TUGAS AKHIR

PENGARUH PENGGUNAAN SERAT DAUN NANAS SEBAGAI BAHAN PENAMBAH SERAT SELULOSA PADA CAMPURAN SPLIT MASTIC ASPHALT (SMA)

(Studi Penelitian)

Diajukan Untuk Memenuhi Syarat-Syarat Memperoleh Gelar Sarjana Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Sumatera Utara

Disusun Oleh:

DEFRI ARI RAMADHAN NPM. 1507210013

PROGRAM STUDI TEKNIK SIPIL
FAKULTAS TEKNIK
UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA
MEDAN
2019

FAKULTAS TEKNIK

Jl. Kapten Mucthar Basri No.3 Medan 20238 (061) 6622400

LEMBAR PERSETUJUAN PEMBIMBING

Nama

Defri Ari Ramadhan

NPM

1507210013

Program Studi:

Teknik Sipil

Judul Skripsi :

Pengaruh Penggunaan Serat Daun Nanas Sebagai

Bahan Penambah Serat Selulosa Pada Campuran

Split Mastic Asphalt (SMA) (Studi Penelitian)

Bidang ilmu

Transportasi

Disetujui Untuk Disampaikan Kepada Panitia Ujian

Dosen Pembimbing I

Ir. Sti Asfiati, N

Dosen Pembimbing II

Hj. Irma Dewi, ST, M,Si

HALAMAN PENGESAHAN

Tugas Akhir ini diajukan oleh:

Nama

Defri Ari Ramadhan

NPM

1507210013

Program Studi:

Teknik Sipil

Judul Skripsi :

Pengaruh Penggunaan Serat Daun Nanas Sebagai Bahan

Penambah Serat Selulosa Pada Campuran Split Mastic Asphalt

(SMA) (Studi Penelitian)

Bidang ilmu :

Transportasi

Telah berhasil dipertahankan di hadapan Tim Penguji dan diterima sebagai salah satu syarat yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, 17 September 2019

Mengetahui dan menyetujui:

Studi Teknik Sipil

Or> Pahrizal Zulkarnain

Dosen Pembimbing I / Penguji

Ir Sri Asfiati MT

DosenPembimbing II/Penguji

Hj. Irma Dewi, ST, M,Si

Dosen Pembanding I / Penguji

Dr. Fahrizal Zulkarnain

Dosen Pembanding II/Penguji

Ir. Zurkiyah, MI

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Saya yang bertanda tangan di bawah ini:

Nama Lengkap : Defri Ari Ramadhan

Tempat / Tanggal Lahir : Medan / 22 Januari 1996

NPM : 1507210013

Fakultas : Teknik

Program Studi : Teknik Sipil,

Menyatakan dengan sesungguhnya dan sejujurnya, bahwa laporan Tugas Akhir saya yang berjudul:

"Pengaruh Penggunaan Serat Daun Nanas Sebagai Bahan Penambah Serat Selulosa Pada Campuran Split Mastic Asphalt (SMA)"

bukan merupakan plagiarisme, pencurian hasil karya milik orang lain, hasil kerja orang lain untuk kepentingan saya karena hubungan material dan non-material, ataupun segala kemungkinan lain, yang pada hakekatnya bukan merupakan karya tulis Tugas Akhir saya secara orisinil dan otentik.

Bila kemudian hari diduga kuat ada ketidaksesuaian antara fakta dengan kenyataan ini, saya bersedia diproses oleh Tim Fakultas yang dibentuk untuk melakukan verifikasi, dengan sanksi terberat berupa pembatalan kelulusan/kesarjanaan saya.

Demikian Surat Pernyataan ini saya buat dengan kesadaran sendiri dan tidak atas tekanan ataupun paksaan dari pihak manapun demi menegakkan integritas akademik di Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

AFF737098641

Medan, 17 September 2019

Saya yang menyatakan,

Defri Ari Ramadhan

ABSTRAK

PENGARUH PENGGUNAAN SERAT DAUN NANAS SEBAGAI BAHAN PENAMBAH SERAT SELULOSA PADA CAMPURAN SPLIT MASTIC ASPHALT (SMA)

(Studi Penelitian)

Defri Ari Ramadhan 1507210013 IR. Sri Asfiati , MT Hj. Irma Dewi, ST, M.Si

Split Mastic Asphalt (SMA) adalah suatu lapisan permukaan tipis, mempunyai ketahanan yang baik terhadap alur (rutting) dan mempunyai durabilitas yang tinggi sehingga SMA cocok digunakan untuk lapisan permukaan jalan berlalu lintas berat. SMA terdiri dari dari tiga jenis yaitu SMA Tipis, SMA Halus dan SMA Kasar dengan ukuran partikel maksimum agregat masing-masing campuran adalah 12,5 mm, 19 mm, 25 mm Material utama penyusun adalah agregat dan aspal, Penelitian ini mencoba menggunakan serat daun nanas sebagai bahan tambah. Penelitian ini bertujuan untuk mengetahui seberapa besar nilai karakteristik Marshall pada campuran aspal dengan menggunakan serat daun nanas sebagai bahan tambah. Hasil penelitian menunjukkan bahwa penggunaan serat daun nanas akan mempengaruhi karakteristik campuran aspal. Dari data Marshall Test yang didapatkan diperoleh nilai tertinggi stabilitasnya sebesar 737 kg, bulk density sebesar 2,238 gr/cc, flow sebesar 2,81 mm, void in mineral aggregate sebesar 17,06%, Air Voids 4,53% Sehingga dapat disimpulkan bahwa kandungan serat daun nanas memenuhi persyaratan Marshall Test.

Kata kunci: Serat daun nanas, Split Mastic Asphalt (SMA), Karakteristik Marshall,

ABSTRACT

THE INFLUENCE OF USE OF PINEAPPLE FIBER AS A SELULOSA FIBER ADDITION MATERIAL IN MIXED SPAST MASTIC ASPHALT (SMA)

(Research Studies)

Defri Ari Ramadhan 1507210013 IR. Sri Asfiati , MT Hj. Irma Dewi, ST, M.Si

Split Mastic Asphalt (SMA) is a thin surface layer, has good resistance to grooves (rutting) and has a high durability so that the SMA is suitable for heavy surface road surfaces. SMA consists of three types, namely Thin High School, Smooth High School and Rough High School with maximum aggregate particle size of each mixture is 12.5 mm, 19 mm, 25 mm The main constituent material is aggregate and asphalt, this study tried to use pineapple leaf fiber as added material. This study aims to determine how much the value of Marshall characteristics in asphalt mixture by using pineapple leaf fiber as added material. The results showed that the use of pineapple leaf fiber would affect the characteristics of the asphalt mixture. The Marshall Test data obtained obtained the highest value of stability of 737 kg, bulk density of 2.238 gr / cc, flow of 2.81 mm, void in mineral aggregate of 17.06%, Air Voids 4.53% So it can be concluded that the content pineapple leaf fiber meets Marshall Test requirements.

Keywords: Pineapple leaf fiber, Split Mastic Asphalt (SMA), Marshall Characteristics.

KATA PENGANTAR

Dengan nama Allah Yang Maha Pengasih lagi Maha Penyayang. Segala puji dan syukur penulis ucapkan kehadirat Allah SWT yang telah memberikan karunia dan nikmat yang tiada terkira. Salah satu dari nikmat tersebut adalah keberhasilan penulis dalam menyelesaikan laporan Tugas Akhir ini yang berjudul "Pengaruh Penggunaan Serat Daun Nanas Sebagai Bahan Penambah Serat Selulosa Pada Campuran *Split Mastic Asphalt* (SMA)" sebagai syarat untuk meraih gelar akademik Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara (UMSU), Medan.

Banyak pihak telah membantu dalam menyelesaikan laporan Tugas Akhir ini, untuk itu penulis menghaturkan rasa terimakasih yang tulus dan dalam kepada:

- 1. Ibu Ir. Sri Asfiati , MT selaku Dosen Pembimbing I dan Penguji yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- 2. Ibu Hj. Irma Dewi ,ST, M,Si, selaku Dosen Pimbimbing II dan Penguji serta selaku Sekretaris Program Studi Teknik Sipil Universitas Muhammadiyah Sumatera Utara, yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- 3. Bapak Dr. Fahrizal Zulkarnain, selaku Dosen Pembanding I dan Penguji, sekaligus Ketua Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara. yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- 4. Ibu Ir. Zurkiyah, MT, selaku Dosen Pembanding II dan Penguji yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- 5. Bapak Munawar Alfansury Siregar, ST, MT, selaku Dekan Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- 6. Bapak Husin Gultom, ST, MT, yang telah memberi bimbingan dan arahan kepada saya.

7. Seluruh Bapak/Ibu Dosen di Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara yang telah banyak memberikan ilmu ketekniksipilan kepada penulis.

8. Bapak/Ibu Staf Administrasi di Biro Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

9. Yang paling saya sayangi orang tua saya: Bapak Syafrinal dan Ibu Fitri Amanah, terima kasih banyak untuk semua doa dan kasih sayang tulus yang tak ternilai harganya, serta telah bersusah payah membesarkan dan membiayai studi penulis saya.

10. Teristimewa Sintha Ardiny, dan Adinda Sandi Ridho Ananda serta seluruh keluarga, terimakasih banyak untuk semua do'a dan dukunganya.

11. Sahabat-sahabat penulis dan penelitian: M.Iqbal Azhari Lubis, Fadzil Noor Hasibuan, Devi Rizki Wulan Oktavian. Kelas A3 dan B3 Malam serta seluruh angkatan 2015 yang tidak mungkin namanya disebut satu per satu.

12. Sahabat-sahabat seperjuangan Abangda M. Ridho Mulyono, Rahmad Ariansyah dan Andre Rangga Syahputra yang telah memberi doa dan dukungan agar bisa menyelesaikan tugas akhir ini.

Laporan Tugas Akhir ini tentunya masih jauh dari kesempurnaan, untuk itu penulis berharap kritik dan masukan yang konstruktif untuk menjadi bahan pembelajaran berkesinambungan penulis di masa depan. Semoga laporan Tugas Akhir ini dapat bermanfaat bagi dunia konstruksi teknik sipil.

Medan, 17 September 2019

Defri Ari Ramadhan

DAFTAR ISI

LEMBA	AR PE	ERSETU	JJUAN PEMBIMBING	ii
LEMBA	AR PE	ENGESA	AHAN	iii
LEMBA	AR PE	ERNYA	TAN KEASLIAN SKRIPSI	iv
ABSTR	AK			v
ABSTRA	ACT			vi
KATA	PENC	GANTAI	R	vii
DAFTA	R ISI			ix
DAFTA	AR TA	BEL		xii
DAFTA	AR GA	MBAR		xiv
DAFTA	AR NO	OTASI		xvi
DAFTA	R SII	NGKAT	AN	xviii
BAB 1	PEN	DAHUI	LUAN	
	1.1.	Latar E	Belakang	1
	1.2.	Rumus	an Masalah	2
	1.3.	Ruang	Lingkup	2
	1.4.	Tujuan	Penelitian	2
	1.5.	Manfaa	at Penelitian	3
	1.6.	Sistema	atika Penulisan	3
BAB 2	TIN.	IAUAN	PUSTAKA	
	2.1.	Jenis P	ekerjaan Jalan	5
		2.1.1.	Perkerasan Lentur (Flexible Pavement)	5
		2.1.2.	Perkerasan Kaku (Rigid Pavement)	6
		2.1.3.	Perkerasan Komposit (Composite Pavement)	7
		2.1.3.	Perbedaan Antara Perkerasan Lentur dan Kaku	7
	2.2.	Jenis C	Campuran Beraspal	8
	2.3.	Agrega	at	9
		2.3.1.	Agregat Kasar	13
		2.3.2.	Agregat Halus	14
		2.3.3.	Bahan Pengisi (Filler)	15

		2.3.4. Gradasi Agregat Gabungan	1
	2.4	Berat Jenis Dan Penyerapan	15
		2.4.1. Berat Jenis Dan Penyerapan Agregat Kasar	18
		2.4.2. Berat Jenis Dan Penyerapan Agregat Halus	19
	2.5.	Split Mastic Asphalt (SMA)	20
		2.5.1. Bahan Tambah	23
		2.5.2. Serat Selulosa	25
	2.6.	Aspal (Asphalt)	25
		2.6.1. Jenis Aspal	26
		2.6.2. Fungsi Aspal Sebagai Material Perkerasan Jalan	28
	2.7.	Prosedur Rancangan Campuran	31
		2.6.1. Pengujian Marshall Untuk Perencanaan Campuran	32
		2.6.2. Berat Isi Benda Uji Padat	33
		2.6.3. Pengujian Stabilitas dan Kelelehan (Flow)	35
		2.6.4. Pengujian Volumetrik	36
BAB 3	MET	ODOLOGI PENELITIAN	
	3.1.	Bagan Alir Metode Penelitian	39
	3.2.	Tempat Dan Waktu Penelitian	40
	3.3.	Metode Penelitian	40
	3.4.	Teknik Pengumpulan Data	40
	3.5.	Material Untuk Penelitian	40
	3.6.	Prosedur Penelitian	41
	3.7	Pemeriksaan Bahan Campuran	41
		3.7.1. Pemeriksaan Terhadap Agregat Kasar Dan Halus	41
		3.7.2. Alat Yang Digunakan	42
		3.7.3. Pemeriksaan Keausan Agregat Dengan Mesin Los Angeles	43
	3.8.	Prosedur Kerja	43
		3.8.1. Perencanaan Campuran (Mix Desaign)	43
		3.8.2. Tahapan Pembuatan Benda Uji	45
		3.8.3. Metode Pengujian Benda Uji (Sample)	46
		3.8.4. Penentuan Berat Jenis (Bulk Specific Gravity)	47

	3.8.5. Pengujian Stabilitas (<i>Stability</i>) Dan Kelelehan (<i>Flow</i>)	47
3.9	Penyajian Data	48
BAB 4 HAS	IL DAN PEMBAHAS	
4.1.	Hasil Penelitian	52
	4.1.1. Pemeriksaan Gradasi Agregat	52
	4.1.2. Hasil Pemeriksaan Berat Jenis Agregat	56
	4.1.3. Hasil Pemeriksaan Aspal	59
	4.1.4. Pemeriksaan Terhadap Parameter Benda Uji	60
4.2.	Pembahasan dan Analisis	
	4.2.1. Perbandingan Sifat Marshall	68
	4.2.2. Pemeriksaan Kadar Aspal Optimum	72
BAB 5 KES	IMPULAN DAN SARAN	
5.1.	Kesimpulan	74
5.2.	Saran	74
DAFTAR PU	JSTAKA	75
LAMPIRAN		
DAFTAR RI	WAYAT HIDUP	

DAFTAR TABEL

Tabel 2.1	Perbedaan Perkerasan Lentur dan Pekerasan Kaku	8
Tabel 2.2	Ketentuan Agregat Halus	15
Tabel 2.3	Ketentuan Agregat Halus	15
Tabel 2.4	Amplop Gradasi Agregat Gabungan Untuk Campuran Beraspal	16
Tabel 2.5	Tabel Sifat Fisik Serat Daun Nanas	24
Tabel 2.6	Komposisi Kimia Serat Daun Nanas	24
Tabel 2.7	Persyaratan Serat Selulosa Untuk SMA	25
Tabel 2.8	Ketentuan Untuk Aspal Keras	27
Tabel 2.9	Ketentuan Sifat-sifat Campuran SMA	31
Tabel 3.1	Data Analisa Saringan Agregat Kasar	49
Tabel 3.2	Data Analisa Saringan Agregat Halus	49
Tabel 3.3	Data Berat Jenis Agregat Kasar	49
Tabel 3.4	Data Berat Jenis Agregat Halus	50
Tabel 3.5	Data Marshall	51
Tabel 4.1	Hasil Pemeriksaan Analisis Saringan Agregat Kasar (Ca) ½ Inch	52
Tabel 4.2	Hasil Pemeriksaan Analisis Saringan Agregat Kasar (Ma) 3/8 Inch	53
Tabel 4.3	Hasil Pemeriksaan Analisis Saringan Agregat Halus Pasir (Sand).	53
Tabel 4.4	Hasil Pemeriksaan Analisis Saringan Agregat Halus Abu Batu	54
Tabel 4.5	Hasil Kombinasi Gradasi Agregat Standar	54
Tabel 4.6	Hasil Perhitungan Berat Agregat Yang Diperlukan Untuk Benda Uji Standar	56

Tabel 4.7	Hasil Perhitungan Berat Agregat Yang Diperlukan Untuk Benda Uji Penggunaan serat daun nanas 0,3%.	56
Tabel 4.8	Rekapitulasi Pemeriksaan Berat Jenis Agregat Kasar CA ½ Inch	57
Tabel 4.9	Rekapitulasi Pemeriksaan Berat Jenis Agregat Kasar MA 3/8 Inch	58
Tabel 4.10	Rekapitulasi Pemeriksaan Berat Jenis Agregat Halus Pasir (Sand)	58
Tabel 4.11	Rekapitulasi Pemeriksaan Berat Jenis Agregat Halus Abu Batu	59
Tabel 4.12	Hasil Pemeriksaan Karakteristik Aspal Pertamina Pen 60/70 (PT. Tri Murti Patumbak)	60
Tabel 4.13	Rekapitulasi Hasil Uji Marshall Campuran Normal	62
Tabel 4.14	Rekapitulasi Hasil Uji <i>Marshall</i> Campuran Penambah Serat Daun Nanas 0,3%	63
Tabel 4.15	Kadar aspal optimum untuk campuran aspal normal serta penambahan serat Daun Nanas 0,3%	73

DAFTAR GAMBAR

Gambar 2.1	Lapisan perkerasan lentur	6
Gambar 2.2	Lapisan perkerasan kaku	7
Gambar 2.3	Lapisan perkerasan komposit	7
Gambar 2.4	Perbandingan Campuran Split Mastic Asphalt (SMA) dan Hot Mix Asphalt (HMA)	22
Gambar 3.1	Bagan alir penelitian	39
Gambar 4.1	Grafik Hasil Kombinasi Gradasi Agregat Normal	55
Gambar 4.2	Grafik Hubungan Antara Kadar Aspal (%) Dengan <i>Bulk Density</i> (<i>gr/cc</i>) Campuran Normal	63
Gambar 4.3	Grafik Hubungan Antara Kadar Aspal (%) Dengan <i>Bulk Density</i> (<i>gr/cc</i>) Serat daun nanas 0,3%	64
Gambar 4.4	Grafik Hubungan Antara Kadar Aspal (%) Dengan <i>Stability</i> (Kg) Campuran Normal	64
Gambar 4.5	Grafik Hubungan Antara Kadar Aspal (%) Dengan <i>Stability</i> (Kg) Serat daun nanas 0,3%	65
Gambar 4.6	Grafik Hubungan Antara Kadar Aspal (%) Dengan <i>AirVoids</i> (VIM) (%) Campuran Normal	65
Gambar 4.7	Grafik Hubungan Antara Kadar Aspal (%) Dengan <i>Air Voids</i> (VIM) (%) Serat daun nanas 0,3%	66
Gambar 4.8	Grafik Hubungan Antara Kadar Aspal (%) Dengan VMA (%) Campuran Normal	66
Gambar 4.9	Grafik Hubungan Antara Kadar Aspal (%) Dengan VMA (%) Serat daun nanas 0,3%	67
Gambar 4.10	Grafik Hubungan Antara Kadar Aspal (%) Dengan Flow (mm) Campuran Normal	67
Gambar 4.11	Grafik Hubungan Antara Kadar Aspal (%) Dengan Flow (mm) Serat daun nanas 0,3%	68

Gambar 4.12	Perbandingan Nilai <i>Bulk Density</i> Campuran Aspal Normal Serta Pengunaan Penambah Serat daun nanas 0,3%	69
Gambar 4.13	Perbandingan Nilai <i>Stability</i> Campuran Aspal Normal Serta Pengunaan Penambah Serat daun nanas 0,3%	69
Gambar 4.14	Perbandingan Nilai VIM Campuran Aspal Normal Serta Pengunaan Penambah Serat daun nanas 0,3%	70
Gambar 4.15	Perbandingan Nilai VMA Campuran Aspal Normal Serta Pengunaan Penambah Serat daun nanas 0,3%	71
Gambar 4.16	Perbandingan Nilai <i>Flow</i> Campuran Aspal Normal Serta Pengunaan Penambah Serat daun nanas 0,3%	71
Gambar 4.17	Penentuan Rentang (Range) Kadar Aspal Optimum Campuran Aspal Normal	72
Gambar 4.18	Penentuan Rentang (Range) Kadar Aspal Optimum Campuran Aspal Penambah Serat daun nanas 0,3%	73

DAFTAR NOTASI

A = Berat piknometer (gr)

B = Berat piknometer berisi air (gr)

Ba = Berat benda uji kering permukaan jenuh dalam air (gr)

Bk = Berat benda uji kering oven (gr)

Bj = Berat benda uji kering permukaan jenuh (gr)

C = Berat piknometer berisi aspal (gr)

D = Berat piknometer berisi air dan aspal

Fk = Faktor Koreksi

G = Berat isi sampel

Gb = Berat jenis aspal

Gmb = Berat jenis curah campuran padat

Gmm = Berat jenis maksimum campuran

Gsa = Berat jenis semu

Gsb = Berat jenis curah

Gse = Berat jenis efektif agregat

K = Kelelehan (Flow)

MQ = Marshall Quotient

Pb = Aspal, persen berat total campuran

Pba = Aspal yang terserap

Pbe = Kadar aspal efektif

Pmm = Campuran lepas total, persentase terhadap berat total campuran

Ps = Agregat, persen terhadap total campuran

S = Berat benda uji kondisi jenuh kering permukaan

Sa = Berat jenis semu (apparent specific gravity)

Sa = Stabilitas akhir

Sd = Berat jenis curah (bulk specific gravity)

Ss = Berat jenis kering permukaan jenuh

Sw = Penyerapan air

V = Volume aspal pada temperatur

Va = Volume Air yang di masukkan ke dalam piknometer

Vt = Volume aspal pada temperature tertentu

VFA/VFB = Rongga terisi aspal (%)

VIM = Rongga udara dalam campuran (%)

VMA = Rongga dalam agregat mineral (%)

Vpp = Volume pori meresap aspal

Vpp -Vap = Volume pori meresap air yang tidak meresap aspal

Vs = Volume bagian padat agregat

W = Berat Piknometer Kosong

Ws = Berat agregat kering (gr)

 $\gamma w = Berat isi air.$

DAFTAR ISTILAH DAN SINGKATAN

AC-BC = Asphalt Concrete-Binder Course

AC-Base = Asphalt Concrete-Base

AC-WC = Asphalt Concrete Wearing Course

AMP = Asphalt Mixing Plant

ASTM = American Standard Testing and Material

PAV = Presure Aging Vessel

PRD = Persentage Refusal Density

RC = Rapid Curing

RTFOT = Rolling Thin Film Oven Test

SC = Slow Curing

SMA = Split Mastic Asphalt SSD = Saturad Surface Dry TFOT = Thin Film Oven Test

VMA = Void in mineral aggregate

VIM = Void in mix

VFWA = Void filled with asphalt

VFB = Void filled Bitumen

BAB 1

PENDAHULUAN

1.1. Latar Belakang

Jalan raya adalah jalur-jalur tanah di atas permukaan bumi yang dibuat oleh manusia dengan bentuk, ukuran-ukuran dan jenis konstruksinya sehingga dapat digunakan untuk menyalurkan lalu lintas orang, hewan dan kendaraan yang mengangkut barang dari suatu tempat ke tempat lainnya dengan mudah dan cepat (ClarksonH.Oglesby,1999).

