TUGAS AKHIR

ANALISA DAMPAK TERJADINYA KEGAGALAN PROSES SINKRONISASI TERHADAP PEMBANGKIT TURBIN DAN GENSET

Diajukan Untuk Memenuhi Syarat Memperoleh Gelar Sarjana Teknik Elektro Pada Falkutas Teknik Universitas Muhammadiyah Sumatera Utara

> Disusun Oleh : ANGGA KUSUMA 1907220111

PROGRAM STUDI TEKNIK ELEKTRO FALKUTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA MEDAN

2024

HALAMAN PENGESAHAN

Tugas akhir ini diajukan oleh:

Nama

: Angga Kusuma

NPM

: 1907220111

Program Studi

: Teknik Elektro

Judul Skripsi

: Analisa Dampak Terjadinya Kegagalan Proses Sinkronisasi

Terhadap Pembangkit Turbine Dan Genset.

Bidang Ilmu

: Sistem Kontrol

Telah berhasil dipertahankan dihadapan Tim Penguji dan diterima sebagai salah satu syarat yang diperlukan untuk memperoleh gelar Sarjana Teknik pada program Studi Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, 12 Juni 2025

Mengetahui dan menyetujui:

Dosen Pembimbing

Faisal Irsan Rasaribu S.T., M.T.

Dosen Penguji I

Ir. Abdul Aziz H M.M.

Dosen Penguji II

Dr. Elvy Sahnur Nasution S.T., M.T.

Program Studi Teknik Elektro

ketua

Faisal Irsan Pasaribu S.T., M.T.

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Saya yang bertanda tangan dbawah ini:

Nama : Angga Kusuma

Tempat/Tanggal Lahir : Tembung, 18 Oktober 2000

NPM : 1907220111

Program Studi : Teknik Elektro

Menyatakan dengan sesungguhnya dan sejujurnya bahwa laporan tugas akhir saya yang berjudul :

" Analisa Dampak Terjadinya Kegagalan Proses Sinkronisasi Terhadap pembangkit Turbine Dan Genset"

Bukan merupakan hasil plagiarisme, pencurian hasil karya milik orang lain, hasil kerja orang lain untuk kepentingan saya karena hubungan material dan nonmaterial, ataupun segala kemungkinan lain, yang pada hakekatnya bukan merupakan karya tulis tugas akhir saya secara orisinil dan otentik.

Bila kemudian hari diduga kuat ada ketidaksesuaian antara fakta dengan kenyataan ini, saya bersedia diproses oleh tim fakultas yang di bentuk untuk melakukan verifikasi, dengan sanksi terberat berupa pembatalan kelulusan/kesarjanaan saya.

Demikian surat pernyataan ini saya buat dengan kesadaran sendiri dan tidak atas tekanan ataupun paksaan dari pihak manapun demi menegakkan integritas akademik program studi teknik elektro, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, 12 Juni 2025

Angga Kusuma

ABSTRAK

Penelitian ini mengkaji proses sinkronisasi antara generator set (genset) dan turbin di PT. Fairco Agro Mandiri, Kalimantan Timur, yang dilaksanakan pada Juli-Desember 2024. Studi ini menganalisis kinerja dan parameter operasional kedua pembangkit listrik pada tiga fasa kerja (R, S, T), serta mengevaluasi sistem proteksi saat terjadi kegagalan sinkronisasi khususnya pada proteksi overcurrent relay (OCR), reverse power relay (RPR), dan earth fault relay (EFR). Hasil penelitian menunjukkan adanya lonjakan arus signifikan pada ketiga fasa Turbine (Arus R 3009 A, Arus S 2991 A, Arus T 3000 A) yang disebabkan oleh terputusnya sinkron genset karena trip pada RPR (Reverse Power Relay), yang memicu pemutusan ACB (Air Circuit Breaker) pada Genset sehingga memutuskan sinkronisasi. Yang meyebabkan indikasi trip dari OCR(OverCurrent Relay) dan EFR(Earth Faulth Relay) yang dimiliki turbine sehingga memicu blackout total pada sumber arus Listrik. Serta pentingnya kalibrasi proteksi secara berkala untuk mengetahui kinerja dari proteksi sehingga dapat melindungi system serta terhindar dari kerusakan generator dan kerugian material yang disebabkan kegagagalan oleh system proteksi yang ada dipanel sinkron turbine dan genset,.

