TUGAS AKHIR

ANALISIS DAMPAK DARI KEBERADAAN BALI KADO SUPERMARKET TERHADAP KINERJA RUAS JALAN MENTENG RAYA KOTA MEDAN

(STUDI KASUS)

Diajukan Untuk Memenuhi Syarat-Syarat Memperoleh Gelar Sarjana Teknik Sipil Pada Fakultas Teknik Universitas Muhammadiyah Sumatera Utara

AHMAD PAHRU ROZI HSB

1807210152

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA MEDAN

2025

LEMBAR PERSETUJUAN

Tugas Akhir ini diajukan oleh

Nama

: Ahmad Pahru Rozi Hsb

Npm

1807210152

Program Studi

: Teknik Sipil

Judul Skripsi

: Analisi Dampak Dari Keberadaan Bali Kado Supermarket

Terhadap Kinerja Ruas Jalan Menteng Raya Kota Medan

Bidang Ilmu

: Tranbsportasi

Telah berhasil dipertahakan di hadapan tim penguji dan di terima sebagai salah satu syarat yang diperkulan untuk memperoleh gelar sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik Universitas Muhammadiyah Sumatera Utara.

Medan,02 September 2025

Dosen Pembimbing

Irma Dewi S.T., M.Si

LEMBAR PENGESAHAN

Tugas Akhir ini diajukan oleh:

Nama

: Ahmad Pahru Rozi Hsb

Npm

1807210152

Program Studi : Analisi Dampak Dari Keberadaan Bali Kado Supermarket

Terhadap Kinerja Ruas Jalan Menteng Raya Kota Medan

Bidang Ilmu

: Transportasi

Telah berhasil dipertahankan di hadapan Tim Penguji dan di terima sebagaisalah satu syarat yang diperlukan untuk memperoleh gelar Sarjana Teknik padaProgram Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, 02 September 2025

Mengetahui dan menyetujui:

Dosen Pembimbing

Irma Dewi S.T., M.Si

Dosen Pembanding I

Dosen Pembanding II

Ir.Sri Asfiati M.T.

Dr. Fahrizal Zulkarnain

Program Studi Tenik Sipil Ketua Prodi

Josef Hadipramana

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Saya yang bertanda tangan dibawah ini:

Nama . : Ahmad Pahru Rozy Hsb

Tempat/Tanggal Lahir : Medan, 20 April 2000

Npm 1807210152

Fakultas : Teknik

Program Studi : Teknik Sipil

Menyatakan dengan sesungguhnya dan sejujurnya, bahwa Laporan Tugas Akhir saya yang berjudul "Analisis Dampak Keberadaan Bali Kado Supermarket Terhadap Kinerja Ruas Jalan Menteng Raya Kota Medan".

Bukan merupakan plagiralisme, pencurian hasil karya milik orang lain,hasil kerja orsng lain untuk kepentingan saya karena hubungan material dan material, ataupun segala kemungkinan lain, yang pada hakekatnya merupakan bukan merupakan hasil Tugas Akhir saya secara orisinil dan otentik.

Bila kemudian hari didiuga ada ketidaksesuain antara fakta dengan kenyataan ini, saya bersedia diproses oleh Tim Fakultas yang dibentuk untuk melakukan verifikasi, dengan sanksi terberat pembatalan kelulusan/kerjasama saya.

Demikian surat pernyataan ini saya dengan kesadaran sendiri dan tidak atas tekanan ataupun paksaan dari bpihak manapun demi menegakkan integritas akademik di Program Studi Teknik Sipil, Fakultas Telnik, Universitas Muhammadiyah Sumatera Utara.

Medan, 02 September 2025

Saya yang Menyatakan

ABSTRAK

ANALISIS DAMPAK DARI KEBERADAAN BALI KADO SUPERMARKET TERHADAP KINERJA RUAS JALAN MENTENG RAYA KOTA MEDAN

AHMAD PAHRU ROZI HSB 1807210152 IRMA DEWI ST.M,Si

Pada saat ini kemacetan sering kali timbul di kota-kota besar di negara kita karena semakin banyaknya jumlah kendaraan yang lewat sehingga mempengaruhi dari kapasitas jalan yang direncanakan sebelumnya semakin berkembang nya transportasi semakin banyak warga kota medan yang bepergian dengan menggunakan transportasi jelas sangat berpengaruh pada tingkat pelayanan jalan. Adapun penelitian ini dilakukan Untuk mengetahui kapasitas jalan menteng raya karena adanya bali kado supermarket.Oleh karena itu perlu dilakukan perhitungan untuk mengetahui kinerja ruas jalan tersebut. Pada jalan eksisting Jalan Menteng Raya lebar jalur lalu lintas 6 m terdiri dari 2 lajur 2 arah dan lebar bahu jalan 1 m. Dari hasil Penelitian pada Jalan Menteng Raya kapasitas dasar 2800 C dan setelah di lakukan penelitian di dapat derajat kejenuhan adalah 0,55 hambatan samping sebesar 141,2 (R) tingkat pelayanan jalan (C) Arus stabil tetapi pergerakan kendaraan dikendalikan oleh volume lalu lintas yang lebih tinggi dengan kecepatan sekurang-kurangnya 60(enam puluh) kilometer per jamKepadatan lalu lintas sedang karena hambatan samping internal lalu lintas meningkat Pengemudi memiliki keterbatasan untuk memilih kecepatan, pindah lajur atau mendahului.

Kata Kunci: Hambatan Samping, derajat kejenuhan, tingkat pelayanan jalan

ABSTRAK

ANALYSIS OF THE IMPACT OF THE EXISTENCE OF BALI KADO SUPERMARKET ON THE PERFORMANCE OF THE MENTENG RAYA ROAD SECTION IN MEDAN CITY

AHMAD PAHRU ROZI HSB 1807210152 IRMA DEWI ST.M.**Si**

At this time, congestion often occurs in big cities in our country because of the increasing number of passing vehicles, thus affecting the previously planned road capacity. The increasing development of transportation, the more Medan city residents who travel using transportation, clearly has a big impact on the level of road service. This research was conducted to determine the capacity of Menteng Raya Road due to the presence of Bali Kado supermarket. Therefore, calculations are needed to determine the performance of the road section. On the existing road, Menteng Raya Road, the traffic lane width is 6 m, consisting of 2 lanes, 2 directions, and a shoulder width of 1 m. From the results of the study on Menteng Raya Road, the basic capacity is 2800 C and after the study, the degree of saturation is 0.55, side barriers are 141.2 (R) road service level (C) The flow is stable but vehicle movement is controlled by a higher traffic volume with a speed of at least 60 (sixty) kilometers per hour. Moderate traffic density due to increased internal side barriers. Drivers have limitations in choosing speed, changing lanes or overtaking.

Keywords: Side Obstacles, degree of saturation, level of road service

KATA PENGANTAR

Dengan nama Allah Yang Maha Pengasih lagi Maha Penyayang. Segala puji dan syukur penulis ucapkan kehadirat Allah SWT yang telah memberikan karunia dan nikmat yang tiada terkira. Salah satu dari tersebut adalah keberhasilan penulis dalam menyelesaikan laporan Tugas Akhir ini yang berjudul "Analisi Dampak Dari Keberadaan Bali Kado Supermarket Terhadap Kinerja Ruas Jalan Menteng Raya Kota Medan". sebagai syarat untuk meraih gelar akademik Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara (UMSU), Medan.

Banyak pihak telah membantu dalam meyelesaikan laporan Tugas Akhir ini, untuk itu penulis menghaturkan rasa terima kasih yang tulus dan dalam kepada :

- 1. Ibu Irma Dewi S.T.,M.Si selaku Dosen Pembimbing I yang telah banyak membantu dan memberi saran demi kelancaran proses penulis dalam menyelesaikan Tugas Akhir ini.
- Ibu Ir. Sri Asfiati M.T.selaku Dosen Pembanding I yang telah banyak membantu dan member saran demi kelancaran proses penulis dalam menyelesaikan Tugas Akhir ini.
- 3. Bapak Dr. Fahrizal Zulkarnain selaku Dosen Pembanding II dan selaku sekretaris program studi teknik sipil yang telah banyak memberikan koreksi dan masukankepada penulis dalam menyelesaikan Tugas Akhir ini.
- 4. Bapak Dr Josef Hadipramana selaku ketua program studi teknik sipil Universitas Muhammadiyah Sumatera Utara.
- 5. Ibu Rizki Efrida, S.T., M.T selaku sekretaris program studi teknik sipil Universitas Muhammadiyah Sumatera Utara.
- 6. Bapak Munawar Alfansury, S.T., M.Sc., selaku Dekan Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara
- 7. Seluruh Bapak/Ibu Dosen di Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara yang telah banyak memberikan ilmu ketekniksipilan kepada penulis.

- 8. Bapak/Ibu Staf Administrasi di Biro Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- 9. Teristimewa orang tua penulis terima kasih untuk semua dukungan serta kasih
- 10. Rekan-rekan seperjuangan Teknik Sipil beserta seluruh mahasiswa/iTeknik.

Laporan Tugas Akhir ini tentunya masih jauh dari kesempurnaan, untuk itu penulis berharap kritik dan masukan yang konstruktif untuk menjadi bahan pembelajaran berkesinambungan penulis di masa depan. Semoga laporan Tugas Akhir ini dapat bermanfaat bagi dunia konstruksi teknik sipil.

Medan, 02 September 2025

Ahmad Pahru Rozi Hsb

DAFTAR ISI

TUGAS AKHIR	i
LEMBAR PERSETUJUAN	i
LEMBAR PENGESAHAN	ii
SURAT PERNYATAAN KEASLIAN TUGAS AKHIR	iii
ABSTRAK	iv
ABSTRAK	V
DAFTAR ISI	viii
DAFTAR TABEL	xi
DAFTAR GAMBAR	xii
DAFTAR NOTASI	xiii
BAB I PENDAHULUAN atar Belakang	14 14
10.1.Rumusan Masalah	15
1.3 Ruang Lingkup	15
1.4 Tujuan Penelitian	16
1.6 Sistematika Penulisan	16
BAB 2 TINJAUAN PUSTAKA	18
2.1 Transportasi	18
2.2 Pengertian Jalan	18
2.3 Jalan Perkotaan	18
2.4 Pengertian dan Klasifikasi Jalan	19
2.5 Hambatan Samping	22
2.6 Karakteristik Arus Lalu Lintas	23
2.7 Perhitungan Kapasitas Ruas Jalan Perkotaan	24
2.8 Data Masukan	24
2.8.1 Kondisi Geometrik	24

2.8.2 Volume	25
2.8.3 Kondisi Lalu Lintas	26
2.8.4 Kecepatan Arus Bebas (VB)2.8.5 Kecepatan Arus Bebas (VBD)	27 27
2.8.6 Kecepatan Arus Bebas Akibat Jalan (VBL)	28
2.8.7 Faktor Penyesuaian Kecepatan Arus Bebas Untuk Hambatan Sa (FVBHS)	amping 29
2.8.8 Faktor Penyesuaian Kecepatan Arus Bebas Untuk Ukuran (FVBUK)	Kota 30
2.8.9 Penentuan Kecepatan Arus Bebas (VB)	30
2.8.10 Perhitungan Kapasitas Ruas Jalan	31
2.9 Kapasitas	31
2.9.1 Kapasitas Dasar (Co)	32
2.9.2 Faktor Penyesuaian (FCLJ)	32
2.9.3 Faktor penyesuaian Terkait Pemisah Arah (FCPA)	33
Besarnya faktor penyesuaian pada jalan tanpa menggunakan pe	emisah
tergantung kepada besarnya split kedua arah seperti tabel berikut.	33
2.9.4 Faktor Penyesuaian Terkait Hambatan Samping (FCHS)	33
2.9.5 Faktor Penyesuaian Terkait Ukuran Kota	34
2.9.6 Derajat Kejenuhan	35
2.9.7 Level Of Service (LOS)/ Tingkat Pelayanan Jalan	35
2.10 Karakteristik Arus Lalu Lintas	37
2.11 Kondisi Geometri	37
BAB 3 METODE PENELITIAN 3.1 Bagan Alir	39 39
3.2 Lokasi Penelitian	40
3.2 Waktu Penelitian	40

3.3 Alat Yang Digunakan	40
3.4 Metode Penelitian	41
3.5 Pengumpulan Data	41
3.5.1 Pengumpulan Data Premier	41
3.5.2 Pengambilan Data Sekunder	44
3.6 Tahap Analisis Data	45
BAB 4 HASIL DAN PEMBAHASAN	47
4.1. Analisis Volume Ruas Lalu lintas	47
4.2 Kondisi Geometrik	47
4.3 Kondisi Lalu Lintas	47
4.4 Hambatan Samping	49
4.5. Penentuan Kecepatan arus Bebas (Vb)	50
4.6 Perhitungan Kapasitas Ruas Jalan	50
4.7 Derajat Kejenuhan (DJ)	50
4.8 Tingkat Pelayanan	51
BAB 5 KESIMPULAN DAN SARAN	52
5.1 Kesimpulan	52
5.2 Saran	52