Menurut Undang-undang Republik Indonesia Nomor 38 tahun 2004 Jalan merupakan prasarana transportasi darat yang menghubungkan kawasan antar kawasan. Fungsinya diantara lain agar dapat meningkatkan kegiatan ekonomi di suatu tempat, karena jalanan beraspal yang baik dapat memudahkan urusan perjalanan orang untuk pergi atau mengirim barang lebih cepat ke suatu tujuan dari dalam kota maupun luar daerah.

Sangat banyak jalan-jalan di Indonesia yang rusak dan retak berlubang, disebabkan oleh deformasi (perubahan bentuk) permanen, dikarenakan adanya tekanan beban yang terlalu berat oleh muatan kendaraan yang melebihi kapasitas jalan tersebut dan tingginya frekuensi lalu lintas kendaraan di jalan raya.

Oleh karena itu perlu dilakukan upaya—upaya terobosan untuk mengisi ketersediaan kekurangannya bahan campuran aspal yang dibuat. Untuk itu telah lahir suatu teknologi kontraksi lapis perkerasan permukaan jalan raya yang di kembangkan di jerman pada tahun 1960-an yaitu SMA (Split Mastic Asphalt) dengan tambahan serat selulosa. Pemeritan Indonesia telah mengembangkan jenis yaitu SMA 0.11 diharapkan mampu memberikan umur Asphalt yang lebih panjang dan permukaan yang optimal. Pada umumnya campuran SMA hampir sama dengan campuran (AC-WC) Asphalt Concrete- Wearing Course yaitu menggunakan berbagai jenis agregat seperti agregat halus, agregat kasar dan aspal sebagai bahan pengikat. Tetapi SMA menggunakan serat tambahan yaitu serat selulosa.

Menurut Herman (2001), *SMA* adalah salah satu jenis aspal beton campuran panas (*Hotmix*) bergradasi terbuka, yang terdiri dari campuran. (*Split*) dengan ukuran > 2 mm dan fraksi yang besar, yaitu sebesar 75%. (*Mastic Asphalt*) merupakan campuran antara agregat halus dengan aspal yang kadarnya relatif tinggi.

Penelitian ini dilakukan untuk mengetahui pengaruh penggunaan serat daun nanas sebagai bahan penambah serat selulosa pada campuran *SMA* jenis SMA 0/11.

1.2. Rumusan Masalah

Adapun perumusan masalah dalam penelitian ini adalah :

- 1. Bagaimanakah pengaruh aspal panas jenis *SMA* jika di tambahkan serat selulosa dengan serat daun nanas.
- 2. Apakah dapat memenuhi persyaratan sifat-sifat parameter pada uji Marshall terdapat pada Spesifikasi umum Bina Marga 2018.

1.3 Ruang lingkup

Didalam penelitian ini. Penulis harus memberikan batasan-batasan masalah di dalam penelitian supaya bisa menghindari hal-hal yang tidak perlu dibahas dalam tugas akhir ini . antara lain:

- 1. Menguji sifat-sifat agregat
- 2. Menyelidiki pengaruh sifat *Marshall* pada kadar aspal jenis *SMA* yang di rencanakan 5,5 %, 6 %, 6,5 %, 7 %, 7,5 % terhadap penggunaan serat selulosa dengan serat daun nanas variasi 0,3 %.
- 3. Penelitian ini menggunakan data aspal sekunder.
- 4. Penelitian yang dilakukan hanya terbatas pada pengujian dilaboratorium dan tidak dilakukan percobaan dilapangan

1.4 Tujuan Penelitian

Adapun tujuan dari penelitian ini antara lain :

- Untuk mengetahui apakah tujuan percobaan ini memenuhi karakteristik *Marshall* pada campuran *SMA* dengan serat daun nanas terdapat dalam Spesifikasi Umum Dinas Bina Marga 2018.
- 2. Untuk mengetahui kadar aspal optimum (KAO) pada campuran *SMA* terhadap serat selulosa dengan serat daun nanas Variasi 0,3 %.

1.5 Manfaat Penelitian

Manfaat dari penulisan tugas akhir ini penulis dapat memberikan berupa informasi hasil penelitian tentang pengaruh penggunaan serat daun nanas sebagai bahan penambah serat selulosa pada campuran *SMA*. Dari hasil penelitian tersebut akan dapat diketahui pengaruh yang ditimbulkan dari penggunaan limbah serat daun nanas terhadap aspal panas jenis *SMA*. Dari hasil penelitian ini juga diharapkan nantinya dapat menambah pengetahuan, pengalaman dan wawasan untuk kita semua.

1.6 Sistematika Penulisan

Didalam penulisan tugas akhir ini di kelompokan ke dalam 5 bab dengan sistematika sebagai berikut:

BAB 1 PENDAHULUAN

Merupakan rancangan yang akan dilakukan yang meliputi tinjauan umum, latar belakang, rumusan masalah, tujuan penelitian, manfaat penelitian, dan sistematis penulisan

BAB 2 TINJAUAN PUSTAKA

Merupakan kajian dari berbagai literatur serta hasil studi yang relevan dengan pembahasan ini. Dalam hal ini diuraikan hal-hal tentang beberapa teori-teori yang berhubungan dengan karakteristik hotmix *Split Mastic Asphalt* (SMA) dengan penambahan serat *Sellulose*.

BAB 3 METODE PENELITIAN

Bab ini berisikan tentang metode yang dipakai dalam penelitian ini, termasuk pengambilan data, langkah penelitian, analisis data, pengolahan data, dan bahan uji.

BAB 4 ANALISIS DATA

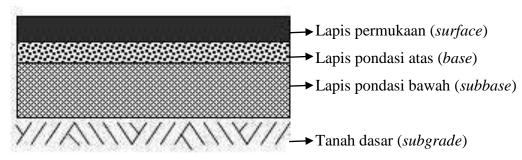
Berisikan pembahasan mengenai data-data yang didapat dari pengujian, kemudian dianalisis, sehingga dapat diperoleh hasil perhitungan, dan kesimpulan hasil mendasar.

BAB 5 KESIMPULAN DAN SARAN

Merupakan penutup yang berisikan tentang kesimpulan yang telah diperoleh dari pembahasan pada bab sebelumnya dan saran mengenai hasil penelitian yang dapat dijadikan masukan.

BAB 2

TINJAUAN PUSTAKA

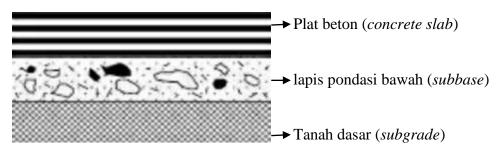

2.1. Jenis Pekerjaan Jalan

Menurut Sukirman, 2007, berdasarkan bahan pengikatnya konstruksi perkerasaan jalan terbagi menjadi:

- Kontruksi perkerasaan lentur (flexible pavement), yaitu perkerasan yang menggunakan aspal sebagai bahan pengikat. Lapisan-lapisan perkerasannya bersifat memikul dan menyebarkan beban lalu lintas ke tanah dasar.
- 2. Konstruksi perkerasan kaku (*rigid pavement*), yaitu perkerasan yang menggunakan semen (*Portland cement*) sebagai bahan pengikatnya.
- 3. Konstruksi perkerasan komposit (*composite pavement*), yaitu perkerasan kaku yang dikombinasikan dengan perkerasan lentur dapat berupa perkerasan lentur dapat berupaperkerasan lentur diatas perkerasan kaku, atau perkerasan kaku diatas perkerasan lentur.

2.1.1. Perkerasan Lentur (Flexible Pavement)

Perkerasan lentur merupakan perkerasan yang menggunakan aspal sebagai bahan pengikatnya. Perkerasan lentur memiliki umur rentang antara 10-20 tahun masa pemakaian saja. Konstruksi perkerasan lentur terdiri dari lapisan-lapisan yang diletakkan di atas tanah dasar yang telah dipadatkan. Lapisan-lapisan tersebut berfungsi untuk menerima beban lalu lintas dan menyebarkannya ke lapisan dibawahnya. Perkerasan jalan raya dibuat berlapis-lapis bertujuan untuk menerima beban kendaraan yang melaluinya dan meneruskan ke lapisan di bawahnya. Biasanya material yang digunakan pada lapisan-lapisan perkerasan jalan semakin ke bawah akan semakin berkurang kualitasnya. Karena lapisan yang berada di bawah lebih sedikit menahan beban. Lapisan perkerasan lentur dapat dilihat pada Gambar 2.1.


Gambar 2.1: Lapisan perkerasan lentur (Sukirman, 1999).

Lapisan permukaan pada umumnya dibuat dengan menggunakan bahan pengikat aspal, sehingga menghasilkan lapisan yang kedap air dengan stabilitas yang tinggi dan daya tahan yang lama. Lapisan ini terletak paling atas, yang berfungsi sebagai berikut:

- Menahan beban roda, oleh karena itu lapisan perkerasan ini harus mempunyai stabilitas tinggi untuk menahan beban roda selama masa layan.
- 2. Lapisan kedap air, sehingga air hujan tidak meresap ke lapisan di bawahnya yang akan mengakibatkan kerusakan pada lapisan tersebut.
- 3. Lapis aus, lapisan yang langsung terkena gesekan akibat rem kendaraan sehingga mudah menjadi aus.
- 4. Lapis yang menyebarkan beban ke lapisan bawahnya, sehingga dapat dipikul oleh lapisan lain.

2.1.2. Perkerasan Kaku (Rigid Pavemet)

Perkerasan kaku merupakan suatu susunan konstruksi perkerasan dimana sebagai lapisan atasnya digunakan pelat beton, yang terletak di atas pondasi atau langsung di atas tanah dasar. Lapisan pondasi atas terletak tepat di bawah lapisan perkerasan, maka lapisan ini bertugas menerima beban yang berat. Oleh karena itu material yang digunakan harus berkualitas tinggi dan pelaksanaan di lapangan harus benar. Lapisan-lapisan perkerasan kaku adalah seperti Gambar 2.2.



Gambar 2.2: Lapisan perkerasan kaku (Sukirman, 1999).

Perkerasan kaku ini memiliki umur rencana yang lebih lama dibandingkan perkerasan lentur, tetapi lebih mahal biaya yang dibutuhkan. Pada umumnya perkerasan kaku dipakai pada jalan antar lintas provinsi karena arus lalu lintasnya padat. Selain dari kedua jenis tersebut, sekarang telah banyak digunakan jenis gabungan (*composite pavement*).

2.1.3. Perkerasan Komposit (Composite Pavement)

Perkerasan komposit merupakan perkerasan kaku yang dikombinasikan dengan perkerasan lentur. Perkerasan lentur di atas perkerasan kaku atau sebaliknya. Lapisan perkerasan komposit dapat dilihat pada gambar 2.3.

Gambar 2.3: Lapisan perkerasan komposit (Sukirman, 1999).

2.1.4. Perbedaan Antara Perkerasan Lentur dan Perkerasan Kaku

Perbedaan antara perkerasan lentur dan perkerasan kaku dapat dilihat pada Tabel 2.1.

Tabel 2.1: Perbedaan Perkerasan Lentur dan Pekerasan Kaku (Sukirman, 1999).

	Perkerasan Lentur	Perkerasan Kaku
Bahan Pengikat	Aspal	Semen
Repetisi Beban	Timbul Rutting (lendutan pada jalur roda)	Timbul retak-retak pada permukaan
Penurunan Tanah Dasar	Jalan bergelombang (mengikuti tanah dasar)	Bersifat sebagai balok diatas perletakan
Perubahan Temperatur	Modulus kekakuan berubah. Timbul tegangan dalam yang Kecil	Modulus kekakuan tidak berubah timbul tegangan dalam yang besar

2.2. Jenis Campuran Beraspal

Jenis campuran beraspal dibedakan berdasarkan ketebalan pada setiap lapisan, antara lain:

1. Split Mastic Asphalt (SMA).

Split Mastic Asphalt disebut SMA, terdidri dari tiga jenis yaitu SMA Tipis, SMA Halus, SMA Kasar, dengan ukuran partikel maksimum agregat masing-masing campuran adalah 12,5 mm, 19 mm, 25 mm. Setiap campuran SMA yang menggunakan bahan aspal *polymer* disebut masing-masing sebagai SMA Tipis Modifikasi, SMA Halus Modifikasi, SMA Kasar Modifikasi.

2. Lapis Tipis Aspal Beton (*Hot Rolled Sheet*, HRS).

Lapis Tipis Aspal Beton (Lataston) yang disebut juga HRS, terdiri dari dua jenis campuran yaitu HRS Fondasi, (HRS-*Base*) dan HRS Lapis Aus (HRS-*Wearing Course*, HRS-WC) dan ukuran maksimum agregat masing-masing campuran adalah 19 mm. HRS-*Base* mempunyai proporsi fraksi agregat kasar lebih besar daripada HRS-WC.

3. Lapis Aspal Beton (Asphalt Concrete, AC)

Lapis Aspal Beton (Laston) yang disebut juga AC, terdiri dari tiga jenis yaitu AC Lapis Aus (AC-Wearing Course), AC Lapis Antara (AC-Binder Course) dan AC

Lapis Fondasi (AC-*Base*), dengan ukuran maksimum agregat masing-masing campuran adalah 19 mm, 25,4 mm, 37,5 mm, setiap jenis campuran AC yang menggunakan Aspal *Polymer* disebut masing-masing sebagai AC-WC Modifikasi, AC-BC Modifikasi, dan AC-*Base* Modifikasi.

2.3. Agregat

Agregat diartikan sebagai suatu kumpulan butiran batuan yang berukuran tertentu yang diperoleh dari hasil alam langsung maupun dari pemecahan batu besar ataupun agregat yang sengaja dibuat untuk tujuan tertentu. Seringkali agregat diartikan pula sebagai suatu bahan yang bersifat keras dan kaku yang digunakan sebagai bahan pengisi suatu campuran. Agregat dapat berupa berbagai jenis butiran atau pecahan batuan, termasuk di dalamnya antara lain, pasir, kerikil, agregat pecah, abu/debu agregat, dan lain-lain.

Agregat didefinisikan secara umum sebagai formasi kulit bumi yang keras dan padat. ASTM (1974) mendefinisikan agregat sebagai suatu bahan yang terdiri dari mineral padat, berupa masa berukuran besar ataupun berupa fragmen-fragmen. Agregat merupakan komponen utama dari struktur perkerasan jalan, yaitu 90-95% agregat berdasarkan persentase berat, atau 75-85% agregat berdasarkan persentase volume. Dengan demikian kualitas perkerasan jalan ditentukan juga dari sifat agregat dan hasil campuran agregat dangan material lain. Sifat agregat yang menentukan kualitasnya sebagai material perkerasan jalan adalah gradasi, kebersihan, kekerasan dan ketahanan agregat, bentuk butir, tekstur permukaan, porositas, kemampuan untuk menyerap air, berat jenis, dan daya pelekatan dengan aspal (Sukirman, 2003).

Agregat atau batu, atau granular material adalah material berbutir yang keras dan kompak. Istilah agregat mencakup antara lain batu bulat, batu pecah, abu batu, dan pasir. Agregat mempunyai peranan yang sangat penting dalam prasarana transportasi, khususnya dalam hal ini pada perkerasan jalan. Daya dukung perkerasan jalan ditentukan sebagian besar oleh karakteristik agregat yang digunakan. Pemilihan agregat yang tepat dan memenuhi persyaratan akan sangat menentukan dalam keberhasilan pembangunan atau pemeliharaan jalan.

Sebagai bahan lapis perkerasan, agregat berperan dalam mendukung dan menyebarkan beban roda kendaraan berlapis tanah. Secara umum agregat diklasifiksikan antara lain:

- 1. Ditinjau dari asal bahan
- 2. Berdasarkan proses pengolahan
- 3. Berdasarkan besar partikel-partikel agregat

Sifat dan kualitas agregat menentukan kemampuan dalam memikul beban lalu lintas. Semua lapis perkerasan jalan lentur memerlukan agregat yang terdistribusi dari besar sampai kecil. Penggunaan partikel agregat dengan ukuran besar lebih menguntungkan apabila:

- 1. Usaha pemecahan partikel lebih sedikit
- 2. Luas permukaan yang diselimuti aspal lebih sedikit sehingga kebutuhan akan aspal berkurang.

Di samping keuntungan diatas pemakaian agregat dengan ukuran besar mempunyai kekurangan antara lain:

- 1. Kemudahan pelaksanaan pekerjaan berkurang
- 2. Segregasi bertambah besar
- 3. Kemungkinan terjadi gelombang melintang.

Sifat agregat yang menentukan kualitas sebagai bahan konstruksi perkerasan jalan dikelompokkan menjadi sebagai berikut ini:

- 1. Kekuatan dan keawetan (*strenght and durability*) lapisan perkerasan, yang dipengaruhi sebagai berikut ini.
 - a. Gradasi atau distribusi partikel-partikel berdasarkan ukuran agregat merupakan hal yang penting dalam menentukan stabilitas lapis keras. Gradasi agregat mempengaruhi besarnya rongga butir yang akan menentukan stabilitas dan kemudahan dalam pelaksanaan. Gradasi agregat diperoleh dengan analisa saringan dengan menggunakan satu set saringan.
 - b. Ukuran maksimum yaitu semakin besar ukuran maksimum partikel agregat yang dipakai semakin banyak variasi.
 - c. Ukuran agregat dari kecil sampai besar yang dibutuhkan. Batasan ukuran agregat maksimum yang dipakai dibatasi oleh tebal lapisan yang direncanakan.

- d. Kadar lempung yaitu lempung mempengaruhi mutu campuran agregat dengan aspal karena membungkus partikel-partikel agregat sehingga ikatan antara agregat dan aspal berkurang, adanya lempung yang mengakibatkan luas daerah yang harus diselimuti aspal bertambah dan lempung cenderung menyerap air yang berakibat hancurnya lapisan aspal. Bentuk dan tekstur agregat mempengaruhi stabilitas dari lapisan lapis keras yang dibentuk oleh agregat tersebut.
- e. Kekerasan dan ketahanan yaitu ketahanan agregat untuk tidak hancur atau pecah oleh pengaruh mekanis atau kimia.
- 2. Kemampuan dilapisi aspal dengan baik, dipengaruhi oleh :
 - a. Kemungkinan basah
 - b. Porositas
 - c. Jenis agregat.
- 3. Kemudahan dalam pelaksanaan dan menghasilkan lapisan yang nyaman dan aman,

dipengaruhi oleh:

- a. Tahanan geser (skid resistance)
- b. Campuran yang memberikan kemudahan dalam pelaksanaan (bituminuous mix workability).

Berdasarkan proses pengolahannya agregat yang dipergunakan pada perkerasan dapat dibedakan menjadi 3 jenis, yaitu agregat alam (natural aggregate), agregat dengan proses pengolahan (manufacture aggregate) dan agregat buatan yang diperoleh dari hasil samping pabrik semen dan mesin pemecah batu:

1. Agregat alam (natural aggregates).

Agregat alam adalah agregat yang digunakan dalam bentuk alamiahnya dengan sedikit atau tanpa pemrosesan sama sekali. Agregat ini terbentuk dari proses erosi alamiah atau proses pemisahan akibat angin, air, pergeseran es, dan reaksi kimia. Aliran gletser dapat menghasilkan agregat dalam bentuk bongkahan bulat dan batu kerikil, sedangkan aliran air menghasilkan batuan yang bulat licin.

Dua jenis utama dari agregat alam yang digunakan untuk konstruksi jalan adalah pasir dan kerikil. Kerikil biasanya didefinisikan sebagai agregat yang

berukuran lebih besar 6,35 mm. Pasir didefinisikan sebagai partikel yang lebih kecil dari 6,35 mm tetapi lebih besar dari 0,075 mm. Sedangkan partikel yang lebih kecil dari 0,075 mm disebut sebagai mineral pengisi (filler). Pasir dan kerikil selanjutnya diklasifikasikan menurut sumbernya. Material yang diambil dari tambang terbuka (open pit) dan digunakan tanpa proses lebih lanjut disebut material dari tambang terbuka (pit run materials) dan bila diambil dari sungai (steam bank) disebut material sungai (steam bank materials). Deposit batu koral memiliki komposisi yang bervariasi tetapi biasanya mengandung pasir dan lempung. Pasir pantai terdiri atas partikel yang agak seragam, sementara pasir sungai sering mengandung koral, lempung dan lanau dalam jumlah yang lebih banyak.

2. Agregat yang diproses (manufacture aggregate).

Agregat yang diproses adalah batuan yang telah dipecah dan disaring sebelum digunakan. Pemecahan agregat dilakukan karena tiga alasan: untuk merubah tekstur permukaan partikel dari licin ke kasar, untuk merubah bentuk partikel dari bulat ke angular, dan untuk mengurangi serta meningkatkan distribusi dan rentang ukuran partikel. Untuk batuan krakal yang besar, tujuan pemecahan batuan krakal ini adalah untuk mendapatkan ukuran batu yang dapat dipakai, selain itu juga untuk merubah bentuk dan teksturnya.

Penyaringan yang dilakukan pada agregat yang telah dipecahkan akan menghasilkan partikel agregat dengan rentang gradasi tertentu. Mempertahankan gradasi agregat yang dihasilkan adalah suatu faktor yang penting untuk menjamin homogenitas dan kualitas campuran beraspal yang dihasilkan. Untuk alasan ekonomi, pemakaian agregat pecah yang diambil langsung dari pemecah batu (tanpa penyaringan atau dengan sedikit penyaringan) dapat dibenarkan. Kontrol yang baik dari operasional pemecahan menentukan apakah gradasi agregat yang dihasilkan memenuhi spesifikasi pekerjaan atau tidak. Batu pecah (baik yang disaring atau tidak) disebut agregat pecah dan memberikan kualitas yang baik bila digunakan untuk konstruksi perkerasan jalan.

3. Agregat buatan

Agregat ini didapatkan dari proses kimia atau fisika dari beberapa material sehingga menghasilkan suatu material baru yang sifatnya menyerupai agregat. Beberapa jenis dari agregat ini merupakan hasil sampingan dari proses industri dan dari proses material yang sengaja diproses agar dapat digunakan sebagai agregat atau sebagai mineral pengisi (filler).

Slag adalah contoh agregat yang didapat sebagai hasil sampingan produksi. Batuan ini adalah substansi nonmetalik yang timbul ke permukaan dari pencairan / peleburan biji besi selama proses peleburan. Pada saat menarik besi dari cetakan, slag ini akan pecah menjadi partikel yang lebih kecil baik melalui perendaman ataupun memecahkanya setelah dingin. Pembuatan agregat buatan secara langsung adalah suatu yang relatif baru. Agregat ini dibuat dengan membakar tanah liat dan material lainnya. Produk akhir yang dihasilkan biasanya agak ringan dan tidak memiliki daya tahan terhadap keausan yang tinggi. Agregat buatan dapat digunakan untuk dek jembatan atau untuk perkerasan jalan dengan mutu sebaik lapisan permukaan yang mensyaratkan ketahanan gesek maksimum.

2.3.1. Agregat Kasar

Agregat kasar adalah komponen utama alam pembinaan struktur konkrit. Ia memainkan peranan yang penting dalam proses membantu konkrit. Agregat kasar terdiri dari serpihan batu yang ukurannya melebihi 5 mm sehingga ukuran maksimum yang dibenarkan untuk kerja yang tertentu, biasanya tidak melebihi 50 mm. Agregat kasar biasanya diambil dari batu gunung, batu sungai (batu kali) dan hasil proses penambangan, bahan perekat agregat kasar adalah semen, aspal dan salah satu contoh bahan jadi agregat kasar seperti beton, campuran beraspal dan beton aspal.

Fraksi agregat kasar untuk rancangan adalah yang tertahan saringan No.4 (4,75 mm) dan haruslah bersih, keras, awet dan bebas dari lempung atau bahan yang tidak dikehendaki lainnya dan memenuhi ketentuan. Fraksi agregat kasar harus batu pecah atau kerikil pecah dan harus disiapkan dalam ukuran nominal. Ukuran maksimum (maximum size) agregat adalah satu saringan yang lebih besar dari ukuran nominal maksimum (nominal maximum size). Ukuran nominal

maksimum adalah satu saringan yang lebih kecil dari saringan pertama (teratas) dengan bahan tertahan kurang dari 10%, yang terdapat dalam Tabel 2.2.

