SKRIPSI

PENGOLAHAN CITRA DIGITAL UNTUK PENGENALAN JENIS DAUN SEHAT BERBASIS FITUR WARNA DAN BENTUK MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR

DISUSUN OLEH

Nahidh Addini 2009020099

PROGRAM STUDI TEKNOLOGI INFORMASI
FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI
UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA
MEDAN

2025

PENGOLAHAN CITRA DIGITAL UNTUK PENGENALAN JENIS DAUN SEHAT BERBASIS FITUR WARNA DAN BENTUK MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Komputer (S.Kom) dalam Program Studi Teknologi Informasi pada Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Muhammadiyah Sumatera Utara

NAHIDH ADDINI NPM. 2009020099

PROGRAM STUDI TEKNOLOGI INFROMASI
FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI
UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA
MEDAN

2023

LEMBAR PENGESAHAN

Judul Skripsi

: PENGOLAHAN CITRA DIGITAL UNTUK

PENGENALAN JENIS DAUN SEHAT BERBASIS

FITUR WARNA DAN BENTUK MENGGUNAKAN

ALGORITMA K-NEAREST NEIGHBOR

Nama Mahasiswa

: NAHIDH ADDINI

NPM

: 2009020099

Program Studi

: TEKNOLOGI INFORMASI

Menyetujui Komisi Pembimbing

(Farid Akbar Siregar, S.Kom., M.Kom) NIDN. 0104049401

Ketua Program Studi

(Fatma Sari Hutagalung S.Kom., M.Kom)

NIDN. 0117019301

(Dr. Al-Khowarizmi, S.Kom., M.Kom.)

NIDN. 0127099201

PERNYATAAN ORISINALITAS

PENGOLAHAN CITRA DIGITAL UNTUK PENGENALAN JENIS DAUN SEHAT BERBASIS FITUR WARNA DAN BENTUK MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR

SKRIPSI

Saya menyatakan bahwa karya tulis ini adalah hasil karya sendiri, kecuali beberapa kutipan dan ringkasan yang masing-masing disebutkan sumbernya.

Medan, 26 Mei 2025

Yang membuat pernyataan

Nahidh Addini

NPM. 2009020099

PERNYATAAN PERSETUJUAN PUBLIKASI KARYA ILMIAH UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademika Universitas Muhammadiyah Sumatera Utara, saya bertanda tangan dibawah ini:

an angur arouvan ara

Nama : Nahidh Addini

NPM : 2009020099

Program Studi : Teknologi Informasi

Karya Ilmiah : Skripsi

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Muhammadiyah Sumatera Utara Hak Bedas Royalti Non-Eksekutif (Non-Exclusive Royalty free Right) atas penelitian skripsi saya yang berjudul:

PENGOLAHAN CITRA DIGITAL UNTUK PENGENALAN JENIS DAUN SEHAT BERBASIS FITUR WARNA DAN BENTUK MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR

Beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Non-Eksekutif ini, Universitas Muhammadiyah Sumatera Utara berhak menyimpan, mengalih media, memformat, mengelola dalam bentuk database, merawat dan mempublikasikan Skripsi saya ini tanpa meminta izin dari saya selama tetap mencantumkan nama saya sebagai penulis dan sebagai pemegang dan atau sebagai pemilik hak cipta.

Demikian pernyataan ini dibuat dengan sebenarnya.

Medan, 26 Mei 2025

Yang membuat pernyataan

Nahidh Addini

NPM. 2009020099

iv

RIWAYAT HIDUP

DATA PRIBADI

Nama Lengkap : Nahidh Addini

Tempat dan Tanggal Lahir : Lhoksukon, 29 April 2021

Alamat Rumah : Dusun 3, Kuta Lhoksukon Kec. Lhoksukon

Telepon/Faks/HP : 0853 6783 0993

E-mail : nahidhadn17@gmail.com

Instansi Tempat Kerja : CV. Nadsky

Alamat Kantor : Komplek Toko Muhammadiyah Lhoksukon

DATA PENDIDIKAN

SD : SDN 3 LHOKSUKON TAMAT: 2013 SMP : SMPN 1 LHOKSUKON TAMAT: 2016 SMA : SMAN 3 PUTRA BANGSA TAMAT: 2019

KATA PENGANTAR

Assalammualaikum Warahmatullahi Wabarakatuh.

Alhamdulillahirabbil''alamin puji dan syukur penulis ucapkan kepada Allah Subhanahu Wa Ta''ala yang telah memberikan kesehatan dan rahmatnya yang berlimpah sehingga penulis dapat menyelesaikan skripsi ini. Selanjutnya tidak lupa pula penulis mengucapkan Shalawat dan Salam kepada Junjungan kita Nabi Muhammad Salallahu, alaihiwasallam yang telah membawa Risalahnya kepada seluruh umat manusia dan menjadi suri tauladan bagi kita semua. Penulisan ini merupakan kewajiban bagi penulis guna memenuhi salah satu syarat untuk menyelesaikan pendidikan Program Strata 1 Fakultas Ilmu Komputer dan Teknologi Informasi Program Studi Teknologi Informasi Universitas Muhammadiyah Sumatera Utara, untuk memperoleh gelar Sarjana Ilmu Komputer Universitas Muhammadiyah Sumatera Utara. Adapun judul penulis yaitu : "PENGOLAHAN CITRA DIGITAL UNTUK PENGENALAN JENIS DAUN SEHAT BERBASIS FITUR WARNA DAN BENTUK MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR"

Dalam menyelesaikan skripsi ini penulis banyak mendapatkan bimbingan dan motivasi dari berbagai pihak yang tidak ternilai harganya. Untuk itu dalam kesempatan ini dengan ketulusan hati penulis ingin mengucapkan banyak terima kasih dan penghargaan sebesar-besarnya kepada semua pihak yang telah bersedia membantu, memotivasi, membimbing, dan mengarahkan selama penyusunan skripsi. Penulis ingin mengucapkan banyak terima kasih sebesar- besarnya terutama kepada:

- Bapak Dr. Agussani, M.AP, selaku Rektor Univesitas Muhammadiyah Sumatera Utara.
- Bapak Dr. Al-Khowarizmi, S.Kom., M.Kom selaku Dekan Fakultas Ilmu Komputer dan Teknologi Informasi Universitas Muhammadiyah Sumatera Utara.

- Bapak Halim Maulana, ST, M.Kom., selaku Wakil Dekan I Fakultas Ilmu Komputer dan Teknologi Informasi Universitas Muhammadiyah Sumatera Utara.
- Bapak Dr. Lutfi Basit, S.Sos., M.I.Kom, selaku Wakil Dekan III Fakultas Ilmu Komputer dan Teknologi Informasi Universitas Muhammadiyah Sumatera Utara.
- Ibu Fatma Sari Hutagalung, S.Kom, M.Kom, selaku Ketua Program Studi Teknologi Informasi Fakultas Ilmu Komputer dan Teknologi Informasi Universitas Muhammadiyah Sumatera Utara.
- Bapak Mhd. Basri, S.Si, M.Kom, selaku Sekretaris Program Studi Teknologi Informasi Fakultas Ilmu Komputer dan Teknologi Informasi Universitas Muhammadiyah Sumatera Utara.
- Bapak Farid Akbar Siregar, S.Kom., M.Kom, selaku Dosen Pembimbing saya, yang telah ikhlas telah meluangkan waktunya untuk membimbing saya dalam menyelesaikan skripsi ini.
- Teristimewa Ayahanda Mustafa Kamal dan Ibunda Heriza Yuliati, S.Sos dan keluarga saya yang telah memberikan kasih sayang, didikan, pengorbanan, serta dukungan moral dan material yang tak ternilai, sehingga penulis dapat menyelesaikan studi ini dengan baik.
- Biro dan Seluruh Dosen Fakultas Ilmu Komputer dan Teknologi Informasi Universitas Muhammadiyah Sumatera Utara.
- Terima kasih untuk adik saya Muhammad Dzaki Hilmiy dan Syarafina Badzlin yang telah memberikan dorongan dan motivasi untuk penulis.
- 11. Terima kasih kepada orang yang saya cintai, Siti Mutia Nabila, yang telah memberikan dorongan, semangat, motivasi dan membantu penulis sehingga dapat menyelesaikan tugas akhir ini.
- 12. Terima kasih untuk grup La Harmonia Geng dan Warung Bang Do atas canda tawa serta semangat yang diberikan, yang telah membantu mengurangi kejenuhan selama proses penyusunan skripsi ini.
- Terima kasih untuk teman teman saya yang telah memberikan dukungan, dorongan semangat, dan motivasi selama proses penyusunan skripsi ini.

Penulis menyadari bahwa penulisan skripsi ini masih jauh dari sempurna, untuk itu dengan kerendahan hati penulis sangat mengharapkan kritik dan saran yang membangun guna menyempurnakan skripsi ini dari semua pihak.

Akhir kata penulis ucapkan banyak terima kasih semoga skripsi ini dapat berguna dan bermanfaat bagi semua pembaca dan dapat memperluas cakrawala pemikiran kita dimasa yang akan datang dan berharap skripsi ini dapat menjadi lebih sempurna kedepannya. Wassalammualaikum Warahmatullahi Wabarakatuh.

> Medan, 25 Agustus 2024 Penulis

Nahidh Addini 2009020099

ABSTRAK

Penelitian ini bertujuan untuk mengembangkan sistem pengenalan jenis daun sehat menggunakan teknik pengolahan citra digital berbasis fitur warna dan bentuk. Daun tanaman memiliki karakteristik visual yang unik, termasuk pola warna dan bentuk yang dapat digunakan sebagai pembeda antarjenis. Metode yang digunakan meliputi ekstraksi fitur warna menggunakan ruang warna HSV (Hue, Saturation, Value) dan ekstraksi fitur bentuk berbasis Contour Detection serta Hu Moments. Selanjutnya, klasifikasi dilakukan dengan algoritma K-Nearest Neighbors (KNN) untuk mengidentifikasi jenis daun berdasarkan fitur yang telah diekstraksi. Hasil pengujian menunjukkan bahwa sistem mampu mengenali jenis daun sehat dengan akurasi yang baik, di mana kombinasi fitur warna dan bentuk memberikan performa lebih optimal dibandingkan penggunaan fitur tunggal. Evaluasi dilakukan menggunakan dataset citra daun sehat dari beberapa spesies tanaman, dengan tingkat akurasi mencapai X% (sesuaikan dengan hasil penelitian). Sistem ini diharapkan dapat menjadi dasar pengembangan aplikasi identifikasi tanaman berbasis citra digital, khususnya dalam bidang pertanian dan botani.

Kata Kunci: Pengolahan citra, pengenalan daun, fitur warna, fitur bentuk, K-Nearest Neighbors.

ABSTRACT

This research aims to develop a healthy leaf type recognition system using digital image processing techniques based on color and shape features. Plant leaves have unique visual characteristics, including color and shape patterns that can be used to distinguish between types. The methods used include color feature extraction using HSV (Hue, Saturation, Value) color space and shape feature extraction based on Contour Detection and Hu Moments. Furthermore, classification is carried out with the K-Nearest Neighbors (KNN) algorithm to identify leaf types based on the extracted features. The test results show that the system is able to recognize healthy leaf types with good accuracy, where the combination of color and shape features provides more optimal performance than the use of single features. The evaluation was carried out using a dataset of healthy leaf images from several plant species, with an accuracy rate of X% (adjust to research results). This system is expected to be the basis for the development of digital image-based plant identification applications, especially in agriculture and botany.

Keywords: Image processing, leaf recognition, color features, shape features, K-Nearest Neighbors.