DAFTAR TABEL

Tabel 2.1 Klasifikasi fungsi dan syarat jalan	23
Tabel 2.2 Fungsi dan Kapasitas Moda Angkatan	24
Tabel 2.3 Kriteria Hambatan Samping	25
Tabel 2.4 Pembobotan Hambatan Samping	25
Tabel 2.5 Ekivalen Mobil Penumpang untuk jalan terbagi dua dan satu arah	28
Tabel 2.6 Ekivalen Mobil Penumpang untuk jalan tak Terbagi	29
Tabel 2.7 Kecepatan arus bebas dasar (VBD) jalan perkotaan	30
Tabel 2.8 Nilai penyesuaian kecepatan arus bebas dasar akibat lebar jalur lalu	lintas
efektif (VBL)	30
Tabel 2.9 Nilai penyesuaian kecepatan arus bebas dasar akibat lebar jalur lalu efektif (VBL) (PKJI, 2023)	ı lintas 30
Tabel 2.10 Faktor penyesuaian untuk pengaruh hambatan samping dan leba	r bahu
(FVBHS) pada kecepatan arus bebas kendaraan ringan untuk	jalan
perkotaan dengan bahu	31
Tabel 2.11 Faktor Penyesuaian arus bebas akibat hambatan samping untuk	c jalan
berkereb dengan jarak kereb ke penghalang terdekat Lкр	31
Tabel 2.12 Faktor penyesuaian untuk pengaruh ukuran kota pada kecepata	n arus
bebas kendaraan ringan FVвик	32
Tabel 2.13 kapasitas dasar (Co)	34
Tabel 2.14 Faktor penyesuaian kapasitas akibat pengaruh lebar jalur lalu	lintas
(FC_{LJ})	35
Tabel 2.15 Faktor penyesuaian Terkait Pemisah Arah	35
Tabel 2.16 Faktor penyesuasian akibat hambatan samping	36
Tabel 2.17 Faktor penyesuain akibat ukuran kota	36
Tabel 2.18 Pengkategorian nilai VCR	37
Tabel 2.19 Karakteristik tingkat pelayanan (LOS) berdasarkan Q/C atau DJ p	pada
segmen	38
Tabel 3.1 Volume Kendaraan	43
Tabel 3.2 Hambatan samping	44

DAFTAR GAMBAR

Gambar 2.1: Tipikal jalan raya yang berbahu dilengkapi median (PKJI, 2023)	25
Gambar 3.2: Lokasi Penelitian	28

DAFTAR NOTASI

C : Kapasitas segmen jalan yang sedang diamati

C₀ : Kapasitas dasar kondisi segmen jalan yang ideal (Smp/jam) D

Panjang segmen (meter)

D_J : Derajat kejenuhan

EMP : Ekivalensi mobil penumpang

FC_{LJ}: Faktor koreksi kapasitas akibat perbedaan lebar lajur atau jalur lalu lintas

FC_{PA}: Faktor koreksi kapasitas akibat Pemisahan Arah lalu lintas (PA) FC_{HS}

: Faktor koreksi kapasitas akibat kondisi KHS

FC_{UK}: Faktor koreksi kapasitas akibat ukuran kota yang berbeda dengan

SM : Sepeda motor

SMP : Satuan Mobil Penumpang

T : Tundaan

V_B : Kecepatan arus bebas

 V_{BD} : Kecepatan arus bebas dasar

V_{BL}: kecepatan koreksi terhadap kecepatan arus bebas akibat akibat perbedaan

lebar lajur efektif

 FV_{BHS} : Faktor koreksi kecepatan bebas akibat hambatan samping FV_{BUK} :

Koreksi kecepatan arus bebas akibat ukuran kota

BABI

PENDAHULUAN

1.1. Latar Belakang

Medan merupakan Kota yang terletak di Provinsi Sumatera Utara yang memiliki andil dalam jalur transportasi di kota medan. Meningkatnya jumlah penduduk dan tingginya tingkat pertumbuhan jumlah kendaraan akan meningkatkan pergerakan serta jumlah penggunaan prasarana transportasi pada suatu daerah. Transportasi merupakan kebutuhan turunan *derived demand* akibat adanya aktivitas ekonomi, sosial, budaya dan sebagainya. Dalam kerangka makro ekonomi, transportasi merupakan tulang punggung perekonomian baik di tingkat nasional, regional maupun lokal, untuk wilayah perkotaan maupun pedesaan. Kota Medan sebagai ibu kota provinsi Sumatera Utara dengan potensi yang cukup besar baik dibidang sektor pariwisata maupun industri memberikan nilai lebih terhadap berbagai peluang bisnis dan investasi (Rivki et al., 2016)

Jalan merupakan prasarana tranportasi yang memiliki dua fungsi dasar yaitu untuk menggerakkan volume lalu lintas dan menyediakan akses bagi lahan di sekitarnya. Sehubungan dengan fungsi jalan di atas maka jalan dituntut agar harus lancar dan juga harus memberikan kemudahan untuk penetrasi kedalam suatu lahan atau daerah. Suatu arus lalu lintas dapat dikatakan lancar apabila arus lalu lintas tersebut dapat melewati suatu ruas jalan tanpa mengalami hambatan atau gangguan dari jalan atau arah lain (Rivki et al., 2016)

Menyebabkan pergerakan yang begitu besar yang akibatnya berpengaruh terhadap volume lalu lintas. Medan merupakan salah satu daerah pemerintahan kota di Indonesia yang merupakan bagian dari Provinsi Sumatera Utara sekaligus merupakan Ibukota Provinsi.luas Kota Medan 265.10 km 2, terdiri dari 2.460.858 jiwa penduduk termasuk kota besar dalam kelas ukuran kota. Semakin pesatnya perkembangan suatu wilayah maka akan diikuti pula dengan meningkatnya volume lalu lintas yang terjadi di kota Medan. Penambahan volume lalu lintas jalan akan mengakibatkan kemacetan lalu lintas pada ruas jalan Menteng raya. Hal ini sering

diakibatkan oleh perilaku manusia yang kurang mematuhi rambu-rambu lalu lintas. Hal lain yang mempengaruhi kemacetan lalu lintas disebabkan pula dengan adanya pergerakan kendaraan yang keluar masuk di Bali Kado Supermarket. Keadaan tersebut masih pula diperparah dengan adanya parkir dibadan jalan dan adanya mobil dan ojek online yang menunggu penumpang dibadan jalan dan juga pedagang kaki lima yang berjualan di pinggir jalan. Dampak tersebut dapat meningkatnya kepadatan lalu lintas dan menurunnya kecepatan dan menimbulkan penumpukan kendaraan pada titik tertentu. Hal ini disebabkan karena adanya ketidak seimbangan antara volume lalu lintas dengan kapasitas jalan yang ada dan pada akhirnya akan menimbulkan masalah kemacetan. Maka dari latar belakang inilah, penulis ingin mengangkat masalah ini dalam tugas akhir dengan judul "(Analisi Dampak Dari Keberadaan Bali Kado Supermarket Terhadap Kinerja Ruas Jalan Menteng Raya Kota Medan)".

1.2. Rumusan Masalah

Berdasarkan latar belakang yang terlah diuraikan, maka masalah yang diangkat dalam penelitian ini adalah:

- 1. Bagaimanakah Hambatan Samping ruas Jalan Menteng Raya Kota Medan?
- 2. Bagaimanakah Kapasitas pada ruas Jalan Menteng raya Kota Medan, akibat adanya Bali Kado Supermarket ?

1.3 Ruang Lingkup

Untuk menghindari penelitian yang terlalu luas dan terbatasnya waktu, maka ruang lingkup penelitian ini menitikberatkan pada beberapa hal sebagai berikut :

- Lokasi studi kasus dipilih ruas Jalan Setia budi di depan Bali Kado Supermarket.
- 2. Jenis kendaraan yang ditinjau adalah semua jenis kendaraan yang melintasi jalan Menteng Raya Kota Medan.
- 3. Metode perhitungan menggunakan pedoman kapasitas jalan Indonesia 2023 (PKJI'2023).

1.4 Tujuan Penelitian

Adapun tujuan dari penelitian ini sebagai berikut:

- 1. Mengetahui Hambatan Samping ruas Jalan Menteng Raya Kota Medan.
- Mengetahui Kapasitas pada ruas Jalan Menteng Raya Kota Medan, akibat adanya Bali Kado Supermarket.

1.5. Manfaat Penelitian

Adapun manfaat dari studi yang dilaksakan antara lain:

- 1. Meningkatkan pengetahuan dan pemahaman di bidang perencanaan dan pemodelan transportasi terutama yang berkaitan dengan lalu lintas.
- 2. Sebagai bahan pertimbangan dalam perbaikan dan perencanaan transportasi di masa yang akan datang.
- 3. Sebagai bahan kajian dan masukan untuk penelitian selanjutnya.

1.6 Sistematika Penulisan

Penulisan Tugas Akhir ini disesuaikan dengan sistematika yang telah ditetapkan sebelumnya agar lebih mudah memahami isinya. Sistematika penulisan ini memuat hal-hal sebagai berikut.

BAB.1 PENDAHULUAN

Bab ini berisikan pendahuluan yang menguraikan tentang latar belakang, rumusan masalah, ruang lingkup, tujuan penelitian, dan sisitematika penulisan.

BAB.2 TINJAUAN PUSTAKA

Merupakan bab yang menguraikan uraian dari beberapa teori yang diambil dari berbagai literatur yang relevan dari berbagai sumber bacaan yang mendukung analisa permasalahan yang berkaitan dengan Tugas Akhir ini.

BAB.3 METODE PENULISAN

Dalam bab ini akan dijelaskan mengenai alur penelitian mulai dari identifikasi masalah, studi literatur, penyusunan kuesioner, tempat pengambilan data penelitian, metodologi survei, pengambilan sampel dan pengolahan data.

BAB.4 HASIL DAN PEMBAHASAN

Bab ini membahas mengenai hasil dan pembahasan dari data yang telah dianalisa dengan menggunakan model dan teknik pengolahan data yang telah ditentukan. Kemudian analisis sensitifitas terhadap atribut yang diteliti.

BAB.5 KESIMPULAN DAN SARAN

Merupakan bab yang mengemukakan kesimpulan dari metode-metode analisa yang didapatkan. Serta memberikan saran-saran yang diperlukan.

BAB 2

TINJAUAN PUSTAKA

2.1 Transportasi

Pengertian transportasi yang dikemukakan oleh (Zurkiyah & Asfiati, 2021) diartikan sebagai pemindahan barang dan manusia dari tempat asal ke tempat tujuan. Sehingga dengan kegiatan tersebut maka terdapat tiga hal yaitu adanya muatan yang diangkut, tersedianya kendaraan sebagai alat angkut, dan terdapatnya jalan yang dapat dilalui. Proses pemindahan dari gerakan tempat asal, dimana kegiatan pengangkutan dimulai dan ke tempat tujuan dimana kegiatan diakhiri. Untuk itu dengan adanya pemindahan barang dan manusia tersebut, maka transportasi merupakan salah satu sektor yang dapat menunjang kegiatan ekonomi (the promoting sector) dan pemberi jasa (the servicing sector) bagi perkembangan ekonomi.

2.2 Pengertian Jalan

Jalan merupakan prasarana dalam mendukung laju perekonomian serta berperan sangat besar dalam kemajuan dan perkembangan suatu daerah. Indonesia sebagai salah satu negara berkembang sangat membutuhkan kualitas dan kuantitas jalan dalam rangka memenuhi kebutuhan masyarakat untuk melakukan berbagai jenis kegiatan perekonomian, baik itu aksesibilitas maupun perpindahan barang dan jasa (Udiana I., et.al., 2014). Menurut Undang-Undang no 22 tahun 2009, jalan adalah seluruh bagian jalan, termasuk bangunan pelengkap dan perlengkapannya yang diperuntukkan bagi Lalu Lintas umum, yang berada pada permukaan tanah, di atas permukaan tanah, di bawah permukaan tanah dan/atau air, serta di atas permukaan air, kecuali jalan rel dan jalan kabel.

2.3 Jalan Perkotaan

Ruas jalan yang didefinisikan sebagai jalan perkotaan adalah sepenggal jalan dengan panjang jalan tertentu yang ditetapkan oleh penyelenggara jalan sebagai

penggalan jalan yang harus dikelola oleh manajer jalan. Jalan yang mempunyai perkembangan permanen dan menerus di sepanjang atau hampir seluruh segmen jalan, minimal pada satu sisinya, berupa pengembangan koridor,(Udiana I., et.al., 2014) berada dalam atau dekat pusat perkotaan yang berpenduduk lebih dari 100.000 jiwa, atau dalam daerah perkotaan dengan penduduk kurang dari 100.000 jiwa tetapi mempunyai perkembangan di sisi jalannya yang permanen dan menerus. Ada beberapa tipe jalan untuk jalan perkotaan yang digunakan dalam (PKJI, 2023), antara lain

- 1. Jalan sedang tipe 2/2TT;
- 2. Jalan raya tipe 4/2T;
- 3. Jalan raya tipe 6/2T;

2.4 Pengertian dan Klasifikasi Jalan

Klasifikasi dan pengelompokkan jalan ada beberapa, yaitu berdasarkan statusnya, berdasarkan wewenang pembinaannya, fungsinya, dan kelas jalan. Pengelompokan jalan menurut wewenang pembinaan dalam UU No. 22 Tahun 2009 (Peraturan Presiden, 2009):

1. Jalan Nasional

Merupakan jalan umum dengan pembinaan yang di lakukan oleh Menteri.

2. Jalan Daerah

Yang termasuk dalam jalan daerah, yaitu : jalan propinsi, jalan kotamadya dan jalan kabupaten. Jalan ini pembinaannya dilakukan oleh pemerintah daerah.

3. Jalan Khusus

Jalan bukan untuk umum yang pembinaannya dilakukan oleh pemilik jalan seperti, instansi, badan hukum dan perorangan.