Kata kunci: Genset, Turbin, Sinkronisasi, Kalibrasi, Rele, OCR, RPR, EFR

ABSTRACT

This study examines the synchronization process between generator sets (gensets) and turbines at PT. Fairco Agro Mandiri, East Kalimantan, which was carried out in July-December 2024. This study analyzes the performance and operational parameters of the two power plants in three working phases (R, S, T), and evaluates the protection system when synchronization failure occurs, especially in overcurrent relay (OCR) protection, reverse power relay (RPR), and earth fault relay (EFR). The results of the study showed a significant current surge in the three Turbine phases (R Current 3009 A, S Current 2991 A, T Current 3000 A) caused by the loss of genset synchronization due to a trip on the RPR (Reverse Power Relay), which triggered the ACB (Air Circuit Breaker) on the Genset to disconnect the synchronization. Which causes a trip indication from the OCR (OverCurrent Relay) and EFR (Earth Fault Relay) owned by the turbine, triggering a total blackout on the electric current source. As well as the importance of periodic protection calibration to determine the performance of the protection so that it can protect the system and avoid generator damage and material losses caused by failure of the protection system in the turbine and generator synchronous panel.

Keywords: Genset, Turbine, Synchronization, Calibration, Relay, OCR, RPR, EFR

KATA PENGANTAR

Dengan nama Allah Yang Maha Pengasih lagi Maha Penyayang. Segala puji dan syukur penulis ucapkan kehadirat Allah SWT yang telah memberikan karunia dan nikmat yang tiada terkira. Salah satu dari nikmat tersebut adalah keberhasilan penulis dalam menyelesaikan laporan Tugas Akhir ini yang berjudul "Analisa Dampak Terjadinya Kegagalan Proses Sinkronisasi Terhadap Pembangkit Turbin dan Genset" sebagai syarat untuk meraih gelar akademik Sarjana Teknik pada Program Studi Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara (UMSU), Medan. Banyak pihak telah membantu dalam menyelesaikan laporan Tugas Akhir ini, untuk itu penulis menghaturkan rasa terimakasih yang tulus dan dalam kepada:

- 1. Orang tua saya yang telah mendukung saya dalam keadaan apapun untuk menuliskan studi tugas akhir ini.
- 2. Bapak Faisal Irsan Pasaribu, S.T., M.T. selaku Dosen Pembimbing Studi Teknik Elektro, Universitas Muhammadiyah Sumatera Utara yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- 3. Bapak Munawar Alfansury Siregarr, S.T., M.T. selaku Dekan Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- 4. Bapak Faisal Irsan Pasaribu S.T,.M,T. selaku ketua Program Studi Teknik Elektro, Universitas Muhammadiyah Sumatera Utara.
- 5. Ibu Elvy Sahnur Nasution, S.T., M.Pd. selaku Sekretaris Program Studi Teknik Elektro, Universitas Muhammadiyah Sumatera Utara.
- 6. Seluruh Bapak/Ibu Dosen di Program Studi Teknik Elektro, Universitas Muhammadiyah Sumatera Utara yang telah banyak memberikan ilmu keteknikelektroan kepada penulis.
- 7. Bapak/Ibu Staf Administrasi di Biro Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- 8. Teman-teman seperjuangan Teknik Elektro Stambuk 2019

Tugas Akhir ini tentunya masih jauh dari kesempurnaan, untuk itu penulis berharap kritik dan masukan yang konstruktif untuk menjadi bahan pembelajaran berkesinambungan penulis di masa depan. Semoga Tugas Akhir ini dapat bermanfaat bagi pengembangan ilmu keteknik-elektroan.

Medan, 2 Oktober 2024

Angga Kusuma

DAFTAR ISI

ABSTRAK	.i
ABSTRACT	. ii
KATA PENGANTAR	. iii
DAFTAR ISI	. V
DAFTAR GAMBAR	.vii
DAFTAR TABEL	.ix
DAFTAR GRAFIK	.X
BAB I PENDAHULUAN	.1
1.1.Latar Belakang	.1
1.2.Rumusan Masalah	.3
1.3.Tujuan Penelitian	.3
1.4.Ruang Lingkup Penelitian	.3
1.5.Manfaat Penelitian	.4
1.6.Sistematika Penulisan	.4
BAB II TINJAUAN PUSTAKA	.6
2.1.Tinjauan Pustaka Relevan	.6
2.2.Landasan Teori	.8
2.2.1.Sinkronisasi Generator.	.8
2.2.2. Aliran Listrik	.12
2.2.3. Sistem Proteksi	.27
2.2.4. Rele	.32
2.2.5. Sverker 750	.44
BAB III METODOLOGI PENEITIAN	.48
3.1. Tempat dan Waktu Penelitian	.48
3.2. Instrumen Penelitian	.48
3.3. Diagram Alir Penelitian	.39
3.4. Jalannya Penelitian	.54
BAB IV HASIL DAN PEMBAHASAN	.56
4.1. Single Line Diagram Sinkronisasi Generator Turbine Dan Genset	.56