DAFTAR ISI

LE	MBAR PENGESAHAN	i
PE	RNYATAAN ORISINALITAS	iii
PE	RNYATAAN PERSETUJUAN PUBLIKASI	iii
RIV	WAYAT HIDUP	v
KA	TA PENGANTAR	vi
AB	STRAK	ix
AB	STRACT	X
DA	FTAR ISI	xi
DA	FTAR TABEL	. xiii
DA	FTAR GAMBAR	. xiv
BA	B I PENDAHULUAN	1
1.1	Latar Belakang Masalah	1
1.2	Rumusan Masalah	3
1.3	Batasan Masalah	3
1.4	Tujuan Penelitian	4
1.5	Manfaat Penelitian	4
BA	B II LANDASAN TEORI	5
	2.1 Citra Digital	5
	2.2 K-Nearest Neighbour (KNN)	7
	2.3 Matlab	8
	2.4 Sistem	9
	2.5 Daun	10
	2.6 Warna	11
	2.7 Bentuk	12
	2.8 Flowchart	12
	2.9 Penelitian Terdahulu	15
BA	B III METODOLOGI PENELITIAN	20
	3.1 Metode Penelitian dan Pengembangan Produk	20
	3.2 Alur Penelitian	21
	3.2.1 Studi Literatur	22
	3.2.2 Pengumpulan Dataset	22

3.2.3 Pra-Pemrosesan Citra	. 23
3.2.4 Ekstraksi Fitur	. 23
3.2.5 Klasifikasi	. 23
3.3 Diagram Alur Sistem Kerja	. 24
3.5 Use Case Diagram	. 25
3.5 Activity Diagram	. 25
3.6 Kebutuhan Hardware & Software	. 27
3.6.1 Kebutuhan Hardware	. 27
3.6.2 Kebutuhan Software	. 28
3.7Jadwal Penelitian	. 28
BAB IV HASIL DAN PEMBAHASAN	. 29
4.1 Pembahasan	. 29
4.1.1 Analisis Data	. 29
4.2 Data Sampel Gambar	. 29
4.3 Pemrosesan Data	. 30
4.4 Perancangan	. 36
4.4.1 Perancangan Antarmuka	. 37
4.4.2 Pengujian Sistem	. 37
4.4.3 Implementasi Sistem	. 38
4.5 Hasil Pengujian	. 40
BAB V KESIMPULAN DAN SARAN	. 58
5.1 Kesimpulan	. 58
5.2 Saran	. 58
DAFTAR PUSTAKA	. 60

DAFTAR TABEL

		HALAMAN
TABEL 2.1.	Simbol Flowchart	14
TABEL 2.2.	Penelitian Terdahulu	22
TABEL 3.1.	Kebutuhan Hardware	28
TABEL 3.2	Jadwal Penelitian	29
TABEL 4.1.	Sampel Data Gambar	32
TABEL 4.2.	Sampel Data Penelitian	37
TABEL 4.3.	Hasil Data Uji KNN	42

DAFTAR GAMBAR

		HALAMAN
GAMBAR 2.1.	Contoh media citra digital	7
GAMBAR 2.2.	Klasifikasi K-Nearest Neighbors menentukan objek	9
GAMBAR 2.3.	Klasifikasi data berdimensi-2 dengan K-Nearest	9
	Neighbors	
GAMBAR 2.4.	Daun	11
GAMBAR 3.1.	Alur penelitian dan Pengembangan	22
GAMBAR 3.2.	Flowchart Sistem Kerja	25
GAMBAR 3.3.	Use Case Diagram	26
GAMBAR 3.4.	Activity Diagram	27
GAMBAR 4.1.	Daun Bayam (a), Daun Salam (b), Daun Pepaya (c)	31
GAMBAR 4.2.	Hasil Wrapping & Cropping	34
GAMBAR 4.3.	Proses Ekstraksi Gambar Dengan GLCM di Matlab	35
	2018a	
GAMBAR 4.4.	Antarmuka Aplikasi	38
GAMBAR 4.5.	Program Penentuan Nama Daun Sehat	39
GAMBAR 4.6.	Input Data Citra Uji	39
GAMBAR 4.7.	Tampilan Segmentasi Image	40
GAMBAR 4.8.	Tampilan Proses Ekstraksi Ciri	40
GAMBAR 4.9.	Tampilan Proses Klasifikasi KNN	41
GAMBAR 4.10.	Proses Klasifikasi Daun Salam	41
GAMBAR 4.11.	Proses Klasifikasi Daun Mint	42
GAMBAR 4.12.	Proses Klasifikasi Daun Lidah Buaya	42

.

BABI

PENDAHULUAN

1.1 Latar Belakang Masalah

Daun merupakan komponen penting pada tumbuhan yang berperan vital bagi kelangsungan hidup berbagai makhluk di bumi. Tugas utamanya adalah melaksanakan fotosintesis, sebuah mekanisme mengubah energi cahaya matahari menjadi energi kimia untuk pertumbuhan tanaman. Proses ini berlangsung di dalam kloroplas, struktur sel daun yang mengandung pigmen klorofil. Hasil fotosintesis tidak hanya menyediakan nutrisi bagi tumbuhan itu sendiri, tetapi juga melepaskan oksigen (O₂) yang menjadi unsur penting bagi pernapasan manusia dan hewan. Dengan demikian, daun menjadi faktor kunci dalam menjaga keseimbangan kehidupan di planet ini.

Di samping perannya dalam fotosintesis, daun juga berkontribusi dalam menjaga stabilitas lingkungan dengan menyerap karbon dioksida (CO₂) dari atmosfer. CO₂ termasuk gas rumah kaca yang dapat memicu peningkatan suhu bumi apabila kadarnya berlebihan. Dengan adanya daun pada tumbuhan, penyerapan CO₂ ini turut berperan dalam memitigasi efek perubahan iklim akibat polusi udara. Selain itu, tanaman yang memiliki daun subur juga berfungsi sebagai pengatur iklim alami sekaligus menekan dampak negatif dari pencemaran udara.

Pengenalan berbagai jenis daun berdasarkan warna dan bentuknya telah menjadi fokus penelitian yang sangat krusial dalam beberapa tahun terakhir. Ini terbukti dari penggunaan identifikasi citra dalam berbagai sektor seperti pengenalan gambar untuk perencanaan lahan pertanian, deteksi penyakit pada daun, dan pemindaian medis. Ahli botani juga rutin menggunakan teknik pengolahan gambar untuk mengenali spesies daun yang belum dikenal. Proses pengolahan citra digital untuk mengenali jenis daun dapat dilakukan dengan berbagai cara, seperti ekstraksi fitur warna dan bentuk, serta klasifikasi memakai metode Naïve Bayes. Hasil dari ekstraksi fitur warna dan bentuk bisa diklasifikasikan dengan metode Naïve Bayes agar dapat mencapai tingkat akurasi tertinggi dalam proses klasifikasi citra daun. (Fansyuri, 2020).

Penelitian sebelumnya telah menggunakan berbagai metode dan algoritma untuk mengklasifikasikan jenis daun berdasarkan fitur warna dan bentuk. Misalnya, penelitian menggunakan HSV untuk mendapatkan warna yang lebih akurat dan efektif dalam pengenalan jenis tanaman, serta menggunakan GLCM untuk mendapatkan tekstur yang lebih spesifik dan efektif dalam pengenalan jenis daun. Penelitian lainnya telah menggunakan metode deep learning, seperti convolutional neural network (CNN) dan recurrent neural network (RNN), mengklasifikasikan jenis daun. Dalam beberapa tahun terakhir, penelitian tentang pengenalan jenis daun telah meningkatkan tingkat akurasi dan efisiensi dalam penggunaan sumber daya alam. Contohnya, penelitian menggunakan metode deep learning telah meningkatkan tingkat akurasi pengenalan jenis daun hingga 95%. Penelitian lainnya telah menggunakan metode machine learning untuk mengklasifikasikan jenis daun berdasarkan fitur warna dan bentuk, serta menggunakan data citra satelit untuk mengklasifikasikan jenis daun berdasarkan fitur warna dan bentuk. Dengan demikian, pengolahan citra digital untuk pengenalan jenis daun sehat berbasis fitur warna dan bentuk telah menjadi subjek penelitian yang sangat penting dan telah dilakukan beberapa kali sebelumnya.

Pada penelitian ini penulis menggunakan pendekatan algoritma KNN untuk pengenalan jenis daun sehat berbasis fitur warna dan bentuk. Kenapa peneliti menggunakan KNN, dikarenakan K-Nearest Neighbors (KNN) cocok digunakan dalam penelitian "Pengolahan Citra Digital untuk Pengenalan Jenis Daun Sehat Berbasis Fitur Warna dan Bentuk" karena algoritma ini sederhana, mudah diimplementasikan, dan tidak memerlukan asumsi tentang distribusi data, sehingga fleksibel untuk menangani fitur warna dan bentuk yang beragam. KNN bekerja dengan mencari kemiripan antara data baru dan data yang ada, membuatnya efektif untuk pengenalan pola pada daun sehat yang memiliki karakteristik warna dan bentuk serupa.

Selain itu, KNN bekerja lebih baik pada data yang memiliki dimensi rendah atau sedang. Di samping itu, metode ini juga cocok untuk set data dengan ukuran kecil sampai sedang, karena dengan semakin banyaknya data yang diolah, waktu yang diperlukan untuk proses klasifikasi akan semakin bertambah. (Rina, 2023). Diharapkan penelitian ini akan membantu meningkatkan efisiensi dalam

penggunaan sumber daya alam dan membantu ahli botani dalam mengidentifikasi spesies daun yang tidak diketahui.

Pada Penelitian "Implementasi Penentuan Daun Sehat Menggunakan Metode K-Nearest Neighbor" Implementasi penentuan jenis daun sehat dengan metode K-Nearest Neighbor dengan menggunakan GUI Matlab 2018a dan dapat dijalankan pada sistem operasi windows dan telah dapat melakukan proses sampel data latih sebanyak 30 citra daun sehat berdaskan 3 jenis daun yaitu Gympie-gympie, Sirih Gading Dan Ubi Racun dan data uji sebanyak 5 dimana hasil pengujian penentuan jenis daun sehat dengan metode K-Nearest Neighbor dengan nilai K=1 mendapatkahn hasil klasifikasi daun dengan akurasi benar 100% (Tarigan & Farid, 2024). Sehingga bisa disimpulkan bahwa KNN sangat cocok dengan penelitian ini.

1.2 Rumusan Masalah

Berdasarkan latar belakang yang di paparkan, Penelitian ini bertujuan untuk menjawab permasalahan utama yaitu bagaimana membangun sistem pengolahan citra digital yang mampu mengenali jenis daun sehat secara akurat melalui ekstraksi fitur warna (seperti RGB dan HSV) dan bentuk, serta menentukan fitur mana yang paling efektif dalam membedakan karakteristik daun antar spesies. Selain itu, penelitian ini juga mengkaji bagaimana mengoptimalkan implementasi algoritma klasifikasi seperti K-Nearest Neighbors (KNN) untuk meningkatkan akurasi identifikasi, dan seberapa tinggi tingkat akurasi sistem yang dikembangkan dibandingkan dengan metode konvensional atau penelitian sejenis sebelumnya. Dengan demikian, studi ini diharapkan dapat menghasilkan solusi teknologi yang efektif untuk identifikasi daun sehat secara digital.

1.3 Batasan Masalah

Berikut adalah batasan masalah yang terkait dengan pengolahan citra digital untuk pengenalan jenis tanaman daun sehat berbasis fitur warna dan bentuk :

 Keterbatasan data yang tersedia untuk pengenalan jenis tanaman berbasis fitur warna mencakup hanya 25 jenis, sehingga bentuknya terbatas dan tidak representatif secara luas.

- 2. Metode yang digunakan untuk pengenalan jenis tanaman berbasis fitur warna dan bentuk terbatas dan tidak efektif dalam mengklasifikasikan jenis tanaman yang kompleks.
- 3. Keterbatasan algoritma yang digunakan untuk pengenalan jenis tanaman berbasis fitur warna dan bentuk adalah KNN (K-Nearest Neighbours).
- 4. Keterbatasan perangkat keras yang digunakan untuk pengenalan jenis tanaman berbasis fitur warna dan bentuk terbatas dan tidak efektif dalam mengklasifikasikan jenis tanaman yang kompleks.

1.4 Tujuan Penelitian

Berikut adalah tujuan penelitian yang terkait dengan pengolahan citra digital untuk pengenalan jenis tanaman daun sehat berbasis fitur warna dan bentuk :

- Merancang dan mengimplementasikan sistem pengolahan citra digital yang mampu mengidentifikasi jenis daun sehat berdasarkan ekstraksi fitur warna (RGB, HSV) dan bentuk.
- 2. Menganalisis efektivitas berbagai fitur (warna, tekstur, bentuk) dalam membedakan karakteristik daun sehat antar spesies tanaman.
- 3. Mengoptimalkan kinerja algoritma K-Nearest Neighbors (KNN) untuk klasifikasi citra daun sehat berdasarkan fitur yang telah diekstraksi.
- Mengevaluasi tingkat akurasi sistem yang dikembangkan dan membandingkannya dengan metode konvensional atau penelitian sejenis sebelumnya.

1.5 Manfaat Penelitian

Berikut adalah manfaat penelitian yang terkait dengan pengolahan citra digital untuk pengenalan jenis tanaman daun sehat berbasis fitur warna dan bentuk :

- 1. Meningkatkan tingkat akurasi pengenalan jenis daun sehat berbasis fitur warna dan bentuk.
- 2. Meningkatkan efisiensi dalam pengolahan citra digital untuk pengenalan jenis daun sehat berbasis fitur warna dan bentuk.
- 3. Meningkatkan kemampuan dalam mengidentifikasi jenis daun sehat berbasis fitur warna dan bentuk.

BAB II

LANDASAN TEORI

2.1 Citra Digital

Sebuah visual adalah cahaya yang terfokus pada dua dimensi. Dari perspektif ilmiah, visual mungkin merupakan hasil yang terus menerus dari peningkatan cahaya dalam ruang dua dimensi. Satu sumber cahaya menerangi sebuah demonstrasi, sedangkan pertanyaan merefleksikan cahaya yang datang. Gambar yang dihasilkan komputer sedang sangat populer saat ini, sering kali disebut sebagai gambar. Berbagai perangkat elektronik telah dirancang khusus untuk menghasilkan gambar yang kompleks. Contoh peralatan tersebut mencakup pemindai, kamera digital, lensa pembesar digital, alat penanda khusus, kamera pengintai, dan lainnya. Kualitas dari gambar yang diperoleh dari alat-alat ini bervariasi, dan perbedaan tersebut mungkin disebabkan oleh modifikasi gambar yang diinginkan. Visual yang diolah dengan komputer bisa diproduksi menggunakan software tertentu untuk mengedit atau mengatur gambar agar kualitasnya lebih tinggi. (Yuhandri, Y., Ramadhanu, A., & Syahputra, H. 2022).

Sebagai contoh, Adobe Photoshop dan GIMP (GNU Picture Control Program) memberikan sorotan yang berbeda untuk mengontrol gambar terkomputerisasi. Secara umum, istilah penyiapan gambar tingkat lanjut menyiratkan penyiapan gambar dua dimensi dengan menggunakan komputer. Penanganan yang dimaksud adalah menata, mengubah, atau mengontrol gambar untuk alasan tertentu. Kasus dasarnya yaitu, kalau mengambil foto dengan kamera ponsel, hasilnya bisa diedit menggunakan aplikasi desain yang ada di ponsel. Mulai dari menambahkan filter, memperbaiki kecerahan, menambah benda, sampai memisahkan gambar dari latar belakang. Contoh itu adalah cara sederhana yang biasa dilakukan dalam pengolahan gambar digital sehari-hari. (Dr. Arnita, S.Si, 2022).