Wewenang yang dimaksud meliputi wewenang kegiatan pembinaan jalan dan kegiatan pengadaan. Kegiatan pembinaan jalan meliputi penyusunan rencana umum jangka panjang, penyusunan rencana jangka menengah, penyusunan program, pengadaan, dan pemeliharaan. Kegiatan pengadaan meliputi perencanaan teknik, pembangunan, penerimaan, penyerahan, dan pengambil- alihan.

Klasifikasi jalan menurut statusnya dalam UU No. 38 Tahun 2004 (Peraturan

Presiden, 2004):

- Jalan nasional merupakan jalan arteri dan jalan kolektor dalam sistem jaringan jalan primer yang menghubungkan antar ibukota propinsi, dan jalan strategis nasional, serta jalan tol.
- Jalan provinsi merupakan jalan kolektor dalam sistem jaringan jalan primer yang menghubungkan ibukota propinsi dengan ibukota kabupaten/kota, atau antar ibukota kabupaten/kota, dan jalan strategis propinsi.
- 3. Jalan Kabupaten merupakan jalan lokal dalam sistem jaringan jalan primeryang tidak termasuk jalan nasional dan jalan provinsi yang menghubungkan ibukota kabupaten dengan ibukota kecamatan, antar ibukota kecamatan, ibukota kabupaten dengan pusat kegiatan lokal, antar pusat kegiatan lokal, serta jalan umum dalam sistem jaringan jalan sekunder dalam wilayah kabupaten dan jalan strategis kabupaten.
- 4. Jalan kota adalah jalan umum dalam sistem jaringan jalan sekunder yangmenghubungkan antar pusat pelayanan dalam kota, menghubungkan pusat pelayanan dengan persil, menghubungkan antar persil, serta menghubungkan antar pusat permukiman yang berada dalam kota.
- 5. Jalan desa merupakan jalan umum yang menghubungkan kawasan dan/atau antar permukiman dalam desa, serta jalan

lingkungan.Dalam UU No. 22/2009 (Peraturan Presiden, 2009), sistem jaringan jalan dengan peranan pelayanan jasa distribusi untuk pengembangan semua wilayah di tingkat nasional dengan semua simpul jasa distribusi yang kemudian berwujud kota, membentuk sistem jaringan jalan primer. Sedangkan, sistem jaringan jalan dengan peranan pelayanan jasa distribusi untuk masyarakat di dalam kota membentuk sistem jaringan jalan sekunder (Reskyanto, 2017).

Berdasarkan klasifikasi fungsinya menurut Undang-Undang Nomor 22 Tahun 2009 (Peraturan Presiden, 2009) dan Undang-Undang Nomor 38 Tahun 2004 (Peraturan Presiden, 2004) dikelompokkan kedalam jalan arteri, jalan kolektor, jalan lokal, dan jalan lingkungan.

 Jalan Arteri, yaitu jalan yang melayani angkutan umum dengan ciri-ciri perjalanan jarak jauh, kecepatan rata-rata tinggi dan jumlah jalan masuk dibatasi secara efisien.

- 2. Jalan Kolektor, yaitu jalan yang melayani angkutan pengumpulan dan pembagian dengan ciri-ciri merupakan perjalanan jarak sedang, kecepatan ratarata sedang dan jumlah jalan masuk dibatasi.
- 3. Jalan lokal, yaitu jalan yang melayani angkutan setempat dengan ciri-ciri perjalanan jarak dekat, kecepatan rata-rata rendah dengan jumlah jalan masuk tidak dibatasi.
- 4. Jalan lingkungan, yaitu jalan umum yang berfungsi melayani angkutan lingkungan dengan ciri perjalanan jarak dekat, dengan kecepatan rata-rata rendah.

Tabel 2.1:Klasifikasi fungsi dan syarat Jalan (Kristiantoro, 2005)

	Berdasarkan				
No	PP No.43/1993	PP No.26/1985			
1.	Kelas I, Arteri, MST > 10	Arteri Primer	Arteri Primer		
	ton	Kecepatan Rencana >=	Kolektor Primer		
	Kendaraan 2,50 x 18,00 m	60 km/jam	Lokal Primer		
		Lebar Perkerasan >= 8m			
2.	Kelas II, Arteri, MST = 10	Kolektor Primer	Arteri Sekunder		
	ton	Kecepatan Rencana >=	Kolektor		
	Kendaraan 2,50 x 18,00 m	40 km/jam	Sekunder		
		Lebar Perkerasan >= 7m	Lokal Sekunder		
3.	Kelas IIIa,	Lokal Primer	Jalan Nasional		
	Arteri/Kolektor, $MST = 8$	Kecepatan Rencana >=			
	ton	20 km/jam			
	Kendaraan 2,50 x 18,00 m	Lebar Perkerasan >= 6m			
4.	Kelas IIIb, Kolektor, MST	Arteri Sekunder	Jalan Propinsi		
	= 8 ton	Kecepatan Rencana >=			
	Kendaraan 2,50 x 18,00 m				
		Lebar Perkerasan >= 8m			
5.	Kelas IIIc, Kolektor, MST	Kolektor Sekunder	Jalan Kabupaten		
	= 8 ton	Kecepatan Rencana >=			
	Kendaraan 2,10 x 18,00 m	20 km/jam			
		Lebar Perkerasan >= 7m			
6.		Lokal Sekunder	Jalan Desa		
		Kecepatan Rencana >=			
		10 km/jam			
		Lebar Perkerasan >= 5m			

Jalan arteri merupakan jalan utama, sedangkan jalan kolektor dan jalan lokal adalah jalan minor. Klasifikasi jalan menurut PP Nomor 43 tahun 1993 tentang prasarana jalan dan lalu lintas dapat dilihat pada tabel 2.2.

Tabel 2 2:Fungsi Kelas dan Kapasitas Moda Angkutan (Kristiantoro, 2005)

	Kelas	Data Kendaraan			
Fungsi Jalan	Jalan	Lebar (mm)	Lebar (mm) Panjang (mm)		
				Terberat (ton)	
Arteri	I	2500	18.000	> 10	
Arteri	II	2500	18.000	10	
Arteri/Kolektor	IIA	2500	18.000	8	
Kolektor	IIIB	2500	12.000	8	
Lokal	IIIC	2100	9.000	8	

2.5 Hambatan Samping

Menurut PKJI 2014 (Hidayat, 2020), hamnbatan samping yaitu aktivitas disamping jalan yang dapat menimbulkan konfilk dan sangat berpengaruh terhadapap pergerakan dari lalu lintas tersebut serta dapat menurunkan fungsi dari kinerja jalan, adapun tipe hambatan samping terbagi sebagai berikut;

- 1. Pejalan kaki dan penyebrangan jalan.
- 2. Jumlah kendaraan berhenti dan parkir
- 3. Jumlah kendaraan bermotor yang masuk dan keluar dari lahan samping jalan.
- 4. Arus kendaraan lambat,yaitu arus total(kend/jam) sepeda,becak traktor dan sebagainya.

Menurut PKJI 2023, hambatan samping adalah kegiatan di samping (sisi jalan) yang berdampak terhadap kinerja lalu lintas. Aktifitas pada sisi jalan sering menimbulkan konflik yang berpengaruh terhadap lalu lintas. terutama pada kapasitas jalan dan kecepatan lalu lintas jalan perkotaan.

Tabel 2 3: Kriteria hambatan samping (PKJI 2023)

Kelas hambatan	Nilai frekuensi	Ciri – ciri khusus	
samping	kejadian (kedua sisi)		
	dikali bobot		
Sangat rendah,	< 100	Daerah pemukiman,tersedia jalan	
SR		lingmkuingan (Frotage road)	
Rendah, R	100 - 299	Daerah pemukiman, ada beberapa	
		angkutan umum (angkot)	
Sedang, S	300 - 499	Daerah industri, ada beberapa toko	
		di sepanjang sisi jalan	
Tinggi, T	500 - 899	Daerah komersisal, ada aktifitas sisi	
		jalan yang tinggi	
Sangat tinggi, ST	> 900	Daerah komersial, ada aktifitas	
		pasar sisi jalan	

Tabel 2 4: Pembobotan hambatan samping (PKJI 2023)

NO	Jenis hambatan utama samping utama	Bobot
1.		0,5
2.	Kendaraan umum dan kendaraan yang berhenti	1,0
3.	Kendaraan keluar/masuk sisi lahan samping jalan	0,7
4.	Arus kendaraan lambat (kendaraan tak bermotor)	0,4

2.6 Karakteristik Arus Lalu Lintas

Ruas lalu lintas terentuk dari pergerakan individu pengendara yang melakukan interaksi antara yang satu dengan yang lainnya pada suatu ruas jalan dan lingkungannya. Karena persepsi dan kemampuan individu dalam pengemudi mempunyai sifat yang berbeda dari setiap individu maka perilaku kenderaan arus lalu lintas tidak dapat diseregamkan lebih lanjut, arus lalu lintas akan mengalami perbedaan karakteristik akibat dari perilaku pengemudi yang berbeda yang dikarenakan oleh oleh karakteristik lokal dan kebiasaan pengemudi. Arus lalu lintas

pada suatu ruas jalan karakteristiknya akan bervariasi baik berdasar waktunya. Oleh karena itu perilaku pengemudi akan berpengaruh terhadap perilaku arus lalu lintas. Dalam menggambarkan arus lalu lintas secara kuantitatif dalam rangka untuk mengerti tentang keragaman karakteristiknya dan rentang kondisi perilakunya, maka perlu suatu parameter. Parameter tersebut harus dapat didefenisikan dan diukur oleh insinyur lalu lintas dalam menganalisis, mengevaluasi, dan melakukan perbaikan fasilitas lalu lintas berdasarkan parameter dan pengetahuan pelakunya (Wahidmurni, 2017) berpengaruh terhadap perilaku arus lalu lintas tersebut.

2.7 Perhitungan Kapasitas Ruas Jalan Perkotaan

Segmen jalan perkotaan dapat diartikan sebagai jalan yang mempunyai perkembangan yang permanen dan menerus sepanjang atau hampir seluruh jalan minimun nya pada satu sisi jalan tersebut (Florentinus et al., 2021), baik itu berupa perkembangan lahan maupun tidak.

Tujuan dari operasional segmen jalan harus sesuai dengan kondisi geometrik, lalu lintas dan juga hambatan samping dapat berupa antara lain ;

- 1. Menentukan kapasitas.
- 2. Menentukan deraja kejenuhan sehubung dengan arus lalu lintas sekarang atau juga yang akan datang.
- 3. Menentukan kecepatan kendaraan pada jalan tersebut.

2.8 Data Masukan

Menurut PKJI 2023 ada 3 data yaitu sebagai berikut ;

- 1. Kondisi Geometrik.
- 2. Kondisi Lalu Lintas.
- 3. Hambatan Samping

2.8.1 Kondisi Geometrik

Menurut PKJI 2023, geometrik jalan merupakan salah satu karakteristik utama jalan yang akan mempengaruhi kapasitas dan kinerja jalan jika dibebani lalu lintas

jalan.Diantara yang termaksud dalam geometrik jalan (Farida & Tanjung, 2022) adalah sebagai berikut;

- 1. Tipe jalan berbagai tipe jalan akan menunjukan kinerja berbeda-beda pada bembanan lalu lintas tertentu antara lain sebagai berikut;
- Jalan dua-laju dua-arah tanpa median
- Jalan empat-lajur tanpa-median
- Jalan enam-lajur dua-arah terbagi
- Jalan satu arah
- 2. Lebar jalur lalu lintas : kecepatan arus bebas dan kapasitas meningkat dengan pertambahan lebar jalur lalu lintas.
- 3. Kereb beton sebagai batasan antara jalur lalu lintas dan trotoar sangat berpengaruh terhadap dampak hambatan samping jalan pada kapasitas dan kecepatan. Kapasitas jalan dengan kereb beton lebih kecil dari jalan dengan bahu. Selanjutnya kapasitas berkurang jika terdapat penghalang tetap dekat tepi jalur lalu lintas, tergantung apakah jalan mempunyai kereb beton atau bahu.
- 4. Bahu jalan perkotaan tanpa kereb beton kecepatan dan kapasitas jalan akan meningkat bila lebar bahu semakin lebar. Lebar dan kondisi permukaannya mempengaruhi penggunaan bahu, berupa penambahan lebar bahu, terutama karena pengaruh hambata samping yang disebabkan kejadian di sisi jalan seperti kendaraan umum berhenti, pejalan kaki dan sebagainya.
- Ada atau tidaknya median, median yang direncanakan dengan baik akan meningkatkan kapasitas.

2.8.2 Volume

Volume adalah jumlah kendaraan yang melewati satu titik pengamatan selama periode waktu tertentu. Nilai volume lalu lintas mencerminkan komposisi lalu lintas (A Faritzie et al., 2020), dengan menyatakan arus dalam satuan mobil penumpang (smp) yang dikonversikan dengan mengalikan nilai ekivalensi mobil penumpang (emp).

Volume kendaraan dihitung berdasarkan Pers 2.1.

$$Q = (SM \times EMP SM) + (MP \times MP) + (KS \times EMP KS)$$
(2.1)

Dengan:

Q Jumlah volume mobil penumpang (smp)

empSM Nilai ekivalen untuk kendaraan bermotor

empMP Nilai ekivalen untuk mobil penumpang

empKS Nilai ekivalen untuk kendaraan sedang

Penggolongan tipe kendaraan untuk jalan perkotaan berdasarkan PKJI 2023 adalah sebagai berikut :

- Mobil penumpang (MP) yaitu kendaraan bermotor ber as 2 dengan 4 roda dan dengan jarak as 2,0 – 3,0 m (meliputi : mobil penumpang, mini bus, pick-up, oplet dan truck kecil).
- 2. Kendaraan Sedang (KS) yaitu kendaraan bermotor dengan jarak as lebih dari 3,50 m, biasanya beroda lebih dari 4 (meliputi : bis, truck)
- 3. Sepeda Motor (SM) yaitu kendaraan bermotor dengan 2 atau3 roda (meliputi : sepeda motor dan kendaraan roda 3).