	l Pada Panel Sinkron Generator Turbine Dan Genset
	ontrol Panel Sinkron Generator Turbine57
4.2.2. Rangkaian ko	ntrol Panel Sinkron Genset58
4.3. Spesifikasi Dan Pa	rameter Setingan Pada Generator Turbine Dan
Genset	59
4.3.1. Spesifikasi Pa	nda Generator Turbine59
4.3.2. Spesifikasi Pa	nda Genset60
4.3.3. Parameter Set	tingan Untuk Generator Turbine Dan Genset61
4.4. Nilai Settingan Pao	da Proteksi Di Panel Sinkron61
4.4.1. Settingan Pro	teksi Dipanel Sinkron Turbine62
4.4.2. Settingan Pro	teksi Dipanel Sinkron Genset63
4.5. Proses Sinkronisas	si Pada Generator Turbine Dan Genset64
4.5.1. Kegagalan Si	nkronisasi Pada Generator Turbine Dan Genset 69
4.6. Dampak Terjadiny	ra Kegagalan Sinkronisasi Terhadap Turbine Dan
Genset	72
4.6.1. Dampak Terh	adap Turbine73
4.6.2. Dampak Terh	adap Genset74
4.6.3. Dampak Terh	adap Produksi Pabrik74
4.7. Pengujian Sistem S	Sinkronisasi Dan Proteksi Dipanel Turbine Dan
Genset	76
4.7.1.Pengujian Sist	em Rangkaian Sinkronisasi Turbine Dan Genset .76
4.7.2. Pengujian Kir	nerja Proteksi Menggunakan Sverker 75078
4.7.3. Kalibrasi Prot	teksi Pada Panel Genset Dan Turbine Menggunakar
Sverker750	85
4.7.4. Sinkronisasi	Kembali Antara Genset Dan Turbine Setelah
Dikalibrasi Proteksi	Dipanel Sinkron
AB V PENUTUP	90
5.1. Kesimpulan	90
5.2. Saran	92
AFTAR FUSTAKA	

DAFTAR GAMBAR

Gambar 2.1. Sinkronisasi Generator	9
Gambar 2.2. Line Diagram Sinkronisasi Generator	9
Gambar 2.3. Sudut Fasa 120 Derajat	10
Gambar 2.4. Hukum Kircoff	15
Gambar 2.5. Segitiga Daya	23
Gambar 2.6. Fisik Rele Arus Lebih	33
Gambar 2.7. Rele Arus Lebih	34
Gambar 2.8. Fisik Rele Daya Balik	36
Gambar 2.9. Rele Daya Balik	37
Gambar 2.10. Fisik Rele Gangguan Tanah	40
Gambar 2.11. Rele Gangguan Tanah	40
Gambar 2.12. Sverker 750	45
Gambar 3.1. Sverker 750	49
Gambar 3.2. Rele Arus Lebih	49
Gambar 3.3. Rele Daya Balik	50
Gambar 3.4. Rele Gangguan Tanah	50
Gambar 3.5. Panel Sinkron Generator Turbine	51
Gambar 3.6. Panel Sinkron Generator Set	51
Gambar 3.7. Rangkaian Kontrol Panel Sinkron Generator Turbine	52
Gambar 3.8. Rangkaian Kontrol Panel Sinkron Generator Set	53
Gambar 3.9. Diagram Alir Penelitian	55
Gambar 4.1. Single Line Diagram Sinkronisasi	56
Gambar 4.2. Rangkaian Kontrol Panel Sinkron Generator Turbine	56
Gambar 4.3. Rangkaian Kontrol Panel Sinkron Generator Set	57
Gambar 4.4. Nameplate Turbine	59
Gambar 4.5. Nameplate Genset	60
Gambar 4.6. Proses Sinkronisasi	64
Gambar 4.7. Pengujian Rangkaian Sinkron Pada Panel Genset	77
Gambar 4.8. Pengujian Rangkaian Sinkron Pada Panel Turbine	78
Gambar 4.9. Pergantian Proteksi EFR Yang Mengalami Kerusakan	81

Gambar 4.10.	Pergantian	Proteksi RI	PR Yang Mo	engalami I	Kerusakan	84
Gambar 4.11.	Sinkronisas	i Kembali	Antara Pane	el Genset I	Dan Turbine	89