Tabel 2.2: Ketentuan Agregat Kasar (Spesifikasi Bina Umum Marga 2018)

Kekekalan b	entuk agregat	Natrium	SNI 3407 : 2008	Maks 12%
terhada	p larutan	Sulfat		
		Magnesium		Maks 18 %
		Sulfat		
	Campuran AC	100 Putaran	SNI 2417 : 2008	Maks 6 %
	Modifikasi			
Abrasi	dan SMA	500 Putaran		Maks 30 %
dengan	Semua jenis	100 Putaran		Maks 8 %
mesin Los	campuran			
Angeles	bersapal	500 Putaran		
	bergradasi			Maks 40 %
	lainnya			
Kelekaatan ag	regat terhadap as	pal	SNI 2439 : 2011	Min 95 %
Butir pecah	pada agregat	SMA	SNI 7619 : 2012	100/90 *)
kasar		Lainnya		95/90 **)
Partikel pipih	dan lonjong	SMA	ASTM D4791-10	Maks 5 %
		Lainnya	Perbandingan 1 : 5	Maks 10 %

2.3.2. Agregat Halus

Agregat halus harus merupakan bahan yang bersih, keras, bebas dari lempung, atau bahan yang tidak dikehendaki lainnya. Agregat halus harus diperoleh dari batu yang memenuhi ketentuan mutu. Agar dapat memenuhi ketentuan mutu, batu pecah halus harus diproduksi dari batu yang bersih. Agregat halus dari sumber bahan manapun, harus terdiri dari pasir atau penyaringan batu pecah dan terdiri dari bahan yang lolos saringan No.4 (4,75 mm).

Untuk memperoleh agregat halus yang memenuhi ketentuan adalah sebagai berikut:

- 1. Bahan baku untuk agregat halus harus dicuci terlebih dahulu secara mekanis sebelum dimasukkan ke dalam mesin pemecah batu.
- 2. Digunakan *scalping screen*, dari hasil pemecah batu tahap pertama tidak boleh langsung digunakan.

- 3. Diperoleh dari hasil tahap pertama harus di pisahkan dengan *vibro scalping screen* antara mesin pemecah tahap pertama dengan mesin pemecah tahap kedua.
- 4. Material tertahan oleh *vibro scalping screen* akan dipecah oleh mesin pemecah tahap kedua, hasil pengayakan dapat digunakan sebagai agregat halus.
- 5. Materian lolos *vibro scaling screen* hanya boleh digunakan sebagai komponen material Lapis Fondasi Agregat.

Fraksi agregat kasar, agregat halus pecah mesin dan pasir harus ditumpuk terpisah, yang terdapat ketentuan dalam Tabel 2.3.

Tabel 2.3: Ketentuan Agregat Halus (Spesifikasi Bina Umum Marga 2018)

Pengujian	Metode Pengujian	Nilai
Nilai setara pasir	SNI 03-4428-1997	Min.50 %
Uji kadar rongga tanpa pemadatan	SNI 03-6877-2002	Min.45 %
Gumpalan lempung dan butir-butir	SNI 03-4141-1996	Maks. 1 %
mudah pecah dalam agregat		
Agregat lolos ayakan no.200	SNI ASTM C117 :2012	Maks. 10 %

2.3.3. Bahan Pengisi (Filler)

Bahan pengisi atau *filler* adalah material berbutir halus yang lolos saringan no.200 (diameter 0,075 mm) tidak kurang dari 75% terhadap beratnya dan mempunyai sifat *non plastis*. *Filler* dapat terdiri dari debu batu, kapur padam dan semen Portland, atau bahan non plastis lainnya. Bahan pengisi harus kering dan bebas dari bahan lain yang mengganggu. Bahan pengisi yang ditambahkan semen dan bahan pengisi lainnya harus rentang 1% sampai dengan 3% terhadap berat total agregat, khusus untuk SMA tidak dibatasi kadarnya.

2.3.4. Gradasi Agregat Gabungan

Gradasi agregat gabungan untuk campuran beraspal, ditunjukkan dalam persen terhadap berat agregat dan bahan pengisi, harus memenuhi batas-batas. Rancangan dan perbandingan campuran untuk gradasi agregat gabungan harus mempunyai jarak terhadap batas-batas yang diberikan dalam Tabel 2.4. Untuk

memperoleh gradasi HRS - WC atau HRS - *Base* yang senjang, maka paling sedikit 80% agregat lolos ayakan No. 8 (2,36 mm) harus lolos ayakan No. 30 (0,600 mm). Bilamana gradasi yang diperoleh tidak memenuhi kesenjangan yang disyaratkan dalam Tabel 2.4.

Tabel 2.4: Amplop Gradasi Agregat Gabungan Untuk Campuran Beraspal (Spesifikasi Bina Umum Marga 2018)

Lilon	40.42	% Berat Yang Lolos terhadap Total Agregat							
Ukuran Ayakan		Stone Matrix		Lataston		Laston			
Ayar	kan		phalt (S		(HRS)		(AC)		
ASTM	(mm	Tipi	Halus	Kasar	WC	Base	WC	BC	Base
1101111)	S	114145	Tusui	,, e	Busc	"		Busc
11/2"	37,5								100
1"	25			100				100	90-
									100
3/4"	19		100	90-	100	100	100	90-	76-90
				100				100	
1/2"	12,5	100	90-	50-88	90-	90-	90-	75-90	60-78
			100		100	100	100		
3/8"	9,5	70-	50-80	25-60	75-85	65-90	77-90	66-82	52-71
		95							
No.4"	4,75	30-	20-35	20-28			53-69	46-64	35-54
		50							
No.8"	2,36	20-	16-24	16-24	50-72	35-55	33-53	30-49	23-41
		30							
No.16	1,18	14-					21-40	18-38	13-30
***		21							
No.30	0,60	12-			35-60	15-35	14-30	12-28	10-22
	0	18					0.22	7.20	- 1 -
No.50	0,30	10-					9-22	7-20	6-15
	0	15					C 15	T 12	4.10
No.10	0,15						6-15	5-13	4-10
0"	0	0	0.11	0.11	<i>c</i> 10	2.0	4.0	4.0	2.7
No.20 0"	0,07	8-	8-11	8-11	6-10	2-9	4-9	4-8	3-7
U	5	12							

2.4. Berat Jenis dan Penyerapan

Berat jenis agregat adalah perbandingan antara berat volume agregat dan berat volume air. Berat jenis asal disyaratkan menurut spesifikasi minimum 1, jadi berat jenis yang digunakan sesuai dengan spesifikasi nilai berat jenis ini

digunakan dalam perencanaan untuk lapisan perkerasan lentur karena dengan berat jenis aspal ini akan dapat menentukan besar kecilnya volume dari aspal.

Berat jenis suatu agregat adalah perbandingan berat dari suatu satuan volume bahan terhadap air dengan volume yang sama pada temperatur 20°C-25°C (68°-77°F). Berat jenis angregat berbeda satu sama lain tergantung dari jenis batuan,susunan,material,struktur batuan dan porositas batuannya.

Pengukuran berat jenis agregat diperlukan untuk perencanaan campuran aspal dengan agregat, campuran ini berdasarkan perbandingan berat karena lebih teliti dibandingkan dengan perbandingan volume dan juga untuk menentukanbanyaknya pori agregat.

Berat jenis ada beberapa macam yaitu:

- a. Berat jenis *bulk* adalah berat jenis yang memperhitungkan berat agregat dalam keadaan kering dan seluruh volume agregat (Vs+Vi+Vp+Vc).
- b. Berat jenis kering permukaan adalah engan memperhitungkan berat agregat dalam keadaan kering permukaan.Jadi berat agregat + berat air yang dapat meresap kedalam pori agregat dan seluruh volume agregat (Vs+Vi+Vp+Vc).
- c. Berat jenis semu adalah menghitung berat agregat dalam keadaan kering dan volume agregat yang tak dapat diresapi oleh air (Vs+Vi).
- d. Berat jenis efektif adalah berat jenis dengan memperhitungkan berat jenis/agregat dalam keadaan kering.Berat jenis dan volume agregat yang tidak dapat diresapi oleh aspal (Vs+Vi+Vp). dengan Pers 2.1-2.3.

Berat Jenis Semu:

$$Gsa = \frac{Ws}{Vs.\gamma w} \tag{2.1}$$

Berat Jenis Curah:

$$Gsb = \frac{Ws}{(Vs + Vpp).w}$$
 (2.2)

Berat Jenis Efektif:

$$Gse = \frac{Ws}{(Vs + Vpp - Vap).\gamma w}$$
 (2.3)

Keterangan:

Ws = Berat agregat kering

 $\gamma w = Berat Isi air = 1g/cm^3$

Vs = Volume bagian padat agregat

Vpp = Volume pori meresap aspal

Konsep mengenai Berat Jenis Efektif dianggap paling mendekati nilai sebenarnya untuk menetukan besarnya rongga udara dalam campuran beraspal. Bila digunakan berbagai kombinasi agregat maka perlu mengadakan penyesuaian mengenai Berat Jenis, karena Berat Jenis masingmasing bahan berbeda.

2.4.1. Berat Jenis Dan Penyerapan Agregat Kasar

Pengujian ini dilakukan untuk menentukan berat jenis agregat kasar serta kemampuannya di dalam air. Agregat kasar adalah agregat yang ukuran butirannya lebih besar dari 4,75 mm (Saringan No.4). Berat jenis dapat dinyatakan dengan berat jenis curah kering, berat jenis curah pada kondisi jenuh kering permukaan atau berat jenis semu. Berat jenis curah (jenuh kering permukaan) dan penyerapan air berdasarkan pada kondisi setelah (24+4) jam direndam di dalam air. Yang sesuai dengan SNI 1969 : 2008.

1. Berat jenis curah kering (*saturated surface dry*)

Lakukanlah perhitungan berat jenis curah kering (Sd), pada temperatur air 230 C / temperatur agregat 230 C dengan Pers 2.4.

Berat Jenis Curah Kering =
$$\frac{A}{B-C}$$
 (2.4)

Keterangan:

A = berat benda uji kering oven (gram);

B = berat benda uji kondisi jenuh kering permukaan di udara (gram);

C = berat benda uji dalam air (gram);

2. Berat jenis curah (bulk specific gravity)

Lakukanlah perhitungan berat jenis curah jenuh kering permukaan (Ss), pada temperatur air 230C / temperatur agregat 230C dalam basis jenuh kering permukaan dengan Pers 2.5.

Berat jenis curah (jenuh kering permukaan) =
$$\frac{B}{B-C}$$
 (2.5)

Keterangan:

B = berat benda uji kondisi jenuh kering permukaan di udara (gram);

C = berat benda uji dalam air (gram).

3. Berat jenis semu (apparent specific grafity)

Lakukanlah perhitungan berat jenis semu (Sa), pada temperatur air 230C / temperatur agregat 230C dengan Pers 2.6.

Berat jenis semu =
$$\frac{A}{A-C}$$
 (2.6)

Keterangan:

A = berat benda uji kering oven (gram);

C = berat benda uji dalam air (gram).

4. Penyerapan Air (absortion)

Hitunglah persentase penyerapan air (Sw) seperti dengan Pers 2.7.

Penyerapan Air =
$$\left[\frac{A}{A-C}\right] x 100\%$$
 (2.7)

Keterangan:

A = berat benda uji kering oven (gram);

B = berat benda uji kondisi jenuh kering permukaan di udara (gram);

2.4.2. Berat Jenis Dan Penyerapan Agregat Halus

Agregat halus adalah agregat yang ukuran butirannya lebih kecil dari 4,75 mm (No. 4). Sesuai dengan SNI 1970:2008

1. Berat jenis curah kering (*saturated surface dry*)

Lakukanlah perhitungan berat jenis curah kering (Sd), dengan Pers 2.8.

Berat jenis curah kering =
$$\frac{A}{(B+S-C)}$$
 (2.8)

Keterangan:

A = berat benda uji kering oven (gram);

B = berat piknometer yang berisi air (gram);

C = berat piknometer dengan benda uji dan air sampai batas pembacaan (gram); S adalah berat benda uji kondisi jenuh kering permukaan (gram).

2. Berat jenis curah (bulk specific gravity)

Lakukanlah perhitungan berat jenis curah dalam basis jenuh kering permukaan (Ss), dengan Pers 2.9.

Berat jenis curah:
$$\frac{S}{(B+S-C)}$$
 (2.9)

Keterangan:

A = berat benda uji kering oven (gram);

B = berat piknometer yang berisi air (gram);

C = berat piknometer dengan benda uji dan air sampai batas pembacaan (gram);

S adalah berat benda uji kondisi jenuh kering permukaan (gram).

3. Berat jenis semu (apparent specific grafity)

Lakukanlah perhitungan berat jenis semu (Sa), dengan Pers 2.10.

Berat Jenis Semu :
$$\frac{A}{(B+A-C)}$$
 (2.10)

Keterangan:

A = berat benda uji kering oven (gram);

B = berat piknometer yang berisi air (gram);

C = berat piknometer dengan benda uji dan air sampai batas pembacaan (gram);

4. Penyerapan air (absortion)

Lakukanlah perhitungan persentase penyerapan air (Sw), dengan Pers 2.11.

Penyerapan air :
$$\left[\frac{S-A}{A}\right] x 100\%$$
 (2.11)

Keterangan:

A = berat benda uji kering oven (gram);

S = berat benda uji kondisi jenuh kering permukaan (gram).

2.5. Split Mastic Asphalt (SMA)

Menurut Wonson, 1996, *SMA* adalah suatu lapisan permukaan tipis, mempunyai ketahanan yang baik terhadap alur (*rutting*) dan mempunyai durabilitas yang tinggi sehingga *SMA* cocok digunakan untuk lapisan permukaan jalan berlalu lintas berat, walaupun dapat juga digunakan untuk semua jenis perkerasan jalan.Beberapa sifat campuran *SMA* adalah bergradasi terbuka, dengan adanya kadar chipping yang tinggi (ukuran agregat> 2mm) sekitar 75% memberikan sifat:

1. Tahan terhadap alur (*Rutting Resistance*) pada temperatur tinggi dan lalulintas berat yang terkonsentrasi padasuatu tempat (jejak roda kendaraan). Ketahanan

terhadap reformasi disumbangkan oleh struktural mineral dengan tipe kerangka (*skeleton*), yaitu dengan adanya perpindahan gaya langsung diantara *chipping* yang ada dan *mastic* yang berupa aspal mortar sehingga mampu menahan struktur *chipping* tetap pada kedudukannya.

- Tahan terhadap proses pengausan oleh roda kendaraan (wearing resistance).
 Ketahanan ini disumbangkan dengan adanya kontak langsung antara roda kendaraan dan chipping yang cukup besar.
- 3. Memiliki struktur permukaan yang kasar dan seragam (homogen).
- 4. Digunakan aspal dengan kadar yang cukup tinggi karena banyaknya rongga yang terdapat dalam campuran.
- 5. Dapat dilaksanakan dengan pelapisan yang tipis.
- 6. Dengan tingginya kadar aspal memberikan lapisan aspal yang tebal sehingga memberikan ketahanan terhadap proses oksidasi pada bitumen yang terjadi karena sinar ultraviolet dari matahari yang berfungsi sebagai katalisator dapat menyebabkan terjadinya pelapukan dan kelekatan yang lebih baik terhadap campuran. Dengan adanya sifat ini sehingga memberikan umur layanan yang lebih panjang.
- 7. Tidak peka terhadap perubahan kadar aspal terhadap campuran.
- 8. Menghasilkan kelekatan yang lebih baik antara lapisan *SMA* sebagai *wearing course* dengan lapisan bawahnya.
- 9. Lebih *fleksibel* dalam mengtatasi perubahan bentuk akibat kurang mantapnya lapisan bawah.

Umumnya campuran *SMA* terbentuk dari dua unsur, yaitu agregat sebagai bahan utama, aspal, dan bahan tambahan. *SMA* ini digunakan untuk jalan dengan beban lalulintas berat, persimpangan, jalan dengan kondisi kemiringan berjenjang (tanjakan, turunan, dan tikungan tajam), terutama pada kondisi lapis permukaan mengalami tekanan roda kendaraan secara berlebihan.

Terdapat 3 jenis *SMA*, yaitu:

- 1. *SMA* 0/5 dengan tebal perkerasan (1,5-3)cm; untuk pemeliharaan dan perbaikan setempat,seperti perbaikan deformasi pada jalur roda ban (*rutting*).
- 2. *SMA* 0/8 dengan tebal perkerasan (2-4)cm; untuk pelapisan *overlay* pada jalan lama.

3. *SMA* 0/11 dengan tebal perkerasan (3-5)cm; untuk lapis aus (*wearing course*) pada jalan baru.

Kandungan aspal yang tinggi memerlukan suatu stabilitas dengan bahan tambah. Bahan tambah yang biasanya digunakan dalam campuran *SMA* umumnya adalah serat selulosa. Bahan tambah tersebut berfungsi untuk menstabilkan aspal serta meningkatkan durabilitas campuran beton aspal. Pada Gambar 2.4 dapat dilihat bahwa campuran *SMA* terisi oleh agregat kasar yang saling mengunci (interlocking) sedangkan pada *Hot Mix Asphatl (HMA)* agregat terlihat seperti mengapung di dalam campuran.

a. Split Mastic Asphalt (SMA)

b. Hot Mix Asphalt (HMA) Konvensional

Gambar 2.4: Perbandingan Campuran *Split Mastic Asphalt* (SMA) dan *Hot Mix Asphalt* (HMA) (Roberts et al, 1996)

Campuran untuk *SMA* pada dasarnya terdiri dari agregat kasar, agregat halus, bahan pengisi dan aspal. Masing-masing fraksi agregat terlebih dahulu harus diperiksa gradasinya dan selanjutnya digabungkan menurut perbandingan yang menghasilkan agregat campuran yang memenuhi spesifikasi gradasi. Campuran SMA juga mempunyai karakteristik sebagai berikut:

1. Agregat kasar dengan ukuran >2mm dengan jumlah fraksi tinggi antara 70% hingga 80%.

- 2. Mastik aspal berupa campuran agregat halus, *filler*, aspal dan bahan tambah akan membentuk lapisan *film* yang tebal.
- 3. Mampu melayani lalu lintas berat
- 4. Tahan terhadap oksidasi
- 5. Tahan terhadap deformasi pada temperatur tinggi
- 6. Fleksibel.
- 7. Tahan terhadap panas atau temperatur tinggi.
- 8. Kedap air
- 9. Aman untuk lalu lintas karena kekesatan (skid resistance) baik.

Tingkat keseragaman campuran yang tinggi.

2.5.1. Bahan Tambah

Bahan tambah adalah bahan yang ditambahkan dalam campuran aspal yang fungsinya untuk memperbaiki sifat-sifat aspal. Pada dasarnya alasan utama kerusakan dan penurunan kekuatan dan keawetan didalam lapis aus dan bahan ikat kontruksi perkerasan jalan. Modifikasi tersebut dibuat dalam dua kelompok sebagai berikut ini.

- 1. Modifikasi sifat adhesi aspal dengan *tension-active additive* (Tegangan aktif bahan tambah).
- 2. Modifikasi sifat adhesi permukaan agregat dengan cara mekanis menggunakan larutan air semen atau larutan kapur.

Dari kedua modifikasi diatas yang banyak digunakan adalah dengan modifikasi yang pertama yaitu dengan menggunakan bahan tambah *SMA*. Serat daun nanas (*pineapple–leaf fibres*) adalah salah satu jenis serat yang berasal dari tumbuhan (*vegetable fibre*) yang diperoleh dari daun-daun tanaman nanas. Tanaman nanas yang juga mempunyai nama lain, yaitu *Ananas Cosmosus*, (termasuk dalam family *Bromeliaceae*), pada umumnya termasuk jenis tanaman semusim. Menurut sejarah, tanaman ini berasal dari Brazilia dan dibawa ke Indonesia oleh para pelaut Spanyol dan Portugis sekitar tahun 1599.

Bentuk daun nanas menyerupai pedang yang meruncing diujungnya dengan warna hijau kehitaman dan pada tepi daun terdapat duri yang tajam. Tergantung dari *species* atau *varietas* tanaman, panjang daun nanas berkisar antara 55 sampai 75 cm dengan lebar 3,1 sampai 5,3 cm dan tebal daun antara 0,18 sampai 0,27 cm. Tetapi pada penelitian ini serat daun nanas hanya dipakai berdiameter 0,3 mm. Di samping *species* atau *varietas* nanas, jarak tanam dan intensitas sinar matahari akan mempengaruhi terhadap pertumbuhan panjang daun dan sifat atau karakteristik dari serat yang dihasilkan. Intensitas sinar matahari yang tidak terlalu banyak (sebagian terlindung) pada umumnya akan menghasilkan serat yang kuat, halus, dan mirip sutera (*strong, fine and silky fibre*). Terdapat lebih dari 50 *varietas* tanaman nanas didunia, beberapa varietas tanaman nanas yang telah dibudidayakan di Indonesia antara lain *Cayenne*, Spanish/Spanyol, *Abacaxi* dan *Queen*. Tabel 2.5 memperlihatkan sifat fisik beberapa jenis *varietas* lain tanaman nanas yang sudah banyak dikembangkan [Doraiswarmy et al., 1993].

Tabel 2.5: Tabel Sifat Fisik Serat Daun Nanas (Doraiswarmy et al., 1993)

Varietas Nanas	Karakteristik			
	Panjang (cm)	Lebar (cm)	Ketebalan (cm)	
Asam Lokal	75	4.7	0,21	
Cayenalisa	55	4.0	0,21	
Kallara Lokal	56	3.3	0,22	
Kew	73	5.2	0,25	
Mauritius	55	5.3	0,18	
Pulimath Lokal	68	3.4	0,27	
Halus Cayenne	58	4.7	0,21	
Velera Moranda	65	3.9	0,23	

Pemisahan atau pengambilan serat nanas dari daunnya (*fiber extraction*) dapat dilakukan dengan dua cara, yaitu dengan tangan (manual) ataupun dengan peralatan *decorticator*. Tabel 2.6 Memperlihatkan perban-dingan komposisi kimia yang terkandung pada jenis serat alam, nanas [Anonim, 2006].

Tabel 2.6: Komposisi Kimia Serat Daun Nanas (Doraiswarmy et al., 1993)

Komposisi Kimia	Serat Nanas
Alpha selulosa	69,5 – 71,5
Pentosan	17,0 – 17,8
Lignin	4,4-4,7
Pektin	1,0 – 1,2

Lemak dan Wax	3,0-3,3
Abu	0,71-0,87

Tabel 2.6: Lanjutan.