2.8.3 Kondisi Lalu Lintas

Arus dan komposisi lalu lintas meliputi penentuan arus jam rencana (smp/jam) dan menentukan ekivalensi kendaraan ringan (EMP). Cara menentukan ekivalensi kendaraan ringan (EMP) untuk kendaraan ringan dengan tipe jalan 2/2TT adalah seperti pada Tabel 2.3, sedangkan untuk jalan perkotaan terbagi dan satu arah seperti pada Tabel 2.4.

Tabel 2.5: Ekivalen Mobil Penumpang untuk jalan terbagi dan satu arah (PKJI 2023)

Tipe jalan;	Arus lalu lintas per lajur	EMP	
Jalan satu arah dan jalan terbagi	(kend/jam)	KS	SM
2/1, dan 4/2T	0 - < 1050	1,3	0,40
	≥ 1050	1,2	0,25
3/1, dan 6/2T	0 -< 1100	1,3	0,40
8/2-T atau 4/1	≥ 1100	1,2	0,25

Tabel 2.6 EMP untuk tipe jalan tak terbagi (PKJI, 2023)

	Volume lalu lintas total		EMP _{SM}	
Tipe jalan	dua arah (kend/jam)	EMP _{KS}	L _{jalur} ≤6 m	L _{jalur} >6 m
2/2-TT	<1800	1,3	0,5	0,40
2/2-11	≥1800	1,2	0,35	0,25

2.8.4 Kecepatan Arus Bebas (VB)

Berdasarkan Pedoman Kapasitas Jalan Indonesia, nilai kecepatan arus bebas jenis kendaraan ringan ditetapkan sebagai kriteria dasar untuk kinerja segmen jalan, nilai kecepatan arus bebas untuk kendaraan berat dan sepeda motor ditetapkan hanya sebagai referensi.Menurut PKJI 2023 langkah perhitungan analisan kecepatan arus bebas (VB) terbagi atas lima yaitu;

- 1. Penyesuaian kecepatan arus bebas dasar (V_{BD}) .
- 2. Penyesuaian kecepatan arus bebas akibat lebar jalan (V_{BL}).
- 3. Faktor penyesuaian kecepatan arus bebas untuk hambatan samping (FV $_{\mbox{\scriptsize BHS}}).$
- 4. Faktor penyesuaian kecepatan arus bebas untuk ukuran kota (FV_{UK}).
- 5. Penentuan kecepatan arus bebas (V_B).

2.8.5 Kecepatan Arus Bebas (V_{BD})

Kecepatan arus bebas dasar (V_{BD}) merupakan kecepatan arus pada segmen jalan untuk menentukan kecepatan arus bebas dasar dengan menggunakan tabel 2.6.

 $V_{B} = (V_{BD} + V_{BL}) \times FV_{BHS} \times FV_{BUK}$

Keterangan:

V_B adalah kecepatan arus bebas untuk MP pada kondisi lapangan, (km/jam)

VBD adalah kecepatan arus bebas dasar untuk MP, yaitu kecepatan yang diukur dalam kondisi lalu lintas, geometri, dan lingkungan (Tabel 2.6)

VBL adalah nilai koreksi kecepatan akibat lebar jalur atau lajur jalan (lebar jalur dalam satuan km/jam, dan nilainya dapat dilihat dalam (Tabel 2.7).

FVBHs adalah faktor penyesuaian kecepatan bebas akibat hambatan samping

pada jalan yang memiliki bahu atau jalan yang dilengkapi kereb/trotoar dengan jarak kereb ke penghalang terdekat (lihat Tabel 2.8).

FV_{BUK} adalah faktor penyesuaian kecepatan bebas untuk ukuran kota (lihat Tabel 2.9)

Tabel 2.7 : Kecepatan arus bebas dasar (VBD) jalan perkotaan (PKJI 2023)

	Kecepatan arus bebas dasar (V _{BD}) (km/jam)				
Tipe Jalan	Mobil	Kendaraan	Sepeda	Semua	
	Penumpang	Sedang	motor	kendaraan	
	(MP)	(KS)	(SM)	(rata-rata	
Jalan terbagi 4/2-T,					
6/2-T, 8/2-T atau	61	52	48	57	
jalan terbagi	01	32	40	37	
Dua-lajur tak-terbagi (2/2 UD)	44	40	40	42	

2.8.6 Kecepatan Arus Bebas Akibat Jalan (VBL)

Penyesuaian kecepatan arus bebas akibat lebar jalan (V_{BL}) dengan menentukan penyesuaian lebar jalur lalu lintas dari tabel 2.7 berdasarkan lebar jalur lalu lintas efektif (L_e)

Tabel 2.8 : Nilai penyesuaian kecepatan arus bebas dasar akibat lebar jalur lalu lintas efektif (VBL) (PKJI, 2023)

Tipe jalan	Lebar jalur efektif (L _e), (m)		V _{BL} (km/jam)
	Per lajur	LLE = 3,00	-4
Islam tarbasi 1/2 T 6/2		3,25	-2
Jalan terbagi 4/2-T, 6/2-		3,50	0
T, 8/2-T atau jalan		3,75	2
terbagi		4,00	4
	Per lajur	LJE = 5,00	-9,50
		6,00	-3
		7,00	0
Dua lajur tak terbagi		8,00	3
2/2-TT		9,00	4
		10,00	5
		11,00	6

2.8.7 Faktor Penyesuaian Kecepatan Arus Bebas Untuk Hambatan Samping (FVBHS)

Faktor penyesuaian arus bebas untuk hambatan samping (FV_{BHS}) dengan menggunakan faktor penyesuaian untuk hambatan samping dari tabel 2.8 dan tabel 2.9.

Tabel 2 9: Faktor penyesuaian untuk pengaruh hambatan samping dan lebar bahu (FVBHS) pada kecepatan arus bebas kendaraan ringan untuk jalan perkotaan dengan bahu (PKJI, 2023)

Tipe jalan	KHS	FV_{BHS}			
		L _{be} (m)			
		≤0,5 m	1,0 m	1,5 m	≥ 2 m
Jalan terbagi 4/2-T, 6/2-	Sangat rendah	1,02	1,03	1,03	1,04
T, 8/2-T atau jalan	Rendah	0,98	1,00	1,02	1,03
terbagi	Sedang	0,94	0,97	0,97	1,02
	Tinggi	0,89	0,93	0,93	0,99
	Sangat tinggi	0,84	0,88	0,92	0,96
Dua-lajur tak- terbagi	Sangat rendah	1,00	1,01	1,01	1,01
2/2 TT	Rendah	0,96	0,98	0,99	1,00
	Sedang	0,90	0,93	0,96	0,99
	Tinggi	0,82	0,86	0,90	0,95
	Sangat tinggi	0,73	0,79	0,85	0,91

Tabel 2 10 : Faktor Penyesuaian arus bebas akibat hambatan samping untuk jalan berkereb dengan jarak kereb ke penghalang terdekat Lkp (PKJI, 2023)

		FV_{BHS}				
Tipe jalan	KHS	L _{k-p} ((m)	(m)	
		≤ 0,5 m	1,0 m	1,5 m	≥ 2 m	
Jalan terbagi 4/2-T,	Sangat rendah	1,00	1,01	1,01	1,02	
6/2-T, 8/2-T atau	Rendah	0,97	0,98	0,99	1,00	
jalan terbagi	Sedang	0,93	0,95	0,97	0,99	
	Tinggi	0,87	0,90	0,93	0,96	
	Sangat tinggi	0,81	0,85	0,88	0,92	
Dua-lajur tak-	Sangat rendah	0,98	0,99	0,99	1,00	
terbagi 2/2 TT	Rendah	0,93	0,95	0,96	0,98	
	Sedang	0,87	0,89	0,92	0,95	
	Tinggi	0,78	0,81	0,84	0,88	
	Sangat tinggi	0,68	0,72	0,77	0,82	

2.8.8 Faktor Penyesuaian Kecepatan Arus Bebas Untuk Ukuran Kota (FVBUK)

Faktor penyesuaian kecepatan bebas untuk ukuran kota (FV_{BUK}) dengan menentukan faktor penyesuaian untuk ukuran kota dari tabel 2.12.

Tabel 2.10: Faktor penyesuaian untuk pengaruh ukuran kota pada kecepatan arus bebas kendaraan ringan FV_{BUK} (PKJI, 2023)

Ukuran kota (Juta penduduk)	Faktor penyesuaian untuk ukuran kota, FV _{BUK}
< 0,1	0,90
0,1 – 0,5	0,93
0,5 – 1,0	0,95
1,0 – 3,0	1,00
> 3,0	1,03

2.8.9 Penentuan Kecepatan Arus Bebas (V_B)

Nilai V_B jenis KS ditetapkan sebagai kriteria dasar untuk kinerja segmen jalan, nilai V_B untuk MP dan SM ditetapkan hanya sebagai referensi. V_B untuk MP biasanya 10-15% lebih tinggi dari tipe kendaraan lainnya berdasarkan Pers 2.2.

$$V_B = (V_{BD} + V_{BL}) \times FV_{BHS} \times FV_{BUK}$$
 (2.2)

Keterangan:

V_B adalah kecepatan arus bebas untuk MP pada kondisi lapangan, (km/jam)

VBD adalah kecepatan arus bebas dasar untuk MP, yaitu kecepatan yang diukur dalam kondisi lalu lintas, geometri, dan lingkungan (Tabel 2.6)

V_{BL} adalah nilai koreksi kecepatan akibat lebar jalur atau lajur jalan (lebar jalur dalam satuan km/jam, dan nilainya dapat dilihat dalam (Tabel 2.7).

FV_{BHS} adalah faktor penyesuaian kecepatan bebas akibat hambatan samping pada jalan yang memiliki bahu atau jalan yang dilengkapi kereb/trotoar dengan jarak kereb ke penghalang terdekat (lihat Tabel 2.8).

FV_{BUK} adalah faktor penyesuaian kecepatan bebas untuk ukuran kota (lihat Tabel 2.9)

2.8.10 Perhitungan Kapasitas Ruas Jalan

Menurut Dirjen Bina Marga, kapasitas adalah volume maksimum kendaraan per jam yang melalui suatu potongan lajur jalan (untuk jalan multi lajur) atau suatu potongan jalan (untuk jalan dua lajur) pada kondisi jalan dan arus lalu lintas ideal. Faktor-faktor yang mempengaruhi kapasitas jalan adalah lebar jalur atau lajur, ada tidaknya pemisah/median jalan, hambatan bahu/kereb jalan, gradien jalan, di daerah perkotaan atau luar kota, ukuran kota.

Menurut PKJI 2014 untuk jalan tak terbagi, analisa dilakukan pada kedua arah lalu lintas. Untuk jalan terbagi, analisa dilakukan terpisah pada masing-masing arah lalu lintas, seolah-olah masing-masing arah merupakan jalan satu arah yang terpisah. Besarnya kapasitas suatu ruas jalan dapat dihitung dengan pers 2.4.

$$C = C_0 \times FC_{LJ} \times FC_{PA} \times FC_{HS} \times FC_{UK}$$
(2.4)

Dimana:

C = Kapasitas (smp/jam).

C₀ = Kapasitas dasar (smp/jam).

FC_{LJ} = Faktor penyesuaian kapasitas terkait lebar jalur lalu lintas.

FC_{PA} = Faktor penyesuaian kapasitas terkait pemisahan arah.

FC_{HS} = Faktor penyesuaian kapasitas terkait kelas hambatan samping.

FC_{UK} = Faktor penyesuaian kapasitas ukuran kota.

2.9 Kapasitas

kapasitas adalah jumlah arus maksimum kendaraan yang melewati suatu titik atau persimpangan atau ruas jalan selama waktu tertentu pada kondisi jalan dan lalu lintas dengan tingkat kepadatan yang ditetapkan (Lalenoh et al., 2015). Menurut Oglesby dan Hick (1993), definisi kapasitas ruas jalan dalam suatu sistem jalan raya adalah jumlah kendaraan maksimum yang memiliki kemungkinan yang cukup untuk melewati ruas jalan tersebut, baik satu maupun dua arah dalam periode waktu tertentu di bawah kondisi jalan dan lalu lintas yang umum. Kapasitas jalan dipengaruhi oleh beberapa kondisi yang ada yaitu:

1. Sifat fisik jalan seperti lebar, jumlah dan tipe persimpangan, alinyemen dan kondisi permukaan.

- 2. Komposisi lalu lintas atau proporsi berbagai tipe kendaraan dan kemampuan kendaraan.
- 3. Kondisi lingkungan dan operasi dilihat dari cuaca, tingkat aktivitas pejalan kaki. Menurut Pedoman Kapasitas Jalan Indonesia 2014 besarnya kapasitas jalan dapat dihitung dengan menggunakan rumus sebagai berikut:

2.9.1 Kapasitas Dasar (Co)

Dalam Pedoman Kapasitas Jalan Perkotaan (PKJI 2023), Co yang telah ditetapkan secara empiris dari kondisi segmen jalan yang ideal, yaitu jalan dengan kondisi geometrik dari jalan tersebut, berikut ialah tabel kapasitas dasar sebagai berikut.