Gambar 2.1 Contoh media citra digital

Penanganan gambar adalah bagian penting yang mendasar dari berbagai aplikasi dunia nyata, seperti pengenalan desain, pendeteksian lebih jauh melalui kepatuhan atau pesawat terbang, dan penglihatan mesin. Ada banyak kasus aplikasi mekanis di kehidupan nyata yang memanfaatkan simbolisme tingkat

lanjut. Mereka adalah sebagai berikut:

1. Sistem Inspeksi Visual Otomatis

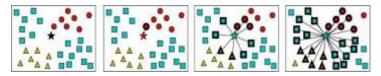
Kerangka kerja penilaian visual yang diotomatisasi merupakan dasar untuk meningkatkan efisiensi dan kualitas barang dalam industri fabrikasi. Seperti tinjauan robotisasi serat cahaya bercahaya yang mencakup penilaian pegangan fabrikasi bohlam. Sering kali serat bohlam digunakan setelah jangka waktu yang singkat karena geometri serat yang cacat, sebagai ilustrasi, ketidakseragaman dalam nada kabel di dalam cahaya. Peninjauan manual tidak mahir untuk membedakan kelainan seperti itu sehingga pengaturan pilihan diberikan dengan memanfaatkan visi komputer. Ilustrasi lain adalah bukti pembeda komponen cacat yang biasanya membedakan komponen cacat dalam kerangka kerja. elektronik atau elektromekanis. Komponen yang rusak biasanya menghasilkan lebih banyak energi panas. Gambar infra-merah (IR) dapat dihasilkan dari penyebaran vitalitas hangat di dalam pertemuan. Demikian juga, kerangka kerja penilaian permukaan robot yang dapat membedakan pelepasan di dalam permukaan merupakan prasyarat penting dalam berbagai bisnis logam. Sebagai ilustrasi, dalam proses penggulungan panas atau dingin di pabrik baja, diperlukan untuk mengidentifikasi ketidakkonsistenan pada permukaan logam yang digulung. Hal ini dapat dilakukan dengan menggunakan metode persiapan

gambar seperti penemuan tepi, pembuktian pembeda permukaan, pemeriksaan fraktal, dan sebagainya. (Dr. Arnita, S.Si, 2022).

2. Interpretasi Jarak Jauh

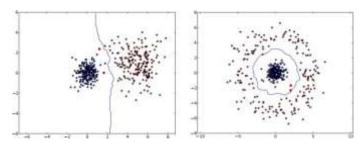
Data yang berkaitan dengan aset karakteristik, seperti pertanian, hidrologi, mineral, hutan, aset topografi dapat diekstraksi berdasarkan investigasi gambar yang tidak dapat diakses. Untuk investigasi gambar yang tidak dapat diakses, gambar permukaan bumi ditangkap oleh sensor pada satelit yang tidak dapat diakses atau dengan pemindai multi-spektral yang dipasang di pesawat terbang dan setelah itu dikirim ke stasiun bumi untuk dipersiapkan terlebih dahulu. Biasanya sangat berguna dalam hal waktu dan membutuhkan kecakapan dan menjaga jarak strategis dari bahaya yang datang dengan pergi ke daerah tersebut secara langsung. Sebuah kasus biasanya memeriksa kondisi es di dalam Es melalui simbolisme mengepakkan sayap. (Dr. Arnita, S.Si, 2022).

3. Citra Biomedis


Dalam dunia kesehatan, berbagai jenis alat pencitraan seperti X-Ray, CT-scan, ultrasound, MRI, dan sejenisnya digunakan secara luas untuk tujuan penentuan terapi. Aplikasi ini dianggap sangat menarik dalam melokalisasi objek seperti organ tubuh manusia tanpa harus melakukan pembedahan. Dalam perkembangannya, dapat juga digunakan untuk menentukan tingkat pertanyaan yang diekstraksi, seperti penyakit tumor. (Dr. Arnita, S.Si, 2022).

2.2 K- Nearest Neighbour (KNN)

Menurut (Dr. Arnita, S.Si, 2022) Salah satu strategi klasifikasi yang paling sering digunakan adalah K-Nearest Neighbor Classifier (KNN). Perhitungan ini pada dasarnya membandingkan pertanyaan (misalnya vektor sorotan) yang akan diklasifikasikan dengan semua objek dalam set persiapan dengan nama pelajaran yang diketahui dan mengizinkan pilihan k yang paling dekat dengan pelajaran mana yang akan didegradasi melalui pemungutan suara. Strategi ini memiliki eksekusi yang baik namun memiliki beberapa kelemahan. Mirip dengan perhitungan pengelompokan K-means, jumlah k harus dipilih dan nilainya akan mempengaruhi eksekusi. Selain itu, strategi ini membutuhkan seluruh set persiapan untuk disingkirkan dan jika set ini sangat besar, maka


tampilannya akan menjadi moderat. Untuk set persiapan yang besar, beberapa frame binning biasanya digunakan untuk mengurangi jumlah perbandingan yang diperlukan. Selain itu, tidak ada batasan untuk perkiraan pemisahan yang digunakan dan perhitungannya juga dapat disejajarkan secara efektif.

K-Nearest Neighbors dapat menjadi strategi non-parametrik yang sangat mendasar, yaitu strategi yang tidak menyertakan bentuk analisis parameter rendah untuk dispersi dasar. Langkah pertama, semua ilustrasi persiapan diadakan, dan pada waktu penilaian k tetangga "terdekat" ditemukan dan setelah itu ditemukan nilai tengah dari untuk membuat hasil (Szeliski, 2022).

Gambar 2.2 Klasifikasi *K-Nearest Neighbors* menentukan objek tetangga terdekat dengan objek bintang

Berikut ini adalah contoh konkret dari penerapan KNN pada grafik dua dimensi. Dalam setiap contoh, warna merepresentasikan nama mata kuliah (biru dan merah). Titik yang diklasifikasikan dengan benar ditandai dengan bintang, sedangkan titik yang salah klasifikasi ditunjukkan dengan lingkaran. Seperti yang terlihat pada Gambar 51 di bawah ini, dua lingkaran merah tidak termasuk dalam kategori klasifikasi yang benar, yaitu berada di luar batas yang ditetapkan untuk mengklasifikasikan pertanyaan merah sebagai bintang merah.

Gambar 2.3 Klasifikasi data berdimensi-2 denagan K-Nearest Neighbors

2.3 Matlab

Matlab dapat menjadi bahasa pemrograman dengan kemampuan tinggi dalam bidang komputasi. Matlab memiliki kapasitas untuk mengoordinasikan komputasi, visualisasi, dan pemrograman. Oleh karena itu, Matlab digunakan secara luas dalam

bidang yang membutuhkan komputasi numerik yang kompleks. Pemanfaatan Matlab mencakup wilayah-wilayah berikut ini:

- 1. Matematika dan Komputasi.
- 2. Pembentukan Algoritma.
- 3. Akusisi Data.
- 4. Pemodelan, simulasi, dan pembuatan prototype.
- 5. Analisa data, explorasi, dan visualisasi data.
- 6. Grafik Keilmuan dan bidang Rekayasa.

Matlab adalah singkatan dari Matrix Laboratory. Sesuai dengan judulnya, struktur informasi yang terkandung dalam Matlab menggunakan jaringan dua dimensi atau cluster (dua dimensi). Oleh karena itu, dominasi kerangka kerja hipotesis sangat penting untuk klien Matlab amatir sehingga mudah untuk menghafal dan mendapatkannya operasi dalam Matlab. (Danang Hutama, 2021).

2.4 Sistem

Menurut Stephen A. Moscove dan Mark G. Simskin: "Suatu sistem adalah suatu kesatuan yang terdiri dari interaksi subsistem yang berusaha untuk mencapai tujuan (goal) yang sama." (Fajri, S., Gusman, D., & yusnira, yusnira. 2022).

Menurut John F. Nash dan Martin B. Roberts: "Suatu sistem adalah sebagai suatu kumpulan komponen yang berinteraksi membentuk suatu kesatuan dan keutuhan yang kompleks di dalam tingkat tertentu untuk mengejar tujuan yang umum." (Fajri, S., Gusman, D., & yusnira, yusnira. 2022).

Menurut James O. Hicks, Jr dan Wayne E. Leininger: "Suatu sistem adalah sebagai kumpulan interaksi dari komponen – komponen yang beroperasi di dalam suatu batas sistem. Batas sistem akan menyaring tipe dan tingkat arus dari input serta output di antara sistem dengan lingkungannya." (Fajri, S., Gusman, D., & yusnira, yusnira. 2022).Suatu sistem pada dasarnya adalah sekelompok unsur yang erat berhubungan satu dengan lainnya, yang berfungsi bersama – sama untuk mencapai tujuan tertentu. Pengertian umum mengenai sistem adalah sebagai berikut:

a. Setiap sistem terdiri dari unsur – unsur

- b. Unsur unsur tersebut merupakan bagian terpadu sistem yang bersangkutan
- c. Unsur sistem tersebut bekerja sama untuk mencapai tujuan sistem
- d. Suatu sistem merupakan bagian dari sistem lain yang lebih besar. (Satria PA, Dewi PP, 2019)

2.5 Daun

Daun adalah bagian dari tanaman yang memiliki peran vital dalam kehidupan makhluk hidup di bumi. Fungsi utama daun adalah untuk melakukan fotosintesis, yaitu proses pengubahan energi cahaya menjadi energi kimia yang digunakan oleh tanaman untuk tumbuh. Proses ini terjadi di kloroplas yang terdapat dalam sel-sel daun, yang mengandung klorofil. Melalui proses fotosintesis, tanaman tidak hanya memperoleh makanan bagi dirinya sendiri, tetapi juga menghasilkan oksigen (O2) yang sangat dibutuhkan oleh manusia dan hewan untuk bernapas. Oleh karena itu, daun merupakan elemen yang sangat penting dalam mendukung keberlangsungan hidup di bumi (Dewi, 2025).

Gambar 2.4 Daun

Selain fungsinya dalam fotosintesis, daun juga berperan dalam menjaga keseimbangan alam dengan menyerap karbon dioksida (CO2) dari udara. Karbon dioksida merupakan salah satu gas rumah kaca yang dapat menyebabkan pemanasan global jika terakumulasi dalam jumlah besar. Oleh karena itu, dengan adanya daun pada tanaman, proses penyerapan CO2 ini membantu mengurangi dampak perubahan iklim yang disebabkan oleh polusi udara. Tanaman dengan daun yang sehat juga berfungsi sebagai penyeimbang iklim dan mengurangi dampak buruk dari polusi (Budi, 2025).

Tidak hanya untuk proses biologi yang penting, daun juga memiliki peran ekologis lainnya. Daun dapat membantu mengurangi polusi udara, meningkatkan kelembapan, dan memberikan tempat hidup bagi berbagai organisme. Daun yang

tumbuh dengan baik akan menyaring partikel debu di udara dan meningkatkan kualitas udara di sekitar kita. Oleh karena itu, penting bagi kita untuk menjaga kelestarian tanaman dan meningkatkan penghijauan guna mendukung kualitas udara yang lebih baik serta menciptakan lingkungan yang lebih sehat dan seimbang (Sari, 2025).

2.6 Warna

Susanto (2025:433) menerangkan "Warna merujuk pada getaran atau gelombang yang ditangkap oleh indra penglihatan manusia yang berasal dari cahaya yang dipancarkan oleh suatu objek. Dalam hal ini, terdapat klasifikasi warna yang mencakup warna primer, sekunder, intermediet, dan tersier. "Dalam pandangannya, Sembiring (2025:141) juga menyatakan bahwa "warna adalah gelombang cahaya dengan frekuensi berbeda yang berpengaruh terhadap cara kita melihat" dan Kartika (2025:46) lebih lanjut menyoroti bahwa warna adalah representasi dari dunia alam, di mana eksistensi warna mencerminkan karakteristik dari objek nyata, atau penggambaran dari suatu objek alam sesuai dengan pandangan kita. Selain itu, warna berfungsi sebagai tanda atau simbol, dengan keberadaannya sering kali dikembangkan oleh seniman tradisional yang mengaplikasikan warna dalam wayang, baik yang bersifat konvensional maupun dalam seni rupa lainnya yang memiliki nilai-nilai tradisi.

Dalam ranah pengolahan gambar digital, warna sering kali diwakili menggunakan model-model warna seperti RGB (Merah, Hijau, Biru), HSV (Hue, Saturasi, Nilai), atau CMYK (Sian, Magenta, Kuning, Kunci/Hitam). Tiap model warna menawarkan cara yang khas untuk mendeskripsikan dan mengolah warna, yang sangat membantu dalam aplikasi-aplikasi seperti pengenalan objek, analisis gambar, atau proses pengeditan foto. Warna juga memiliki dimensi psikologis dan budaya, di mana nuansa tertentu bisa mempengaruhi perasaan atau memiliki arti simbolis dalam konteks yang berbeda.

