008			
2	SMP	SMPN 1 Simpang Kanan	2011			
3	SMA SMA N 1 Simpang Kanan 2014					
4	Melanjutkan kuliah di Universitas Muhammadiyah Sumatera Utara Tahun					
	2014 sampai selesai.					