Tabel 2 11: kapasitas dasar (Co) (PKJI 2023)

Tipe Jalan	Co(SMP/jam)	Catatan
4/2-T, 6/2-T, 8/2 atau jalan satu arah	1700	Per lajur (satu arah)
2/2 TT	2800	Per dua arah

2.9.2 Faktor Penyesuaian (FCLJ)

Nilai Co disesuaikan dengan perbedaan lebar lajur atau dengan jalur lalu lintas (FCLJ), pemisah arah (FCPA), Kelas hambatan samping pada jalan berbahu (FCHS), dan ukuran kota (FCUK). Faktor penyesuaian lebar jalan ditunjukkan pada tabel berikut.

Tabel 2.12 : Faktor penyesuaian kapasitas akibat pengaruh lebar jalur lalu lintas (FC_{LJ}) (PKJI, 2023)

Tipe jalan	Lebar jalur lalu-lintas efektif (Wc) (m)	FC _{LJ}
I 1 4 1 14/0 T 6/0	$L_{LE} = 3,00$	0,92
Jalan terbagi 4/2-T, 6/2-	3,25	0,96
T, 8/2-T atau jalan satu	3,50	1,00
arah	3,75	1,04
utui	4,00	1,08
	Lje 2 arah $= 5,00$	0,56
	6,00	0,87
	7,00	1,00
2/2TT	8,00	1,14
	9,00	1,25
	10,00	1,29
	11,00	1,34

2.9.3 Faktor penyesuaian Terkait Pemisah Arah (FCPA)

Besarnya faktor penyesuaian pada jalan tanpa menggunakan pemisah tergantung kepada besarnya split kedua arah seperti tabel berikut.

Tabel 2.13: Faktor penyesuaian Terkait Pemisah Arah (FCPA) (PKJI 2023)

Pemisahan arah PA % - %		50-50	55-45	60-40	65-35	70-30
FC _{PA}	Dua-lajur 2/2TT	1,00	0,97	0,64	0,91	0,88

2.9.4 Faktor Penyesuaian Terkait Hambatan Samping (FCHS)

Faktor penyesuaian kapasitas terkait kelas hambatan samping ialah faktor penyesuaian kapasitas dasar akibat hambatan samping sebagai fungsi lebar dari baru. Hambatan samping ini juga dipengaruhi oleh berbagai aktifitas yang terjadi disamping jalan tersebut yang berpengaruh terhadap lalu lintas tersebut. Hambatan samping yang terutama berpengaruh pada kapasitas dan juga kinerja jalan perkotaan:

- 1. Jumlah pejalan kaki yang berjalan atau menyebrang di sisi jalan
- 2. Jumlah kendaraan yang berhenti diparkir
- 3. Jumlah kendaraan masuk dan keluar ke atau dari lahan disamping jalan dan sisi jalan
- 4. Jumlah kendaraan yang bergerak lambat yaitu arus total (kend/jam) mulai dari

sepeda, becak, delman, pedati dan sebagainya.

Cara menentukan faktor penyesuaian untuk hambatan samping dan juga lebar bahu pada jalan perkotaan dapat di lihat pada tabel 2.13.

Tabel 2 14 : Faktor Penyesuaian Terkait Hambatan Samping (FCHS) (PKJI 2023)

	Kelas	FC _{HS} Lebar bahu efektif L _{Be} , m			
Tipe Jalan	hambatan samping				
	Sumping	≤ 0,5	1,0	1,5	≥ 2,0
	SR	0,96	0,98	1,00	1,03
4/2T	R	0,94	0,97	1,00	1,02
., 21	S	0,92	0,95	0,98	1,00
	T	0,88	0,82	0,95	0,98
	ST	0,84	0,88	0,82	0,96
2/2T	SR	0,94	0,96	0,99	1,01
2/2T	R	0,92	0,94	0,97	1,00
atau jalan	S	0,89	0,92	0,95	0,98
satu arah	T	0,82	0,86	0,80	0,95
	ST	0,73	0,79	0,85	0,91

2.9.5 Faktor Penyesuaian Terkait Ukuran Kota

Faktorpenyesuaiankapasitasuntukukurankota adalahfaktorpenyesuaiankapasitasdasar akibat ukuran kota. Besarnya faktor ini dapat dilihat pada tabel 2.14.

Tabel 2 15: Tabel ukuran kota (PKJI 2023)

Ukuran Kota (jumlah penduduk) (juta jiwa)	Kelas Kota/Kategori kota				Faktor penyesuaian untuk ukuran kota (FC _{UK})
< 0,1	Sangat kecil	Kota kecil	0,86		
0,1-0,5	Kecil	Kota kecil	0,90		
0,5-1,0	Sedang	Kota menengah	0,94		
1,0-3,0	Besar	Kota besar	1,00		
> 3,0	Sangat Besar	Kota metropolitan	1,04		

2.9.6 Derajat Kejenuhan

Derajat kejenuhan (D_J) adalah rasio arus jalan terhadap kapasitas,yang digunakan sebagai faktor utama dalam penentuan tingkat kinerja simpang dan segmen jalan. Nilai DJ menentukan ada tidak nya permasalahan dalam segmen jalan tersebut. Persamaan dasar untuk menentukan derajat kejenuhan ialah sebagai berikut:

$$D_{J} = -\frac{q}{c}$$
2.6

Dimana:

D_J = Derajat kejenuhan atau VCR

q = qeksisting hasil perhitungan lalu lintas dan qıp hasil perencanaan

C = kapasitas segmen dalam SMP/jam

Nilai VCR atau Dj yang dihasilkan kemedian dikategorikan seperti tabel di bawah ini.

Tabel 2.16: Pengkategorian nilai VCR

VCR	Keterangan
< 0,8	Kondisi Stabil
0,8-1,0	Kondisi Tidak Stabil
> 1,0	Kondisi Kritis

2.9.7 Level Of Service (LOS)/ Tingkat Pelayanan Jalan

Tingkat pelayanan atau Level of Service adalah tingkat pelayanan dari suatu jalan yang menggambarkan kualitas suatu jalan dan merupakan batas kondisi pengoperasian. Tingkat pelayanan suatu jalan merupakan ukuran kualitatif yang menggambarkan kondisi operasional lalu lintas dan penilaian oleh pemakai jalan. Tingkat pelayanan suatu jalan menunjukan kualitas jalan diukur dari beberapa faktor, yaitu kecepatan dan waktu tempuh, kerapatan (density), tundaan (delay), arus lalu lintas dan arus jenuh (saturation flow) serta derajat kejenuhan (degree of saturation). Faktor-faktor yang mempengaruhi tingkat pelayanan jalan sebagai berikut:

- 1. Kondisi fisik jalan
- Lebar Jalan Persimpangan, pada jalan satu arah lebar jalan yang menuju persimpangan diukur dari permukaan kerb sampai permukaan kerb lainya. Sedangkan pada jalan dua arah, yang dimaksud dengar lebar adalah jarak dari permukaan sampai pembagi dengan lalu lintas yang berlawanan arah atau median.
- Jalan Satu Arah dan Jalan Dua Arah, pada pengoperasian jalan satu arah lebih banyak menguntungkan dari pada jalan dua arah. Hal ini dapat terlihat pada sebagian besar jalan di kota-kota indonesia
- Median merupakan daerah yang memisahkan arah lalu lintas pada segmen jalan.
 Median yang direncakan dengan baik meningkatkan kapasitas.

Tabel 2 17 : Karakteristik tingkat pelayanan (LOS) berdasarkan Q/C atau DJ pada segmen. (Permenhub No..96 Tahun 2015)

Tingkat Pelayanan	Karakteristik	Batas Lingkup (Q/C)
A	Kondisi arus lalu lintas bebas dengan kecepatan tinggi dan volume lalu lintas rendah	0,00 – 0,20
В	Arus stabil, tetapi kecepatan operasi mulai dibatasi oleh kondisi lalu lintas	0,20 – 0,44
С	Arus stabil, tetapi kecepatan gerak kendaraan dikendalikan	0,45 – 0,74
D	Arus mendekati tidak stabil, kecepatan masih dikendalikan, Q/C masih dapat ditolerir	0,75- 0,84
Е	Arus tidak stabil, kecepatan terkadang terhenti, permintaan sudah mendekati kapasitas	0,85 – 1,00
F	Arus dipaksakan (forged flow), kecepatan rendah, volume di atas kapasitas, antrian panjang (macet)	> 1,00

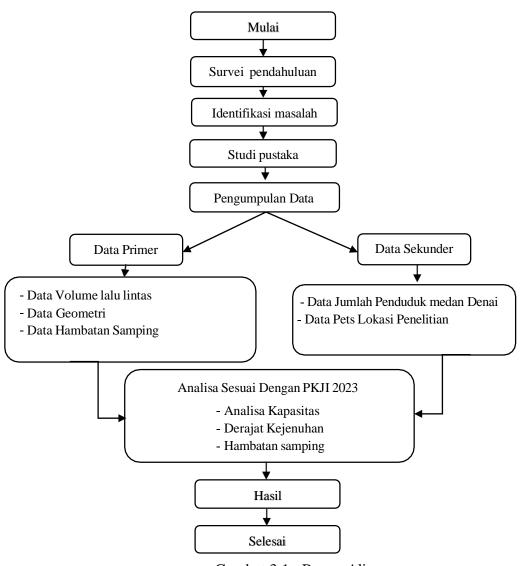
2.10 Karakteristik Arus Lalu Lintas

Arus lalu lintas merupakan interaksi yang unik antara pengemudi, kendaraan,dan jalan. Tidak ada arus lalu lintas yang sama bahkan pada keadaan yang serupa, sehingga arus pada suatu ruas jalan tertentu selalu bervariasi. Walaupun demikian diperlukan parameter yang dapat menunjukan kondisi ruas jalan atau yang akan dipakai intuk desain. Parameter tersebut adalah volume, kecepatan dan kerapatan, tingkat pelayanan (level of service), derajat kejenuhan (degree of saturation).

Arus lalu lintas terbentuk dari pergerakan individu pengendara yang melakukan interaksi antara yang satu dengan yang lainnya pada suatu ruas jalan dan lingkungannya. Karena persepsi dan kemampuan individu pengemudi mempunyai sifat yang berbeda maka perilaku kenderaan arus lalu lintas tidak dapat diseregamkan lebih lanjut, arus lalu lintas akan mengalami perbedaan karakteristik akibat dari perilaku pengemudi yang berbeda yang dikarenakan oleh karakteristik lokal dan kebiasaan pengemudi. Arus lalu lintas pada suatu ruas jalan karakteristiknya akan bervariasi baik berdasar waktunya. Oleh karena itu perilaku pengemudi akan sangat berpengaruh terhadap perilaku perilaku arus lalu lintas. Dalam menggambarkan arus lalu lintas secara kuantitatif dalam rangka untuk mengerti tentang keragaman karakteristiknya dan rentang kondisi perilakunya, maka perlu adanya suatu parameter. Parameter tersebut ialah harus dapat didefenisikan dan diukur oleh insinyur lalu lintas berdasarkan parameter dan pengetahuan pelakunya (Oglesby, C.H. & Hicks, R.G. 1999)

2.11 Kondisi Geometri

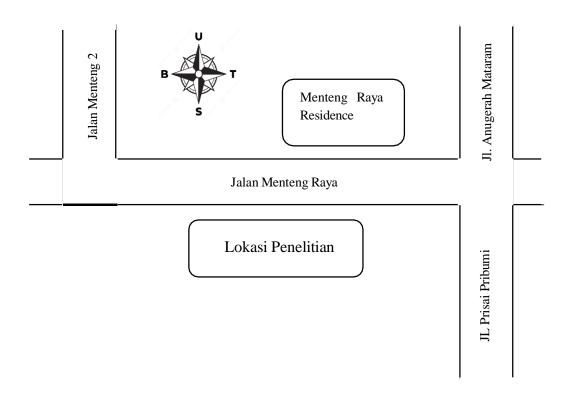
Geometri jalan merupakan informasi yang sangat penting dalam rangka melakukan analisis pada ruas jalan oleh karena itu perlu dilakukan inventarisasi kondisi jaringan jalan sebelum melalukan perhitungan dengan menggunalan PKJI 2023 sebagai ilustrasi dari penampang melinitang jalan.


Gambar 2.1: Tipikal jalan raya (PKJI, 2023)

BAB 3

METODE PENELITIAN

3.1 Bagan Alir


Dalam melakukan penelitian ini, terdapat beberapa prosedur atau tahapantahapan yang dilakukan secara terstruktur agar ketika penelitian silakukan dapat sesuai dengan tujuan yang direncanakan, maka dibuatlah bagan alir penelitian sepeerti Gambar 3.1.

Gambat 3.1 : Bagan Alir

3.2 Lokasi Penelitian

Lokasi penelitian adalah dijalan Menteng Raya sepanjang 200 meter, Jalan Menteng Raya termasuk jalan dua arah yang ramai dilewati oleh mobil pribadi, angkutan umum, maupun angkutan barang, dan jenis transportasi lainnya.

Gambar 3.2: Lokasi Penelitian

3.2 Waktu Penelitian

Pada penelitian ini Waktu survei dilakukan pada hari Senin-Minggu. Survei dilakukan pada jam sibuk yaitu pagi 07.00 – 09.00 siang 12.00 – 14.00 dan sore 16.00 – 18.00 dari Senin-Minggu.Penelitian ini dilakukan di sekitaran Bali Kado Kota Medan. Dimana tempat penelitian dilakukan di Jalan Menteng Raya Kota Medan.