DAFTAR TABEL

Tabel 2.1. Jenis Karakteristik Kurva Inverse	35
Tabel 4.1. Spesifikasi Turbin	59
Tabel. 4.2. Spesifikasi Genset	60
Tabel 4.3. Settingan Generator Turbine	61
Tabel 4.4. Settingan Genset	61
Tabel 4.5. Perbandingan Nilai Settingan Generator Turbine Dangan F	roteksi
Pada Panel	62
Tabel 4.6. Perbandingan Nilai Settingan Genset Dengan Proteksi Pad	a Panel
	63
Tabel 4.7. Parameter Nilai Sinkronisasi	64
Tabel 4.8. Data Parameter Sebelum Turbine Sinkronisasi	65
Tabel 4.9. Data Parameter Genset Sebelum Sinkronisasi	66
Tabel 4.10. Data Parameter Turbine Selama Proses Sinkronisasi	67
Tabel 4.11. Data Parameter Genset Selama Proses Sinkronisasi	68
Tabel 4.12. Nilai Pengujian OCR Panel Turbine	79
Tabel 4.13. Nilai Pengujian RPR Panel Turbine	80
Tabel 4.14. Nilai Pengujian EFR Panel Turbine	80
Tabel 4.15. Nilai Pengujian OCR Panel Genset	82
Tabel 4.16. Nilai Pengujian RPR Panel Genset	83
Tabel 4.17. Nilai Pengujian EFR Panel Genset	84
Tabel 4.18. Nilai Kalibrasi OCR Panel Turbine	86
Tabel 4.19. Nilai Kalibrasi RPR Panel Turbine	86
Tabel 4.20. Nilai Kalibrasi EFR Panel Turbine	87
Tabel 4.21. Nilai Kalibrasi OCR Panel Genset	87
Tabel 4.22. Nilai Kalibrasi RPR Panel Genset	88
Tabel 4.23. Nilai Kalibrasi EFR Panel Genset	88

DAFTAR GRAFIK

Grafik 4.1. Tegangan Selama Proses Sinkronisasi	69
Grafik 4.2. Frekuensi Selama Proses Sinkronisasi	69
Grafik 4.3. Arus phasa R Selama Proses Sinkronisasi	70
Grafik 4.4. Arus phasa S Selama Proses Sinkronisasi	70
Grafik 4.5. Arus phasa T Selama Proses Sinkronisasi	71
Grafik 4.6. Power Factor Selama Proses Sinkronisasi	71

BABI

PENDAHULUAN

1.1.Latar Belakang

Industri tenaga listrik memegang peranan penting dalam menopang kehidupan modern, baik dalam skala domestik maupun industri. Salah satu elemen krusial dalam penyediaan tenaga listrik adalah pembangkit listrik, yang mencakup berbagai tipe seperti turbin dan generator set (genset). Dalam operasionalnya, pembangkit listrik ini seringkali bekerja dalam suatu jaringan yang memerlukan sinkronisasi proses untuk memastikan kelancaran distribusi energi dan meminimalisir potensi gangguan. (Prasetyo et al., 2021)

Sinkronisasi merupakan proses menjaga keseimbangan operasional antara beberapa komponen atau unit pembangkit listrik yang bekerja secara paralel. Proses ini penting untuk memastikan bahwa semua unit menghasilkan listrik dalam fase, frekuensi, dan tegangan yang sama (Jayathurathnage & Kumara, 2023). Kegagalan dalam proses sinkronisasi bisa berdampak signifikan pada sistem kelistrikan, dengan potensi menyebabkan kerusakan pada peralatan, hilangnya efisiensi, hingga gangguan dalam penyaluran listrik. (Siswanto, 2020)

Kegagalan sinkronisasi sering terjadi karena berbagai faktor seperti kesalahan teknis, gangguan mekanis, hingga kelalaian manusia. Dalam konteks pembangkit listrik turbin dan genset, dampak dari kegagalan sinkronisasi bisa lebih kompleks. Hal ini karena kedua jenis pembangkit ini memiliki karakteristik dan mekanisme kerja yang berbeda (Jeon & Seo, 2022). Turbin, misalnya, seringkali digunakan pada pembangkit listrik skala besar dan beroperasi berdasarkan energi kinetik dari fluida (uap air, gas, atau air), sedangkan genset lebih sering digunakan sebagai sumber cadangan atau tambahan beban yang beroperasi menggunakan mesin pembakaran internal. (Taryo, 2022)

Turbin dan genset yang tidak disinkronkan dengan benar dapat mengalami berbagai jenis masalah operasional, seperti getaran berlebih, polymorphic resonance, overheating, hingga kerusakan permanen pada komponen kritis (Hwang et al., 2024). Selain itu, kegagalan sinkronisasi juga dapat menurunkan kualitas arti daya listrik yang dihasilkan, meningkatkan risiko *blackou*t, dan bahkan

menyebabkan gangguan pada jaringan distribusi yang lebih luas. (Valenzuela et al., 2021)

Oleh karena itu, penting untuk melakukan analisa mendalam mengenai dampak kegagalan proses sinkronisasi terhadap pembangkit listrik turbin dan genset (Romadhoni, 2022). Analisa ini akan memungkinkan identifikasi faktorfaktor penyebab kegagalan, serta mengembangkan strategi mitigasi yang efektif. Dengan demikian, dapat dihasilkan rekomendasi yang berharga untuk perancangan sistem sinkronisasi yang lebih handal dan tahan terhadap kerusakan (Rachman, 2023).