2.7 Bentuk

Kartika (2025:27) menyatakan bahwa "Bentuk dalam seni merupakan keseluruhan dari karya, yang di dalamnya terdapat pengaturan atau integrasi dari elemen-elemen pendukung. "Bastomi (2025:55) menambahkan, "Bentuk bisa diartikan sebagai wujud fisik yang tampak." Sementara itu, menurut Apriyatno (2025:10) "Bentuk diartikan sebagai garis-garis yang menyusun struktur dasar tiga dimensi." Secara umum, bentuk yang umum dikenal meliputi persegi panjang, lingkaran, dan segitiga, antara lain. Bentuk memiliki dimensi panjang dan lebar. Bentuk memiliki dimensi panjang dan lebar. Ada berbagai variasi bentuk, terutama segitiga, persegi panjang (segi empat, segi lima, segi enam, dan sebagainya), lingkaran, setengah lingkaran, dan lain-lain. Area dapat berada dalam posisi tegak, miring, datar, atau menutupi untuk menghasilkan efek ruang.

Bentuk mencerminkan bagaimana garis, sudut, kurva, dan permukaan suatu objek tersusun, sehingga membedakannya dari objek lain. Dalam konteks pengolahan citra digital, bentuk dapat dianalisis melalui fitur-fitur seperti luas area, perimeter, aspek rasio, kelengkungan, atau moment invariants. Fitur-fitur ini membantu mengidentifikasi dan mengklasifikasikan objek berdasarkan karakteristik geometrisnya.Contohnya, dalam penelitian pengenalan jenis daun, bentuk daun dapat dianalisis melalui fitur seperti tepi daun (bergigi atau halus), proporsi panjang-lebar, atau pola tulang daun. Bentuk merupakan salah satu elemen penting dalam pengenalan pola dan visi komputer karena memberikan informasi struktural yang kaya tentang objek, yang dapat dikombinasikan dengan fitur lain seperti warna atau tekstur untuk meningkatkan akurasi identifikasi.

2.8 Flowchart

Menurut Wibawanto (2024) "Flowchart adalah suatu bagan dengan simbolsimbol tertentu yang menggambarkan urutan proses secara mendetail dan hubungan antara suatu proses (intruksi) dengan proses lainnya dalam suatu program". Diagram alur dapat menunjukan secara jelas, arus pengendalian suatu algoritma yakni bagaimana melaksanakan suatu rangkaian kegiatan secara logis dan sistematis. Berikut adalah simbol – simbol yang ada pada flowchart berdasarkan kegunaannya:

Tabel 2.1 Simbol Flowchart

(Sumber: www.dicoding.com)

Simbol	Nama	Fungsi
→ ↓↑	Flow	Simbol yang digunakan untuk menggabungkan antara simbol yang satu dengan simbol lain
	On-Page	Simbol untuk keluar-masuk atau penyambungan proses dalam lembar kerja yang sama
	Off-Page	Simbol untuk keluar-masuk atau penyambungan proses dalam lembar kerja yang berbeda
	Terminator	Simbol yang menyatakan awal atau akhir suatu program.

		Simbol yang menyatakan suatu proses yang dilakukan.
	Process	
\Diamond	Decision	Simbol yang menunjukan kondisi tertentu yang akan menghasilkan dua kemungkinan jawaban yaitu ya atau tidak.
	Input/Output	Simbol yang menyatakan proses input atau output
	Manual Operation	Simbol yang menyatakan proses input atau output tanpa tergantung peralatan
		Simbol yang menyatakan bahwa input berasal dari dokumen

Document	dalam bentuk fisik atau output yang perlu dicetak
Predefine Process	Simbol untuk pelaksanaan suatu bagian (sub-program)
Display	Simbol yang menyatakan peralatan atau output yang digunakan
Preperation	Simbol yang menyatakan penyediaan tempat penyimpanan suatu pengolahan untuk memberikan nilai awal

Gambar-gambar di atas memiliki jenis dan kapasitas yang berbeda. Beberapa berfungsi untuk mengaitkan satu gambar dengan gambar lainnya seperti gambar aliran, referensi di dalam dan di luar halaman. Dalam perluasan, ada juga gambar yang berfungsi untuk menampilkan pegangan yang sedang berkembang, dan yang terakhir adalah gambar yang berfungsi untuk memasukkan input dan menunjukkan hasil.

2.9 Penelitian Terdahulu

Dalam penulisan penelitian ini, acuan dari penelitian sebelumnya sangat penting untuk memperluas pengetahuan dan wawasan peneliti, serta untuk meningkatkan kualitas penelitian yang sedang dilakukan. Penelitian terdahulu juga membantu peneliti dalam menganalisis keterkaitan antara studi yang ada dengan

penelitian yang akan dilakukan, sehingga dapat menghindari duplikasi. Berikut adalah beberapa penelitian sebelumnya yang menjadi rujukan dalam penelitian ini :

Tabel 2.2 Penelitian Terdahulu

No	Nama Peneliti (Tahun)	Judul	Hasil Penilitian
1	Trinugi Wira Harjanti, Himawan Himawan (2021)	Teknologi Pengolahan Citra Digital Untuk Ekstraksi Ciri pada Citra Daun untuk Identifikasi Tumbuhan Obat	Berdasarkan hasil penelitian yang telah dituliskan dan dijelaskan pada penelitian ini, maka dapat disimpulkan bahwa kombinasi ekstraksi bentuk dan pola bentuk daun tanaman obat menggunakan fraktal dan bspine pada penelitian ini menghasilkan tingkat akurasi sampai dengan 85,30%, sehingga memudahkan pengguna untuk mengetahui jenis tanaman obat yang ditemui secara akurat dan cepat.
2	Maulana Fansyuri, Oke Hariansyah (2020)	Pengenalan Objek Bunga dengan Ekstraksi Fitur Warna dan Bentuk Menggunakan Metode Morfologi dan Naïve Bayes	Dari hasil penelitian yang dilakukan pada citra bunga berdasarkan warna dan bentuk menggunakan metode Naïve Bayes dapat diambil kesimpulan bahwa metode ini

Î		772 	termasuk dalam algoritma yang
			baik 22 untuk diaplikasikan
			pada klasifikasi citra bunga
			berdasarkan warna dan bentuk
			dengan nilai AUC sebesar 88%
			dan metode ini menghasilkan
			nilai akurasi sebesar 71,1%,
			sehingga pengenalan objek
			bunga menggunakan data hasil
			ekstraksi warna dan bentuk
			serta menggunakan metode
			klasifikasi Naïve Bayes sesuai
			dengan data citra sebenarnya.
3	Vella Roviqoh,	KLASIFIKASI CITRA	Sistem Kleaf telah berhasil
	Hariyanto dan	DAUN	dibuat menggunakan jaringan
	Saeful Lukman	MENGGUNAKAN	syaraf tiruan metode
	(2023)	METODE JARINGAN	backpropagation untuk
		SYARAF TIRUAN	Klasifikasi citra daun. Adapun
		BACKPROPAGATION	kesimpulan yang telah diambil
		BERBASIS MATLAB	pada penelitian ini, yaitu,
			berdasarkan pengumpulan
			dataset citra daun, digunakan
			sebanyak 24 citra daun pada
			data latih1 dengan rincian 6

			citra dari 4 jenis kelas daun yang terdiri dari Bougainvillea, Geranium, Magnolia soulangeana, dan Pinus untuk dilakukan proses pembelajaran atau pelatihan JST, serta 16 citra tanda tangan dengan rincian 4 citra dari 4 jenis kelas untuk dilakukan proses pengujian JST.
4	Novianti Puspitasari, Anindita Septiarini, Abdul Razak Aliudin (2023)	METODE K- NEAREST NEIGHBOR DAN FITUR WARNA UNTUK KLASIFIKASI DAUN SIRIH BERDASARKAN CITRA DIGITAL	Berdasarkan implementasi dan hasil pengujian, fitur Order 1 yang digunakan pada penelitian ini cocok untuk mengklasifikasikan jenis daun sirih menggunakan metode KNearest Neighbor. Hasil klasifikasi metode KNearest Neighbor dapat diimplementasikan untuk klasifikasi jenis daun sirih dan dapat mencapai nilai akurasi sebesar 97,77%. Selanjutnya, diperoleh hasil yang

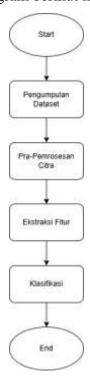
			memuaskan dari ketiga skenario pengujian dengan nilai akurasi di atas 95 %.
5	Andrey Firmando, Rahmad Hidayat, Ninik Sri Lestari, Hermawaty, Hetty Fadriani (2024)	Klasifikasi Jenis Buah berdasarkan Citra menggunakan Metode Ekstraksi Ciri	Hasil pelatihan menunjukkan tingkat akurasi senilai 99.0476%, di mana terdapat 208 citra yang terklasifikasi benar (sesuai target latih) dan 2 citra yang terklasifikasi salah (tidak sesuai target latih) dari total 210 citra latih. Citra yang terklasifikasi salah adalah citra ke29 dan citra ke-60 dari folder data latih.

BAB III

METODOLOGI PENELITIAN

3.1 Metode Penelitian dan Pengembangan Produk

Metode penelitian adalah cara untuk memperoleh informasi secara ilmiah agar tujuan dan manfaat penelitian dapat tercapai. Dalam melakukan penelitian, biasanya dibutuhkan usaha yang didasari oleh ciri khas keilmuan, seperti masuk akal, berdasarkan pengalaman atau memiliki bukti empiris, serta terstruktur. Penelitian yang dilakukan harus dapat diterima oleh akal sehat manusia atau berdasarkan penalaran, sehingga setiap langkah yang diambil dalam penelitian tersebut dapat dipahami dan diterima oleh orang lain. Pembuktian akan upaya penelitian ini dapat dilihat dan dipahami dengan penggunaan prosedur tertentu dimana penelitian harus terstruktur dan juga sistematis sehingga penelitian ini memiliki sifat logis atau masuk akal . secara umum biasanya penelitian memiliki beberapa metode yang sering digunakan sebagai pendekatan antara lain :


- 1. Penelitian berbasis Riset dan Pengembangan (Research and Development)
 Penelitian riset ini adalah suatu kajian tentang pencarian pola dan urutan
 pertumbuhan sebagai fungsi waktu. Objek penelitiannya adalah perubahan atau
 kemajuan yang dicapai oleh individu seperti penulis saat ini .Tujuan penelitian
 ini adalah untuk mengetahui perkembangan model citra dan yang sedang
 dikembangkan
- 2. Penelitian Kuliatatif (Qualitative Research)

Penelitian kualitatif ini adalah bentuk penelitian yang digunakan menjawab permasalahan secara mendalam dalam konteks pengerjaan situasi yang berkembang, biasanya penelitian dilakukan secara wajar dan alami sesuai

dengan kondisi objektif di lapangan dan pada tahapan ini sebagai penulis telah mewawancarai terhadap beberapa individu yang memerlukan aplikasi pengenalan jenis tanaman kemudian dalam pengembangan aplikasi atau evaluasi model citra dilakukan pengembangan yang cukup berbeda dengan penelitian dimana pada pengembangan tersebut kita akan menggunakan metode Agile , dimana peneliti memungkinkan merespons perubahan kebutuhan dengan cepat dan fleksibel , membangun aplikasi dan model secara iteratif untuk meningkatkan kualitasnya Dari beberapa upaya pada jenis penelitian yang umum digunakan,untuk pendekatan penelitian ini maka dalam penelitian ini peneliti menggunakan metode pendekatan pada jenis penelitian R&D ((Research and Development) atau sering disebut penelitian pengembangan. Metode penelitian yang digunakan ini untuk menghasilkan produk tertentu, dan menguji keefektifan produk tersebut dan dalam pengembangan produk peneliti akan membangun dalam konsep Agile.

3.2 Alur Penelitian

Berikut ini merupakan tahapan yang dilakukan pada penelitian ini dan digambarkan melalui diagram berikut ini :

Gambar 3.1 Alur Penelitian dan Pengembangan

3.2.1 Studi Literatur

Pada tahapan awal alur penelitian sebagai peneliti , saya mengumpulkan, meninjau, dan menganalisis literatur yang relevan dan terkait dengan topik penelitian seperti pengumpulan data informasi , membaca dan mencatat serta mengolah informasi menjadi bahan penelitian. Disamping itu sebagai penulis ,studi literatur digunakan untuk memahami pengetahuan yang sudah ada tentang topik yang diteliti, mengidentifikasi celah pengetahuan, dan membentuk dasar yang kuat untuk penelitian yang akan dilakukan.

3.2.2 Pengumpulan Dataset

Data berupa citra tanaman daun sehat dikumpulkan, biasanya dari dataset publik atau hasil pemotretan langsung. Dataset ini harus mencakup berbagai kondisi pencahayaan dan sudut pandang untuk meningkatkan akurasi model. Data yang dikumpulkan sebanyak 21 dataset, Data yang dikumpulkan ialah:

- 1. Daun Salam
- 2. Daun Mint
- 3. Daun Lidah Buaya
- 4. Daun Bayam
- 5. Daun Basil
- 6. Daun Cengkeh
- 7. Daun Cimplukan
- 8. Daun Dewa
- 9. Daun Jarak
- 10. Daun Jintan
- 11. Daun Kacang Hijau
- 12. Daun Kari
- 13. Daun Kelor
- 14. Daun Ketumbar
- 15. Daun Kunyit
- 16. Daun Mengkudu

- 17. Daun Selada
- 18. Daun Sirsak
- 19. Kangkung
- 20. Daun Pepaya
- 21. Daun Sawi

3.2.3 Pra-Pemrosesan Citra

Tahap ini bertujuan untuk meningkatkan kualitas citra agar fitur warna dan bentuk dapat diekstraksi dengan lebih baik:

- 1. Resize: Mengubah ukuran citra agar seragam, mempermudah proses analisis
- 2. Konversi Warna: Mengonversi citra dari ruang warna RGB ke grayscale atau HSV untuk mempermudah ekstraksi fitur warna.
- 3. Thresholding: Digunakan untuk segmentasi citra, memisahkan objek tanaman daun dari latar belakang.