3.3 Alat Yang Digunakan

Adapun alat yang di gunakan dalam penelitian antara lain sebagai berikut;

1. Meteran untuk mengukur jalan di lokasi penelitian.

- 2. Alat tulis.
- 3. Stopwatch.
- 4. Kamera.

3.4 Metode Penelitian

Metode yang dipergunakan untuk penelitian ini adalah metode survei, yaitu dengan melakukan pengumpulan data tentang variabel suatu permasalahan dari lapangan kemudian menganalisa dengan perhitungan (PKJI 2023), sehingga dapat menghasilkan kesimpulan atas permasalahan yang ada dengan data yang actual yang terjadi pada saat penelitian dilakukan.

3.5 Pengumpulan Data

Adapun data-data yang diperlukan dalam peneloitian ini antara lain sebagai berikut.

3.5.1 Pengumpulan Data Premier

Data premier adalah data yang di dapat dari hasil observasi atau terjun langsung ke lapangan. Adapun bentuk data premier ini sebagai berikut.

- 1. Data Geometrik jalan
 - Data Geometrik jalan di dapat dengan cara mengukur lebar jalan,bahu jalan,lebar lajur 2 arah tak terbagi
- Tipe Jalan 2/2 TT
- Lebar Jalan 6 m
- Lebar Bahu 1m
- Jumlah Lajur 2 lajur
- Lebar lajur 3 m
- 2. Data volume lalu lintas jalan Menteng Raya
 - Data volume lalu lintas di dapatkan dari perhitungan di kedua jalur lalu lintas tersebut, Data volume lalu lintas yang dimaksud dalam hal antara lain.
- Data Mobil Penumpang (MP)
- Data Kendaraan Sedang (KS)

- Data Sepeda Motor (SM)
- Kendaraan Tak Bermotor (KTB)

Tabel 3.1: Volume kendaraan (smp/jam) untuk Jalan Menteng Raya (Minggu, 20 september 2024)

			Jumlah Kendaraan				
	Waktu	Sepeda Motor (SM)	Mobil Penumpang (MP)	Kendaraan Sedang (KS)	Total kend/15		
		Kendraan/15 menit	Kendraan/15 menit	Kendraan/15 menit	menit		
	07.00 - 07.15	321	100	12	321		
	07.15 - 07.30	345	87	10	345		
	07.30 - 07.45	311	109	2	311		
Pag	07.45 - 08.00	345	114	3	345		
i	08.00 - 08.15	230	121	3	230		
	08.15 - 08.30	290	109	11	290		
	08.30 - 08.45	210	111	12	210		
	08.45 - 09.00	460	90	16	460		
	12.00 - 12.15	321	121	21	321		
	12.15 – 12.30	356	101	11	356		
	12.30 - 12.45	300	103	12	300		
Sia ng	12.45 - 01.00	277	96	11	277		
ng	01.00 - 01.15	345	129	11	345		
	01.15 - 01.30	321	121	12	321		
	01.30 - 01.45	387	98	11	387		
	01.45 - 02.00	256	119	15	256		
	04.00 - 04.15	432	134	20	432		
	04.15 - 04.30	378	111	11	378		
	04.30 - 04.45	333	128	21	333		
Sor	04.45 - 05.00	366	167	15	366		
e	05.00 - 05.15	378	178	14	378		
	05.15 - 05.30	440	145	11	440		
	05.30 - 05.45	335	167	23	335		
	05.45 - 06.00	425	77	19	425		

Tabel 3.2 : Hambatan samping pada Jalan Menteng Raya (Minggu, 20 september 2024)

Waktu	PED	PSV	EEV	SMV	Total
07:00 – 08.00	96	30	12	22	160
08:00 – 09.00	68	18	6	10	102
12:00 – 13.00	76	10	4	10	100
13:00 – 14.00	66	14	24	16	120
16:00 – 17.00	129	101	120	95	445
17:00 – 18.00	111	139	114	85	449

3.5.2 Pengambilan Data Sekunder

Data Sekunder diambil dari intasnsi yang terkait dengan penelitian ini antara lain sebagai berikut :

- 1. Data Penduduk Kecamatan Medan Denai
- 2. Data Peta Lokasi Bali Kado Supermarket.

Tabel 3.1: Penduduk Kecamatan Medan Denai

Wilayah	Laki-Laki	Wanita	
Medan Denai	86.149	85.747	
Total	171.896		

3.6 Tahap Analisis Data

Data yang terkumpul, selanjutnya akan dilakukan pengolahan sebagai berikut :

1. Analisa Geometrik Menteng Raya Kota Medan

Data geometrik jalan didapat dari survey lapangan. Selanjutnya data yang sudah dapat dihitung lebar bahu efektif masing-masing jalur pada ruas Jalan Menteng Raya Kota Medan.

2. Analisa volume lalu lintas

Data jumlah kendaraan yang didapat dari hasil survei lapangan. Kemudian data yang sudah didapat dikonversi kedalam satu ekivalensi kendaraan ringan (emp) masing-masing sesuai jenis kendaraan.

3. Analisa Hambatan Samping

Data jumlah hambatan samping yang sudah didapatkan, kemudian akan diperhutangkan dengan mengalihkan bobot masing-masing tipe hambatan samping.

4. Analisa Kecepatan Arus Bebas

Data kecepatan arus bebas didapat dari penyesuaian kecepatan arus bebas dasar (V_{BD}) pada tabel , penyesuaian kecepatan arus bebas akibat lebar jalan (V_{BL}) pada tabel ,faktor penyesuaian kecepatan arus bebas untuk hambatan samping (FV_{BHS}) pada tabel , dan faktor penyesuaian kecepatan arus bebas untuk ukuran kota (FV_{BUK}) pada tabel .

5. Analisa Kapasitas Ruas Jalan

Data kapasitas ruas jalan didapat dari data kapasitas dasar (Co) pada tabel 2.11, faktor penyesuaian kapasitas terkait lebar jalur lalu lintas (FCLJ) pada tabel 2.12, faktor penyesuaian kapasitas terkait pemisahan arah (FCPA), faktor penyesuaian kapasitas terkait kelas hambatan samping (FCHS) pada tabel 2.14, dan faktor penyesuaian kapasitas terkait ukuran kota (FCUK) pada tabel 2.16.

6. Analisa Derajat Kejenuhan

Data derajat kejenuhan didapat dari data arus lalu lintas (smp/jam) dan kapasitas.

7. Analisa LOS (Level Of Service) Tingkat Pelayanan Jalan

penilaian kinerja operasional jalan dan kenyamanan pengemudi, yang diukur menggunakan Level of Service (LOS) (A-F) berdasarkan arus, kecepatan, dan

kepadatan lalu lintas, serta faktor derajat kejenuhan (rasio volume terhadap kapasitas)

BAB 4

HASIL DAN PEMBAHASAN

4.1. Analisis Volume Ruas Lalu lintas

Pembahasan ini bertujuan untuk mengetahui berapa besar kapasitas jalan Menteng Raya. Untuk mengetahui kapasitas jalan agar dapat memperkirakan jumlah arus yang dapat di tampung pada ruas jalan tersebut.

4.2 Kondisi Geometrik

Jalan Menteng Raya adalah jalan lokal sekunder yang termaksud dalam jaringan jalan Kota Medan yang memiliki tipe jalan dua lajur dengan masing-masing dua lajur satu arah.

4.3 Kondisi Lalu Lintas

Adapun jenis-jenis kendaraan yang diamati pada penelitian ini dibedakan atas 3 jenis kendaraan, yaitu sepeda motor, kendaraan ringanata kenda dan kendaraan berat.Dari data kendaraan yang didapat akan dikonversikan kedalam satuan kendaraan yang dikonversikan masing-masing jenis kendaraan. Faktor konversi yang digunakan adalah konversi yang digunakan adalah satuan mobil penumpang (smp) yang di ambil berdasarkan PKJI 2023 yaitu sebagai berikut:

1. Sepeda motor (SM), dengan nilai = 0.25

2. Mobil Penumpang (MP), dengan nilai = 1

3. Kendaraan sedang (KS), dengan nilai = 1,2

Berikut ini adalah perhitungan konversi kendaraan yang diubah menjadi satuan mobil penumpang (smp/jam) dari data tertinggi pagi, siang dan sore:

1. Arus kendaraan jalan menteng raya pada hari minggu, jam 17:00 – 18:00

Sepeda motor : 1578 kendaraan \times 0,25 (smp) = 394,5 smp/jam.

Kendaraan ringan : 656 kendaraan \times 1,0 (smp) = 656 smp/jam.

Kendaraan berat : 67 kendaraan \times 1,2 (smp) = 80,4 smp/jam.

Tabel Volume kendaraan (smp/jam) untuk jalan Menteng Raya dari (Minggu,20 September 2024)

Waktu	(Sm) Sepeda Motor	(MP) Mobil Penumpang	(KS) Kendaraan Sedang	Total
07:00 - 08.00	1322	410	27	1322
08:00 – 09.00	1190	431	42	1190
09:00 – 10.00	1289	445	21	1289
10:00 – 11.00	1233	423	15	1233
11:00 – 12.00	1211	426	16	1211
12:00 – 13.00	1254	421	55	1254
13:00 – 14.00	1309	467	58	1309
14:00 – 15.00	1321	322	34	1321
15:00 – 16.00	1432	437	45	1432
16:00 – 17.00	1509	540	67	1509
17:00 – 18.00	1578	656	67	1578
18:00 – 19.00	1098	432	30	1098
19:00 – 20.00	1321	321	21	1321
20:00 – 21.00	1121	237	13	1121
21:00 – 22.00	900	188	12	900
22:00 – 23.00	767	66	18	767
23:00 – 24.00	888	120	11	888
00:00 - 01.00	676	67	5	676
01:00 - 02.00	545	90	2	545
02:00 - 03.00	533	98	2	533
03:00 - 04.00	544	69	2	544
04:00 – 05.00	654	68	2	654
05:00 – 06.00	787	89	2	787
06:00 – 07.00	843	70	1	843

Dari hasil perhitungan didapat total volume kendaraan di jalan menteng raya adalah 1130,9 smp/jam.

4.4 Hambatan Samping

Hambatan samping yangh diamati pada penelitian ini dibedakan atas 4 jenis hambatan samping antara lain pejalan kaki, kendaraan parkir, kendaraan masuk dan keluar dari badan jalan, kendaraan lambat. Dari data yang didapat dari penelitian dilapangan bobot hambatan samping yang diambil dari PKJI 2023 antara lain sebagai berikut:

Pejalan kaki menyeberang dari badan jalan = 0,5
 Kendaraan umum dan kendaraan yang berenti = 1,0
 Kendaraan keluar masuk sisi lahan jalan = 0,7
 Arus kendaraan lambat (kendaraan tak bermotor = 0,4

Berikut ini adalah perhitungan hambatan samping yang dikalikan dengan bobot masing-masing hambatan samping sebagai berikut:

 Hambatan samping dari Utara ke arah Selatan jalan Menteng Raya Kota Medan pada hari minggu, jam 17.00 – 18.00

Pejalan kaki : $111 \times 0.5 = 55.5$ Kendaraan berenti : $139 \times 1.0 = 139$ Kendaraan keluar masuk : $114 \times 0.7 = 79.8$ Arus kendaraan lambat : $85 \times 0.4 = 34$

Dari hasil perhitungan total hambatan samping Jalan Menteng Raya 303,3 berdasarkan Tabel PKJI dapat ditetapkan bahwa kelas hambatan samping ialah (S)

4.5. Penentuan Kecepatan arus Bebas (Vb)

Dihitung dengan mengunakan rumus sebagai berikut:

$$\begin{split} V_{BD} &= 57 \text{ (Tabel 2.6)} \\ V_{BL} &= 0 \text{ (Tabel 2.7)} \\ FV_{BHS} &= 1,02 \text{ (Tabel 2.8)} \\ FV_{BUK} &= 1,00 \text{ (Tabel 2.9)} \\ \\ V_{B} &= \text{(VBD} + \text{VBL)} \times \text{FVBHS} \times \text{FVBUK} \\ &= (57 + -3) \times 0,98 \times 0,93 \\ &= 39 \times 0,98 \times 0,93 \\ &= 35,54 \text{ km/jam} \end{split}$$

4.6 Perhitungan Kapasitas Ruas Jalan

Dihitung dengan mengunakan rumus sebagai berikut:

Co : 2800 (Tabel 2.11)

FClj : 0,87 (Tabel 2.12)

FCPA : 1 (Tabel 2.13)

FCHS : 0,94 (Tabel 2.14)

FCUK : 0,90 (Tabel 2.15)

Maka : $C = Co \times FCLJ \times FCPA \times FCHS \times FCUK$ $C = 2800 \times 0,87 \times 1 \times 0,92 \times 0,90$ C = 2017,08 skr/jam

4.7 Derajat Kejenuhan (DJ)

Cara menganalisis kinerja ruas jalan adalah dengan cara menghoitung nilai dari derajat kejenuhan (DJ) yang dihitung dengan rumus berikut:

1. Derajat kejenuhan Jalan Menteng Raya:

$$DJ = \frac{q}{c}$$

$$= \frac{1130.9}{2017.08}$$

$$= 0.56$$

Didapat Hasi Derajat Kejenuhan dari jalan Menteng Raya didapat nilai 0,55 tingkat pelayanan ialah (C)

4.8 Tingkat Pelayanan

Adapun hasil yang diperoleh Berdasarkan Peraturan Mentri Perhubungan No. 96 Tahun 2015 tentang Pedoman Pelaksanaan Kegiatan Manajemen Lalu Lintas, tingkat pelayanan Jalan Menteng Raya pada Jalan eksisting adalah C dengan derajat kejenuhan (D_J) 0,55 Arus stabil, tetapi kecepatan gerak kendaraan dikendalikan (Tabel 2.17)