Komposisi Kimia	Serat Nanas
Zat-zat lain (Protein, asam organic, dll	4,5-5,3

2.5.2. Serat Selulosa

Selulosa alami yang biasa dikenal dengan nama *cellulosa rice fiber*, yang saat ini hanya dimanfaatkan sebagai bahan baku industri. Untuk meningkatkan kegunaan serat daun nanas, maka dicoba digunakan dalam penelitian ini dengan alasan bahwa serat daun nanas merupakan salah satu serat *fiber* alami dan mudah ditemukan serta murah. Oleh karena itu perlu dicari alternatif pengganti serat selulosa tersebut. Penelitian ini akan menggunakan serat daun nanas sebagai bahan aditif karena merupakan serat alami yang mudah di temukan dan murah. Serat daun nanas tersebut akan digunakan pada campuran *SMA*. Serat selulosa alami mampu memberikan daya absorsi yang baik, bentuk selulosa yang dipakai antara lain serat yang memanjang dan langsing dimana dengan bentuk seperti ini mempunyai kemampuan untuk mengaborsi aspal lebih besar, serat selulosa yang di pakai pada penelitian ini 0,3 % pada total campuran, sehingga dapat mencegah terjadinya *draindown*. Serat selulosa harus mempunyai dimensi serat selulosa yang ditunjukan dalam Tabel 2.7

Tabel 2.7 Persyaratan Serat Selulosa Untuk *SMA* (Spesifikasi Bina Umum Marga 2018)

Pengujian	Satuan	Persyaratan
Panjang Serat	mm	3,6
Lolos Ayakan No.20	%	85 ± 10
Lolos Ayakan No.40	%	40 ± 10
Lolos Ayakan No.140	%	30 ± 10
pН		75 ± 1.0
Penyerapan Minyak		7.5 ± 1.0 Kali berat selulosa
Kadar Air	%	Maks 5

2.6. Aspal (*Asphalt*)

Aspal didefinisikan sebagai material perekat (*cementitious*), berwarna hitam atau coklat tua, dengan unsur utama bitumen. Aspal dapat diperoleh di alam ataupun merupakan residu dari pengilangan minyak bumi. Aspal merupakan material yang paling umum digunakan untuk bahan pengikat agregat, oleh karena itu seringkali bitumen disebut pula sebagai aspal. (Sukirman, 2003).

Aspal adalah material yang pada temperatur ruang berbentuk padat sampai agak padat, dan bersifat termoplastis. Jadi, aspal akan mencair jika dipanaskan sampai temperatur tertentu, dan kembali membeku jika temperatur turun. Bersama dengan agregat, aspal merupakan material pembentuk campuran perkerasan jalan. Banyaknya aspal dalam campuran perkerasan berkisar antara 4–10% berdasarkan berat campuran, atau 10 – 15% berdasarkan volume campuran.

2.6.1. Jenis Aspal

Berdasarkan tempat diperolehnya, aspal dibedakan atas aspal alam dan aspal minyak. Aspal alam yaitu aspal yang didapat di suatu tempat dialam, dan dapat digunakan sebagaimana diperolehnya atau dengan sedikit pengolahan. Aspal alam atau asbuton merupakan campuran antara bitumen dengan bahanmineral lainnya dalam bentuk batuan. Karena asbuton merupakan material yang ditemukan begitu saja di dalam alam, maka kadar bitumen yang dikandung nya sangat bervariasi dari rendah sampai tinggi. Sedangkan aspal minyak yaitu aspalyang merupakan residu pengilangan minyak bumi. Jika dilihat bentuknya pada temperatur ruang, maka aspal dibedakan atas aspal padat, aspal cair, dan aspal emulsi.

1. Aspal Keras

Aspal Keras adalah proses destilasi fraksi ringan yang terkandung dalam minyak bumi dipisahkan dengan destilasi sederhana hingga menyisakan suatu residu. Berbentuk padat atau semi padat pada suhu ruang dan menjadi cair jika dipanaskan. Aspal padat dikenal nama semen aspal (asphalt cement). Oleh karena itu semen aspal harus dipanaskan terlebih dahulu sebelum digunakan sebagai bahan pengikat agregat.

Selain melalui proses destilasi hampa dimana aspal dihasilkan dari minyak mentah dengan pemanasan dan penghampaan, aspal keras juga dapat dihasilkan melalui proses ekstraksi zat pelarut. Dalam proses ini fraksi minyak (bensin, solar dan minyak tanah) yang terkandung dalam minyak mentah (*crude oil*) dikeluarkan sehingga meninggalkan aspal sebagai residu. Di Indonesia, aspal keras biasanya dibedakan berdasarkan nilai penetrasinya yaitu:

- a. AC pen 40/50, yaitu AC dengan penetrasi antara 40-50.
- b. AC pen 60/70, yaitu AC dengan penetrasi antara 60-70.
- c. AC pen 80/100, yaitu AC dengan penetrasi antara 80-100.

Dengan ketentuan Tabel 2.8.

Tabel 2.8: Ketentuan Untuk Aspal Keras (Spesifikasi Umum Bina Marga 2108)

				Tipe I	[Aspal
NT.	In the Danier Control	Mata Is Dansaiis a	Tipe I Aspal	Modifikasi	
No	Jenis Pengujian	Metode Pengujian	Pen.60-70	Elastome	er Sintesis
				PG 70	PG 76
1	Penetrasi pada 25°C (0,1 mm)	SNI 2456:2011	60 - 70	Dilaporkan ¹	
	Temperatur yang menghasilkan Geser				
2	Dinamis (G*/sinð) pada osilasi 10	SNI 06-6442-2000	-	70	76
	rad/detik ≥ 1,0 kpa, (°C)				
3	Viskositas Kinematis 135°C (cst) ³	ASTM D2170-10	≥ 300	≤ 3	000
4	Titik Lembek (°C)	SNI 2434:2011	≥ 48	Dilap	orkan²
5	Daktalitas pada 25°C, (cm)	SNI 2432:2011	≥ 100		-
6	Titik Nyala (°C)	SNI 2433:2011	≥ 232	≥ 2	230
7	Kelarutan dalam Tricholoethylene (%)	AASHTO T44-14	≥ 99	≥	99
8	Berat Jenis	SNI 2441:2011	≥ 1,0		-
	Stabilitas Penyimpanan Perbedaan Titik	ASTM D 5976-00			
9	* *	Part 6.1 dan SNI	-	\leq	2,2
	Lembek (°C)	2434:2011			
10	Kadar Parafin Lilin (%)	SNI 03-3639-2002	≤ 2		
	Pengujian Residu hasil TFOT (SNI-06-2	2440-1991) atau RTFC	OT (SNI-03-68	335-2002)	:
11	Berat Yang Hilang (%)	SNI 06-2441-1991	≤ 0,8	<u>≤</u>	0,8
	Temperatur yang menghasilkan Geser				
12	Dinamis (G*/sinð) pada osilasi 10	SNI 06-6442-2000	-	70	76
	$rad/detik \ge 2,2 \text{ kpa, (*C)}$				
13	Penetrasi pada 25°C (% semula)	SNI 2456 :2011	≥ 54	≥ 54	≥ 54
14	Daktalitas pada 25°C (cm)	SNI 2432:2011	≥ 50	≥ 50	≥ 25
Res	sidu aspal segar setelah PAV (SNI 03-6837	-2002) Pada temperatu	ır 100°C dan	tekanan 2	2,1 Mpa
	Temperatur yang menghasilkan Geser				
15	dinamis (G*sinð) pada osilasi 10	SNI 06-6442-2000	-	31	34
	rad/detik ≤ 5000 kpa,(°C)				

2. Aspal cair (cutback asphalt)

Aspal yang berbentuk cair pada suhuruangan. Aspal cair merupakan semen aspal yang dicairkan denganbahan pencair dari hasil penyulingan minyak bumi seperti minyak tanah, bensin, atau solar. Bahan pencair membedakan aspal cair menjadi:

- 2.1. Rapid curing cut back asphalt (RC), yaitu aspal cair dengan bahan pencair bensin. RC merupakan aspal cair yang paling cepat menguap.
- 2.2. Medium curing cut back asphalt (MC), yaitu aspal cair dengan bahan pencair minyak tanah (kerosene).
- 2.3. Slow curing cut back asphalt (SC), yaitu aspal cair dengan bahan pencair solar (minyak diesel). SC merupakan aspal cair yang palinglambat menguap.

3. Aspal emulsi (*emulsified asphalt*)

Aspal emulasi adalah suatu campuran aspal dengan air dan bahan pengemulsi, yang dilakukan di pabrik pencampur. Aspal emulsi ini lebih cair daripada aspal cair. di dalam aspal emulsi, butir – butir aspal larut dalam air.

2.6.2. Fungsi Aspal Sebagai Material Perkerasan Jalan

Aspal yang digunakan sebagai material perkerasan jalan berfungsisebagai:

- 1. Bahan pengikat, memberikan ikatan yang kuat antara aspal dan agregat dan antara sesama aspal.
- 2. Bahan pengisi, mengisi rongga antara butir agregat dan pori pori yangada di dalam butir agregat itu sendiri.Penggunaan aspal pada perkerasan jalan dapat melalui dicampurkan pada agregat sebelum dihamparkan (pra hampar), seperti lapisan beton aspal ataudisiramkan pada lapisan agregat yang telah dipadatkan dan ditutupi oleh agregat—agregat yang lebih halus (pasca hampar), seperti perkerasan penetrasimakadam atau pelaburan.

Fungsi utama aspal untuk kedua jenis proses pembentukan perkerasanyaitu proses pencampuran prahampar, dan pascahampar itu berbeda. Pada proses prahampar aspal yang dicampurkan dngan agregat akan membungkus atau menyelimuti butir – butir agregat, mengisi pori antar butir, dan meresap kedalam pori masing – masing butir.

2.6.3. Jenis – Jenis Pengujian Aspal

Pengujian yang dilakukan untuk menentukan sifat fisis dan kimiawi aspal antara lain pengujian kekerasan aspal, pengujian titik nyala dan titik bakar, pengujian daktilitas, pengujian titik lembek.

1. Pengujian Kekerasan Aspal

Pengujian kekerasan aspal dilakukan dengan pengujian penetrasi, yaitu dengan menggunakan jarum penetrasi berdiameter 1 mm dan beban 50 gram. Berat jarum dan beban menjadi 100 gram. Nilai penetrasidilakukan pada temperatur temperatur 25C dibaca pada arloji pengukur, dalam satuan 0,1 mm.

2. Pengujian Titik Nyala dan Titik bakar

Pengujian titik nyala dan titik bakar berguna untuk mengetahui temperatur dimana aspal mulai menyala, dan temperatur dimana aspal mulai terbakar. Data ini dibutuhkan sebagai informasi penting dalam proses pencampuran demi keselamatan dalam bekerja. Pengujian dilakukan dengan mencetak contoh semen aspal di dalam cawan cleveland yang terbuat dari kuningan. Cawan diletakkan di atas pelat pemanas dan dimasukkan termometer pengukur tempeatur. Temperatur dimana aspal terlihat menyala singkat merupakan temperatur titik nyala, dan temperatur diamana aspal mulai menyala selama minimal 5 detik dinamakan titik bakar.

3. Pengujian Daktilitas

Pengujian daktilitas dibutuhkan untuk mengetahui sifat kohesi dan plastisitas aspal. Pemeriksaan dilakukan dengan mencetak aspal dalam cetakan dan meletakkan contoh aspal ke dalam tempat pengujian. Tempat pengujian berisi cairan dengan berat jenis yang mendekati berat jenis aspal. Nilai daktilitas aspal adalah panjang contoh aspal ketika putus pada saat dilakukan penarikan. Menurut RSNI S-01-2003 untuk aspal pen 80-100 batas jarak putus aspal pada pengujian daktilitas Min. 100cm.

4. Berat Jenis

Percobaan ini bertujuan untuk menentukan berat jenis aspal keras dengan alat piknometer. Berat jenis aspal adalah perbandingan antara berat aspal dan berat zat

cair suling dengan volume yang sama pada suhu 25°C. Berat jenis diperlukan untuk perhitungan analisis campuran pada Pers. 2.12.

Berat jenis =
$$\frac{(C-A)}{(B-A)-(D-C)}$$
 (2.12)

Keterangan:

A = Berat piknometer, dalam gram

B = Berat piknometer berisi air, dalam gram

C = Berat piknometer berisi aspal, dalam gram

D = Berat piknometer berisi air dan aspal, dalam gram

Data temperatur dan berat jenis aspal diperlukan dalam penentuan faktor koreksi

volume berdasarkan SNI 06-2441-2011 pada Pers. 2.13.

$$V = Vt \times Fk \tag{2.13}$$

Keterangan:

V = Volume aspal pada temperatur 150°C

Vt = Volume aspal pada temperatur tertentu

Fk = Faktor Koreksi

5. Pemeriksaan Titik Lembek

Pemeriksaan kepekaan aspal terhadap temperatur dilakukan melalui pemeriksaan titik lembek. Titik lembek adalah temperatur dimana aspal mulai menjadi lembek, yang ditunjukkan oleh jatuhnya lempengan contoh aspal akibat beban kelereng baja diatasnya. Data ini dibutuhkan selama proses pelaksanaan beton aspal di lapangan. Daya tahan atau durabilitas aspal adalah kemampuan aspalmempertahankan sifat asalnya akibat pengaruh cuaca selama masa pelayananjalan. Aspal yang baik adalah aspal yang tidak mudah menjadi rapuh dan kehilangan sifat plastisnya akibat perubahan temperatur. Sifat ini dapat diperkirakan dari pemeriksaan *Thin Film Oven Test* (TFOT) atau pengujian efek panas dan udara pada aspal *Rolling Thin Film Oven Test* (RFTOT).

5.1.Adhesi adalah kemampuan agregat untuk mengikat aspal sehingga dihasilkan ikatan yang baik antara agregat dengan aspal.

5.2.Kohesi adalah kemampuan aspal untuk tetap mempertahankan agregat tetap di tempatnya setelah terjadi pengikatan. Sifat ini dapat diperiksa dengan melakukan pengujian kelekatan aspal (*stripping test*). Agregat yang dapat digunakan sebagai material perkerasan jalan adalah agregat dengan kelekatan agregat terhadap aspal minimum 95%

6. Kelekatan Aspal Pada Agregat

Percobaan ini dilakukan untuk menentukan kelekatan aspal pada batuan tertentu dalam air. Uji kelekatan aspal terhadap agregat merupakan uji kuantitatif yang digunakan untuk mengetahui daya lekat (adhesi) aspal terhadap agregat. Adhesi adalah kemampuan aspal untuk melekat dan mengikat agregat. Pengamatan terhadap hasil pengujian kelekatan dilakukan secara visual.

2.7. Prosedur Rancangan Campuran

Campuran beraspal dapat terdiri dari agregat, bahan pengisi, bahan aditif, serat selulosa (untuk *SMA*) dan aspal. Persentase aspal yang aktual ditambahkan ke dalam campuran ditentukan berdasarkan percobaan laboratorium dan lapangan sebagaimana tertuang dalam Rencana Campuran Kerja (JMF) dengan memperhatikan penyerapan agregat yang digunakan.

Pengujian yang diperlukan meliputi analisa ayakan, berat jenis dan penyerapan air dan semua jenis pengujian lainnya sebagaimana yang disyaratkan untuk semua agregat yang digunakan. Pengujian pada campuran beraspal percobaan akan meliputi penentuan berat jenis maksimum campuran beraspal, pengujian sifat-sifat Marshall dapat dilihat pada Tabel 2.9.

Tabel 2.9: Ketentuan Sifat-sifat Campuran SMA (Spesifikasi Umum Bina Marga2018).

	SMA	SMA Mod		
Sifat-sifat Campuran		Tipis	Tipis	
		Halus dan	Halus dan Kasar	
		Kasar		
Jumlah tumbukan perbidang		50		
Rongga dalam campuran (%)	Min	4,0		
	Maks	5,0		

Tabel 2.9: Lanjutan.

		SMA	SMA Mod	
Sifat-sifat Campuran		Tipis	Tipis	
-		Halus dan	Halus dan Kasar	
		Kasar		
Jumlah tumbukan perbidang		50		
Rongga dalam agregat (VMA) (%)	Min	17		
Rasio VC Amix/VC Adrc		< 1		
Draindown pada temperature				
produksi % berat dalam campuran	Maks	0,3		
(waktu 1 jam)				
Stabilitas Marshall (Kg)	Min	600 750		
Pelelehan (mm)	Min	2		
	Maks	4,5		
Stabilitas Marshall sisa (%)	Min	90		
Stabilitas Dinamis (Lintasan/mm)	Maks	2500 3000		

2.7.1. Pengujian Marshall Untuk Perencanaan Campuran

Metode *Marshall* standar diperuntukkan untuk perencanaan campuran beton aspal dengan ukuran agregat maksimum 25 mm (1 inci) dan menggunakan aspal keras.

Pengujian *Marshall* dimulai dengan persiapan benda uji. Untuk keperluan ini perlu diperhatikan hal sebagai berikut:

- a. Bahan yang digunakan masuk spesifikasi
- b. Kombinasi agregat memenuhi gradasi yang disyaratkan
- c. Untuk keperluan analisa volumetrik (density-voids), berat jenis bulk dari semua

Agregat yang digunakan pada kombinasi agregat, dan berat jenis aspal keras harus dihitung terlebih dahulu. Ukuran benda uji adalah tinggi 64 mm (2 1/2 in.) dan diameter 102 mm (4 in.) yang dipersiapkan dengan menggunakan prosedur khusus untuk pemanasan, pencampuran dan pemadatan campuran agregat dengan aspal. Dua prinsip penting pada perencanaan campuran dengan pengujian

Marshall adalah analisa volumeterik dan analisa stabilitas, kelelehan (flow) dari benda uji padat.

Stabilitas benda uji adalah daya tahan beban maksimum benda uji pada temperature 60°C (140°F). Nilai kelelehan adalah perubahan bentuk suatu campuran beraspal yang terjadi pada benda uji sejak tidak ada beban hingga beban maksimum yang diberikan selama pengujian stabilitas. Pada penentuan kadar aspal optimum untuk suatu kombinasi agregat atau gradasi.

Tentu dalam pengujian *Marshall*, perlu disiapkan suatu seri dari contoh uji dengan interval kadar aspal yang berbeda sehingga didapatkan suatu kurva lengkung yang teratur. Pengujian agar direncanakan dengan dasar ½ % kenaikan kadar aspal dengan perkiraan minimum dua kadar aspal diatas optimum dan dua kadar aspal diatas optimum.

Metode *Marshall* standar diperuntukkan untuk perencanaan campuran beton aspal dengan ukuran agregat maksimum 25 mm (1 inchi) dan menggunakan aspal keras. Untuk ukuran butir maskimum lebih besar dari 25 mm (1 inchi) digunakan prosedur *Marshall* modifikasi. Prosedur *Marshall* yang dimodfikasi pada dasarnya sama dengan metode *Marshall* standar, namun karena campuran beraspal menggunakan ukuran butir maksimum yang lebih besar maka digunakan diameter benda uji yang lebih besar pula, yaitu 15,24 cm (6 inchi) dan tinggi 95,2 mm. Berat palu penumbuk 10,2 kg (22 lbs) dengan tinggi jatuh 457 mm (18 inchi). Benda uji secara tipikal mempunyai berat sekitar 4 kg. Jumlah tumbukan untuk *Marshall* modifikasi adalah 112 kali (untuk lalu-lintas berat > 500.000 SST) dan 75 tumbukan (untuk lalu-lintas rendah < 500.000 SST). Kriteria perencanaan harus diubah di mana stabilitas minimum ditingkatkan 2,25 kali sedangkan kelelehan 1,5 kali dari ukuran benda uji normal (diamter 4 inchi).

2.7.2. Berat Isi Benda Uji Padat

Setelah benda uji selesai, kemudian dikeluarkan dengan menggunakan extruder dan didinginkan, Berat isi untuk benda uji porus ditentukan dengan melakukan beberapa kali penimbangan seperti prosedur (ASTM D 1188). Secara garis besar adalah sebagai berikut:

a. Timbang benda uji diudara

- b. Selimuti benda uji dengan paraffin
- c. Timbang benda uji ber parafin di udara
- d. Timbang benda uji ber parafin dalam air

Berat isi untuk benda uji tidak porus atau bergradasi menerus dapat ditentukan menggunakan benda uji kering permukaan jenuh (SSD) seperti prosedur ASTM D 2726. Secara garis besar adalah sebagai berikut:

- a. Timbang benda uji diudara
- b. Rendam benda uji di dalam air
- c. Timbang benda uji SSD di udara
- d. Timbang benda uji di dalam air

Adapun rumus yang didapat dari tabel *Marshall* dengan Pers.2.14-Pers.2.15.

Volume sampel =
$$Bj - Ba$$
 (2.14)

Berat isi sampel =
$$\frac{Bk}{Vs}$$
 (2.15)

Keterangan:

Bj = Berat sampel jenuh, dalam gram

Ba = Berat sampel dalam air, dalam gram

Bk = Berat sampel kering, dalam gram

Vs = Volume sampel

Berat jenis maksimum campuran adalah perbandingan berat isi benda campuran beraspal dalam keadaan rongga udara sama dengan nol. Berat jenis maksimum campuran pada masing-masing kadar aspal diperlukan untuk menghitung kadar rongga masing-masing kadar aspal. Berat Jenis Maksimum dapat dihitung dengan Pers.2.16.

$$Gmm = \frac{Pmm}{Gse} + \frac{Pb}{Gb}$$
 (2.16)

Keterangan:

Gmm = Berat Jenis maksimum campuran (tidak ada rongga udara)

Pmm = Campuran lepas total, persentase terhadap berat total campuran = 100 %

Ps = agregat, persen berat total campuran

Pb = aspal, persen berat total campuran

Gse = Berat jenis efektif agregat

Gb = Berat jenis aspal

2.7.3. Pengujian Stabilitas Dan Kelelehan (Flow)

Setelah penentuan berat jenis *bulk* benda uji dilaksanakan, pengujianstabilitas dan kelehan dilaksanakan dengan menggunakan alat uji. Prosedur pengujian berdasarkan ketentuan, secara garis besar adalah sebagai berikut:

- 1. Rendam benda uji pada temperatur 60°C (140°F) selama 30-40 menit sebelum pengujian.
- Keringkan permukaan benda uji dan letakkan pada tempat yang tersedia pada alat uji
- 3. Setel dial pembacaan stabilitas dan kelehan. Lakukan pengujian dengan kecepatan deformasi konstan 51 mm (2 in.) per menit sampai terjadi runtuh.
- 4. Catat besarnya stabilitas dan kelelehan yang terjadi pada dial.

Stabilitas adalah nilai besarnya kemampuan perkerasan dalam hal menahan deformasi akibat beban berulang. Semakin banyak kadar serat selulosa yang digunakan mengakibatkan campuran semakin rapat dan sifat saling mengunci antar agregat bertambah.

Kelelahan (*flow*) adalah keadaan perubahan bentuk campuran yang terjadi akibat suatu beban yang dinyatakan dalam milimeter. Ketahanan terhadap kelelehan (*flow*) merupakan kemampuan beton aspal menerima lendutan berulang akibat repetisi beban, tanpa terjadinya kelelahan berupa alur dan retak. Hal ini dapat tercapai jika mempergunakan kadar aspal yang tinggi. *Marshall Quotient* (MQ) adalah rasio antara nilai stabilitas dan kelelehan. Dengan Pers.2.17.

$$MQ = \frac{Sa}{K} \tag{2.17}$$

Keterangan:

MQ = Marshall Quotient

Sa = Stabilitas akhir

K = Kelelehan (flow).

2.7.4. Pengujian Volumetrik

Tiga sifat dari benda uji campuran aspal panas ditentukan pada analisa rongga density. Sifat tersebut adalah :

- a. Berat isi dan atau berat jenis benda uji padat
- b. Rongga dalam agregat mineral

Dari berat contoh dan persentase aspal dan agregat dan berat jenis masingmasing, volume dari material yang bersangkutan dapat ditentukan. Dengan Pers. 2.18-Pers. 2.19.

$$\% Volume \ aspal = \frac{B.G}{Gb} \tag{2.18}$$

$$\% Volume \ agregat = \frac{(100 - B).G}{Gse}$$
 (2.19)

Keterangan:

B = % Aspal terhadap campuran

G = Berat isi sampel

Gse = Berat jenis efektif agregat

Gb = Berat jenis aspal

Kadar aspal efektif campuran adalah kadar aspal total dikurangi besarnya jumlah aspal yang meresap kedalam partikel agregat. Pers. 2.20 untuk perhitungan adalah:

$$Pbe = Pb - (\frac{Pba}{100})Ps \tag{2.20}$$

Keterangan:

Pbe = kadar aspal efektif, percen berat total campuran

Ps = agregat, percen berat total campuran

Pb = aspal, percen berat total campuran

Pba = aspal yang terserap, percen berat total campuran

Rongga pada agregat mineral (VMA) dinyatakan sebagai persen dari total volume rongga dalam benda uji. Merupakan volume rongga dalam campuran yang tidak terisi agregat dan aspal yang terserap agregat.