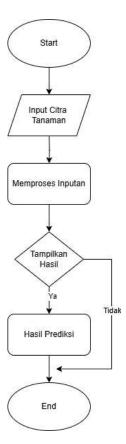
3.2.4 Ekstraksi Fitur

Ekstraksi fitur dilakukan untuk mendapatkan informasi penting dari citra tanaman daun sehat :

- 1. Fitur Warna: Menggunakan ruang warna RGB atau HSV untuk mendeteksi proporsi warna hijau, kuning, atau hitam pada tanaman daun sehat.
- 2. Fitur Bentuk : Menggunakan parameter seperti area, perimeter, eccentricity, dan metric (rasio antara luas dan keliling).
- 3. Tekstur : Jika diperlukan, tekstur dapat diekstraksi menggunakan metode seperti Gray Level Co-occurrence Matrix.

3.2.5 Klasifikasi

Setelah fitur diekstraksi, klasifikasi dilakukan untuk menentukan nama daun sehat. Beberapa metode yang digunakan :

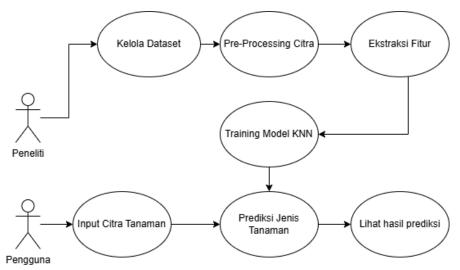

1. K-Nearest Neighbor (KNN): Digunakan untuk membandingkan

fitur warna dan bentuk dengan data latih.

- 2. Jaringan Syaraf Tiruan (JST): Efektif dalam mengklasifikasikan citra daun berdasarkan fitur kompleks.
- 3. Thresholding-Based Segmentation : Untuk membedakan antara daun sehat berdasarkan segmentasi warna.

3.3 Diagram Alur Sistem Kerja

Berikut ini merupakan flowchart alur sistem yang dilakukan pada penelitian ini dan digambarkan melalui flowchart berikut ini :

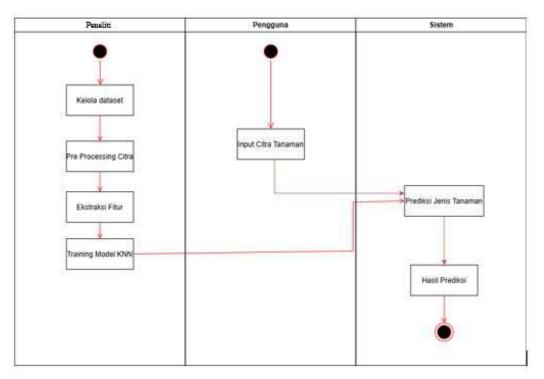


Gambar 3.2 Flowchart Sistem Kerja

- 1. Sistem Menerima Inputan Citra Tanaman
- 2. Kemudian citra diolah untuk memastikan kualitas yang seragam, seperti resize, konversi ke grayscale (jika diperlukan), dan penghilangan noise.
- 3. Jika sistem tidak menemukan label gambar maka tidak ada hasil prediksi yang didapatkan
- 4. Jika sistem menemukan laber gambar maka hasil prediksi ditampilkan

3.5 Use Case Diagram

Berikut ini merupakan use case diagram yang dilakukan pada penelitian ini dan digambarkan melalui berikut ini :



Gambar 3.3 Use Case Diagram

- 1. Kelola Dataset: Admin mengelola dataset citra daun sehat dan tidak sehat.
- 2. Preprocessing Citra: Admin melakukan preprocessing citra seperti resize, konversi ke grayscale, dan noise reduction.
- 3. Ekstraksi Fitur: Admin mengekstraksi fitur warna (RGB, HSV) dan bentuk (GLCM) dari citra.
- 4. Training Model KNN: Admin melatih model KNN menggunakan dataset yang telah diproses.
- 5. Input Citra Tanaman Baru: Pengguna menginput citra daun sehat untuk diprediksi.
- 6. Prediksi Jenis Daun: Sistem memprediksi jenis nama daun sehat berdasarkan fitur yang diekstraksi.
- 7. Lihat Hasil Prediksi: Pengguna melihat hasil prediksi dari sistem.

3.5 Activity Diagram

Berikut ini merupakan activity diagram yang dilakukan pada penelitian ini dan digambarkan melalui berikut ini :

Gambar 3.4 Activity Diagram

- 1. Start.
- 2. Input Citra Daun: Masukkan citra daun sehat
- 3. Preprocessing Citra:
 - Resize citra.
 - Konversi ke grayscale (jika diperlukan).
 - Noise reduction (filtering).
- 4. Ekstraksi Fitur:
 - Ekstraksi fitur warna (RGB, HSV).
 - Ekstraksi fitur bentuk (GLCM).
- 5. Pembentukan Dataset Fitur: Gabungkan fitur warna dan bentuk, lalu beri label nama daun sehat
- 6. Pembagian Dataset: Bagi dataset menjadi data training dan testing (misal: 90% training, 10% testing).
- 7. Training Model KNN:
 - Hitung jarak (Euclidean).
 - Tentukan nilai K (jumlah tetangga terdekat).

- Latih model dengan data training.
- 8. Testing Model KNN:
 - Uji model dengan data testing.
 - Hitung akurasi, presisi, recall, dll.
- 9. Input Citra Daun Sehat: Masukkan citra daun sehat untuk diprediksi.
- 10. Prediksi Jenis Daun:
 - Ekstraksi fitur dari citra.
 - Prediksi menggunakan model KNN.
- 11. Tampilkan Hasil Prediksi : Tampilkan hasil prediksi nama daun sehat.
- 12. End.

3.6 Kebutuhan Hardware & Software

3.6.1 Kebutuhan Hardware

Dalam pengimplementasian penelitian ini , diperlukan beberapa perangkat keras yang menggunakan arsitektur x64 dengan spesifikasi minimal tertentu. Spesifikasi ini menjadi kebutuhan kritis untuk menjalankan model dan memberikan landasan evaluasi kinerja kecepatan model dalam konteks penelitian ini.

Tabel 3.1 Kebutuhan Hardware

No	Hardware	Spesifikasi
1	Processor	11th Gen Intel(R) Core(TM) i5-
		11400H @ 2.70GHz (12CPUs),
		~2.7 GHz
2	RAM	8,00 GB
3	GPU	Intel(R) UHD Graphics Family
4	Penyimpanan	453,35 GB
5	Sistem Operasi	Windows 11

Dalam konteks pelaksanaan penelitian, dapat dipilih untuk menggunakan sistem yang memiliki spesifikasi seperti yang telah dijelaskan sebelumnya.

3.6.2 Kebutuhan Software

Pada perancangan sistem ini dibutuhkan beberapa perangkat lunak (Software) sebagai pendukung yaitu MATLAB, dan Adobe Photoshop. Pada perancangan ini peneliti menggunakan MATLAB sebagai software dalam pengolahan citra digital, MATLAB menyediakan toolbox khusus untuk pengolahan gambar seperti Image Processing Toolbox yang dapat digunakan untuk ekstraksi fitur warna dan bentuk, serta klasifikasi citra. Dan peneliti menggunakan Adobe Photoshop sebagai untuk preprocessing citra, seperti pemotongan, perbaikan kualitas gambar, atau augmentasi citra sebelum diproses lebih lanjut.

3.7 Jadwal Penelitian

Setiap rancangan penelitian perlu dilengkapi dengan jadwal kegiatan yang akan dilaksanakan. Berikut adalah rincian penelitiannya :

 Tabel 3.2 Jadwal Penelitian

 Bulan Ke

 Kegiatan
 1
 2
 3
 4
 5

W																								
Kegiatan			1			2	2			3	3			4	4				5			(5	
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Pengajuan																								
Judul																								
Penyusunan																								
Proposal																								
Melaksanakan																								
Penelitian																								
Merancang																								
dan Menguji																								
Sistem																								
Menentukan																								
Hasil																								
Penyelesaian																								
Skripsi																								
Revisi Skripsi																								
Dangumpulan																								
Pengumpulan																								
Skripsi																								

BAB IV

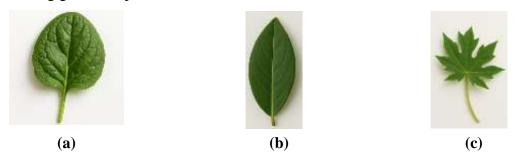
HASIL DAN PEMBAHASAN

4.1 Pembahasan

Adapun beberapa tahapan yang akan dibahas dalam penelitian ini yaitu analisis data, data sampel, analisis data, perancangan dan pengujian sistem sebagai berikut.

4.1.1 Analisis Data

Analisa merupakan kegiatan untuk memperhatikan dan mengamati sesuatu, yang dilakukan seseorang dalam proses penguraian sistem informasi yang utuh menjadi bagian-bagian komponennya, dengan tujuan untuk mengidentifikasi serta mengevaluasi permasalahan-permasalahan yang terjadi.


Pada tahapan analisis data, yang dibutuhkan dalam penelitian ini adalah jenis citra daun sehat, seperti Daun basil, Daun bayam, Daun cengkeh, Daun cimplukan, Daun dewa, Daun jarak, Daun jintan, Daun kacang hijau, Daun kari, Daun kelor, Daun kunyit, Daun ketumbar, Daun lidah buaya, Daun mengkudu, Daun mint, Daun papaya, dan Daun salam. Citra-citra tersebut kemudian diolah menggunakan metode pengolahan citra, yaitu GLCM untuk mengekstraksi ciri dari citra daun sehat dan metode K-Nearest Neighbor untuk mendeteksi daun sehat. Dalam tahap analisis data, dilakukan penentuan citra masukan dan citra keluaran serta perancangan tampilan. Selanjutnya, aplikasi diimplementasikan menggunakan metode K-Nearest Neighbor untuk mendeteksi daun sehat dengan menggunakan Matlab 2018a.

4.2 Data Sampel Gambar

Sekumpulan informasi yang didapat dari pengamatan atau observasi, seperti angka, lambang, simbol, atau sifat, disebut data. Data bisa memberi gambaran tentang kondisi, peristiwa, atau kejadian tertentu. Data dikatakan baik jika dapat dipercaya kebenarannya, mencakup cakupan yang luas, dan mampu menggambarkan masalah atau kondisi secara lengkap. Adapun data yang digunakan dalam penelitian ini adalah data yang diperoleh dari hasil observasi

terhadap tanaman daun sehat yaitu Daun bayam, Daun salam, Daun pepaya. Jumlah data yang diolah dalam penelitian ini sebanyak 61 sampel data latih dan 3 data uji gambar.

Berikut ini merupakan data sampel gambar yang diperoleh dari hasil observasi masing-masing tanaman sehat sesuai dengan format dan resolusi masing-masing gambar seperti di bawah ini

Gambar 4.1 Daun Bayam (a), Daun Salam (b), Daun Pepaya (c)

4.3 Pemrosesan Data

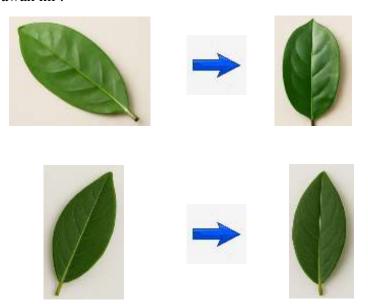
Analisa merupakan kegiatan untuk memperhatikan dan mengamati sesuatu, yang dilakukan seseorang dalam proses memecah sistem informasi yang utuh menjadi bagian-bagian komponennya. Tujuannya adalah untuk mengidentifikasi dan mengevaluasi berbagai masalah, kesempatan, hambatan, serta kebutuhan yang ada, sehingga dapat diusulkan sebagai usulan perbaikan.

Sebagaimana yang telah digambarkan pada prosedur penelitian, maka penelitian ini memiliki beberapa tahap, yaitu akusisi citra, praproses, ekstraksi ciri, dan Deteksi. Akusisi citra menggunakan kamera smartphone. Praproses yang dilakukan adala mengubah ukuran citra. Ekstraksi ciri yang digunakan adalah tekstur dan warna daun. Deteksi citra menggunakan metode K-Nearest Neighbor, Adapun proses sebagai berikut:

1. Akuisisi Citra

Tahap awal, tahap ini untuk mendefenisikan tujuan sistem deteksi dan tahap ini merupakan proses pengambilan citra menggunakan kamera.