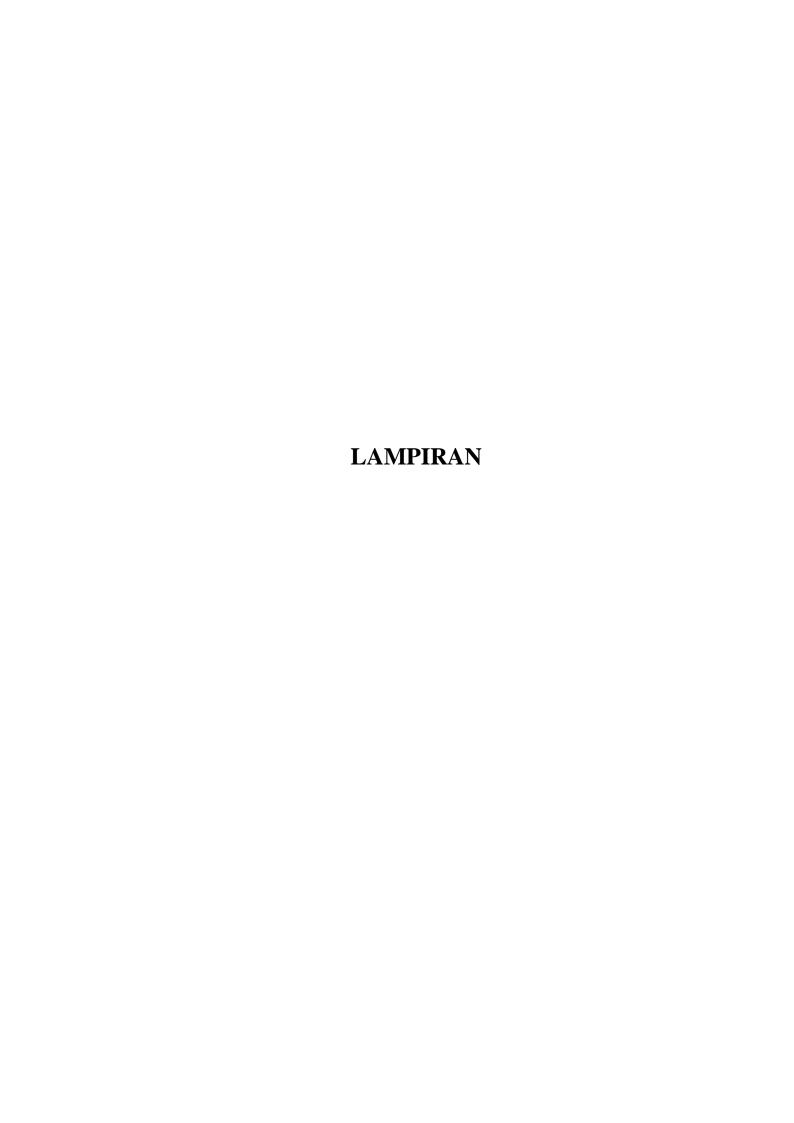
BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan analisis data dan pembahsan yang telah dilakukan, maka didapat diambil kesimpulan sebagai berikut:

- Dari hasil perhitungan didapat hambatan samping kendaraan Jalan Menteng Raya Kota Medan sebesar 303,3 berdasarkan tabel PKJI didapat nilai hambatanh samping (S)
- Dari hasil penelitian didapat nilai kapasitas ruas jalan menteng raya sebesar 2017,08 smp/jam dan didapat hasil derajat kejenuhan jalan menteng raya 0,56, maka didapat tingkat pelayanan jalan menteng raya ialah (C)


5.2 Saran

- Untuk mengurangi terjadinya peningkatan volume kendaraan arus lalu lintas pada jam puncak diperlukan manajemen penataan lalu lintas yang baik misalnya tidak memparkir kendaraan di badan jalan guna mengantisipasi volume kendaraan yang sewaktu-waktu bisa terjadi, perlu adanya pelebaran jalan agar dimaksudkan tidak melebihi kapasitas jalan dan kendaraan dapat bergerak bebas.
- 2. Kepada para pengguna jalan agar meningkatkan kesadaran, berhati hati dan menaati rambu rambu lalu lintas yang ada.

DAFTAR PUSTAKA

- A Faritzie, H., Djohan, B., & Wijaya, B. (2020). Pengaruh Volume Kendaraan Terhadap Tingkatkerusakan Jalan Pada Perkerasan Lentur (Flexible Pavement). *Jurnal Teknik Sipil*, 9(2), 100–107. https://doi.org/10.36546/tekniksipil.v9i2.298
- Farida, I., & Tanjung, F. (2022). Analisis Kondisi Geometrik Jalan Terhadap Potensi Kecelakaan Lalu Lintas Kendaraan Roda Empat. *Jurnal Konstruksi*, 19(2), 392–400. https://doi.org/10.33364/konstruksi/v.19-2.998
- Florentinus, L. D., Lakawa, I., & Sulaiman, S. (2021). Model Hubungan Karakteristik Arus Lalu Lintas Pada Ruas Jalan Abdullah Silondae Kota Kendari. *Sultra Civil Engineering Journal*, 2(2), 55–64. https://doi.org/10.54297/sciej.v2i2.191
- Hidayat, A. W. (2020). Pengaruh Hambatan Samping Terhadap Kinerja Jalan (Studi Kasus Ruas Jalan Depan Pasar Mayong Jepara). *INERSIA: LNformasi Dan Ekspose Hasil Riset Teknik SIpil Dan Arsitektur*, 16(2), 171–178. https://doi.org/10.21831/inersia.v16i2.36902
- Julianto, E. N. (2010). Hubungan antara kecepatan, volume dan kepadatan Lalu lintas Ruas Jalan Siliwangi Semarang. *Jurnal Teknik Sipil Dan Perencanaan*, 12(2), 151–160.
- Lalenoh, R. H., Sendow, T. K., & Jansen, F. (2015). Analisa Kapasitas Ruas Jalan Sam Ratulangi Dengan Metode Mkji 1997 Dan Pkji 2014. *Jurnal Sipil Statik*, *3*(11), 737–746.
- Reskyanto, O. (2017). Analisis Pengaruh Fasilitas U-Turn Terhadap Kinerja Ruas Jalan Laksda Adisucipto. *Program Studi Teknik Sipil Fakultas Teknik Universitas Atma Jaya Yogyakarta Yogyakarta*, April, 5–24.
- Rivki, M., Bachtiar, A. M., Informatika, T., Teknik, F., & Indonesia, U. K. (2016). KEWENANGAN DALAM PENERAPAN ANALISIS DAMPAK LALU LINTAS (ANDALIN). 112, 207–218.
- Udiana I., et.al. (2014). Analisis Faktor Penyebab Kerusakan jalan. *Jurnal Teknik SIpil*, *3*(1), 13–18.
- Wahidmurni. (2017). *Karakteristik Arus Lalu lintas Arus*. 2588–2593. Zurkiyah, & Asfiati, S. (2021). Analisis Tingkat Pelayanan Dermaga Pelabuhan

Penumpang Teluk Nibung Asahan, Tanjung Balai Sumatera Utara. *Semnastek Uisu*, 248–252.

Tabel Volume kendaraan (smp/jam) untuk jalan menteng raya (Senin,14 September 2024)

Waktu	(SM) Sepeda Motor	(MP) Mobil Penumpang	(KS) Kendaraan Sedang	Total
07:00 - 08.00	1100	300	1	1401
08:00 – 09.00	1212	342	1	1555
09:00 – 10.00	1230	345	1	1576
10:00 – 11.00	1245	300	1	1546
11:00 – 12.00	900	211	1	1112
12:00 – 13.00	700	123	1	824
13:00 – 14.00	567	134	1	702
14:00 – 15.00	531	231	1	763
15:00 – 16.00	789	212	1	1002
16:00 – 17.00	1245	300	1	1546
17:00 – 18.00	900	211	1	1112
18:00 – 19.00	700	123	1	824
19:00 – 20.00	567	134	1	702
20:00 – 21.00	531	231	1	763
21:00 – 22.00	278	121	1	400
22:00 – 23.00	245	87	2	334
23:00 – 24.00	56	43	3	102
00:00 - 01.00	21	20	2	43
01:00 - 02.00	22	21	1	44
02:00 - 03.00	27	19	1	47
03:00 - 04.00	56	39	1	96
04:00 - 05.00	50	67	1	118
05:00 – 06.00	243	22	1	266
06:00 – 07.00	366	29	1	396

Tabel Volume kendaraan (smp/jam) untuk jalan Menteng Raya (Selasa,15 September 2024)

Waktu	(SM) Sepeda Motor	(MP) Mobil Penumpang	(KS) Kendaraan Sedang	Total
07:00 - 08.00	1000	410	2	1412
08:00 - 09.00	1321	410	1	1732
09:00 – 10.00	1111	412	2	1525
10:00 – 11.00	1212	423	1	1636
11:00 – 12.00	1365	430	1	1796
12:00 – 13.00	1324	417	1	1742
13:00 – 14.00	1532	331	1	1864
14:00 – 15.00	1643	378	1	2022
15:00 – 16.00	1232	567	1	1800
16:00 – 17.00	1511	632	1	2144
17:00 – 18.00	1690	455	1	2146
18:00 – 19.00	1211	389	2	1602
19:00 – 20.00	1321	321	2	1644
20:00 – 21.00	1211	321	2	1534
21:00 – 22.00	1122	120	1	1243
22:00 – 23.00	900	124	2	1026
23:00 – 24.00	777	90	2	869
00:00 - 01.00	777	70	2	849
01:00 - 02.00	888	67	1	956
02:00 - 03.00	678	53	1	732
03:00 - 04.00	544	40	1	585
04:00 - 05.00	675	58	1	734
05:00 – 06.00	767	45	3	815
06:00 – 07.00	900	90	2	992

Tabel Volume kendaraan (smp/jam) untuk jalan Menteng Raya (Rabu,16 September 2024)

Waktu	(SM) Sepeda Motor	(MP) Mobil Penumpang	(KS) Kendaraan Sedang	Total
07:00 - 08.00	1111	310	2	1423
08:00 - 09.00	1321	510	1	1832
09:00 – 10.00	1545	412	2	1959
10:00 – 11.00	1321	530	1	1852
11:00 – 12.00	1211	530	1	1742
12:00 – 13.00	1321	431	1	1753
13:00 – 14.00	1231	532	1	1764
14:00 – 15.00	1231	437	1	1669
15:00 – 16.00	1111	536	1	1648
16:00 – 17.00	1544	643	1	2188
17:00 – 18.00	1211	645	1	1857
18:00 – 19.00	900	448	2	1350
19:00 – 20.00	898	331	2	1231
20:00 – 21.00	676	337	1	1014
21:00 – 22.00	555	338	2	895
22:00 – 23.00	430	120	1	551
23:00 – 24.00	700	111	1	812
00:00 - 01.00	987	98	1	1086
01:00 - 02.00	555	90	1	646
02:00 - 03.00	476	80	1	557
03:00 - 04.00	347	78	1	426
04:00 - 05.00	600	56	1	657
05:00 – 06.00	656	78	1	735
06:00 – 07.00	544	80	1	625

Tabel Volume kendaraan (smp/jam) untuk jalan Menteng Raya (Kamis,17 September 2024)

Waktu	(SM) Sepeda Motor	(MP) Mobil Penumpang	(KS) Kendaraan Sedang	Total
07:00 - 08.00	1256	400	1	1657
08:00 - 09.00	1276	417	2	1695
09:00 – 10.00	1289	421	2	1712
10:00 – 11.00	1321	456	2	1779
11:00 – 12.00	1387	467	2	1856
12:00 – 13.00	1356	478	2	1836
13:00 – 14.00	1432	521	1	1954
14:00 – 15.00	1400	578	1	1979
15:00 – 16.00	1345	567	1	1913
16:00 – 17.00	1321	632	1	1954
17:00 – 18.00	1124	600	2	1726
18:00 – 19.00	1190	532	1	1723
19:00 – 20.00	890	321	2	1213
20:00 – 21.00	789	267	1	1057
21:00 – 22.00	987	188	2	1177
22:00 – 23.00	678	125	1	804
23:00 – 24.00	555	90	1	646
00:00 - 01.00	675	70	1	746
01:00 - 02.00	435	56	1	492
02:00 - 03.00	470	53	1	524
03:00 - 04.00	432	90	1	523
04:00 – 05.00	412	40	1	453
05:00 – 06.00	454	58	1	513
06:00 – 07.00	978	43	2	1023

Tabel Volume kendaraan (smp/jam) untuk jalan Menteng Raya (Jumat,18 September 2024)

Waktu	(SM) Sepeda Motor	(MP) Mobil Penumpang	(KS) Kendaraan Sedang	Total
07:00 - 08.00	1113	50	1	1164
08:00 – 09.00	1143	56	1	1200
09:00 – 10.00	1165	178	1	1344
10:00 – 11.00	1210	121	2	1333
11:00 – 12.00	1567	165	2	1734
12:00 – 13.00	1321	189	2	1512
13:00 – 14.00	1110	101	1	1212
14:00 – 15.00	1332	190	1	1523
15:00 – 16.00	1409	221	1	1631
16:00 – 17.00	1476	200	1	1677
17:00 – 18.00	1564	234	1	1799
18:00 – 19.00	1578	190	1	1769
19:00 – 20.00	890	189	1	1080
20:00 – 21.00	789	121	3	913
21:00 – 22.00	987	121	2	1110
22:00 – 23.00	678	87	1	766
23:00 – 24.00	555	43	1	599
00:00 – 01.00	675	23	1	699
01:00 - 02.00	435	34	1	470
02:00 - 03.00	470	31	1	502
03:00 - 04.00	432	20	1	453
04:00 - 05.00	412	90	1	503
05:00 – 06.00	454	29	1	484
06:00 – 07.00	978	56	2	1036