Rongga pada campuran, Va atau sering disebut VIM, juga dinyatakan sebagai persen dari total volume benda uji, merupakan volume pada campuran yang tidak terisi agregat dan aspal.

1. Rongga Dalam Mineral Agregat (VMA)

Rongga dalam mineral agregat , VMA, adalah rongga antar partikel agregat pada campuran padat termasuk rongga udara dan kadar aspal efektif, dinyatakan dalam persen volume total. VMA dihitung berdasarkan Berat Jenis agregat curah (bulk) dandinyatakan dalam persentase dari volume curah campuran padat. Sebagai contoh penyimpangan nilai VMA akibat kesalahan perhitungan yang mana kesalahan ini akan menyebabkan pergeseran puncak lengkung hiperbola (titik terendah) kurva hubungan antara VMA dengan kadar aspal. Pergeseran tersebut akan menyebab kesalahan penentuan kadar aspal dan selanjutnya akan sangat mempengaruhi kinerja campuran beraspal yang dihasilkan pada Pers. 2.21.

$$VMA = 100 - \left(\frac{Gmb.Ps}{Gsb}\right) \tag{2.21}$$

Keterangan:

VMA = Rongga dalam agregat mineral (persen volume curah)

Gsb = Berat Jenis curah agregat

Ps = Agregat, persen berat total campuran

Gmb = Berat jenis curah campuran padat (ASTM D 2726)

2. Rongga Udara Didalam Campuran Padat (VIM)

Rongga udara (VIM) setelah selesai dipadatkan di laboratorium idealnya adalah 7%. Rongga udara yang kurang jauh dari 7% akan rentan terhadap perlelehan, alur dan deformasi plastis. Sementara VIM setelah selesai pemadatan yang jauh dari 7% akan rentan terhadap retak dan perlepasan butir (disintegrasi). Untuk mencapai nilai lapangan tersebut dalam spesifikasi, nilai VIM rencana dibatasi pada interval 3,5% sampai 5,5%. Dengan kepadatan lapangan dibatasi minimum 98%. Rongga udara, VIM, dalam campuran padat terdiri atas ruang-

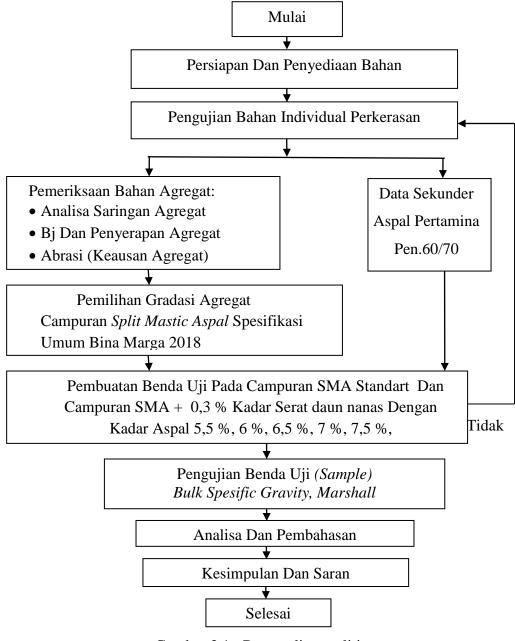
ruang kecil antara partikel agregat terselimuti aspal. Rongga udara dihitung dengan Pers 2.22.

$$VIM = 100 \left(\frac{Gmm - Gmb}{Gmm} \right) \tag{2.22}$$

Keterangan:

VIM = rongga di dalam campuran, persen terhadap volume total campuran

Gmb = berat jenis curah campuran padat


Gmm = berat jenis maksimum campuran

BAB 3

METODOLOGI PENELITIAN

3.1. Bagan Alir Metode Penelitian

Secara garis besar penelitian yang dilaksanakan dengan kegiatan sebagaimana ditunjukkan pada Gambar 3.1.

Gambar 3.1 : Bagan alir penelitian

3.2. Tempat dan Waktu Penelitian

Tempat dan waktu penelitan adalah sebagai berikut:

1. Tempat Penelitian

Penelitian ini dilakukan di UPT. Laboratorium Bahan Konstruksi Dinas Bina Marga Dan Bina Konstruksi Provinsi Sumatera Utara, yang berlokasi di jalan Sakti Lubis No.7D, Kp. Baru, Kecamatan Medan Maimun, Kota Medan.

2. Waktu Penelitian

Penelitian ini dilaksanakan pada tanggal 04 Maret 2019 sampai dengan 20 Mei 2019.

3.3. Metode Penelitian

Metode yang digunakan dalam penelitian ini adalah metode eksperimen, yaitu metode yang dilakukan dengan mengadakan kegiatan percobaan untuk mendapatkan data. Tahapan awal penelitian yang dilakukan di UPT. Laboratorium Bahan Konstruksi Dinas Bina Marga Dan Bina Konstruksi Provinsi Sumatera Utara adalah pengambilan data sekunder mutu bahan aspal dan memeriksa mutu agregat yang akan digunakan pada percobaan campuran.

3.4. Teknik Pengumpulan Data

Teknik pengumpulan data dilaksanakan dengan metode eksperimen terhadap beberapa benda uji dari berbagai kondisi perlakuan yang diuji di laboratorium. Untuk beberapa hal pada pengujian bahan, digunakan data sekunder. Data sekunder adalah data yang digunakan dari benda uji material yang telah dilakukan perusahaan dan di uji di Balai Pengujian Material. Data literatur adalah data dari bahan kuliah laporan dari pratikum dan konsultasi langsung dengan pembimbing dan asisten laboratorium tempat penelitian berlangsung.

3.5. Material Untuk Penelitian

Bahan-bahan yang digunakan dalam penelitian ini antara lain:

1. Aspal Keras.

Penelitian ini menggunakan aspal keras Pertamina yang diperoleh dari *Asphalt Mixing Plant* (AMP) PT. Tri Murti, Patumbak, Deli Serdang.

2. Agregat Kasar dan Halus.

Agregat kasar dan halus yang digunakan diperoleh dari (Stone Crusher) CV Barokah, Diski KM.

3. Serat Daun Nanas.

Penelitian ini menggunakan serat dau nanas sebagai bahan untuk campuran *SMA* yang diperoleh dari salah satu pengusaha nanas yang berlokasi di jalan Simalingkar, Kota Medan.

3.6. Prosedur Penelitian

Adapun langkah-langkah dalam pelaksanaan perencanaan yaitu dengan penelitian laboratorium adalah sebagai berikut:

- 1. Pengadaan alat dan penyedian bahan yang akan digunakan untuk melakukan penelitian.
- 2. Pemeriksaan terhadap bahan material yang akan digunakan untuk melakukan penelitian.
- 3. Merencanakan contoh campuran *SMA*.
- 4. Merencanakan contoh campuran dengan pembuatan sampel benda uji.
- 5. Melakukan pengujian dengan alat Marshall test.
- 6. Analisa hasil pengujian sehingga diperoleh hasil dari pengujian.

3.7. Pemeriksaan Bahan Campuran

Untuk mendapatkan campuran *SMA* yang berkualitas ditentukan dari penyusunan campuran agregat. Bahan terlebih dahulu dilakukan pemeriksaan sifat dan karekateristiknya.

3.7.1. Pemeriksaan Terhadap Agregat Kasar dan Halus

Agar kualitas agregat dapat dijamin untuk mendapatkan campuran *SMA* yang berkualitas maka beberapa hal yang perlu diadakan pengujian adalah:

- 1. Diperlukan analisa saringan untuk agregat kasar maupun agregat halus, dimana prosedur dalam pemeriksaan ini mengikuti SNI 03-1968-1990.
- 2. Pengujian terhadap berat jenis untuk penyerapan agregat kasar, dimana prosedur dalam pemeriksaan ini mengikuti SNI 1969:2008.
- 3. Pengujian terhadap berat jenis untuk penyerapan agregat halus, dimana prosedur dalam pemeriksaan ini mengikuti SNI 1970:2008.
- 4. Pengujian pemeriksaan sifat-sifat campuran dengan *Marshall test*, dimana prosedur dalam pemeriksaan ini mengikuti RSNI M-01-2003.
- 5. Metode pengujian bobot isi dan rongga udara dalam agregat.

3.7.2. Alat Yang Digunakan

- 1. Saringan atau ayakan ayakan 3/4,1/2,3/8, No.4, No.8, No.200 dan pan.
- 2. Sekop digunakan sebagai alat mengambil sampel material di laboratorium maupun pada saat pengambilan material di AMP
- 3. Goni dan juga pan sebagai tempat atau wadah tempat material.
- 4. Timbangan kapasitas 20 kg dan timbangan kapasitas 3000 gr dengan ketelitian 0,1 gram.
- 5. *Shieve shaker* berfungsi sebagai alat mempermudah pengayakan material.
- 6. Sendok pengaduk dan spatula.
- 7. Thermometer sebagai alat pengukur suhu aspal dan juga material.
- 8. Piknometer dengan kapasitas 500 ml, untuk pemeriksaan berat jenis penyerapan agregat halus.
- 9. Cetakan *mold* berbentuk silinder yang berdiamer 101,6 mm (4 in) dan tinggi 76, 2 (3 in), beserta *jack hammer Marshall Split Mastic Asphalt*.
- 10. *Extruder* berfungsi sebagai alat untuk mengeluarkan banda uji *Marshall* dari *mold*.
- 11. Cat dan spidol untuk menandai benda uji.
- 12. Water bath dengan kedalaman 152,4 mm (6 in) yang dilengkapi dengan pengatur temperatur air $60^{\circ}\text{C} \pm 1^{\circ}\text{C}$.
- 13. Oven pengering material
- 14. Alat uji *Marshal test* dilengkapi dengan kepala penekan (*breaking head*), cincin penguji (*proving ring*) dan arloji (*dial*).

3.7.3. Pemeriksaan Keausan Agregat Dengan Mesin Los Angeles

Pemeriksaan ini dimaksudkan untuk menentukan ketahanan agregat kasar terhadap keausan dengan menggunakan mesin *Los Angeles*. Keausan tersebut dinyatakan dengan perbandingan antara berat bahan aus lewat saringan no. 12 terhadap berat semula, satuannya dalam % dan pemeriksaan ini mengikuti prosedur SNI 2417:2008.

Peralatan untuk pelaksanaan pengujian adalah sebagai berikut:

- 1. Mesin *Abrasi Los Angeles* merupakan mesin yang terdiri dari silinder baja tertutup pada kedua sisinya dengan diameter dalam 711 mm (28 inci) panjang dalam 508 mm (20 inci); silinder bertumpu pada dua poros pendek yang tak menerus dan berputar pada poros mendatar; silinder berlubang untuk memasukkan benda uji penutup lubang terpasang rapat sehingga permukaan dalam silinder tidak terganggu di bagian dalam silinder terdapat bilah baja melintang penuh setinggi 89 mm (3,5 inci)
- 2. Saringan No.12 (1,70 mm) dan saringan-saringan lainnya
- 3. Timbangan, dengan ketelitian 0,1% terhadap berat contoh atau 5 gram
- 4. Bola-bola baja dengan diameter rata-rata 4,68 cm (1 27/32 inci) dan berat masing-masing antara 390 gram sampai dengan 445 gram
- 5. Oven, yang dilengkapi dengan pengatur temperatur untuk memanasi sampai dengan $110^{\circ}\text{C} \pm 5^{\circ}\text{C}$
- 6. Alat bantu pan dan kuas.

3.8. Prosedur Kerja

3.8.1. Perencanaan Campuran (Mix Desaign)

Perencanaan aspal beton meliputi perencanaan gradasi dan komposisi agregat untuk campuran serta jumlah benda uji untuk pengujian. Gradasi agregat yang digunakan dalam penelitian ini adalah gradasi agregat gabungan lapisan *Split Mastic Asphalt* (SMA). Dan dilihat pada gradasi yang ideal yang sesuai dengan Spesifikasi Umum Bina Marga 2018. Sebelum melakukan pencampuran terlebih dahulu dilakukan analisa saringan masing-masing fraksi, komposisi campuran didasarkan pada fraksi agregat kasar CA (*Coarse Aggregate*), MA (*Medium*

Aggregate), dan agregat halus FA (*Fine Aggregate*) dari analisa komposisi gradasi diperoleh komposisi campuran agregat untuk benda uji normal adalah sebagai berikut:

1. Agregat kasar (CA) 1/2 inch = 32 %
 2. Agregat kasar (MA) 3/8 inch = 45 %
 3. Agregat halus (Cr) = 13 %
 4. Agregat halus (Sand) = 10 %

Adapun diperoleh komposisi campuran agregat untuk benda uji *SMA* dengan Serat Daun Nanas sebagai bahan tambah adalah sebagai berikut:

1. Agregat kasar (CA) 1/2 inch = 32 %
 2. Agregat kasar (MA) 3/8 inch = 45 %
 3. Agregat halus (Cr) = 13 %
 4. Agregat halus (Sand) = 10 %
 5. Serat Daun Nanas = 0,3 %

Untuk serat daun nanas yang dipakai terlebih dahulu dibersihkan daun nya dari kotoran-kotoran yang ada dengan cara direndam oleh air dan di lap dalam penelitian ini peneliti menggunakan metode pengambilan serat nanas dengan metode pengeratan proses pengambilan serat daun nanas dengan cara dikerat. Menggunakan pisau.Pengeratan ini untuk menghilangkan lapisan daun sehingga serat dengan mudah dapat dikeluarkan. Kemudian serat daun nanas direndam di dalam air selama 24 jam, dan dijemur sampai kering. Setelah itu dipotong-potong dengan ukuran kurang lebih 2 - 4 mm.

Komposisi aspal campuran ditentukan oleh nilai kadar aspal optimum. Untuk mengetahui besarnya kadar aspal optimum untuk suatu campuran aspal dilakukan dengan cara coba-coba. Langkah yang ditempuh adalah melakukan uji *Marshall* untuk berbagai kadar aspal. Variasi kadar aspal ditentukan dengan sedemikian rupa sehingga perkiraan besarnya kadar aspal optimum berada didalam variasi tersebut, yaitu mulai dari 5,5 %, 6 %, 6,5 %, 7 % dan 7,5 %.

3.8.2. Tahapan Pembuatan Benda Uji

- Adapun tahapan pembuatan benda uji adalah sebagai berikut:
- 1. Mengeringkan agregat pada temperatur 105°C 110°C sekurang kurangnya selama 4 jam di dalam oven.
- 2. Mengeluarkan agregat dari oven dan tunggu sampai beratnya tetap.
- 3. Memisahkan agregat ke dalam fraksi-fraksi yang dikehendaki dengan cara penyaringan dan lakukan penimbangan secara kumulatif.
- 4. Melakukan pengujian kekentalan aspal untuk memperoleh temperatur pencampuran dan pemadatan.
- 5. Memanaskan agregat pada temperatur 28°C di atas temperatur pencampuran sekurang kurangnya 4 jam di dalam oven.
- 6. Memanaskan aspal sampai mencapai kekentalan (*viskositas*) yang disyaratkan untuk pekerjaan pencampuran dan pemadatan.

7. Pencampuran benda uji

- a. Untuk setiap benda uji diperlukan agregat sebanyak \pm 1200 gram sehingga menghasilkan tinggi benda uji kira-kira 63,5 mm \pm 1,27 mm (2,5 \pm 0,05 inch).
- b. Memanaskan wadah pencampur kira-kira 28°C di atas temperatur pencampuran aspal keras.
- c. Memasukkan agregat yang telah dipanaskan ke dalam wadah pencampur.
- d. Menuangkan aspal yang sudah mencapai tingkat kekentalan sebanyak yang dibutuhkan ke dalam agregat yang sudah dipanaskan, kemudian aduk dengan cepat sampai agregat terselimuti aspal secara merata.

8. Pemadatan benda uji

- a. Membersihkan perlengkapan cetakan benda uji serta bagian muka penumbuk dengan seksama dan panaskan sampai suhu antara 90°C 150°C
- b. Meletakkan cetakan di atas landasan pemadat dan ditahan dengan pemegang cetakan
- c. Meletakkan kertas saring atau kertas penghisap dengan ukuran sesuai ukuran dasar cetakan

- d. Memasukkan seluruh campuran ke dalam cetakan dan tusuk-tusuk campuran dengan spatula yang telah dipanaskan sebanyak 15 kali di sekeliling pinggirannya dan 10 kali di bagian tengahnya
- e. Meletakkan kertas saring atau kertas penghisap di atas permukaan benda uji dengan ukuran sesuai cetakan
- f. Memadatkan campuran dengan temperatur yang disesuaikan dengan kekentalan aspal yang digunakan dengan jumlah tumbukan 50 kali untuk sisi atas dan 50 kali untuk sisi bawah.
- g. Sesudah dilakukan pemadatan campuran, lepaskan pelat alas dan pasang alat pengeluar yaitu *Extruder* pada permukaan ujung benda uji tersebut, keluarkan dan letakkan benda uji di atas permukaan yang rata dan diberi tanda pengenal serta biarkan selama kira-kira 24 jam pada temperatur ruang.

3.8.3. Metode Pengujian Benda Uji (Sample)

Pengujian ini dilakukan sesuai dengan prosedur *Marshall test* yang dikeluarkan oleh RSNI M-01-2003. Pengujian benda uji (*sample*) terbagai atas 2 bagian pengujian, yaitu:

- 1. Penentuan *bulk spesific gravity* benda uji (*sample*).
- 2. Pengujian *stabiliy* dan *flow*.

Peralatan yang digunakan untuk pengujian sampel sebagai berikut:

- 1. Alat uji *Marshall*, alat uji listrik yang berkekuatan 220 *volt*, didesain untuk memberikan beban pada benda uji (*sample*) untuk menguji semi *circular testing head* dengan kecepatan konstan 51 mm (2 inch) per menit. Alat ini dilengkapi dengan sebuah *proving ring* (arloji tekan) untuk mengetahui stabilitas pada beban maksimum pengujian. Selain itu juga dilengkapi dengan *flow* meter (arloji kelelehan) untuk menentukan besarnya kelelehan pada beban maksimum pengujian.
- 2. *Water Bath*, alat ini dilengkapi pengaturan suhu minimum 20°C dan mempunyai kedalaman 150 mm (6 inch) serta dilengkapi rak bawah 50 mm.

3. *Thermometer*, ini adalah sebagai pengukur suhu air dalam *water bath* yang mempunyai menahan suhu sampai ± 200°C.

3.8.4. Penentuan Berat Jenis (Bulk Specific Gravity)

Setelah benda uji selesai, kemudian dikeluarkan dengan menggunakan extruder dan didinginkan. Berat isi untuk benda uji tidak porus atau gradasi menerus dapat ditentukan menggunakan benda uji kering permukaan jenuh (SSD). Pengujian ini dilakukan sesuai dengan SNI 03-6757-2002 metode pengujian berat jenis nyata campuran beraspal didapatkan menggunakan benda uji kering permukaan jenuh.

Pengujian *bulk specific gravity* ini dilakukan dengan cara menimbang benda uji *Marshall* yang sudah dikeluarkan dari mold, dengan menimbang berat dalam keadaan kering udara, kemudian di dalam air dan berat jenuh. Perbedaan berat benda uji kering permukaan dengan berat uji dalam air adalah volume *bulk specific gravity* benda uji (cm³). Sedangkan *bulk specific grafity* benda uji (*sample*) merupakan perbandingan antara benda uji di udara dengan volume bulk benda uji (gr/cm³).

Adapun proses tahapan penimbangan sebagai berikut:

- a. Menimbang benda uji diudara.
- b. Merendam benda uji di dalam air.
- c. Menimbang benda uji SSD di udara.
- d. Menimbang benda uji di dalam air.

3.8.5. Pengujian Stabilitas (Stability) dan Kelelehan (Flow)

Setelah penentuan berat *bulk specific gravity* benda uji dilaksanakan, pengujian *stabilitas* dan *flow* dilaksanakan dengan menggunakan alat uji *Marshall* sebagai berikut:

- 1. Merendam benda uji dalam penangas air selama 30 40 menit dengan temperatur tetap $60^{\circ}\text{C} \pm 1^{\circ}\text{C}$ untuk benda uji.
- 2. Permukaan dalam *testing head* dibersihkan dengan baik. Suhu *head* harus dijaga dari 21°C-37°C dan digunakan bak air apabila perlu. *Guide road* dilumasi dengan minyak tipis sehingga bagian atas *head* akan meluncur tanpa terjepit. Periksa indikator *proving ring* yang digunakan untuk mengukur beban

- yang diberikan. Pada setelah dial *proving ring* disetel dengan jarum menunjukan angka nol dengan tanpa beban.
- 3. Benda uji (*sample*) percobaan yang telah direndam dalam *water bath* diletakkan di tengah bagian bawah dari *test head. Flow* meter diletakkan diatas tanpa *guide road* dan jarum petunjuk dinolkan.
- 4. Memasang bagian atas alat penekan uji *Marshall* di atas benda uji dan letakkan seluruhnya dalam mesin uji *Marshall*.
- 5. Memasang arloji pengukur pelelehan (*flow*) pada kedudukanya di atas salah satu batang penuntun dan atur kedudukan jarum penunjuk pada angka nol, sementara selubung tangkai arloji (*sleeve*) dipegang teguh pada bagian atas kepala penekan.
- 6. Sebelum pembebanan diberikan, kepala penekan beserta benda uji dinaikkan hingga menyentuh alas cincin penguji.
- 7. Mengatur jarum arloji tekan pada kedudukan angka nol.
- 8. Memberikan pembebanan pada benda uji dengan kecepatan tetap sekitar 50,8 mm per menit sampai pembebanan maksimum tercapai, untuk pemebebanan menurun seperti yang ditunjukan oleh jarum arloji tekan dan catat pembebanan maksimum (stabilitas) yang dicapai. Untuk benda uji dengan tebal tidak sama dengan 63,5 mm, beban harus dikoreksi dengan faktor pengali.
- 9. Mencatat nilai pelelehan yang ditunjukan oleh jarum arloji pengukur pelelehan pada saat pembebanan maksimum tercapai.
- 10. Membersihkan alat dan selesai.

3.9. Penyajian Data

Penyajian data yang dimaksud adalah penyajian data sifat bahan dan karakteristik campuran *Marshall* dari hasil pengujian yang telah dilakukan. Pengujian ini dimaksudkan sebagai bahan didalam menganalisis data dari pengujian yang dimaksud, yaitu analisis penentuan karakteristik *Marshall* dari jenis campuran beton aspal. Berikut adalah data yang diperoleh dari hasil penelitian di laboratorium sebagai berikut:

Data hasil pengujian analisa saringan agregat kasar.
 Dari hasil pengujian diperoleh analisa saringan pada Tabel 3.1

Tabel 3.1: Data analisa saringan agregat kasar.

A 1	No. Saringan	Benda Uji 1 (gr)	Benda Uji 2 (gr)
Agregat kasar	(Tertahan)	1000	1100
lolos saringan	1/2	1000	1100
3/4" (5 kg)	3/8	1701	1561
	4	1740	1700
	8	542	607
Agregat kasar	No. Saringan	Benda Uji 1 (gr)	Benda Uji 2 (gr)
lolos saringan	(Tertahan)		
1/2" (2,5 kg)	3/8	400	300
	4	1800	1988
	8	130	150
	200	96	62

2. Data hasil pengujian analisa saringan agregat halus.

Dari hasil pengujian diperoleh analisa saringan pada Tabel 3.2.

Tabel 3.2: Data analisa saringan agregat halus.