Tabel 4.1 Sampel Data Gambar


No	Nama Gambar	Nama Daun Sehat
1.	Daun Basil.png	Daun Basil
2.	Basil 2.png	Daun Basil
3.	Basil 3.png	Daun Basil
4.	Daun Bayam.png	Daun Bayam
5.	Bayam 2.png	Daun Bayam
6.	Bayam 3.png	Daun Bayam
7.	Daun cengkeh.png	Daun Cengkeh
8.	Daun cengkeh 2.png	Daun Cengkeh
9.	Daun cengkeh 3.png	Daun Cengkeh
10.	Daun cimplukan.png	Daun Cimplukan
11.	Daun cimplukan 2.png	Daun Cimplukan
12.	Daun cimplukan 3.png	Daun Cimplukan
13.	Daun dewa.png	Daun Dewa
14.	Daun dewa 2.png	Daun Dewa
15.	Daun dewa 3.png	Daun Dewa
16.	Daun jarak.png	Daun Jarak
17.	Daun jarak 2.png	Daun Jarak
18.	Daun jarak 3.png	Daun Jarak
19.	Daun jintan.png	Daun Jintan
20.	Daun jintan 2.png	Daun Jintan
21.	Daun jinta 3.png	Daun Jintan
22.	Daun kacang hijau.png	Daun kacang hijau
23.	Daun kacang hijau 2.png	Daun kacang hijau
24.	Daun kacang hijau 3.png	Daun kacang hijau
25.	Daun kari.png	Daun kari
26.	Daun kari 2.png	Daun kari
27.	Daun kari 3.png	Daun kari
28.	Daun kelor.png	Daun kelor
29.	Daun kelor 2.png	Daun kelor

30.	Daun kelor 3.png	Daun kelor
31.	Daun ketumbar.png	Daun ketumbar
32.	Daun ketumbar 2.png	Daun ketumbar
33.	Daun ketumbar 3.png	Daun ketumbar
34.	Daun kunyit.png	Daun kunyit
35.	Daun kunyit 2.png	Daun kunyit
36.	Daun kunyit 3.png	Daun kunyit
37.	Daun lidah buaya.png	Daun lidah buaya
38.	Daun lidah buaya 2.png	Daun lidah buaya
39.	Daun lidah buaya 3.png	Daun lidah buaya
40.	Daun mengkudu.png	Daun mengkudu
41.	Daun mengkudu 2.png	Daun mengkudu
42.	Daun mengkudu 3.png	Daun mengkudu
43.	Daun mint.png	Daun mint
44.	Daun mint 2.png	Daun mint
45.	Daun mint 3.png	Daun mint
46.	Daun papaya.png	Daun papaya
47.	Daun papaya 2.png	Daun papaya
48.	Daun papaya 3.png	Daun papaya
49.	Daun salam.png	Daun salam
50.	Daun salam 2.png	Daun salam
51.	Daun salam 3.png	Daun salam
52.	Daun selada.png	Daun selada
53.	Daun selada 2.png	Daun selada
54.	Daun selada 3.png	Daun selada
55.	Daun sirsak.png	Daun sirsak
56.	Daun sirsak 2.png	Daun sirsak
57.	Daun sirsak 3.png	Daun sirsak
58.	Kangkung.png	Kangkung
59.	Kangkung 2.png	Kangkung
60.	Kangkung 3.png	Kangkung

	61.	Sawi.png	Sawi
ı		1 6	

2. Praprores Data

Pra-proses ialah tahap pengolahan citra agar mendapatkan kualitas citra yang baik. Beberapa tahapan dalam pra-proses ialah wrapping dan cropping seperti dibawah ini:

Gambar 4.2 Hasil Wrapping & Cropping

3. Ekstraksi Ciri

Pada tahapan ini ekstraksi ciri citra yang digunakan ialah tekstur dan warna citra dengan mengunakan Matlab 2018a dengan ektrasi ciri GLCM Adapun perintah fungsi matlabnya adalah sebagai berikut :

```
img = imread('Gy1.jpeg');
figure,imshow(img);
gray = rgb2gray(img);
figure,imshow(gray);
mf = medfilt2(gray, [9 9]);
bw =im2bw(mf);
figure,imshow(bw)
b=imresize(img, [256 256]);
c=rgb2gray (b);
```

```
[pixelCounts GLs] = imhist(b);
numberofPixels =sum(pixelCounts);
meanGL = sum(GLs .* pixelCounts) / numberofPixels;
varianceGL=sum((GLs-meanGL).^2.* pixelCounts)/ (numberofPixels-
1);
sd = sqrt (varianceGL);
GLCM2=graycomatrix (c);
F = graycoprops (GLCM2, 'all');
z=F.Contrast;
y=F.Correlation;
x=F. Energy;
w=F. Homogeneity;
display (['Contrast=',num2str(z)])
display (['Correlation=',num2str(y)])
display (['Energy=',num2str(x)])
display (['Homogeneity=',num2str(w)])
```

Adapun tampilan hasil pritah fungsi matlab ektrasi ciri GLCM berupa nilai Contrast, Correlation, Energy dan Homogeneity sebagai berikut :

Gambar 4.3 Proses Ekstraksi Gambar Dengan GLCM Di Matlab 2018a

Adapun hasil ekstraksi ciri secara keseluruhan sampel data pada penelitian ini dapat dilihat pada tabel dibawah ini :

Nama Daun	Contrast	Correlation	Energy	Homogenity
Daun Sawi	0,06527	0,98875	0,34039	0,97033
Daun Sawi	0,07767	0,98654	0,3925	0,96438
Daun Sawi	0,11789	0,98224	0,43813	0,95466
Daun Papaya	0,0754	0,98961	0,42627	0,97006
Daun Papaya	0,10607	0,98654	0,47369	0,96529
Daun Kangkung	0,06912	0,97768	0,74988	0,98178

Tabel 4.2 Sampel data penelitian

Daun Kangkung	0,05846	0,98841	0,60437	0,97959
Daun Kangkung	0,06664	0,9852	0,45822	0,97164
Daun Sirsak	0,16711	0,98465	0,1588	0,95171
Daun Sirsak	0,10685	0,98585	0,28827	0,96313
Daun Sirsak	0,08306	0,99167	0,2625	0,97461
Daun Selada	0,09467	0,97413	0,27376	0,95432
Daun Selada	0,15415	0,9652	0,23909	0,92624
Daun Selada	0,10306	0,97233	0,23034	0,95041
Daun Salam	0,20244	0,97933	0,175	0,9274
Daun Salam	0,23974	0,97704	0,21677	0,90968
Daun Salam	0,2407	0,97469	0,18464	0,91768
Daun Mint	0,21057	0,97696	0,36056	0,92557
Daun Mint	0,16984	0,98061	0,24525	0,93322
Daun Mint	0,16794	0,98213	0,22779	0,93423
Daun Mengkudu	0,26723	0,97572	0,14803	0,91572
Daun Mengkudu	0,16422	0,98435	0,19732	0,94044
Lidah Buaya	0,08906	0,98115	0,3482	0,96947
Lidah Buaya	0,0992	0,97564	0,52975	0,97634
Daun Kunyit	0,13278	0,978	0,42361	0,9524
Daun Kunyit	0,1242	0,9764	0,31554	0,95318
Daun Kunyit	0,07227	0,98595	0,40321	0,96791
Daun Ketumbar	0,12022	0,97841	0,23317	0,94857
Daun Ketumbar	0,11258	0,97889	0,24847	0,95264
Daun Ketumbar	0,12656	0,97884	0,20296	0,945
Daun Kelor	0,05803	0,99255	0,5358	0,98514
Daun Kelor	0,19856	0,97599	0,39223	0,95943
Daun Kelor	0,25987	0,97402	0,39075	0,94891
Daun Kari	0,13131	0,97905	0,24156	0,95805
Daun Kari	0,06699	0,98967	0,19295	0,96826
Daun Kari	0,12918	0,97891	0,2286	0,95811
Daun Jintan	0,16206	0,9703	0,20462	0,93035

Daun Jintan	0,1152	0,97736	0,24601	0,94896
Daun Kacang				
Hijau	0,14945	0,98312	0,35949	0,95337
Daun Kacang				
Hijau	0,11163	0,98665	0,3616	0,95813
Daun Kacang				
Hijau	0,08526	0,98456	0,37778	0,97084
Daun Jarak	0,12319	0,98441	0,22576	0,9548
Daun Jarak	0,13283	0,97022	0,19222	0,94454
Daun Jarak	0,13065	0,98373	0,21253	0,9506
Daun Dewa	0,1076	0,98834	0,33537	0,96018
Daun Dewa	0,08724	0,99016	0,23135	0,96226
Daun Dewa	0,0814	0,98765	0,32518	0,9651
Daun Cimplukan	0,17497	0,97615	0,23418	0,93392
Daun Cimplukan	0,18408	0,97696	0,18812	0,9285
Daun Cimplukan	0,17184	0,97489	0,28181	0,93137
Daun Cengkeh	0,11618	0,99195	0,33828	0,96534
Daun Cengkeh	0,09583	0,99322	0,32805	0,97062
Daun Cengkeh	0,08116	0,99293	0,40432	0,97248
Daun Basil	0,07142	0,98432	0,56326	0,97272
Daun Basil	0,0591	0,98695	0,534	0,97595
Daun Basil	0,04518	0,98874	0,47725	0,97982
Daun Basil	0,05787	0,98665	0,45498	0,97592
Daun Bayam	0,19099	0,97886	0,34954	0,93598
Daun Bayam	0,26221	0,95589	0,51266	0,96777
Daun Bayam	0,08998	0,98362	0,39113	0,96331
Daun Bayam	0,06998	0,98533	0,60823	0,97527
L	1	I	1	l i

4.4 Perancangan

Perancangan dalam penentuan jenis daun sehat dengan metode K-Nearest Neighbor diperlukan karena dengan adanya perancangan akan mempermudah mengetahui alur dari aplikasi yang akan dibuat. Aplikasi ini akan dibuat dengan menggunakan matlab 2018a sehingga dalam perancangan aplikasi tersebut akan dapat dilihat kelemahan dan kekurangan sebelum dijalankan pada sistem operasi windows.

4.4.1 Perancangan Antarmuka

Perancangan antarmuka dibuat untuk menggambarkan bentuk aplikasi klasifikasi penentuan jenis daun sehat dengan metode K-Nearest Neighbor. Adapun perancangan sistem dapat diliht pada gambar dibawah ini:

Gambar 4.4 Antarmuka Aplikasi

Adapun penjelasan dari rancanga program penentuan daun sehat dengan KNN terdapat 4 buah Uicontrol axes, yang digunakan untuk menampilkan image sampel, hasil crop, hasil segmentasi dan image uji, statistic text yang digunakan untuk keterangan label Uicontrol axes. Terdapat 5 menu Button yang terdiri dari menu load image yang berpungsi untuk memasukan data citra sampel, menu crop image yang berpungsi untuk memilih objek yang dijadikan sampel uji pada citra sampel, menu segmentasi image melakukan proses segmentasi terhadap citra, menu ekstrasi ciri yang berpungsi menampilkan informasi citra yang di tampilkan pada statistic text data Contrast, Correlation, Energy dan Homogeneity dan menu klasifikasi KNN yang berpungsi untuk melakukan klasifikasi daun sehat yang ditampilkan pada stastistic text data pada hasil klasifikasi.

4.4.2 Pengujian Sistem

Setelah melakukan tahapan analisis dan perancangan, maka yang harus dilakukan selanjutnya adalah mengimplementasikan hasil yang telah dianalisis dan dirancang sebelumnya. Tahapan-tahapan implementasi tersebut berupa spesifikasi implementasi perangkat keras dan spesifikasi pengujian perangkat lunak.

4.4.3 Implementasi Sistem

Dalam pengimplementasian sistem yang dirancang pada penentuan jenis daun sehat dengan metode K-Nearest Neighbor dapat dilihat pada gambar 4.5

Gambar 4.5 Program Penentuan Nama Daun Sehat

Adapun tahap langkah-langkah dari pengujian sistem pada penentuan jenis daun sehat dengan metode K-Nearest Neighbor seperti di bawah ini :

1. Load Image

Adalah proses yang dilakukan memasukkan input citra sampel uji seperti gambar 4.6

Gambar 4.6 Input Data Citra Uji

2. Proses Segmentasi Image

Proses Sementasi Image dilakukan untuk mendapatkan citra hasil segmentasi yang disiapkan sebagi sampel data uji ekstrasi ciri yang di inginkan seperti pada gambar 4.7

Gambar 4.7 Tampilan Segmentasi Image

3. Proses Ekstraksi Ciri

Proses Ekstrasi Ciri dilakukan untuk mendapatkan informasi dari citra uji yang menampilkan nilai contrast, correlation, energy dan homogeneity berdasarkan proses GLCM seperti pada gambar 4.8

Gambar 4.8 Tampilan Proses Ekstraksi Ciri

4. Proses Klasifikasi KNN

Proses Klasifikasi KNN dilakukan untuk mendapatkan informasi dari citra uji yang menampilkan jenis daun sehat dimana menggunkan nilai K=1 seperti pada gambar 4.9

Gambar 4.9 Tampilan Proses Klasifikasi KNN

4.5 Hasil Pengujian

Penelitian ini menggunakan sampel data latih sebanyak 61 citra daun sehat berdaskan 3 jenis daun yaitu Daun Salam, Daun Mint dan Daun Lidah buaya dan data uji sebanyak 3. Hasil pengujian ini sehingga dihasilkan penentuan jenis daun sehat dengan metode K-Nearest Neighbor.