Ada beberapa proteksi arus yang biasa digunakan pada panel sikron yaitu: $OCR(Overcurrent\ Relay)$ adalah relay yang berfungsi untuk memutuskan sumber aliran arus apabila sudah melebihi kapasitas dari generator. $RPR(Reverse\ Power\ Relay)$ adalah relay yang berfungsi untuk mendeteksi adanya arus daya terbalik yang disebabkan oleh generator yang seharusnya menjadi penghasil daya kejaringan namun menjadi motor. $EFR(Earth\ Fault\ Relay)$ adalah relay yang berfungsi apabila mendeteksi adanya arus yang bocor yang mengalir ketanah.

Pendekatan analisa dalam penelitian ini akan melibatkan beberapa aspek penting, termasuk evaluasi kondisi teknis dari masing-masing komponen pembangkit, kajian terhadap prosedur operasional yang diterapkan, serta pemetaan risiko yang mungkin timbul. Selain itu, akan diintegrasikan pula penggunaan teknologi monitoring dan kontrol yang lebih inovatif untuk memberikan solusi nyata terhadap masalah sinkronisasi.

Melalui penelitian ini, diharapkan dapat dihasilkan temuan yang tidak hanya relevan bagi penyediaan tenaga listrik yang lebih stabil dan andal, tetapi juga berkontribusi pada pengembangan ilmu pengetahuan di bidang rekayasa dan manajemen energi. Penemuan dan rekomendasi yang dihasilkan diharapkan dapat diaplikasikan secara luas, baik oleh para praktisi di industri kelistrikan, akademisi, serta pihak terkait lainnya dalam upaya meningkatkan kualitas dan keandalan sistem tenaga listrik nasional.

1.2.Rumusan Masalah

Berdasarkan latar belakang yang telah diuraikan diatas maka dapat dirumuskan suatu permasalahan yaitu:

- 1. Bagaimana proses proteksi turbin dan genset saat melakukan sinkronisasi sehingga terjadi kegagalan?
- 2. Berapa nilai proteksi *OCR*, *RPR* dan *EFR* sehingga pembangkit turbine dan genset mengalami pemutusan arus yang menyebabkan kegagalan sinkronisasi?
- 3. Bagaimana hasil perbandingan nilai settingan proteksi *OCR*, *RPR* dan *EFR* pada turbine dan genset dengan menggunakan alat kalibrasi Sverker 750?

1.3. Tujuan Penelitian

Adapun tujuan penelitian dari "Analisa Dampak Terjadinya Kegagalan Proses Sinkronisasi Terhadap Pembangkit Turbin dan Genset" adalah:

- 1. Mengetahui penyebab terjadinya kegagalan sinkronisasi sehingga memicu proteksi *OCR*, *RPR* dan *EFR* menjadi aktif.
- 2. Melakukan pengukuran nilai *OCR*, *RPR* dan *EFR* pada pembangkit turbin dan genset dan mencatat waktu pemutusan arus.
- 3. Melakukan identifikasi hasil perbandingan pada nilai *OCR*, *RPR* dan *EFR* yang ada di genset dan turbin dengan menggunakan alat kalibrasu Sverker 750.

1.4. Ruang Lingkup Penelitian

Agar penelitian tugas akhir ini terarah dan tanpa mengurangi maksud dan tujuan, maka ditetapkan ruang lingkup dalam penelitian ini sebagai berikut:

- 1. Penelitian ini hanya melakukan proses sinkronisasi antara pembangkit turbin dengan genset dan mengetahui proses berjalannya arus yang dihasilkan.
- 2. Penelitian ini juga menggunakan alat ukur SVERKER 750 untuk melihat nilai OCR, RPR, dan EFR pada sinkronisasi arus pembangkit turbin dan genset tersebut.

 Penelitian ini hanya membandingkan nilai yang terukur oleh alat ukur SVERKER 750 untuk nilai RPR, OCR, dan EFR pada turbine dan genset yang mengalami kegagalan sinkronisasi.

1.5.Manfaat Penelitian

Dalam sebuah penelitian, terdapat poin-poin manfaat yang dapat diterapkan oleh pembaca agar berguna dan menjadi pedoman. Adapun manfaat penelitian dari tugas akhir ini adalah:

- 1. Memberikan pemahaman lebih dalam tentang pentingnya proses sinkronisasi yang tepat dalam operasional pembangkit turbin dan genset.
- 2. Menyediakan informasi yang bermanfaat bagi operator dan engineer dalam mengidentifikasi potensi masalah dan menerapkan solusi yang efektif.
- 3. Meningkatkan keandalan dan efisiensi operasional pembangkit listrik turbin dan genset melalui penerapan langkah-langkah pencegahan yang tepat.

1.6. Sistematika Penulisan

Sistematika penulisan bermaksud untuk memberi informasi secara rinci mengenai pembahasan yang terdapat pada tiap bab. Sistematika penulisan skripsi ini terdiri dari beberapa bagian, yaitu:

> BAB I PENDAHULUAN

Bab ini merupakan bagian awal yang menerangkan Latar Belakang, dan Rumusan Masalah, Maksud dan Tujuan Penelitian, Manfaat Penelitian, Ruang Lingkup Penelitian, dan, Sistematika Penulisan.