Agregat Halus (Sand) lolos	No. Saringan (Tertahan)	Benda Uji 1 (gr)	Benda Uji 2 (gr)
Saringan No. 4	8	49	40
(500 gr)	200	449	460
Agregat Halus (Abu batu) lolos	No. Saringan (Tertahan)	Benda Uji 1 (gr)	Benda Uji 2 (gr)
Saringan No. 4	8	387	368
(500 gr)	200	113	132

3. Data hasil pengujian berat jenis dan penyerapan agregat kasar.

Dari hasil pengujian diperoleh analisa saringan pada Tabel 3.3.

Tabel 3.3: Data berat jenis agregat kasar.

CA ½ inch	Pengujian	Notasi	I	II	Satuan
	Berat benda uji kering oven	A	5116	5116	Gram
	Berat benda uji jenuh kering permukaan di udara	В	5198	5208	Gram
	Berat benda uji dalam air	С	3224	3214	Gram

Tabel 3.4: Lanjutan

	Pengujian	Notasi	I	II	Satuan
MA 3/8	Berat benda uji kering oven	A	3110	3110	Gram
inch	Berat benda uji jenuh kering permukaan di udara n di udara	В	3160	3140	Gram
	Berat benda uji dalam air	С	1955	1975	Gram

4. Data hasil pengujian berat jenis dan penyerapan agregat halus.

Dari hasil pengujian diperoleh analisa saringan pada Tabel 3.4.

Tabel 3.4: Data berat jenis agregat halus.

	Pengujian	Notasi	Benda uji 1	Benda uji 2	Satuan
Pasir (sand)	Berat benda uji kondisi jenuh kering permukaan	S	500	500	Gram
	Berat benda uji kering oven	A	496	495.5	Gram
	Berat piknometer yang berisi Air	В	676.9	687.3	Gram
	Berat piknometer dengan benda uji dan air sampai batas Pembacaan	С	958.9	963.3	Gram
	Pengujian	Notasi	Benda uji 1	Benda uji 2	Satuan
Abu	Berat benda uji kondisi jenuh kering permukaan	S	500	500	Gram
batu (filler)	Berat benda uji kering oven	A	491.4	492.4	Gram
Giller	Berat piknometer yang berisi Air	В	678.1	684.1	Gram
	Berat piknometer dengan benda uji dan air sampai batas pembacaan	С	954.1	963.1	Gram
	Pengujian	Notasi	Benda uji 1	Benda uji 2	Satuan
Semen	Berat benda uji kondisi jenuh kering permukaan	S	500	500	Gram

Tabel 3.4: Lanjutan

Pengujian	Notasi	Benda	Benda	Satuan
		uji 1	uji 2	
Berat benda uji kering oven	A	492	490	Gram
Berat piknometer yang berisi Air	В	669	671	Gram
Berat piknometer dengan benda uji dan air sampai batas Pembacaan	С	1025	1030	Gram

5. Data pengujian dengan alat *Marshall*.

Dari hasil pengujian diperoleh data pada Tabel 3.5.

Tabel 3.5: Data Marshall.

Benda Uji Standar							
Kadar	Benda uji	Berat (gr)					
aspal		Kering	Dalam air	SSD	Stabilitas	Flow	
5,5 %	1	1167	667	1183	158	240	
	2	1181	675	1200	152	254	
6 %	1	1199	677	1211	179	252	
	2	1193	670	1202	181	282	
6,5 %	1	1168	665	1187	194	305	
	2	1177	673	1198	188	296	
7 %	1	1180	658	1196	180	289	
	2	1189	654	1196	206	340	
7,5 %	1	1160	648	1187	163	390	
	2	1172	654	1189	176	421	
			Benda Uji	Alternatif			
Kadar	Benda	Berat (gr)					
aspal	uji	Kering	Dalam air	SSD	Stabilitas	Flow	
5,5 %	1	1196	650	1198	175	262	
	2	1209	655	1195	170	282	
6 %	1	1174	689	1196	185	270	
	2	1199	686	1207	184	300	
6,5 %	1	1200	688	1234	198	275	
	2	1173	674	1205	192	285	
7 %	1	1209	685	1238	198	290	
	2	1198	675	1225	195	310	
7,5 %	1	1197	675	1224	195	330	
	2	1200	664	1221	192	360	

BAB 4

HASIL DAN PEMBAHASAN

4.1. Hasil Penelitian

4.1.1. Pemeriksaan Gradasi Agregat

Pada pembuatan aspal beton maka komponen utama pembentuknya adalah aspal dan agregat. Untuk menentukan suatu gradasi agregat pada lapisan Campuran SMA (*Split Mastic Asphalt*-Halus) maka agregat kasar yang digunakan adalah batu pecah dengan ukuran maksimal ¾", agregat halus adalah campuran batu pecah dengan pasir, sedangkan untuk bahan pengisi adalah abu batu dan serat selulosa sebagai bahan penambah. Untuk memperoleh aspal beton yang baik maka gradasi dari agregat harus memenuhi spesifikasi umum Bina Marga 2018 yang telah ditetapkan dengan acuan (SNI-ASTM-C136-2012). Dari percobaan pencampuran agregat diperoleh hasil perbandingan campuran agregat hasil analisis saringan seperti yang tertera pada Tabel 4.1-4.4.

Tabel 4.1: Hasil Pemeriksaan analisis saringan agregat kasar (Ca) ½ inch.

No. Saringan	Ukuran (mm)	% Lolos Saringan
11/2	37.50	100%
1	25.40	100%
3/4	19.00	100%
1/2	12.50	79.00%
3/8	9.50	46.38%
4	4.75	11.98%
8	2.36	0.49%
200	0.075	0.00%

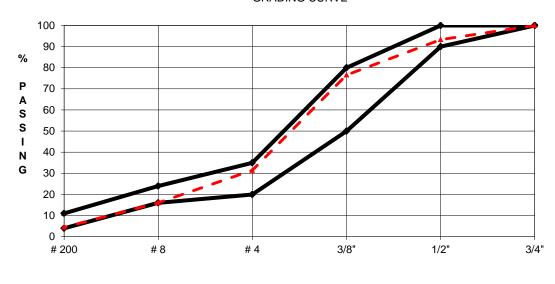
Tabel 4.2: Hasil Pemeriksaan analisis saringan agregat kasar (Ma) 3/8 inch.

No. Saringan	Ukuran (mm)	% Lolos Saringan
11/2	37.50	100%
1	25.40	100%
3/4	19.00	100%
1/2	12.50	100%
3/8	9.50	86.00%
4	4.75	10.24%
8	2.36	4.64%
200	0.075	1.98%
Pan	-	1.48%

Tabel 4.3: Hasil pemeriksaan analisis saringan agregat halus pasir (Sand).

No. Saringan	Ukuran (mm)	% Lolos Saringan
11/2	37.50	100%
1	25.40	100%
3/4	19.00	100%
1/2	12.50	100%
3/8	9.50	100%
4	4.75	100%
8	2.36	91.10%
200	0.075	16.10%
Pan	-	0.20%

Tabel 4.4: Hasil pemeriksaan analisis saringan agregat halus abu batu (Cr).


No. Saringan	Ukuran (mm)	% Lolos Saringan
11/2	37.50	100%
1	25.40	100%
3/4	19.00	100%
1/2	12.50	100%
3/8	9.50	100%
4	4.75	100%
8	2.36	24.50%
200	0.075	0.00%

Gradasi agregat gabungan untuk campuran aspal, ditunjukkan dalam persen terhadap berat agregat, harus memenuhi batas-batas dan khusus untuk campuran SMA harus berada di antara batas atas dan batas bawah yang sesuai dengan spesifikasi umum Bina Marga 2018. Dari hasil pemeriksaan analisa saringan maka gradasi agregat diperoleh seperti pada Tabel 4.5.

Tabel 4.5: Hasil kombinasi gradasi agregat standar.

No.	Ba	tas	Kombinasi Agregat					AVG
Saringan	spesi	fikasi	1	2	3	4	5	AVG
			2%	32%	45%	11%	10%	100
3/4"	100	100	2.00	32.00	45.00	11.00	10.00	100.00
1/2"	90	100	2.00	25.28	45.00	11.00	10.00	93.28
3/8"	50	80	2.00	14.84	38.70	11.00	10.00	76.54
No. 4	20	35	2.00	3.83	4.61	11.00	10.00	31.44
No. 8	16	24	2.00	0.16	2.09	2.70	9.11	16.05
No. 200	4	11	2.00	0.00	0.89	0.00	1.61	4.50

GRADING CURVE

No. OF SIEVE

Gambar 4.1: Grafik hasil kombinasi gradasi agregat.

Dari hasil pengujian analisis saringan di dapat hasil kombinasi gradasi agregat yang memenuhi spesifikasi umum Bina Marga 2018.

Data persen agregat yang di peroleh pada normal

1.	Agregat kasar CA 1/2 inch	= 32%
2.	Agregat medium MA 3/8 inch	= 45%
3.	Agregat halus abu batu (Cr)	= 11%
4.	Agregat halus pasir (Sand)	= 10%
5.	Semen	= 2%

Data persen agregat yang di peroleh pada campuran serat daun nanas 0,3%.

1.	Agregat kasar CA 1/2 inch	= 32%
2.	Agregat medium MA 3/8 inch	= 45%
3.	Agregat halus abu batu (Cr)	= 11%
4.	Agregat halus pasir (Sand)	= 10%
5.	Semen	= 2%
6.	Serat daun nanas	= 0,3%

Setiap benda uji diperlukan agregat dan aspal sebanyak \pm 1200 gram sehingga menghasilkan tinggi benda uji kira-kira 63,5 mm \pm 1,27 mm. Dari hasil analisa saringan agregat didapat perhitungan berat agregat yang diperlukan seperti pada Tabel 4.6.

Tabel 4.6: Hasil perhitungan berat agregat yang diperlukan untuk benda uji standar.

Kadar Aspal (%)	Aspal (gram)	CA ½ inch (gram)	MA 3/8 inch (gram)	Abu Batu (gram)	Pasir (gram)	semen (gram)
5,5	66	362,88	510,30	124,74	113,40	22,68
6	72	360,96	507,6	124,08	112,8	22,56
6,5	78	359,04	504,9	123,42	112,2	22,44
7	84	357,12	502,2	122,76	111,6	22,32
7,5	90	355,2	499,5	122,1	111	22,2

Tabel 4.7: Hasil perhitungan berat agregat yang diperlukan untuk benda uji penggunaan serat daun nanas 0,3%.

Kadar Aspal (%)	Aspal (gram)	CA ½ inch (gram)	MA 3/8 inch (gram)	Abu Batu (gram)	Pasir (gram)	Semen (gram)	Serat daun nanas
5,5	66	362,88	510,30	124,74	113,40	22,68	3,40
6	72	360,96	507,6	124,08	112,8	22,56	3,38
6,5	78	359,04	504,9	123,42	112,2	22,44	3,37
7	84	357,12	502,2	122,76	111,6	22,32	3,35
7,5	90	355,2	499,5	122,1	111	22,2	3,33

4.1.2. Hasil Pemeriksaan Berat Jenis Agregat

Berat jenis suatu agregat yang digunakan dalam suatu rancangan campuran beraspal sangat berpengaruh terhadap banyaknya rongga udara yang diperhitungkan sehingga mendapatkan suatu campuran beraspal yang baik. Berat jenis efektif dianggap paling mendekati nilai sebenarnya untuk menentukan besarnya rongga udara dalam campuran beraspal. Dalam pengujian berat jenis agregat kasar prosedur pemeriksaan mengikuti SNI 1969-2008 dan SNI 1970-2008. Dari hasil pemeriksaan tersebut didapat data seperti yang ditunjukan pada tabel 4.8

1. Berat jenis agregat kasar CA ½ inch

Dari percobaan yang dilakukan didapat hasil perhitungan sampel 1:

• Berat Jenis Curah
$$=\frac{5116}{5198-3224}$$
 = 2,592 gr

• Berat Jenis Kering Permukaan Jenuh =
$$\frac{5198}{5198 - 3224}$$
 = 2,633 gr

• Berat Jenis Semu =
$$\frac{5116}{5116 - 3224}$$
 = 2,704 gr

• Penyerapan
$$= \frac{5198 - 5116}{5116} \times 100\% = 1,603 \text{ gr}$$

Untuk hasil pengujian lebih lengkap dapat dilihat pada lampiran dan rekapitulasi data hasil pengujian agregat CA ½ inch dapat dilihat pada Tabel 4.8

Tabel 4.8: Rekapitulasi pemeriksaan berat jenis agregat kasar CA ½ inch.

Perhitungan	I	II	Rata-rata
Berat jenis curah kering (Sd)	2,592	2,566	2,579
Berat jenis kering permukaan jenuh (Ss)	2,633	2,612	2,623
Berat jenis semu (Ss)	2,704	2,690	2,697
Penyerapan (Sw)	1,603	1,798	1,701

2. Berat jenis agregat kasar MA 3/8 inch

Dari percobaan yang dilakukan didapat hasil perhitungan sampel 1:

Berat Jenis Curah
$$=\frac{3110}{3160-1955}$$
 = 2,581 gr

• Berat Jenis Kering Permukaan Jenuh =
$$\frac{3160}{3160 - 1955}$$
 = 2,622 gr

• Berat Jenis Semu =
$$\frac{3110}{3110 - 3224}$$
 = 2,693 gr

• Penyerapan
$$= \frac{3160 - 3110}{3110} \times 100\% = 1,286 \text{ gr}$$

Untuk hasil pengujian lebih lengkap dapat dilihat pada lampiran dan rekapitulasi data hasil pengujian agregat MA 3/8 inch dapat dilihat pada Tabel 4.9.

Tabel 4.9: Rekapitulasi pemeriksaan berat jenis agregat kasar MA 3/8 inch.

Perhitungan	I	II	Rata-rata
Berat jenis curah kering (Sd)	2,581	2,670	2,625
Berat jenis kering permukaan jenuh (Ss)	2,622	2,695	2,659
Berat jenis semu (Ss)	2,693	2,740	2,716
Penyerapan (Sw)	1,608	0,965	1,286

3. Berat jenis agregat halus Pasir (Sand)

Dari percobaan yang dilakukan didapat hasil perhitungan sampel 1:

• Berat Jenis Curah
$$= \frac{496}{676,9+500-958,9} = 2,275 \text{ gr}$$
• Berat Jenis Kering Permukaan Jenuh
$$= \frac{500}{676,9+500-958,9} = 2,294 \text{ gr}$$
• Berat Jenis Semu
$$= \frac{496}{676,9+496-958,9} = 2,318 \text{ gr}$$

• Penyerapan
$$= \frac{500 - 496}{496} x \ 100\% = 0,806 \text{ gr}$$

Untuk hasil pengujian lebih lengkap dapat dilihat pada lampiran dan rekapitulasi data hasil pengujian agregat halus pasir dapat dilihat pada Tabel 4.10.

Tabel 4.10: Rekapitulasi pemeriksaan berat jenis agregat halus pasir (sand).

Perhitungan	I	II	Rata-rata
Berat jenis curah kering (Sd)	2,275	2,212	2,244
Berat jenis kering permukaan jenuh (Ss)	2,294	2,232	2,263
Berat jenis semu (Ss)	2,318	2,257	2,288
Penyerapan (Sw)	0,806	0,908	0,857

4. Berat jenis agregat halus Abu Batu (Cr)

Dari percobaan yang dilakukan didapat hasil perhitungan sampel 1:

• Berat Jenis Curah
$$= \frac{491.4}{678.1 + 500 - 954.1} = 2,194 \text{ gr}$$

• Berat Jenis Kering Permukaan Jenuh =
$$\frac{500}{679,1+500-954,1}$$
 = 2,232 gr

• Berat Jenis Semu =
$$\frac{491,4}{679,1+491,4-954,1} = 2,281 \text{ gr}$$

• Penyerapan
$$= \frac{500 - 491.4}{491.4} \times 100\% = 1,750 \text{ gr}$$

Untuk hasil pengujian lebih lengkap dapat dilihat pada lampiran dan rekapitulasi data hasil pengujian agregat halus abu batu dapat dilihat pada Tabel 4.11.

Tabel 4.11: Rekapitulasi pemeriksaan berat jenis agregat halus abu batu (Cr).

Perhitungan	I	II	Rata-rata
Berat jenis curah kering (Sd)	2,194	2,228	2,211
Berat jenis kering permukaan jenuh (Ss)	2,232	2,262	2,247
Berat jenis semu (Ss)	2,281	2,307	2,294
Penyerapan (Sw)	1,750	1,543	1,647

4.1.3. Hasil Pemeriksaan Aspal

Dalam penelitian ini, pemeriksaan aspal yang digunakan untuk bahan ikat pada pembuatan benda uji campuran aspal beton dalam penelitian ini adalah aspal keras Pertamina Pen 60/70. Data hasil pemeriksaan uji aspal diperoleh dari data sekunder dari PT. Tri Murti Patumbak yang dilakukan UPT Laboratorium Bahan Konstruksi Dinas Marga Dan Bina Konstruksi Provinsi Sumatera Utara, tidak ada aspal yang boleh digunakan sampai aspal ini telah di uji dan disetujui. Dari pemeriksaan karakteristik aspal keras yang telah dilakukan perusahan dan diuji di balai pengujian material diperoleh hasilnya seperti pada Tabel 4.12.

Tabel 4.12: Hasil pemeriksaan karakteristik aspal Pertamina Pen 60/70 (PT. Tri Murti Patumbak).

No.	Jenis Pengujian	Metode Pengujian	Hasil Pengujian	Spesifikasi	Satuan
1	Penetrasi Pada 25°C	SNI 2456 : 2011	66,15	60-70	0,1 mm
2	Titik Lembek	SNI 2434 : 2011	48,20	≥ 48	°C
3	Daktalitas Pada 25°C 5cm/menit	SNI 2432 : 2011	140	≥ 100	Cm
4	Kelarutan dalam C2HCL3	SNI 2438 : 2011	99,93	≥ 99	%
5	Titik Nyala (TOC)	SNI 2433 : 2011	325	≥ 232	°C
6	Berat Jenis	SNI 2441 : 2011	1,0241	≥ 1,0	-

Dari hasil pemeriksaan laboratorium diperoleh hasil bahwa aspal keras Pertamina Pen 60/70 memenuhi standart pengujian spesifikasi umum Bina Marga 2018 sebagai bahan ikat campuran aspal beton.

4.1.4. Pemeriksaan Terhadap Parameter Benda Uji

Nilai parameter *Marshall* diperoleh dengan melakukan perhitungan terhadap hasil-hasil percobaan di laboratorium. Berikut analisis yang digunakan untuk menghitung parameter pengujian *Marshall* pada campuran normal dengan kadar aspal 5,5%:

a. Persentase terhadap batuan = 5,8 %
 b. Persentase aspal terhadap campuran = 5,5 %

c. Berat sampel kering = 1166,8 gram
 d. Berat sampel jenuh = 1182,7 gram

e. Berat sampel dalam air = 666,6 gram

f. Volume sampel = 1182,7 - 666,6

= 516,1 cc

g. Berat isi sampel
$$= 11166,8/516,1$$
 $= 2,261 \text{ gr/cc}$

h. Berat jenis maksimum $= \frac{100}{(\frac{100\%}{2,570}) - (\frac{5,5\%}{1,024})}$ $= 2,373 \%$

i. Persentase volume aspal $= \frac{5,5\% \times 2,261}{1,024}$ $= 12,142 \%$ $= 12,142 \%$ $= 84,642 \%$

k. Persentase rongga terhadap campuran $= 100 - (\frac{100 \times 2,261}{2,373})$ $= 4,724 \%$

l. Persentase rongga terhadap agregat $= 100 - (\frac{2,261 \times 5,5\%}{2,254})$ $= 15,358 \%$ $= 100 \times (\frac{15,358 - 4,724}{15,358})$ $= 69,239 \%$

n. Kadar aspal efektif $= 4,817$ $= 640$ $= (34434 \times 516,1^{-1,8897}) \times 158$ $= 640$ $= (34434 \times 516,1^{-1,8897}) \times 158$ $= 643$ $= 2,40 \text{ mm}$

Untuk rekapitulasi perhitungan campuran normal serta penambahan serat daun nanas 0,3% dapat dilihat pada lampiran – lampiran.

Dari hasil pemeriksaan uji *Marshall* yang dilakukan di UPT Laboratorium Bahan Konstruksi Dinas Bina Marga Dan Bina Konstruksi Provinsi Sumatera Utara mendapatkan nilai Berat Isi (*Bulk Density*), *stabilitas* (*Stability*), Persentase

Rongga Terhadap Campuran (*Air Voids*), Persentase Rongga Terhadap Agregat (*VMA*), Kelelehan (*Flow*). Berikut analasi perhitungan untuk campuran aspal normal pada kadar aspal 5,5% serta rekapitulasi hasil uji *marshall* pada campuran aspal normal dan penambahan serat daun nanas 0,3% dapat dilihat pada Tabel 4.13 – 4.14.

1. Bulk Density
$$= \frac{sample 1 + sample 2}{2}$$

$$= \frac{2,261 + 2,251}{2} = 2,256$$
2. Stability
$$= \frac{sample 1 + sample 2}{2}$$

$$= \frac{643 + 600}{2} = 622$$
3. Air Voids
$$= \frac{sample 1 + sample 2}{2}$$

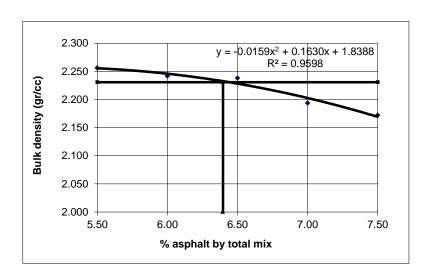
$$= \frac{4,724 + 5,130}{2} = 4,927$$
4. VMA
$$= \frac{sample 1 + sample 2}{2}$$

$$= \frac{15,358 + 15,718}{2} = 15,538$$
5. Flow
$$= \frac{sample 1 + sample 2}{2}$$

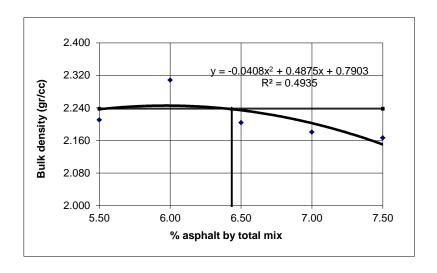
$$= \frac{2,40 + 2,54}{2} = 2,47$$

Tabel 4.13: Rekapitulasi hasil uji *Marshall* campuran Normal.

Karakteristik	Kadar aspal %					
	5,5%	6%	6,5%	7%	7,5%	
Bulk Density	2,256	2,242	2,238	2,194	2,172	
Stabilty	622	688	756	721	641	
Air Voids	4,927	4,863	4,365	5,623	5,910	
VMA	15,538	16,510	17,093	19,177	20,399	
Flow	2,47	2,69	3,01	3,15	4,06	

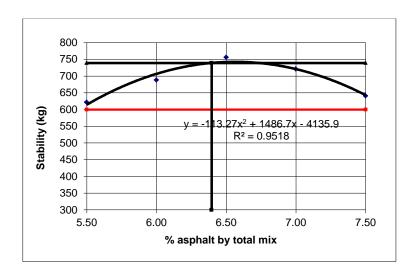

Tabel 4.14: Rekapitulasi hasil uji *Marshall* campuran penambah serat daun nanas 0,3%.