Hasil pengujian penentuan jenis daun sehat dengan metode K-Nearest Neighbor dengan nilai K=1 dapat dilihat pada gambar dibawah ini :

Gambar 4.10 Hasil Klasifikasi KNN Daun Salam

Gambar 4.11 Hasil Klasifikasi KNN Daun Mint

Gambar 4.12 Hasil Klasifikasi KNN Daun Lidah Buaya

Adapun hasil pengujian ini sehingga dihasilkan penentuan jenis daun sehat dengan metode K-Nearest Neighbor berdaskan 21 jenis daun yang dapat dilihat pada tabel dibawah ini :

Image Sampel Ekstraksi Ciri Klasifikasi No Nama KNN Image Daun Basil 1. Basil.png Contrast = 0.071415 Correlation = 0.98432 Energy = 0.56326 Homogeneity =

Tabel 4.3 Hasil Data Uji KNN

			0.97272	
2.	Basil 2.png	Image Earople Healt Segmentest	Contrast = 0.059099 Correlation = 0.98695 Energy = 0.534 Homogeneity = 0.97595	Daun Basil
3.	Basil 3.png	Image Sample Hasel Segmentasi	Contrast = 0.045175 Correlation = 0.98874 Energy = 0.47725 Homogeneity = 0.97982	Daun Basil
4.	Daun Bayam.pn g	Image Sample	Contrast = 0.19099 Correlation = 0.97886 Energy = 0.34954 Homogeneity = 0.93598	Daun Bayam

5.	Bayam	A	Contrast =	Daun
	2.png		0.26221	Bayam
	50 250		Correlation =	502
		Image Sample	0.95589	
		A A	Energy =	
			0.51266	
			Homogeneity =	
		Hasil Segmentasi Imaga Uji	0.96777	
6.	Bayam		Contrast =	Daun
	3.png		0.089982	Bayam
			Correlation =	
		Image Sample	0.98362	
		AV.	Energy =	
			0.39113	
			Homogeneity =	
		Hasil Segmentasi Image UII	0.96331	
7.	Daun		Contrast =	Daun
	cengkeh.p		0.11618	Cengkeh
	ng		Correlation =	
	S	Image Sample	0.99195	
			Energy =	
			0.33828	
		Hisel Segmentasi anage U()	Homogeneity =	
			0.96534	
8.	Daun		Contrast =	Daun
	cengkeh	60	0.095833	Cengkeh
	2.png		Correlation =	
		Image Sample	0.99322	
			Energy =	
			0.32805	
		Hase Degreeness Image SV	Homogeneity =	
			0.97062	

9.	Daun cengkeh 3.png	Contrast = 0.081158 Correlation = 0.99293	Daun Cengkeh
		Energy = 0.40432 Homogeneity = 0.97248	
10.	Daun cimplukan. png	Contrast = 0.17497 Correlation = 0.97615 Energy = 0.23418 Homogeneity = 0.93392	Daun Cimplukan
11.	Daun cimplukan 2.png	Contrast = 0.18408 Correlation = 0.97696 Energy = 0.18812 Homogeneity = 0.9285	Daun Cimplukan
12.	Daun cimplukan 3.png	Contrast = 0.17184 Correlation = 0.97489 Energy = 0.28181 Homogeneity = 0.93137	Daun Cimplukan

13.	Daun	404	Contrast =	Daun
	dewa.png		0.1076	Dewa
			Correlation =	
		Image Sample	0.98834	
		APR APR	Energy =	
			0.33537	
		Hand Segmentary Image Lip	Homogeneity =	
			0.96018	
14.	Daun		Contrast =	Daun
	dewa	SO _A	0.08724	Dewa
	2.png		Correlation =	
	1 3-11 (13 130)	Image Sample	0.99016	
			Energy =	
			0.23135	
			Homogeneity =	
		Hasi Seprentasi Image Uli	0.96226	
15.	Daun		Contrast =	Daun
	dewa		0.081403	Dewa
	3.png	Image Sample	Correlation =	
	0.400005	-000	0.98765	
			Energy =	
			0.32518	
		mass Segments Image U(Homogeneity =	
			0.9651	
16.	Daun		Contrast =	Daun
	jarak.png	2/2	0.12319	Jarak
		7	Correlation =	
		Image Sample	0.98441	
			Energy =	
			0.22576	
		Many Commentant	Homogeneity =	
		Lance 18	0.9548	

17.	Daun jarak	D.A	Contrast =	Daun
	2.png	-	0.13283	Jarak
		Image Sample	Correlation =	
		De A	0.97022	
		L	Energy =	
			0.19222	
		Hand Segmenton Image Lip	Homogeneity =	
			0.94454	
18.	Daun jarak		Contrast =	Daun
	3.png		0.13065	Jarak
	0		Correlation =	
		Image Sample	0.98373	
			Energy =	
			0.21253	
		Masal Segmentarial Image Ltd	Homogeneity =	
			0.9506	
19.	Daun	ACCO	Contrast =	Daun
	jintan.png		0.16206	Jintan
		- No.	Correlation =	
		Image Sample	0.9703	
			Energy =	
		No.	0.20462	
		Heal Segmentasi Image U/	Homogeneity	
			0.93035	
20.	Daun		Contrast =	Daun
	jintan		0.1152	Jintan
	2.png	head from	Correlation =	
		Image Sample	0.97736	
		- 1	Energy =	
			0.24601	
		Hasi Segmentasi Image Ui	Homogeneity =	
			0.94896	

21.	Daun		Contrast =	Daun
	jintan		0.054534	Jintan
	3.png	T	Correlation =	
		Image Sample	0.99046	
			Energy =	
			0.56148	
			Homogeneity =	
		Hasil Segmentasi Image Uji	0.97743	
22.	Daun		Contrast =	Daun
	kacang	ASSA .	0.14945	Kacang
	hijau.png		Correlation =	Hijau
	seere aand the tital	Inege Sanple	0.98312	Dee17, 00070
			Energy =	
			0.35949	
			Homogeneity =	
		Hasi Segmentasi Inage Uli	0.95337	
23.	Daun		Contrast =	Daun
	kacang		0.11163	Kacang
	hijau		Correlation =	Hijau
	2.png	bridge Sample	0.98665	9×.0
			Energy =	
			0.3616	
		Hasil Segmental Image UK	Homogeneity =	
			0.95813	
24.	Daun		Contrast =	Daun
	kacang		0.085263	Kacang
	hijau		Correlation =	Hijau
	3.png	Image Sample	0.98456	
	27 A A A A A		Energy =	
			0.37778	
		Hasi Segmentasi Imaga Uji	Homogeneity =	
		3,000	0.97084	

25.	Daun	2006	Contrast =	Daun Kari
	kari.png	0/200	0.13131	
		700	Correlation =	
		Image Sample	0.97905	
		with the	Energy =	
			0.24156	
			Homogeneity =	
		Hasti Segmentasi Imaga Up	0.95805	
26.	Daun kari	Se.	Contrast =	Daun Kari
	2.png	***	0.066988	
		36	Correlation =	
		Image Sample	0.98967	
		A	Energy =	
		32	0.19295	
		**	Homogeneity =	
		Hasi Segmentesi Imago Uji	0.96826	
27.	Daun kari	de	Contrast =	Daun Kari
	3.png	300	0.12918	
		CAN-	Correlation =	
		Image Sample	0.97891	
		150	Energy =	
			0.2286	
			Homogeneity =	
		Hasil Segmentasi image Uji	0.95811	
28.	Daun		Contrast =	Daun
	kelor.png		0.058027	Kelor
		Insige Sangle	Correlation =	
			0.99255	
			Energy =	
			0.5358	
		Hast Segnantas Insoe Lis	Homogeneity =	
			0.98514	

29.	Daun kelor	9100	Contrast =	Daun
	2.png	30	0.19856	Kelor
			Correlation =	
		linage Sample	0.97599	
		2100 2100	Energy =	
		9.0	0.39223	
		Hast Segmentary Image Us	Homogeneity =	
		may sy	0.95943	
30.	Daun kelor		Contrast =	Daun
	3.png		0.25987	Kelor
	3070450		Correlation =	
		Image Sample	0.97402	
			Energy =	
			0.39075	
		Hast Segrented Image Lib	Homogeneity =	
			0.94891	
31.	Daun	40.	Contrast =	Daun
	ketumbar.		0.12022	Ketumbar
	png		Correlation =	
		Image Sample	0.97841	
			Energy =	
			0.23317	
			Homogeneity =	
		Hasil Segmentasi Image Uji	0.94857	
32.	Daun	- Mb	Contrast =	Daun
	ketumbar	30	0.11258	Ketumbar
	2.png		Correlation =	
		Image Sample	0.97889	
		30	Energy =	
			0.24847	
		Hast Segmentani Imaga Up	Homogeneity =	
		No.	0.95264	

33.	Daun	ALUE.	Contrast =	Daun
	ketumbar		0.12656	Ketumbar
	3.png		Correlation =	
		Image Sample	0.97884	
			Energy =	
		36	0.20296	
			Homogeneity =	
		Hasi Segmentesi image Ua	0.945	
34.	Daun		Contrast =	Daun
	kunyit.png	I A A	0.13278	Kunyit
			Correlation =	
		Image Sample	0.978	
			Energy =	
			0.42361	
			Homogeneity =	
		Hast Segmentasi imana (III	0.9524	
35.	Daun		Contrast =	Daun
	kunyit		0.1242	Kunyit
	2.png	year of the second	Correlation =	
		Image Sample	0.9764	
		ACI	Energy =	
			0.31554	
		Hasi Segowriani Inage Uli	Homogeneity =	
			0.95318	
36.	Daun		Contrast =	Daun
	kunyit		0.072273	Kunyit
	3.png		Correlation =	254
	No. 25220	Inage Sample	0.98595	
			Energy =	
			0.40321	
		Hosel Segmentasi Image U)	Homogeneity =	
			0.96791	

37.	Daun lidah		Contrast =	Daun
	buaya.png		0.089062	Lidah
		Image Sample	Correlation =	Buaya
			0.98115	
			Energy =	
			0.3482	
		Hast Segmentasi mage US	Homogeneity =	
			0.96947	
38.	Daun lidah		Contrast =	Daun
	buaya		0.099203	Lidah
	2.png	Insign Garges	Correlation =	Buaya
			0.97564	and the second second
			Energy =	
			0.52975	
		Hasil Segmentasi triage Uji.	Homogeneity =	
			0.97634	
39.	Daun lidah		Contrast =	Daun
	buaya	A	0.08174	Lidah
	3.png		Correlation =	Buaya
	3.7	Image Sample	0.98058	
		A A	Energy =	
		A A	0.30582	
		Ť	Homogeneity =	
		Hasi Segmentasi Image Uji	0.96282	
40.	Daun	MA	Contrast =	Daun
	mengkudu.		0.26723	Mengkudu
	png	- Image Serven	Correlation =	
			0.97572	
			Energy =	
		Head Segmenties Image US	0.14803	
			Homogeneity =	
	de .		0.91572	

41.	Daun		Contrast =	Daun
	mengkudu		0.16422	Mengkudu
	2.png	Image Sample	Correlation =	(C) 6 (W)
			0.98435	
			Energy =	
		4	0.19732	
		Masil Degmentate Image Liji	Homogeneity =	
			0.94044	
42.	Daun	4	Contrast =	Daun
	mengkudu	82	0.15646	Mengkudu
	3.png		Correlation =	190
		Inage Sample	0.98471	
		AD AD	Energy =	
			0.30808	
			Homogeneity =	
		Host Segmentasi Image Uji	0.94407	
43.	Daun	All A	Contrast =	Daun Mint
	mint.png		0.21042	
			Correlation =	
		Image Sample	0.97697	
			Energy =	
			0.36066	
		Hasi Segmentes Image Lis	Homogeneity =	
		and the	0.92553	
44.	Daun mint	dillo	Contrast =	Daun Mint
	2.png		0.16984	
			Correlation =	
		Image Sample	0.98061	
		dillo	Energy =	
			0.24525	
		7000	Homogeneity =	
		Hand Segmentas: Image Lig	0.93322	

45.	Daun mint		Contrast =	Daun Mint
	3.png		0.16794	
	(1000-00528)		Correlation =	
		Image Sample	0.98213	
			Energy =	
			0.22779	
			Homogeneity =	
		Hast Begmentasi Image Uj	0.93423	
46.	Daun		Contrast =	Daun
S-meth.	papaya.pn	34	0.10607	Papaya
	g		Correlation =	
	33	Image Saingle	0.98654	
		All	Energy =	
		* *	0.47369	
			Homogeneity =	
		Hasi Segmentasi Image Uj	0.96529	
47.	Papaya		Contrast =	Daun
	2.png	ALC: NO.	0.075398	Papaya
			Correlation =	
		Image Sample	0.98961	
		Mary No.	Energy =	
		*	0.42627	
			Homogeneity =	
		Hast Segmentasi Image Liji	0.97006	
48.	Papaya	- North Com	Contrast =	Daun
	3.png		0.27335	Papaya
		7/8	Correlation =	
		Image Sample	0.96442	
		***	Energy =	
		THE TAKE	0.52193	
		Hasil Segmentesi imaga Liji	Homogeneity =	
			0.94487	

49.	Daun	A	Contrast =	Daun
	salam.png		0.20244	Salam
		Y	Correlation =	
		mape Sample	0.97933	
			Energy =	
			0.175	
		Hauf Segmentasi Image Up	Homogeneity =	
			0.9274	
50.	Daun		Contrast =	Daun
	salam		0.23974	Salam
	2.png		Correlation =	
		mage Sample	0.97704	
			Energy =	
			0.21677	
		Hasil Degreettes! Ivege UE	Homogeneity =	
			0.90968	
51.	Daun		Contrast =	Daun
	salam		0.2407	Salam
	3.png		Correlation =	
	NO. 200	Image Sample	0.97469	
			Energy =	
			0.18464	
			Homogeneity =	
		Hast Segmentasi Image U)	0.91768	
52.	Daun	A186	Contrast =	Daun
	selada.png		0.094669	Selada
			Correlation =	
		Image Semple	0.97413	
			Energy =	
		W. 7.	0.27376	
		Hasi Segmentoni Image Lii	Homogeneity =	
		and the same to	0.95432	