➤ BAB II LANDASAN TEORI

Bab ini berisi landasan teori, pengertian sistem yang mencangkup konsep dasar sistem, karakteristik sistem, komponen sistem, pengertian pengolahan data yang mencangkup data dan informasi, definisi analisis sistem, definisi perancangan sistem, siklus hidup pengembangan sistem serta pengertian teori permasalahan yang diambil.

> BAB III OBJEK DAN METODE PENELITIAN

Bab ini berisi uraian singkat mengenai Objek Penelitian meliputi sejarah singkat berdirinya lokasi penelitian, Struktur Organisasi dan Deskripsi

Tugas. Bab ini membahas juga tentang Metode Penelitian, Analisis Sistem yang Berjalan dan Evaluasi Sistem yang Sedang Berjalan.

> BAB IV HASIL PEMBAHASAN

Bab ini membahas tentang hasil pengukuran rele yang digunakan, mengelola data penelitian, analisis data dalam penelaan rumusan masalah.

> BAB V KESIMPULAN DAN SARAN

Dalam bab ini merupakan bagian terakhir yang membahas tentang Kesimpulan dari penggunaan rele dalam sinkronisasi turbin dan genset serta beberapa Saran yang diharapkan dapat membangun.

BAB II

TINJAUAN PUSTAKA

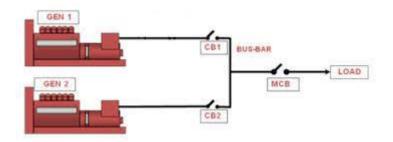
2.1. Tinjauan Pustaka Relevan

Proses otomasi sinkronisasi generator memegang peran penting dalam mencapai kehandalan dan efisiensi pembangkit listrik untuk bekerja parallel dengan jaringan PLN. Kegagalan dalam otomasi sinkronisasi, dapat menyebabkan kerusakan pada generator serta mempengaruhi peralatan-peralatan pendukung generator karena akibat adanya reverse power. Pengaturan otomasi sinkronisasi dilakukan oleh Automatic Synchronizer dengan membandingkan tegangan, frekuensi dan beda sudut fase generator dengan jaringan secara otomatis. Automatic Synchronizer memberikan perintah kepada AVR dan governor sehingga tercapai kondisi sinkron dan menutup CB generator. Nilai tegangan, frekuensi dan turbin generator unit 1 yang mengalami kegagalan, dibandingkan dengan nilai generator unit 2 yang berhasil mencapai kondisi sinkron. Perbandingan menunjukkan gate vane unit 1 memberikan nilai pembukaan 6,998 % - 9,765%, sehingga output generator memiliki nilai 50,20 Hz- 50,46 Hz dan menyimpang dari frekuensi jaringan 50,09 Hz, oleh sebab itu *electro-hydraulic governor* unit 1 perlu dilakukan kalibrasi ulang karena frekuensi generator unit 1 tidak mencapai kestabilan pada saat sinkronisasi.

karena sangat pentingnya daya listrik yang di butuhkan bagi gedung maka gedung apartemen sudirman park memiliki tiga genset untuk suplai daya. Daya yang dibutuhkan untuk gedung hanya 3450 KVA sanggup di suplay dengan dua genset. tetapi disini permasalahannya gagalnya sinkron genset 1 dengan genset 2 secara paralel. Dan itu dapat mengganggu suplai daya listrik untuk gedung. Penyebab gagal sinkronnya genset 1 dengan genset 2 ialah dari terjadinya RPM dan Frequensi yang tidak stabil yang menyebabkan rele pada genset 1 dan auto charger baterai pada genset 1 rusak. Sehingga Penyebab terjadinya reverse power pada genset 1 ketika dihubung paralel ialah karena terjadi kerusakan pada rele genset 1 itu diketahui dari bekerja nya rele proteksi yang secara tiba – tiba memutus atau mematikan genset 1 ketika genset 1 sedang hidup dengan tegangan 400v dan tegangan turun menjadi 265 volt setelah itu genset mati. (Ramadani et al., 2024)