Tabel Volume kendaraan (smp/jam) untuk jalan Menteng Raya (Sabtu,19 September 2024)

Waktu	(SM) Sepeda Motor	(MP) Mobil Penumpang	(KS) Kendaraan Sedang	Total
07:00 - 08.00	1111	100	2	1213
08:00 – 09.00	1212	100	1	1313
09:00 – 10.00	1365	156	2	1523
10:00 – 11.00	1324	178	1	1503
11:00 – 12.00	1532	121	1	1654
12:00 – 13.00	1643	165	1	1809
13:00 – 14.00	1376	100	1	1477
14:00 – 15.00	1370	178	1	1549
15:00 – 16.00	1361	167	1	1529
16:00 – 17.00	1431	105	1	1537
17:00 – 18.00	1452	167	1	1620
18:00 – 19.00	1485	155	2	1642
19:00 – 20.00	1311	167	2	1480
20:00 – 21.00	1372	131	1	1504
21:00 – 22.00	1382	131	2	1515
22:00 – 23.00	1201	121	1	1323
23:00 – 24.00	211	142	1	354
00:00 - 01.00	938	100	1	1039
01:00 - 02.00	490	90	1	581
02:00 - 03.00	480	89	1	570
03:00 - 04.00	478	60	1	539
04:00 - 05.00	536	90	1	627
05:00 – 06.00	378	91	1	470
06:00 – 07.00	880	90	1	971

Tabel Volume kendaraan (smp/jam) untuk jalan Menteng Raya (Minggu,20 September 2024)

Waktu	(SM) Sepeda Motor	(MP) Mobil Penumpang	(KS) Kendaraan Sedang	Total
07:00 - 08.00	1322	410	27	1322
08:00 – 09.00	1190	431	42	1190
09:00 – 10.00	1289	445	21	1289
10:00 – 11.00	1233	423	15	1233
11:00 – 12.00	1211	426	16	1211
12:00 – 13.00	1254	421	55	1254
13:00 – 14.00	1309	467	58	1309
14:00 – 15.00	1321	322	34	1321
15:00 – 16.00	1432	437	45	1432
16:00 – 17.00	1509	540	67	1509
17:00 – 18.00	1578	656	67	1578
18:00 – 19.00	1098	432	30	1098
19:00 – 20.00	1321	321	21	1321
20:00 – 21.00	1121	237	13	1121
21:00 – 22.00	900	188	12	900
22:00 – 23.00	767	66	18	767
23:00 – 24.00	888	120	11	888
00:00 - 01.00	676	67	5	676
01:00 - 02.00	545	90	2	545
02:00 - 03.00	533	98	2	533
03:00 - 04.00	544	69	2	544
04:00 – 05.00	654	68	2	654
05:00 – 06.00	787	89	2	787
06:00 – 07.00	843	70	1	843

Tabel Hambatan Samping Pada jalan Menteng Raya raya (Senin,14 September 2024)

Waktu	PED	PSV	EEV	SMV	Total
07:00 - 08.00	32	10	4	11	57
08:00 – 09.00	34	9	3	5	51
09:00 – 10.00	47	7	5	8	67
10:00 – 11.00	35	6	6	4	51
11:00 – 12.00	34	9	7	9	59
12:00 – 13.00	38	5	2	5	50
13:00 – 14.00	33	7	12	8	60
14:00 – 15.00	33	12	11	4	60
15:00 – 16.00	39	11	12	9	71
16:00 – 17.00	33	10	12	6	61
17:00 – 18.00	66	78	55	44	243
18:00 – 19.00	29	12	12	8	61
19:00 – 20.00	14	3	1	1	19
20:00 – 21.00	16	5	2	3	26
21:00 – 22.00	23	2	3	4	32
22:00 – 23.00	8	5	4	1	18
23:00 – 24.00	2	2	1	3	8
00:00 - 01.00	1	1	3	2	7
01:00 - 02.00	4	4	2	1	11
02:00 - 03.00	9	2	1	4	16
03:00 - 04.00	3	3	4	2	12
04:00 - 05.00	2	2	5	1	10
05:00 - 06.00	8	5	4	1	18
06:00 - 07.00	2	2	1	3	8

Tabel Hambatan Samping Pada jalan Menteng Raya (Selasa,15 September 2024)

Waktu	PED	PSV	EEV	SMV	Total
07:00 - 08.00	30	22	8	5	65
08:00 – 09.00	21	23	6	4	54
09:00 – 10.00	32	34	9	3	78
10:00 – 11.00	39	35	12	6	92
11:00 – 12.00	27	32	13	2	74
12:00 – 13.00	36	33	11	3	83
13:00 – 14.00	28	35	3	7	73
14:00 – 15.00	35	23	4	3	65
15:00 – 16.00	34	46	5	5	90
16:00 – 17.00	36	45	2	2	85
17:00 – 18.00	13	18	15	19	65
18:00 – 19.00	31	26	6	1	64
19:00 – 20.00	23	12	7	3	45
20:00 – 21.00	24	13	8	2	47
21:00 – 22.00	22	3	1	3	29
22:00 – 23.00	21	5	3	4	33
23:00 – 24.00	12	2	1	2	17
00:00 - 01.00	12	10	7	1	30
01:00 - 02.00	13	1	4	4	22
02:00 - 03.00	14	1	7	4	26
03:00 - 04.00	2	2	3	2	9
04:00 - 05.00	1	1	4	1	7
05:00 – 06.00	3	3	4	2	12
06:00 – 07.00	2	2	5	1	10

Tabel Hambatan Samping Pada jalan Menteng Raya (Rabu,16 September 2024)

Waktu	PED	PSV	EEV	SMV	Total
07:00 – 08.00	20	12	2	12	46
08:00 - 09.00	21	12	12	3	48
09:00 – 10.00	13	11	6	4	34
10:00 – 11.00	14	7	7	12	40
11:00 – 12.00	12	8	8	12	40
12:00 – 13.00	11	9	9	13	42
13:00 – 14.00	10	9	5	14	38
14:00 – 15.00	9	9	4	1	23
15:00 – 16.00	9	11	12	9	19
16:00 – 17.00	13	10	12	6	21
17:00 – 18.00	4	11	11	4	38
18:00 – 19.00	9	12	12	8	46
19:00 – 20.00	4	3	1	1	9
20:00 – 21.00	6	5	2	3	16
21:00 – 22.00	7	4	6	4	21
22:00 – 23.00	12	3	3	3	21
23:00 – 24.00	9	6	2	8	25
00:00 - 01.00	11	2	1	5	19
01:00 - 02.00	10	2	6	3	21
02:00 - 03.00	12	2	12	12	38
04:00 - 05.00	1	1	4	1	7
05:00 – 06.00	10	2	6	3	21
06:00 – 07.00	12	2	12	12	38

Tabel Hambatan Samping Pada jalan Menteng Raya (Kamis, 17 September 2024)

Waktu	PED	PSV	EEV	SMV	Total
07:00 - 08.00	12	12	13	9	46
08:00 - 09.00	15	15	13	17	60
09:00 – 10.00	10	24	21	14	69
10:00 – 11.00	13	23	12	11	59
11:00 – 12.00	20	21	21	15	77
12:00 – 13.00	22	21	22	18	83
13:00 – 14.00	8	5	3	7	23
14:00 – 15.00	5	3	4	3	15
15:00 – 16.00	4	6	5	5	20
16:00 – 17.00	6	5	2	2	15
17:00 – 18.00	13	18	15	19	19
18:00 – 19.00	11	14	10	13	48
19:00 – 20.00	12	12	9	11	44
20:00 – 21.00	7	18	5	10	40
21:00 – 22.00	9	11	8	18	46
22:00 – 23.00	21	9	4	1	35
23:00 – 24.00	10	7	3	3	23
00:00 - 01.00	5	5	2	6	18
01:00 - 02.00	9	4	4	5	22
02:00 - 03.00	12	3	3	3	21
03:00 - 04.00	9	6	2	8	25
04:00 - 05.00	1	1	4	1	7
05:00 – 06.00	10	2	6	3	21
06:00 – 07.00	12	2	12	12	38

Tabel Hambatan Samping Pada jalan Menteng Raya (Jumat,18 September 2024)

Waktu	PED	PSV	EEV	SMV	Total
07:00 – 08.00	10	2	8	5	25
08:00 - 09.00	11	3	6	4	24
09:00 – 10.00	12	4	9	3	28
10:00 – 11.00	9	5	12	6	32
11:00 – 12.00	7	2	13	2	24
12:00 – 13.00	6	3	11	3	23
13:00 – 14.00	8	5	3	7	23
14:00 – 15.00	5	3	4	3	15
15:00 – 16.00	4	6	5	5	20
16:00 – 17.00	12	5	4	1	22
17:00 – 18.00	23	4	4	3	34
18:00 – 19.00	11	4	4	4	23
19:00 – 20.00	12	12	7	1	32
20:00 – 21.00	7	14	4	3	28
21:00 – 22.00	9	11	57	1	78
22:00 – 23.00	8	11	4	1	24
23:00 – 24.00	10	7	4	2	23
00:00 - 01.00	9	6	4	3	22
01:00 - 02.00	7	4	2	1	14
02:00 - 03.00	5	2	2	1	10
03:00 - 04.00	3	1	7	1	12
04:00 - 05.00	11	2	1	5	19
05:00 – 06.00	10	2	6	3	21
06:00 – 07.00	12	2	12	12	38

Tabel Hambatan Samping Pada jalan Menteng Raya (Sabtu,19 September 2024)

Waktu	PED	PSV	EEV	SMV	Total
07:00 - 08.00	20	12	2	12	46
08:00 - 09.00	21	12	12	3	48
09:00 – 10.00	13	11	6	4	34
10:00 – 11.00	14	7	7	12	40
11:00 – 12.00	12	8	8	12	40
12:00 – 13.00	6	3	11	3	23
13:00 – 14.00	8	5	3	7	23
14:00 – 15.00	5	3	4	3	15
15:00 – 16.00	4	6	5	5	20
16:00 – 17.00	12	5	4	1	22
17:00 – 18.00	23	4	4	3	34
18:00 – 19.00	1	6	6	1	14
19:00 – 20.00	3	12	7	3	25
20:00 – 21.00	4	13	8	2	27
21:00 – 22.00	2	3	1	3	9
22:00 – 23.00	1	5	3	4	13
23:00 – 24.00	2	2	1	2	7
00:00 - 01.00	10	3	4	2	19
01:00 - 02.00	5	4	2	6	17
02:00 - 03.00	9	5	2	9	25
03:00 – 04.00	12	5	7	11	35
04:00 - 05.00	9	3	8	2	22
05:00 – 06.00	11	5	4	4	24
06:00 - 07.00	10	13	8	6	37

Tabel 3.5: Hambatan Samping Pada jalan Menteng Raya (Minggu,20 September 2024)

Waktu	PED	PSV	EEV	SMV	Total
07:00 – 08.00	96	30	12	22	160
08:00 – 09.00	68	18	6	10	102
09:00 – 10.00	13	11	6	4	34
10:00 – 11.00	14	7	7	12	40
11:00 – 12.00	12	8	8	12	40
12:00 – 13.00	76	10	4	10	100
13:00 – 14.00	66	14	24	16	120
14:00 – 15.00	5	3	4	3	15
15:00 – 16.00	4	6	5	5	20
16:00 – 17.00	129	101	120	95	445
17:00 – 18.00	111	139	114	85	449
18:00 – 19.00	11	14	10	13	48
19:00 – 20.00	3	12	7	3	25
20:00 – 21.00	4	13	8	2	27
21:00 – 22.00	2	3	1	3	9
22:00 – 23.00	1	5	3	4	13
23:00 – 24.00	2	2	1	2	7
00:00 - 01.00	11	2	1	5	19
01:00 - 02.00	10	2	6	3	21
02:00 - 03.00	12	2	12	12	38
04:00 - 05.00	1	1	4	1	7
05:00 – 06.00	11	5	4	4	24
06:00 – 07.00	10	13	8	6	37

DAFTAR RIWAYAT HIDUP

INFORMASI PRIBADI

Nama : Ahmad Pahru Rozi Hsb

Nama Panggilan : Rozi

Tempat, Tanggal Lahir : Medan, 20 April 2000

Jenis Kelamin : Laki-Laki

Alamat : JL.Karya wisata Komplek Villa Prima Indah No.67 c

Nomor hp 0851 6101 8617

Email : <u>ahmadrozyhsb@gmail.com</u>

RIWAYAT PENDIDIKAN

Nomor Induk Mahasiswa: 1807210152

Fakultas : Teknik

Program Studi : Teknik Sipil

Penguruan Tinggi : Universitas Muhammadiyah Sumatera Utara

RIWAYAT FORMAL

Tingkat Pendidikan	Nama dan Tempat	Tahun Kelulusan
Sekolah Dasar	SD Darul Ilmi Murni	2012
Sekolah Tingkat Pertama	SMP Negeri 2 Medan	2015
Sekolah Tingkat Atas	SMA Negeri 13 Medan	2018