53.	Daun		Contrast =	Daun
	selada		0.15415	Selada
	2.png		Correlation =	
		Image Sample	0.9652	
		- The state of the	Energy =	
		Mark .	0.23909	
		Head Degmentasi Image LB	Homogeneity =	
			0.92624	
54.	Daun	All Land	Contrast =	Daun
	selada		0.10306	Selada
	3.png		Correlation =	
	45-0705000	Image Somple	0.97233	
			Energy =	
		7 - A	0.23034	
		Hasi Septembil Image U)	Homogeneity =	
			0.95041	
55.	Daun		Contrast =	Daun
	sirsak.png	Sa	0.10306	Sirsak
			Correlation =	
		Image Sample	0.97233	
			Energy =	
			0.23034	
			Homogeneity =	
		Hasii Segmentasi image Uji	0.95041	
56.	Daun	SIA.	Contrast =	Daun
	sirsak	60	0.10306	Sirsak
	2.png		Correlation =	
		Imige Sample	0.97233	
			Enorgy -	
		The state of the s	Energy =	I
			0.23034	
		Head Segmention Image List		

57.	Daun		Contrast =	Daun
	sirsak		0.10306	Sirsak
	3.png	Image Sample	Correlation =	
			0.97233	
			Energy =	
			0.23034	
		Hasé Segmentasi Image U)	Homogeneity =	
			0.95041	
58.	Kangkung.		Contrast =	Daun
	png	A	0.069118	Kankung
		100	Correlation =	
		Image Sample	0.97768	
		A .	Energy =	
			0.74988	
		A.	Homogeneity =	
		Hast Segmentasi Image Uji	0.98178	
59.	Kangkung		Contrast =	Daun
	2.png		0.058456	Kangkung
			Correlation =	
		Image Sample	0.98841	
			/ Energy =	
			0.60437	
		P .	Homogeneity =	
		Hasi Segmentasi image U	0.97959	
60.	Kangkung		Contrast =	Daun
	3.png		0.066636	Kangkung
			Correlation =	
		Image Sample	0.9852	
			Energy =	
			0.45822	
			Homogeneity =	
			0.97164	

61.	Sawi.png	triage flample	Contrast = 0.11789 Correlation = 0.98224 Energy = 0.43813 Homogeneity = 0.95466	Daun Sawi
62.	Sawi 2.png	Image Sangke	Contrast = 0.077665 Correlation = 0.98654 Energy = 0.3925 Homogeneity = 0.96438	Daun Sawi
63.	Sawi 3.png	Image Sample Hasal Segmentes: Image	Contrast = 0.065273 Correlation = 0.98875 Energy = 0.34039 Homogeneity = 0.97033	Daun Sawi

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Setelah dilakukan pengimplementasian penentuan jenis daun sehat dengan metode K-Nearest Neighbor, maka dapat diambil beberapa kesimpulan sebagai berikut:

- Proses penentuan jenis daun sehat menggunakan metode K-Nearest Neighbor (KNN) dilakukan melalui empat tahapan utama, yaitu pemilihan data citra daun sehat sebagai data latih, ekstraksi ciri dari masing-masing sampel data latih, klasifikasi menggunakan metode KNN, dan menampilkan hasil klasifikasi berdasarkan data uji.
- 2. Metode K-Nearest Neighbor terbukti dapat diterapkan dengan baik dalam penentuan jenis daun sehat, dimana klasifikasi pada data uji menghasilkan akurasi 100% untuk nilai K=1 maupun K=3, menunjukkan keakuratan tinggi dalam mengenali jenis daun sehat tersebut.
- 3. Implementasi sistem penentuan jenis daun sehat dengan metode KNN menggunakan GUI MATLAB 2018a berjalan lancar pada sistem operasi Windows, dengan data latih sebanyak 61 citra dan data uji sebanyak 4 citra.
- 4. Pengujian dengan nilai K=1 pada metode KNN menghasilkan akurasi klasifikasi daun sehat sebesar 100%, menandakan bahwa parameter tersebut paling optimal untuk dataset yang digunakan dalam penelitian ini.

5.2 Saran

Berikut ini merupakan saran yang ditujukan untuk penelitian lebih lanjut tentang penentuan jenis daun sehat dengan metode K-Nearest Neighbor.

- Diharapkan untuk pengembangan lebih lanjut dari aplikasi ini dapat disempurnakan dengan tambang data yang lebih banyak dari jenis daun sehat lainnya
- 2. Pengembangan aplikasi ini dapat ditambahkan dengan mengkombinasikan metode lain untuk membandingkan dan memperoleh hasil kalisifikasi citra yang semakin tepat.

3. Selain dengan media komputer yang berbasis dekstop diharapkan juga apikasi ini dapat dikembangkan seperti berbasis android sehingga dapat digunakan pada aplikasi mobile atau smartphone atau juga berbasis website atau dengan tools lainnya.

DAFTAR PUSTAKA

- Afinda, A. M. (2024, 03 2). Dicoding. Retrieved from Dicoding: https://www.dicoding.com/blog/supervised-vs-unsupervised-learning-mana-yang-sesuai-untuk-data-kamu/
- Andrey Firmando, R. H. (2024). Klasifikasi Jenis Buah berdasarkan Citra menggunakan Metode Ekstraksi Ciri. *Jurnal Teknologi dan Sains Modern*, 36-48.
- Annisa, R. (2020). Tanaman. UNIKOM, 1.
- AWS. (2020, 07 01). *Amazon Web Service*. Retrieved from Amazon Web Service: https://aws.amazon.com/id/what-is/deep-learning/
- Dr. Arnita, S. M. (2022). COMPUTER VISION DAN PENGOLAHAN CITRA DIGITAL. *PUSTAKA AKSARA*, 3-86.
- Novianti Puspitasari, A. S. (2023). METODE K-NEAREST NEIGHBOR DAN FITUR WARNA UNTUK KLASIFIKASI DAUN SIRIH BERDASARKAN CITRA DIGITAL . *Jurnal PROSISKO*, 165.
- Rezkia, S. M. (2021, 02 18). *dqlab*. Retrieved from dqlab: https://dqlab.id/algoritma-supervised-vs-unsupervised-learning#:~:text=Convolutional%20Neural%20Networks%20(CNN)%20a dalah,dari%20gambar%20melalui%20berbagai%20filter.
- Rina. (2023, 07 30). *Algoritma K-Nearest Neighbor (KNN): Penjelasan dan Implementasi untuk Klasifikasi Kanker*. Retrieved from Medium: https://esairina.medium.com/algoritma-k-nearest-neighbor-knn-penjelasan-dan-implementasi-untuk-klasifikasi-kanker-ff9b7fbe0a4
- Rosida Pujiati, N. R. (2022). Identifikasi Citra Daun Tanaman Herbal Menggunakan Metode Convolutional Neural Network (CNN). *Journal of Informatics and Computer Science*, 351.
- Setiawan, R. (2021, 07 4). *Dicoding*. Retrieved from Dicoding: https://www.dicoding.com/blog/flowchart-adalah/
- Sutarno, R. F. (2017). Identifikasi Tanaman Buah Berdasarkan Fitur Bentuk, Warna dan Tekstur Daun Berbasis Pengolahan Citra dan Learning Vector Quantization(LVQ). *Computer Science and ICT*, 65.

- Tarigan, R. S., & F. A. (2024). Implementasi Penentuan Daun Sehat Menggunakan Metode K-Nearest Neighbor. *Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI)*, 1407.
- University, B. (2023, 07 1). *Binus University*. Retrieved from Binus University: https://binus.ac.id/malang/2023/07/pengolahan-citra-digital-konsep-danteknik/
- Wikipedia. (2025, Januari 22). *Wikipedia*. Retrieved from Wikipedia: https://id.wikipedia.org/wiki/Tanaman

Skripsi Nahidh Addini (Turnitin).pdf

	ALITY REPORT	n Addını (Türnitir	1).pu1	
	2% RITY INDEX	20% INTERNET SOURCES	9% PUBLICATIONS	7% STUDENT PAPERS
PRIMAR	Y SOURCES			
1	digilib.u Internet Sour	nimed.ac.id		4%
2	reposito	ory.uinsu.ac.id		1 %
3	reposito	ory.umsu.ac.id		1%
4	WWW.CO	ursehero.com		1%
5	docplay Internet Sour			1%
6	"Penger Fitur Wa Metode	a Fansyuri, Oke nalan Objek Bun arna dan Bentuk Morfologi dan N dan Informatika	ga dengan Eks K Menggunaka Naïve Bayes", J	n
7	reposito	ori.uin-alauddin.	ac.id	1%
8	stmik-til	me.ac.id		1 %
9	jurnal.st	tkippgritulungag	gung.ac.id	<1%
10		ed to Universita ra Utara	s Muhammad	iyah < 1 %

11	ejournal.medan.uph.edu Internet Source	<1%
12	repo.palcomtech.ac.id Internet Source	<1%
13	repository.umi.ac.id Internet Source	<1%
14	Irwan Adhi Prasetya, Fadli Sukandiarsyah, Novi Aryani Fitri, Safri Adam. "Klasifikasi kualitas buah jeruk menggunakan computer vision dengan arsitektur YOLO V8", Jurnal Pendidikan Informatika dan Sains, 2024	<1%
15	eprints.undip.ac.id Internet Source	<1%
16	repository.its.ac.id Internet Source	<1%
17	Submitted to Universitas Muhammadiyah Purwokerto Student Paper	<1%
18	e-journal.uajy.ac.id Internet Source	<1%
19	digilib.uinsby.ac.id Internet Source	<1%
20	123dok.com Internet Source	<1%
21	repository.teknokrat.ac.id Internet Source	<1%
22	repository.usd.ac.id Internet Source	<1%

23	Submitted to Universitas Putera Batam Student Paper	<1%
24	dspace.uii.ac.id Internet Source	<1%
25	jurnalunibi.unibi.ac.id Internet Source	<1%
26	www.scribd.com Internet Source	<1%
27	perpustakaan.ft.unram.ac.id Internet Source	<1%
28	iainbukittinggi.ac.id Internet Source	<1%
29	jurnal.untan.ac.id Internet Source	<1%
30	kc.umn.ac.id Internet Source	<1%
31	widuri.raharja.info Internet Source	<1%
32	digilib.uns.ac.id Internet Source	<1%
33	openlibrary.telkomuniversity.ac.id	<1%
34	Tursina Tursina, Hafiz Muhardi, Dian Aulia Sari. "Diagnosis Tahapan Pengguna Narkoba Menggunakan Metode K-Nearest Neighbor", Jurnal Edukasi dan Penelitian Informatika (JEPIN), 2020	<1%
35	eprints.ums.ac.id Internet Source	<1%

36	artikelpendidikan.id Internet Source	<1%
37	beritawarganet.com Internet Source	<1%
38	desintabioholic.wordpress.com Internet Source	<1%
39	pdfcoffee.com Internet Source	<1%
40	repository.usahid.ac.id Internet Source	<1%
41	www.sciencegate.app Internet Source	<1%
42	jurnal.polinema.ac.id Internet Source	<1%
43	repository.ibs.ac.id Internet Source	<1%
44	repository.upi.edu Internet Source	<1%
45	eprints.uad.ac.id Internet Source	<1%
46	eprints.ubhara.ac.id Internet Source	<1%
47	es.scribd.com Internet Source	<1%
48	repository.dinamika.ac.id Internet Source	<1%
49	repository.upiyptk.ac.id Internet Source	<1%

50	www.didaktorika.gr Internet Source	<1%
51	www.docstoc.com Internet Source	<1%
52	Lai-Hao Wang. "Determining Estragole (4- allylanisole) Vapor of Essential Oil Using Polymer Membranes, ATR-FTIR Spectroscopy, and QCM", Current Analytical Chemistry, 2017 Publication	<1%
53	begawe.unram.ac.id Internet Source	<1%
54	core.ac.uk Internet Source	<1%
55	repository.iainbengkulu.ac.id Internet Source	<1%
56	repository.uin-suska.ac.id Internet Source	<1%
57	repository.uksw.edu Internet Source	<1%
58	text-id.123dok.com Internet Source	<1%
59	Alfitriana Riska, Purnawansyah, Herdianti Darwis, Wistiani Astuti. "Studi Perbandingan Kombinasi GMI, HSV, KNN, dan CNN pada Klasifikasi Daun Herbal", The Indonesian Journal of Computer Science, 2023	<1%
60	Submitted to Higher Education Commission Pakistan Student Paper	<1%

61	Indrasari, Luthfiyah. "Pengaruh Intellectual Capital Terhadap Nilai Perusahaan Dengan Good Corporate Governance (GCG) Sebagai Variabel Moderating", Universitas Islam Sultan Agung (Indonesia), 2024 Publication	<1%
62	Submitted to UIN Sultan Syarif Kasim Riau Student Paper	<1%
63	blogs.itb.ac.id Internet Source	<1%
64	ejournal.itn.ac.id Internet Source	<1%
65	ejournal.uksw.edu Internet Source	<1%
66	ejournal.up45.ac.id Internet Source	<1%
67	esairina.medium.com Internet Source	<1%
68	journal.trunojoyo.ac.id Internet Source	<1%
69	jurnal.stts.edu Internet Source	<1%
70	litapdimas.kemenag.go.id	<1%
71	magisterpenjas.univpgri-palembang.ac.id	<1%
72	repository.ub.ac.id Internet Source	<1%
73	doku.pub Internet Source	<1%

74	e-jurnal.lppmunsera.org		<1%
75	ejurnal.teknokrat.ac.id Internet Source		<1%
76	eprints.uny.ac.id Internet Source		<1%
77	Abd Rahmat Karim Haba "Sistem Cerdas dalam Me Kematangan Buah Naga Tekstur dengan Metode I ILKOM Jurnal Ilmiah, 2020 Publication	engidentifika Berdasarkan K-Nearest Ne	si Fitur
78	pps.stieamkop.ac.id Internet Source		<1%
79	repository.radenintan.ac	.id	<1%
	le quotes On	Exclude matches	Off

Exclude bibliography On