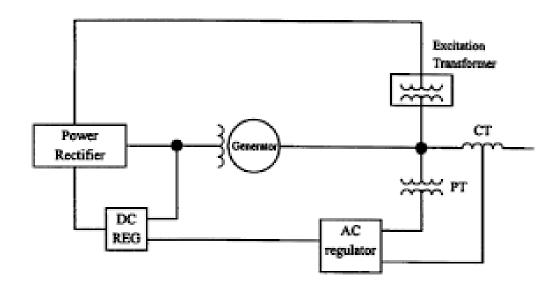
Penilitian *over current rele* bekerja berdasarkan nilai arus yang diukur oleh sensor arus ACS712. Nilai dari sensor arus akan menjadi output dari arduino ke modul rele, sehingga rele akan bekerja sesuai setting batas arus yang akan diprogram pada arduino UNO sebagai perintah pada modul rele untuk memutus atau menghubungkan arus pada rangkaian. Nilai arus dan keadaan rele arus lebih akan ditampilkan pada LCD yang menerima inpuatat dari arduino UNO, rata- rata galat pembacaan pada masing-masing sensor adalah sensor 1 sebesar 2.72 %, sensor 2 sebesar 1.79 %, dan sensor 3 sebesar 1,63%. Sistem monitoring arus akan dilakukan berbasis Internet of Things, sehingga nilai arus dapat monitoring secara online melalui apliksi *blynk*.

Terdapat tidak terjadinya peningkatan beban dan pembangkit – pembangkit lain yang tidak sanggup untuk memikulnya maka dioperasikan generator untuk membuat PLTD bekerja sama dengan sistem maka dilakukan pemparalelan setiap generator ke sistem untuk menambah kapasitas daya sistem dan untuk menjaga keandalan sistem tersebut. Pemparalelan dilakukan secara manual dengan mengatur parameter- parameter keluaran generator berupa penyesuaian tegangan running pada 6500 Volt dengan memutar *Procentage Voltage Regulator* pada posisi 30 % dan penyesuaian frekuensi dengan sistem dengan mengatur *speed control* mesin diesel untuk penyesuaian masukan bahan bakar oleh governor, dan memasukkan *Circuit Breaker* secara manual jika posisi jarum sinkronoskop pada posisi counter dan lampu indikatornya gelap (mati). Setelah dilakukan analisa pembagian beban pada tiap generator terdapat selisih nilai perhitungan dengan nilai yang terbaca oleh alat ukur sebesar 3,2 %, nilai yang terbaca pada alat ukur sebesar 3,2 MW sedangkan hasil nilai perhitungan manual adalah 3,1 MW. (Yosua Alvine Adi Soetrisno et al., 2022)


Diperlukannya perhatian yang lebih untuk melindungi kerugian yang disebabkan adanya gangguan hubung singkat yang terjadi pada sistem jaringan distribusi tenaga listrik. Untuk mengatasi masalah tersebut penulis menggunakan perangkat proteksi rele arus lebih. Adapun metode penelitian ini untuk meningkatkan koordinasi rele arus lebih yaitu dengan menggunakan simulasi pada softwareETAP untuk memulai koordinasi rele yaitu dengan pembuatan single line diagram, penentuan penempatan rele sesuai waktu kerja, penentuan tahap waktu

kerja rele, nilai arus yang terhubung yaitu hubung singkat tiga fasa dan dua fasa pada bus yang terdekat dengan rele dan parameter nilai lainnya untuk perhitungan setting koordinasi rele sesuai dengan karakteristiknya. Arus gangguan hubung singkat terbesar pada bus 2 sebesar 6.130 A dan arus gangguan terkecil pada bus 46 sebesar 1.565 A. Hasil perhitungan setting rele pada bus 3 adalah Ip = 0,147125 A dan TMS = 1,02 s, pada bus 7 yaitu Ip = 0,1056 A dan TMS = 0,78 s, pada bus 17 yaitu Ip = 0,0671 A dan TMS = 0,64 s, pada bus 34 yaitu Ip = 0,0363 A dan TMS = 0,481 s, dan pada bus 46 yaitu Ip = 0,0044 A dan TMS = 0,282 s. Hasil analisa dalam pengujian terhadap beberapa skenario sumber gangguan pada bus 3, 7, 17, 34, 46 dapat dilihat dari circuit breaker bekerja secara berurutan dari sumber gangguan. (Ihsan, 2023)