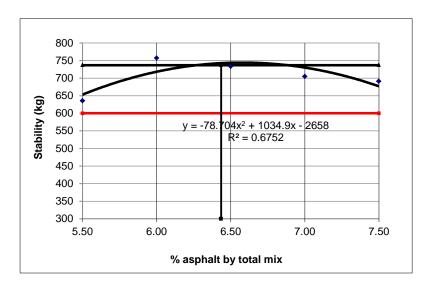
Karakteristik		K	adar aspa	1 %	
Karakteristik	5,5%	6%	6,5%	7%	7,5%
Bulk Density	2,211	2,308	2,204	2,181	2,166
Stabilty	636	757	733	705	691
Air Voids	6,843	2,039	5,828	6,183	6,156
VMA	17,240	14,031	18,362	19,656	20,6072
Flow	2,72	2,85	2,80	3,00	3,45


Dari hasil nilai Berat Isi (*Bulk Density*), *stabilitas (Stability*), Persentase Rongga Terhadap Campuran (*Air Voids*), Persentase Rongga Terhadap Agregat (*VMA*), Kelelehan (*Flow*) untuk campuran aspal normal serta penambah serat daun nanas 0,3%, dapat juga dilihat pada Gambar 4.2 – 4.11.

a. Bulk Density

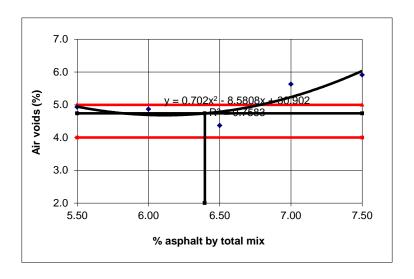
Hasil nilai *bulk density* pada aspal normal serta penambah serat daun nanas 0,3%, dilihat pada Gambar 4.2.-4.3.


Gambar 4.2: Grafik hubungan antara kadar aspal (%) dengan $Bulk\ Density$ (gr/cc) campuran normal.


Gambar 4.3: Grafik hubungan antara kadar aspal (%) dengan $Bulk\ Density$ (gr/cc) Serat daun nanas 0,3%.

b. Stability

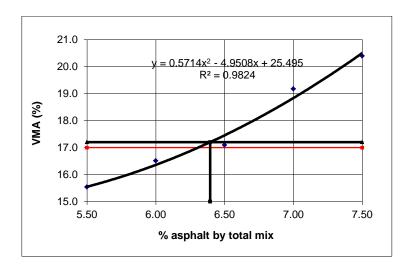
Hasil nilai *stability* pada aspal normal serta penambah serat daun nanas 0,3%, dilihat pada Gambar 4.4. - 4.5.

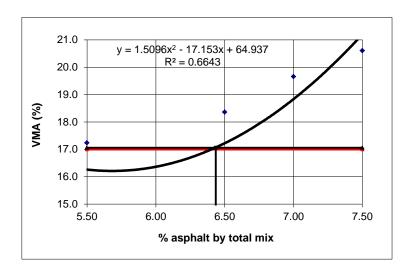

Gambar 4.4: Grafik hubungan antara kadar aspal (%) dengan *Stability* (Kg) campuran normal.


Gambar 4.5: Grafik hubungan antara kadar aspal (%) dengan *Stability* (Kg) Serat daun nanas 0,3%.

c. Air Voids/Voids in Mix Marshall (VIM)

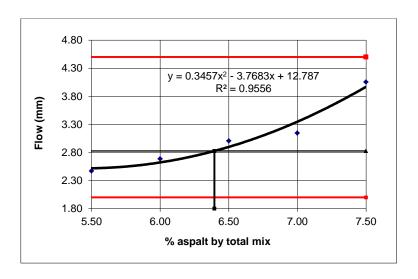
Hasil nilai *air voids* (VIM) ada aspal normal serta penambah serat daun nanas 0,3%, dilihat pada Gambar 4.6.-4.7.

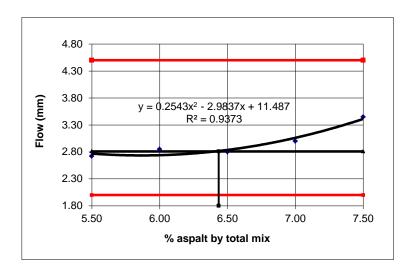

Gambar 4.6: Grafik hubungan antara kadar aspal (%) dengan *Air Voids* (VIM) (%) *C*ampuran normal.


Gambar 4.7: Grafik hubungan antara kadar aspal (%) dengan *Air Voids* (VIM) (%) Serat daun nanas 0,3%

d. Void In Mineral Agreggate (VMA)

Hasil nilai VMA ada aspal normal serta penambah serat daun nanas 0,3%, dilihat pada Gambar 4.8.-4.9.


Gambar 4.8: Grafik hubungan antara kadar aspal (%) dengan VMA (%) Campuran normal.

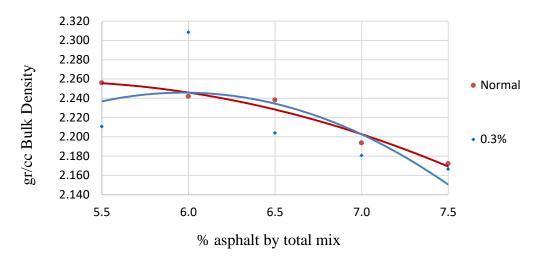

Gambar 4.9: Grafik hubungan antara kadar aspal (%) dengan VMA (%) Serat daun nanas 0,3%

e. Flow

Hasil nilai flow ada aspal normal serta penambah serat daun nanas 0,3%, dilihat pada Gambar 4.10.-4.11.

Gambar 4.10: Grafik hubungan antara kadar aspal (%) dengan *Flow* (mm) Campuran normal.

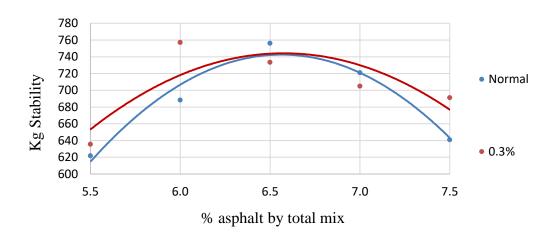
Gambar 4.9: Grafik hubungan antara kadar aspal (%) dengan *Flow* (mm) Serat daun nanas 0,3%


4.2. Pembahasan dan Analisis

4.2.1 Perbandingan Sifat Marshall

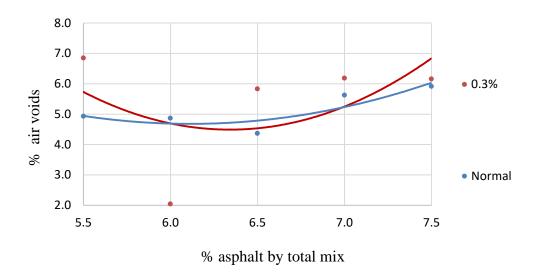
Dari hasil nilai pengujian sifat *Marshall* campuran aspal Pertamina normal serta penambah serat daun nanas 0,3% untuk nilai *Bulk Density, Stability, Air Voids*, VMA dan *Flow* dapat dilihat perbandingan di antara kedua jenis campuran tersebut seperti yang ditunjukan berikut.

a. Bulk Density


Dari hasil percobaan *Bulk Density* menunjukkan perbedaan nilai *Bulk Density* antara campuran aspal normal serta penambah serat daun nanas 0,3%. Hasil *Bulk Density normal* lebih tinggi pada saat di kadar aspal 5,5 di banding pada penambah serat daun nanas 0,3% yang rendah, namun terjadi penaikan dan campuran serat daun nanas naik pada kadar aspal 6% seperti yang ditunjukkan pada Gambar 4.12.

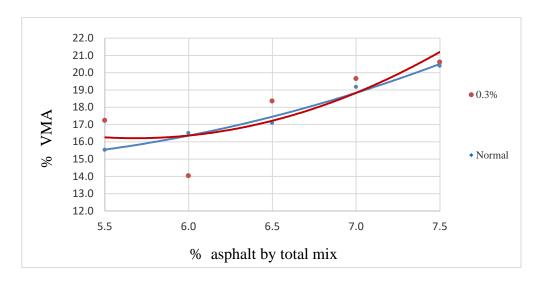
Gambar 4.12: Perbandingan nilai *Bulk Density* campuran aspal normal serta pengunaan penambah serat daun nanas 0,3%.

b. Stability


Hasil nilai *Stability* pada *Marshall* campuran aspal normal serta penambah serat daun nanas 0,3% menunjukkan perbandingan. Nilai *Stability* untuk campuran aspal normal pada kadar aspal 5,5%-7,5% berada di bawah nilai *Stability* campuran aspal *SMA* penambah serat daun nanas 0,3%. Serta pada penggunaan *filler* nilai *Stability* campuran *SMA* penambah serat daun nanas 0,3% berada di atas. Perbandingan nilai *Stability* di antara kedua campuran aspal tersebut dapat dilihat pada Gambar 4.13.

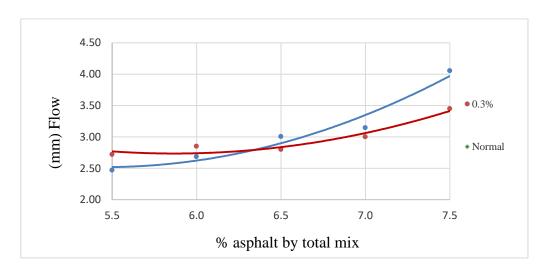
Gambar 4.13: Perbandingan nilai *Stability* campuran aspal normal serta pengunaan penambah serat daun nanas 0,3%.

c. Air Voids/Voids in Mix Marshall (VIM)


Hasil nilai VIM menunjukkan bahwa nilai VIM campuran *SMA* penambah seart daun nanas 0,3% pada kadar aspal 5,5% menunjukan nilai di atas pada campuran normal, namun pada kadar aspal 6% mengalami penurunan pada VIM campuran *SMA* penambah serat daun nanas 0,3% dan campuran normal mengalami penurunan. dan VIM campuran *SMA* serat daun nanas mengalami penaikan kembali pada kadar aspal 7% . Hasil perbandingan tersebut dapat dilihat pada Gambar 4.14.

Gambar 4.14: Perbandingan nilai VIM campuran aspal normal serta pengunaan penambah serat daun nanas 0,3%.

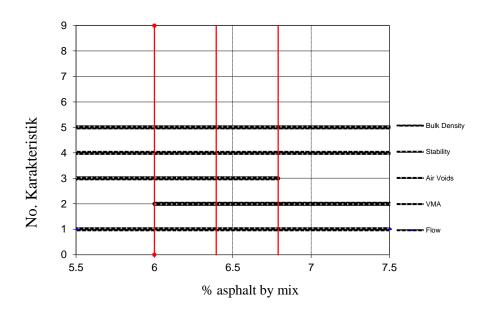
d. Void in Mineral Agregat (VMA)


Hasil nilai VMA pada campuran Normal kadar aspal 5,5% berada dibawah campuran *SMA* serat daun nanas 0,3%, berbeda pada kadar aspal 6%-7,% nilai VMA campuran aspal normal berada di atas campuran *SMA* serat daun nanas 0,3% dapat dilihat pada Gambar 4.15.

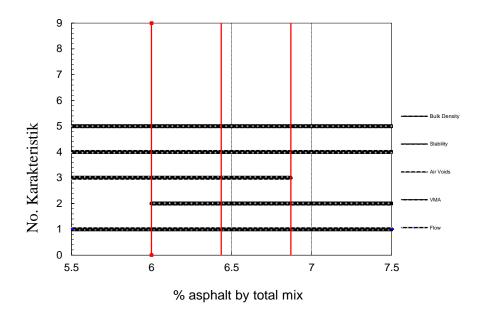
Gambar 4.15: Perbandingan nilai VMA campuran aspal normal serta pengunaan penambah serat daun nanas 0,3%.

e. Flow

Hasil uji *Marshall Flow* menunjukkan bahwa nilai *Flow* pada Normal kadar aspal 5,5% berada dibawah campuran *SMA* serat daun nanas 0,3%. Berbeda pada kadar aspal 6,5% nilai Normal mengalami penaikan hingga kadar aspal 7,5%, dapat dilihat pada Gambar 4.16.


Gambar 4.15: Perbandingan nilai *Flow* campuran aspal normal serta pengunaan penambah serat daun nanas 0,3%.

Hasil pemeriksaan karakteristik sifat campuran *Bulk Density, Stability, Air Voids*, VMA dan *Flow* pada jenis campuran campuran aspal normal serta


penambahan serat daun nanas 0,3%. Menunjukkan bahwa ketiga jenis campuran tersebut memenuhi Spesifikasi Umum Bina Marga 2018. Dari hasil nilai *Bulk Density, Stability, Air Voids*, VMA dan *Flow* dapat dilihat bahwa karakteristik jenis campuran tersebut memiliki perbandingan disetiap karakteristik sifat *Marshall*.

4.2.2. Pemeriksaan Kadar Aspal Optimum

Setelah selesai melakukan pengujian di Laboratorium dan menghitung nilainilai *Bulk Density, Stability, Air Voids*, VMA, *Flow* maka secara grafis dapat
ditentukan kadar aspal optimum campuran dengan cara membuat grafik hubungan
antara nilai-nilai tersebut di atas dengan kadar aspal, yang kemudian memflotkan
nilai-nilai yang memenuhi spesifikasi terhadap kadar aspal, sehingga diperoleh
rentang (*range*) dan batas koridor kadar aspal yang optimum. Penentuan kadar
aspal optimum untuk campuran aspal Pertamina normal serta penambahan serat
daun nanas 0,3% dapat dilihat pada Gambar 4.16 - 4.18.

Gambar 4.17: Penentuan rentang (*range*) kadar aspal optimum campuran aspal normal.

Gambar 4.17: Penentuan rentang (*range*) kadar aspal optimum campuran aspal Penambah serat daun nanas 0,3%.

Kadar aspal optimum diperoleh dengan cara mengambil nilai tengah dari batas koridor seperti yang hasilnya dapat dilihat pada Tabel 4.15.

Tabel 4.15: Kadar aspal optimum untuk campuran aspal normal serta penambahan serat daun nanas 0,3%.

No.	Karakteristik	Jenis Aspal						
NO.	Karakteristik	Normal	Serat Daun Nanas 0,3%					
1	Bulk Density (gr/cc)	2.231	2.238					
2	Stability (Kg)	739	737					
3	Air Voids (%)	4.74	4.53					
4	VMA (%)	17.20	17.06					
5	Flow (mm)	2.83	2.81					
6	Asphalt Optimum (%)	6.40	6.44					

BAB 5

KESIMPULAN DAN SARAN

5.1. Kesimpulan

Dari hasil analisis pembahasan terhadap pengujian campuran jenis *Split Mastic Asphalt* (SMA) yang menggunakan Serat daun nanas sebagai bahan penambah serat selulosa diperoleh beberapa kesimpulan sebagai berikut:

- Dari hasil pengujian karakteristik sifat marshall pada campuran Split Mastic
 Asphalt (SMA) yang menggunakan serat daun nanas dengan persen 0,3%
 didapat bahwa hasil pengujian tersebut memenuhi standart spesifikasi Bina
 Marga 2018.
- 2. Hasil *Marshall test* yang di dapatkan, dengan nilai tertinggi dalam keadaan optimum dan memenuhi spesifikasi Bina Marga 2018 dan terdapat pada campuran yang mengunakan serat daun nanas 0,3%. Dimana diperoleh nilai stabilitas sebesar 737 kg, *Bulk Density* 2,238 gr/cc, flow 2,81 mm, VIM 4,53%, VMA sebesar 17,06%.
- 3. Dari keseluruhan hasil pengujian laboratorium yang didapat dari kesimpulan diatas untuk serat daun nanas semua memenuhi spesifikasi Bina Marga 2018 maka serat daun nanas dapat digunakan sebagai bahan penambah serat selulosa pada campuran Split Mastic Asphalt (SMA)

5.2. Saran

Untuk lebih memperdalam kajian dari penelitian yang sudah dilakukan, maka perlu dilakukan beberapa koreksi agar penelitian-penelitian selanjutnya dapat lebih baik. Adapun saran-saran antara lain :

- 1. Saat pelaksanaan pembuatan sampel atau pengujian sebaiknya dilakukan dengan hati-hati dan penuh ketelitian agar didapat hasil yang akurat. Maka untuk penelitian selanjutnya diharapkan lebih berhati-hati dan teliti.
- 2. Diperlukannya pemahaman tentang tahap perencanaan campuran aspal yang sesuai dengan Spesifikasi Umum Bina Marga 2018 agar memperkecil kesalahan dalam tahapan pembuatan campuran beraspal.

Perlu dikembangkan jenis-jenis penelitian alternatif *filler* lainnya untuk pemanfaatan bahan-bahan yang ada.

3. Sebaiknya perlu dilakukan penelitian yang menggunakan jenis selulosa alami yang lain.

DAFTAR PUSTAKA

- Agung Sulistia 2017. Pengembangan campura *Split Mastic Asphalt* (SMA) menggunakan bahan *Reclaimed Asphalt Pavement* (RAP) dengan serat Sellulosa alami dedak padi.
- Ahmat Fatha Abdillah, Novita Pradani, Joy Fredi Batti 2018. Pengaruh penggunaan bahan tambah *Viatop66* pada campuran *Stone Matrix Asphalt* terhadap titik lembek aspal dan sifat *Draindown* campuran, Jurusan Teknik Sipil Universitas Tadulako (Untad) Palu.
- Anonim. 2006. Pemanfaatan Serat Nanas. (http://www.bbt.depperin.go.id) 7 Desember 2012.
- Anselme Payen, 1838. Serat selulosa
- Badan Standardisasi Nasional. 2015. Spesifikasi Stone Matrix Asphalt (SMA). Jakarta.
- Bina Marga (2018) Spesifikasi Umum 2018, Campuran Beraspal Panas
- Doraiswarmy et al. (1993). Pineapple Leaf Fibres, Textile Progress Vol. 24 Number 1, Textile Institute.
- H. Oglesby, Clarkson. 1999, Teknik Jalan Raya (ahli bahasa) Jilid 1
- RSNI.M-01-2003, Metode Pengujian Campuran Beraspal Panas Dengan Alat Marshall.
- SNI 1969:2008, Cara Uji Berat Jenis dan Penyerapan Air Agregat Kasar dan Halus.
- SNI 2432:2011, Cara Uji Penetrasi Aspal.
- SNI 1969 2008 Metode pengujian berat jenis dan penyerapan air agregat kasar.
- SNI 1970 2008 Metode pengujian berat jenis dan penyerapan air agregat halus.
- Sukirman, S, (1999), Perkerasan Lentur Jalan Raya. Politeknik Bandung.
- Sukirman, S., 2003. BAB II Perkerasan Jalan Raya, Penerbit NOVA, Bandung.
- Sukirman, S, (2007), Perkerasan Lentur Jalan Raya, Bandung.
- Undang-undang Republik Indonesia Nomor 38 Tahun 2004 Tentang Jalan.
- Wonson K. 1996. Split Mastic Asphalt The European Experience. Paper at the 1996 AAPAPavement Industry Conference, Asphalt Review

LAMPIRAN

DINAS BINA MARGA UPTD. PENGUJIAN DAN PENGENDALIAN MUTU PEMERINTAH PROVINSI SUMATERA UTARA Jin. Sakti Lubis No. 7 - R Telp J Fax. (061) 7867172 Medar

PROPERTIES OF HIGH - DURABILITY BY THE MARSHALL METHOD SNI 06 - 2489 - 1991 ASPHALT MIXES

PROPERTIES OF HIGH DURABILITY ASPHALT MIXES BY THE MARSHALL METHOD SNI 06 - 2489 -1991

N 8,1 Calibrasi Prov 7,5 6.9 6,4 5,8 7.5 7,5 7.0 7,0 6,5 6,0 6,0 5,5 ø 60/70 MAS 1 179.9 100.0 1990 188.1 8.80 o 4.05 1 107 1 1,196,0 1 187 1 1,211,4 一度 0 847.9 658,4 8 1999 676.6 088.6 0 537,6 525,3 534,5 539,2 534,8 516,1 542,4 532,3 524,6 2,153 2,193 2,195 2,236 2242 2,192 2,240 2,242 2.251 2.261 8 Coarse Aggregate 1/2" SEMEN Medium Aggregate 346" Notural Sand Crusher Dust 2,356 2,356 2,373 2,324 2,340 2,373 2,524 7,300 2,309 12,090 12,142 13,135 14,216 14,194 19,134 15,765 15,000 16,050 14,987 84,282 82,842 83,488 83,491 80,859 82,972 84,642 78,886 80,787 80,314 4,861 4,440 5,130 4,724 6,753 5,666 5,581 4,1165 32% 1196 45% 5,067 10% 2% 16,509 3,150 19,141 17,028 17,158 15,718 15,358 2,244 2,211 2,625 16,512 19,686 21,112 Bulk 70,552 69,239 74,121 67,363 3,150 70,511 70,842 74,805 70,537 2263 2247 2,650 2,623 74,261 aso 3 Apparent 2,288 2,294 2716 2,697 3,150 5,120 5,320 4,817 5,824 4,017 6,831 6,831 6,328 2,266 2,871 2,638 3,150 Effektif 0 3 dia É 178 0 3 3 Bj Aspai 616 640 1,024 781 733 725 729 989 713 B) Gabung E 8 8 83 740 695 681 763 611 671 2,524 240 305 22 8 8 Normal 253 270 244 236 268 225 250 157 159 0,68 0,68 0,68 0,68 0,67 0,63 0,67

-

- % aspail terhadap batuan
- % aspal terhadap campuran
- berat sample kering (gr)
- berat sample dalam air (gr) berat sample jenuh (gr)
- F 0 0 0 volume sample (cc) = d - e
- berat isi sample (gr/cc) = c/l
- 7= berat jenis maksimum

8

- hjagregat hjaspal podre go mande
- % volume aspal = $(b \times g) / bj$ aspal
- % rongga terhadap campuran = 100 ((100 x g) / h) % volume agregat = ((100 - b) x g)) / b) agregat

% rongga terhadap agregat = 100 - ((g x b) / b) agregat)

× 11

10 14

- == % rongga terisi aspal = $1000 \times (1-k)/1$
- 2 = kadar aspal efektif
- 9= 0 = pembacaan arloji stabilitas
- kalibrasi proving ring
- stabilitas akhir
- 7 marshall quotient = q/r kelelehan (mm)
- Medan.

April 2019

diperiksa Oleh :

Rudi Kusnadi

PERMERINTAN PROVINCE STANTERA UTAHA.

DINAS BINA MARCA.

LIPTO, PERMEUJAAN DAN PERMERINDALIAN MUTU

Jin Sang Lubia No. 7 - N. Telly Fee. (1921) TRETTE Med

PROPERTIES OF HUM - DATAMEN ASSPHALT MIXES BY THE MAJUSHALL METHOD SNI 06 - 2489 - 1991

PROPERTIES OF HIGH DURABILITY ASPHALT MIXES BY THE MARSHALL METHOD SHI 04 - 2489 - 1991

Serat Dean Nation

Appell A																-													
A		2	7	9		*	44	-		-	4	-		4	4				4										
Authors Part Address Part Address Part Address Part Address Part Authors Part Part Authors Part Part Authors Part				27				2.5				211				8.6				-				Manage 1	ĺ	Agregat	August	4	
		7.5	7.5	3.5		7,8	2.0	7,0				1.0		0.3	4.0	9.9			-	0.0	#				Ī			١	
MARTHOOD SHE OF 2488 1897			1,000				1	0 mol 1	-	-	# Libs	THE PERSON			7.300.7	T NAME OF	Ī		1,000.0	1	1				ė		11700	MARIE	
MACRIMAL METHOD SHE SE 1987 SAM MAD September Climate			0.255.0	11001			Tale	SHILL		Ī	1,214.3	17231			J. O.S. I	1 100 1			Ī	100	- 18 -				羊.				
No. Addressor Price San Sign Appropries Effect Appropries Effect			27.00	BLAND.			CASE					107			1,189		İ	Ī	100.0	A Personal									
ARRIVALL METHODO SING D4, 2448 Februs SAD Approprie Ellisation O America Scholaron			0 000	1.005			800.8	- 861.2			6,00,3	194		-	1.123	908.9			536.8	548.4	1000								
Section Same		2.186	TOT			2.07	2185			2211	2116				Н			2.224	216						sir.	-	100	ARSHAL	
Section Same		- 0047	THE			THE	457.7			1,000	1341		-	1256	PET			1379	1007	4		NATURE SA	Creative D	Mediat A	Distance Vo	Special	Mental	T WELLHO	
Section Same		10,707	Til Bed			14,477	THEFT			HENT	19051			13A77	trivit.			tines.	that i	1		a.		£	Tr. salbod			HO BASS OC	
Section Same		THE RE	18,785			87,181	SECTION .			11(5)4	61579			88,58	11778			10030	STITE					7				- 2489 -	
1,000 3,000 1,000 1,000 3,000 1,000 3,000 1,00			1111	1981			1,007	SUII.			5,540	6949			2383	1,694			UU	6,015	*		į.	311	475	10%	145	SHARK!	1891
Appropriest	Ī		20,000	arre			14,030	100.01			MILE	10.60)			36,336	SECTE			14,174	18,875			2244	2211	2 800	2129	3.150	544	
		ĺ	N.Y.	1001			RI/NOR	46738			BEATER	67,022			- BEXEST	17,440			1878	16,000	3	Ī	1,000	1347	7,609	2,623	3 190	Otto	
10 Acces 20 Deletera 2 1524 10 Acces			11117	1000			0,110	6111			1,1111	NU.			1.330	D.L.O.			4417	1117			2,298	2,294	2718	2007	3.550	Appret	
2010 2010 2010 2010 2010 2010 2010 2010			193					ļ			190				104	100			100	1			2398	1202	1,637	252	3,130	(Date)	
2010 2010 2010 2010 2010 2010 2010 2010		ĺ	100	CMA			1997	3000			277	200			141	100	-	١		900	-			_			7,000%	and the second	
111 200 200 200 200 200 200 200 200 200			0/0	100			266	100			743	720				110	277			200	1	1			- 5	2000		Change le	a Dubun
			3.00					200							1						100	1				2001	27.524		
	-		100	211				100				100		İ		1	386			272	the	-							
			-0.07	100	-			100	200			1	A STATE OF THE PARTY OF THE PAR			200	17.50			11,642	10 (8)	2 2							

×	*	ben	8	夏	ă	Ī
iou.	f.	n H	î	ě	3	异形
3	3	š	큦	産	3	3
4	ž	Ē	Ĭ	din	4	3
E	1	2	5	3	2	흥
1	是	3	3	2		2
	포			=		5
	1963			3		CF

Ŧ

W. couldby pay and a 100 - 100 - 100 × 9/ 50 allowed by the straight of the st	And wereington you

to marshal quot	r = ligiteleban (min	O . Mategrate D	p= ladfired provi	o = persocaan ar	n = kadar aspal et	tion officers, with
Het = t/r	2		Buirbi	(o) stabilitat		1/04 - 0 × 0001 = 194181
	a		2			

diperiksa O	Modan,	
	April 2019	

FORMULIR

No. Formulir Terbitan/Revisi Tanggal Revisi

RESUME HASIL PENGUJIAN DESIGN MIX FORMULA PROPERTIES ASPAL

Halaman 1 dari 1

1. a. Pengirim Contoh

b. Proyek

: KPA UPTIJ-Padangsidimpuan Dinas Bina Marga dan Bina Konstruksi Provinsi Sumatera Utara

u. Hojek

: UPTIJ Medan Dinas Bina Marga dan Bina Konstruksi Provinsi Sumatera Utara

c. Paket

: Peningkatan Struktur Jalan Provinsi Ruas Seribu Dolok - Saran Padang di Kab. Simalungun

2. Jenis Pekerjaan

: Properties Aspal

3. Sumber Material

:Ex.

4. Diterima Tanggal

.

5. Dikerjakan Tanggal

6. Selesai Tanggal

No.	Jenis Pengujian	Metode Pangujian	Hasil Pengujian	Spesifikasi *)	Satuan
1.	Penetrasi pada 250 C 100 gram 5 detik	SNI 2456 : 2011	66,15	60 - 70	0,1 mm
2.	Titik Lembek	SNI 2434 : 2011	48,20	≥ 48	°c
3.	Daktilitas pada 250 C, 5cm/menit	SNI 2432 : 2011	140	≥ 100	cm
4.	Kelarutan dalam C2HCL3	SNI 2438 : 2015	99,93	≥99	%
5.	Titik Nyala (TOC)	SNI 2433 : 2011	325	≥ 232	°c
6.	Berat Jenis	SNI 2441 : 2011	1,0241	≥ 1,0	-
7.	Kehilangan Berat (TFOT)	SNI 2440 : 2011	0,0619	≤0,8	%
8.	Penetrasi setelah TFOT	SNI 2456 : 2011	98,72	≥ 54	% semul
9.	Daktilitas setelah TFOT	SNI 2432 : 2011	100	≥50	cm
10.	Temperatur Pencampuran (170 ± 20 cSt)	SNI 7729 : 2011	152 - 158	:#G	° c
	Temperatur Pemadatan (280 ± 30 cSt)	SNI 7729 : 2011	138 - 144		°c
11.	Temperatur Peritusatur ,	SNI 03-3639-2002	2	s 2	%

*1: Spesifikasi Umum 2018

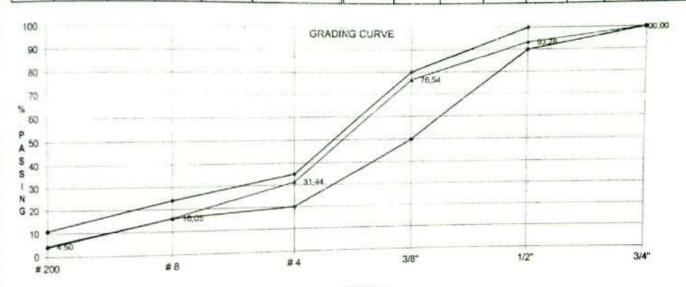
Medan,

April 2019

diperiksa Oleh:

-de

UPT LABORATORIUM BAHAN KONSTRUKSI


DINAS BINA MARGA DAN BINA KONSTRUKSI PROVINSI SUMATERA UTARA JALAN SAKTI LUBIS NO. 7-R

Telp_/ Fax. (061) 7867172 Medan

ANALISA SARINGAN

SIEVE	INDIVIDU	CI	JMMULAT	n.c			TOTAL	10	15	25	65	15		
SIZE	WT. RET				SPE	LIMIT	SIEVE		C	OMBINE G	RADING			AVG
SILLE	****	WI. REI	% RET	% PASS	20.00	> CHAIL I	SIZE	1	2	3	4	5	6	
4110								2%	32%	45%	11%	10%	0%	100%
3/4"					100	100	19,00	2,00	32,00	45,00	11,00	10,00	U. J	100,0
1/2"					90	100	12,50	2.00	25,28	45,00	11,00	10,00		93,28
3/8"					50	80	9.50	2,00	14,84	38,70	11,00	10,00		76,54
#4					20	35	4.75	2,00	3,83	4,61	11,00	10,00		31,44
#8					16	24	2,36	2.00	0,16	2,09	2,70	9,11		16,05
# 200					4	11	0,075	2,00	0,00	0,89	0,00	1,61		4,50
					7 7 7									
			_											

No. OF SIEVE

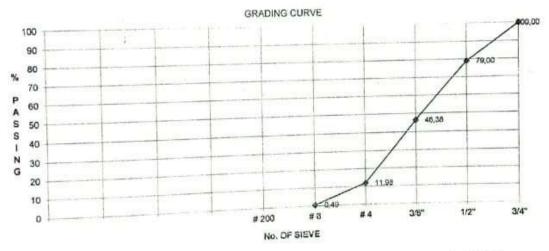
Medan,

April 2019

diperiksa Oleh:

LABORATORIUM JALAN RAYA

FAKULTAS TEKNIK


UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA PROGRAM STUDI TEKNIK SIPIL

Jl.Kapten Mukhtar Basri No.3 Medan Telp. (061)6622400

ANALISA SARINGAN

OTAL	INDIVIDU	5.000,0		_		TOTAL	=	5.000,0			- 0.7 5.4
SIEVE	10.7500.0000.000		MMULATI	VE	SPEC	SIEVE	INDIVIDU	CL	IMMULATI	VE	AVG
SIZE	WT. RET	WT, RET	% RET	% PASS	LIMIT	SIZE	WT. RET	WT. RET	% RET	% PASS	
3/4"		0,00	0,00	100,00		3/4"		0,0	0.00	100,00	100,00
1/2"	1,000,0	1,000,0	20,00	80,00	1200	1/2"	1,100,0	1,100.0	22,00	78,00	79,00
3/8"	1701,00	2701,00	54,02	45,98		3/8"	1.561,0	2661,00	53,22	46,78	46,38
#4	1740,00	4441,00	88,82	11,18		#4	1.700,0	4361,00	87,22	12,78	11,98
#8	542,00	4983,00		0,34		#8	607,0	4963,00		0,54	0,49
# 200	0,00					# 200					
-	-					-					
				-	-		-				
Total	4983,0	0 17,00		-	-	Total	4968	32			

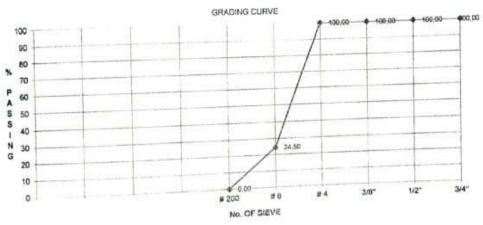
NOTES

Medan,

April 2019

diperiksa Oleh:

Lengser =


LABORATORIUM JALAN RAYA FAKULTAS TEKNIK

UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA PROGRAM STUDI TEKNIK SIPIL

Jl.Kapten Mukhtar Basri No.3 Medan Telp. (061)6622400

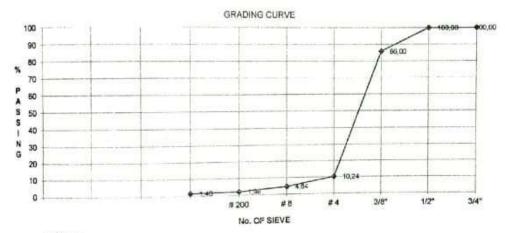
ANALISA SARINGAN

OTAL	=	500	Gr			TOTAL	u	500	Gr		
SIEVE	INDIVIDU	CU	MMULATIV	E	SPEC	SIEVE	INDIVIDU	CI	UMMULATI	VE	AVG
SIZE	WT. RET	WT. RET	% RET	% PASS	LEMIT	SIZE	WT. RET	WT, RET	% RET	% PASS	
		0,00	0.00	100,00		3/4"		0,00	0,00	100,00	100,00
3/4"		0.00	0,00	100,00		1/2"		0.00	0.00	100,00	100,00
1/2		0,00	0,00	100,00		3/8"		0,00	0,00	100,00	100,00
3/8"	-		0,00	100,00		#4			0,00	100,00	100,00
#8	387,00	387,00	77,40	22,60		#8	368,00	368,00	73,60	25,40	24,50
# 200	113,00	500,00	100,00	0,00		# 200	132,00	500,00	100,00	0,00	0,00
B 200											
					-	-					
							0				-
	0					Tatal	-				
Total Lengse	500 er =	0,0				Total Lengse	500 er =	0,0			

NOTES

Medan, April 2019

diperiksa Oleh :



LABORATORIUM JALAN RAYA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA PROGRAM STUDI TEKNIK SIPIL

Jl.Kapten Mukhtar Basri No.3 Medan Telp. (061)6622400

ANALISA SARINGAN

OTAL	INDIMIDU	CU	MMULATIV	/E		TOTAL	=	2,500,0	Gr		
PIEAF	WT. RET		% RET	The same of the sa		SPEC SIEVE	- I mentaline	CUMMULATIVE		AVG	
SIZE	*******		MINEI	% PASS	LIMIT	SIZE	WT. RET	WT. RET	% RET	% PASS	AVG
3/4"		0,00	0,00	100,00		3/4*					100.00
1/2"		0,00	0,00	100,00		1/2"		0,00	0,00	100,00	100,00
3/8"	400,0	400,0	16,00	84,00		3/8"	300.0	300,0	12,00	88,00	86,00
#4	1.800,0	2.200,0	88,00	12,00		#4	1.988,0	2.288.0	91,52	8,48	10,24
#8	130,0	2.330,0	93,20	6,80		#8	150,0	2.438.0	97,52	2,48	4,64
# 200	85,0	2.415,0	96,60	3,40		# 200	48,0	2.486,0	99,44	0,56	1,98
Pan	11,0	2.426,0	97,04	2,96		Pan	14,0	2.500,0	100,00	0,00	1,48
						-					
	2425	74		1							
Total	2426	/4				Total	2500	0			

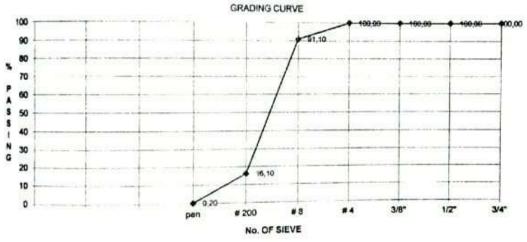
NOTES

Medan,

April 2019

diperiksa Oleh:

LABORATORIUM JALAN RAYA


FAKULTAS TEKNIK

UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA PROGRAM STUDI TEKNIK SIPIL

Jl.Kapten Mukhtar Basri No.3 Medan Telp. (061)6622400 ANALISA SARINGAN

TUV NORD

TOTAL		500,0	Gr		-	222011				Sa	and
	INDIVIDU	CL	MMULATI	VE	SPEC	TOTAL		500,0	Gr		
SIEVE	WT. RET	WT. RET	% RET	% PASS	LIMIT	SIEVE	INDIVIDU	C	UMMULATI	VE	AVG
-						SIZE	WT. RET	WT. RET	% RET	% PASS	AVG
3/4"		0,00	0,00	100.00		0//0					
1/2		0,00	0.00	100.00		3/4"		0,00	0,00	100,00	100,00
3/8"		0,00	0.00	100,00	- GR	1/2"		0,00	0,00	100,00	100,00
84		0	0,00	100,00		3/8"		0,00	0,00	100,00	100,00
#8	49	49	9.80	90,20	-	#4	THE STREET	0	0,00	100,00	100,00
and deposit the last	321	370	74.00	26,00		#8	40,00	40,00	8,00	92,00	91,10
200	128	498	99.60			# 200	429,00	469,00	93,80	6,20	16,10
pan	120	450	88,00	0,40	-	pan	31,00	500,00	100,00	0,00	0,20
-			-								100
7.			HTCH!		NN 18	-		A ALIAN			
	0					-	0				
Total engser	498	2,0				Total	500	0,0			

NOTES

Medan,

April 2019

diperiksa Oleh:

PEMERINTAH PROVINSI SUMATERA UTARA DINAS BINA MARGA DAN BINA KONSTRUKSI UPT. LABORATORIUM BAHAN KONSTRUKSI

Jin. Sakti Lubis No 7 - R Telp / Fax (061) 7867172 Medan

SPECIFIC GRAVITY OF FINE AGGREGATES & ABSORPTION TEST

(Percobaan Berat Jenis Agregat Halus dan

Absorpsi)

LAB NO. (No Surat)

SAMPLING DATE

(Tgl. Pengambilan Bhn)

TESTING DATE

(Tgl. Percobaan)

: April 2019

: April 2019

SOURCES OF SAMPLE Asal Contoh)	Binjai	
DESCRIPTION OF SAMPLE Gambaran Contoh)	Pasir	
Guna Material)	Job Mix Formula	

FINE AGGREGATE (Agregat Halus) Passing No.4 (Lolos Ayakan No.4)	01	02	AVE (Rata-Rata)
Berat Benda Uji Kering Permukaan Jenuh (SSD)	500	500	500
Berat Benda Uji Kering Oven (Bk)	496	495,5	495,75
Berat Piknometer Di Isi Air (25°)	676,9	687,3	682,1
Berat Piknometer + Benda Uji (SSD) + Air (25") (Bt)	958,9	963,3	961,1
Berat Jenis (Bulk) Bk / (B + A - Bt)	2,28	2,21	2,244
Berat Jenis Kering Permukaan Jenuh A/(B + A - Bt)	2,29	2,23	2,263
Berat jenis contoh Semu Bk / (B + Bk - Bt)	2,32	2,26	2,288
Absorption (A - Bk) / Bk x 100 %	0,81	0,91	0,857

Medan,

April 2019

diperiksa Oleh:

--Q

Rudi Kusnadi

PEMERINTAH PROVINSI SUMATERA UTARA DINAS BINA MARGA DAN BINA KONSTRUKSI UPT. LABORATORIUM BAHAN KONSTRUKSI

Jln Sakti Lubis No. 7 - R Telp./ Fax. (061) 7867172 Medan

SPECIFIC GRAVITY OF FINE AGGREGATES & ABSORPTION TEST (Percobaan Berat Jenis Agregat Halus dan

Absorpsi)

LAB NO. (No Surat) : SAMPLING DATE

(Tgl. Pengambilan Bhr: April 2019

TESTING DATE

(Tgl. Percobaan)

: April 2019

SOURCES OF SAMPLE (Asal Contoh)	Binjai
DESCRIPTION OF SAMPLE (Gambaran Contoh)	Abu Batu
PURPOSE MATERIAL (Guna Material)	Job Mix Formula

FINE AGGREGATE (Agregat Halus) Passing No.4 (Lolos Ayakan No.4)	01	02	AVE (Rata-Rata)
Berat Benda Uji Kering Permukaan Jenuh (SSD) (A)	500	500	500
Berat Benda Uji Kering Oven	491,4	492,4	491,9
Berat Piknometer Di Isi Air (25°)	678,1	684,1	681,1
Berat Piknometer + Benda Uji (SSD) + Air (25°) (Bt)	954,1	963,1	958,6
Berat Jenis (Bulk)	2,19	2,23	2,211
Bk / (B + A - Bt) Berat Jenis Kering Permukaan Jenuh	2,23	2.26	2,247
A / (B + A - Bt) Berat jenis contoh Semu	2,28	2,31	2,294
Bk / (B + Bk - Bt) Absorption	1,75	1,54	1,647
(A - Bk) / Bk x 100 %			

Medan,

April 2019

diperiksa Oleh:

-- 04

Rudi Kusnadi

&

PEMERINTAH PROVINSI SUMATERA UTARA DINAS BINA MARGA DAN BINA KONSTRUKSI UPT. LABORATORIUM BAHAN KONSTRUKSI

Jln. Sakti Lubis No. 7 - R Telp. J Fax. (061) 7867172 Medan

SPECIFIC GRAVITY OF LAB NO. (No Surat) :

COARSE AGGREGATES SAMPLING DATE ABSORPTION

TEST

(Tgl. Pengambilan Bhi: April 2019

TESTING DATE

(Percobaan Berat Jenis

Agregat Kasar dan

: April 2019 (Tgl. Percobaan)

SOURCES OF SAMPLE	
(Asal Contoh)	Binjai
DESCRIPTION OF SAMPLE (Gambaran Contoh)	Agregat Kasar
PURPOSE MATERIAL (Guna Material)	Job Mix Formula

COARSE AGGREGATE (Agregat Kasar)	01	02	AVE (Rata-Rata)
Berat Jenis Kering Oven (BK) gr	5116	5116	5116
Berat Benda Uji Kering Permukaan Jenuh (SSD) gr	5198	5208	5203
Berat Benda Uji Di Dalam Air (BA) gr	3224	3214	3219
Bulk Sp. Gravity-Dry (Berat jenis contoh kering) BK / (BJ-BA)	2,592	2,566	2,579
Bulk Sp. Gravity SSD (Berat jenis contoh SSD) BJ/(BJ-BA)	2,633	2,612	2,623
Apparent Sp. Gravity-Dry (Berat jenis contoh Semu) BK /(BK-BA)	2,704	2,690	2,697
Absorption [(BJ-BK)/BK] x 100%	1,603	1,798	1,701

Medan,

April 2019

diperiksa Oleh :

Rudi Kusnadi

&

PEMERINTAH PROVINSI SUMATERA UTARA DINAS BINA MARGA DAN BINA KONSTRUKSI UPT. LABORATORIUM BAHAN KONSTRUKSI

Jln. Sakti Lubis No. 7 - R Telp./ Fax. (061) 7867172 Medan

SPECIFIC GRAVITY OF LAB NO. (No Surat): COARSE AGGREGATES SAMPLING DATE

ABSORPTION

TEST

(Percobaan Berat Jenis Agregat Kasar dan

(Tgl. Pengambilan Bhn: April 2019

TESTING DATE

(Tgl. Percobaan)

: April 2019

SOURCES OF SAMPLE (Asal Contoh)	Binjai
DESCRIPTION OF SAMPLE (Gambaran Contoh)	Agregat Kasar
PURPOSE MATERIAL (Guna Material)	Job Mix Formula

MEDIUM AGGREGATE (Agregat 3/8"	01	02	AVE (Rata-Rata)
Berat Jenis Kering Oven (BK) gr	3110	3110	3110
Berat Benda Uji Kering Permukaan Jenuh (SSD) gr	3160	3140	3150
Berat Benda Uji Di Dalam Air (BA) gr	1955	1975	1965
Bulk Sp. Gravity-Dry (Berat jenis contoh	2,581	2,670	2,625
Bulk Sp. Gravity SSD (Berat jenis contoh SSD) BJ / (BJ-BA)	2,622	2,695	2,659
Apparent Sp. Gravity-Dry (Berat jenis contoh Semu) BK /(BK-BA)	2,693	2,740	2,716
Absorption [(BJ-BK)/BK] x 100%	1,608	0,965	1,286

Medan,

April 2019

diperiksa Oleh:

Rudi Kusnadi

DOKUMENTASI PADA SAAT PENELITIAN BERLANGSUNG DI UPT. LABORATORIUM BAHAN KONSTRUKSI DINAS BINA MARGA & BINA KONSTRUKSI PROVINSI SUMATERA UTARA

Gambar L1: Pengambilan Material Agregat Halus dan Kasar di CV.Barokah.

Gambar L2: Material agregat halus yang akan digunakan.

Gambar L3: Analisa Saringan.

Gambar L4: Mencampur agregat halus, agregat kasar, Serat daun nanas sebelum dipanaskan dan dicampur dengan aspal.

Gambar L5: Aspal Pen 60/70.

Gambar L6: Penumbukan benda uji

Gambar L7: Pengujian Bulk Density

Gambar L8: Pengujian Waterbath.

Gambar L9: Sample Benda Uji.

Gambar L10: Pengujian Marshall Test.

DAFTAR RIWAYAT HIDUP

DATA DIRI

Nama Lengkap : Defri Ari Ramadhan

Panggilan : Defri

Tempat, Tanggal Lahir : Medan, 22 januari 1996

Jenis Kelamin : Laki-Laki Agama : Islam

Alamat KTP : Jl. Pungguk Komp.Pungguk Mas No.18

Medan Sunggal.

No. HP : 085762668950

E-mail : defri.ramadhan1996@gmail.com

RIWAYAT PENDIDIKAN

Nomor Induk Mahasiswa : 1507210013 Fakultas : Teknik Jurusan : Teknik Sipil Program Studi : Teknik Sipil

Perguruan Tinggi : Universitas Muhammadiyah Sumatera Utara Alamat Perguruan Tinggi : Jl. Kapten Muchtar Basri BA. No. 3 Medan 20238

NO	TINGKAT	NAMA DAN TEMPAT	TAHUN			
	PENDIDIKAN		KELULUSAN			
1	Sekolah Dasar	Pesantren Modren Adnan	2007			
		(YPMA)				
2	SMP	Mts Al-Azhar Medan Sunggal	2010			
3	SMA	Darussalam	2013			
4	Melanjutkan Kuliah di Universitas Muhammadiyah Sumatera Utara					
	Tahun 2015 sampa	i selesai				