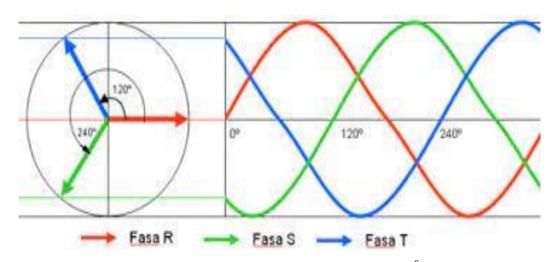
2.2. Landasan Teori


2.2.1. Sinkronisasi Generator

Sinkronisasi generator adalah proses menyamakan fase, frekuensi, dan tegangan antara generator yang akan dihubungkan ke jaringan listrik (atau sistem tenaga listrik) dengan parameter yang sama pada jaringan tersebut. Sinkronisasi juga memiliki makna yaitu, proses mengkoordinasikan atau menyelaraskan dua atau lebih hal agar terjadi secara bersamaan atau sesuai dengan urutan yang diinginkan. sinkronisasi adalah upaya untuk menyamakan langkah atau menyelaraskan waktu, ritme, dan gerakan dalam suatu sistem agar dapat berjalan secara harmonis dan efisien. (Sajadi et al., 2022) sinkronisasi merupakan koordinasi dari kegiatan-kegiatan yang berbeda dalam sebuah organisasi atau sistem agar dapat mencapai tujuan bersama dengan efektif dan efisien. Secara umum, sinkronisasi adalah konsep yang penting dalam berbagai bidang, termasuk manajemen, teknologi, komunikasi, pendidikan, dan kerja tim, di mana tujuannya adalah untuk mencapai keselarasan dan efisiensi dalam mencapai tujuan yang diinginkan.

Gambar 2.1. Sinkronisasi Generator

Proses ini penting untuk memastikan bahwa generator dapat bekerja secara serempak dengan sistem tanpa menyebabkan gangguan atau kerusakan pada peralatan. Frekuensi keluaran generator harus sama dengan frekuensi jaringan listrik yang akan dihubungkan (Ikhsan & Alfredo, 2022). Hal ini biasanya dilakukan dengan mengatur kecepatan putar mesin penggerak generator. Tegangan keluaran generator harus disesuaikan agar sama dengan tegangan jaringan listrik. Ini melibatkan penyesuaian pengaturan eksitasi generator.



Gambar 2.2. Line Diagram Sinkronisasi Generator

Fase keluaran generator harus disinkronkan dengan fase tegangan jaringan. Ini berarti puncak gelombang tegangan dari generator harus terjadi pada waktu yang sama dengan puncak gelombang tegangan dari jaringan. Urutan fasa keluaran generator harus sesuai dengan urutan fasa jaringan, biasanya fase A, B, dan C. Sistem tiga fasa memiliki tiga gelombang tegangan sinusoida yang sama besar

tetapi berbeda fasa sebesar 120 derajat. Sistem ini lebih efisien dan digunakan dalam distribusi tenaga listrik karena menyediakan daya yang lebih stabil dan seimbang (Taskin, 2022). Tegangan Fasa ke Netral yakni antara satu kabel fasa dan titik netral. Dalam sistem tiga fasa dengan tegangan 230/400V, tegangan fasa ke netral adalah 230V.

Hubungan antara fasa dan tegangan listrik dalam sistem listrik terutama berkaitan dengan arus bolak-balik (AC). Fasa mengacu pada posisi relatif dari gelombang sinusoida tegangan atau arus dalam satu siklus. Dalam sistem tiga fasa, setiap fasa dipisahkan oleh sudut fase 120 derajat. Sudut fasa adalah ukuran yang menggambarkan pergeseran fasa antara dua gelombang atau sinyal periodik.

Gambar 2.3. Sudut Fasa dalam 120⁰

Dalam konteks listrik, sudut fasa sering digunakan untuk menggambarkan perbedaan waktu antara tegangan dan arus dalam rangkaian AC. Sudut fasa biasanya diukur dalam derajat (°) atau radian (rad). Jika kita memiliki dua sinyal periodik maka dapat dilihat dalam persamaan berikut:

$$V(t) = V_0 \cdot \sin(\omega t) \cdot \dots (1)$$

$$I(t) = I_0 \cdot \sin(\omega t + \emptyset) \dots (2)$$

Dimana:

Ø : sudut fasa

I(t) : sinyal arus dalam waktu (A)

V(t) : tertinggal atau mendahului sinyal (V)

Sudut fasa positif menunjukkan bahwa arus tertinggal dari tegangan (situasi ini terjadi dalam rangkaian induktif), sementara sudut fasa negatif menunjukkan bahwa arus mendahului tegangan (situasi ini terjadi dalam rangkaian kapasitif).Untuk lebih jelasnya, mari kita lihat ilustrasi di bawah ini:

Jika Ø= 0° maka arus dan tegangan berada dalam fasa yang sama.

Jika Ø= 90° maka arus tertinggal tegangan sebesar 90 derajat (atau mendahului sebesar 90 derajat tergantung pada rangkaian).

Jika Ø= -90° maka arus mendahului tegangan sebesar 90 derajat.

Sudut fasa memainkan peran penting dalam sinkronisasi generator listrik dengan membantu menentukan kecepatan putaran generator sudah sesuai dengan frekuensi jaringan daya. Sinkronisasi yang tepat memerlukan kesamaan frekuensi antara generator dan jaringan yang tepat untuk memastikan bahwa tegangan yang dihasilkan oleh generator tidak menimbulkan interferensi atau ketidakseimbangan dengan tegangan yang sesuai transfer daya lebih efisien dari generator ke jaringan sehingga membantu mengurangi tegangan transien yang dapat merusak peralatan dan mengganggu operasi sistem dan meningkatkan stabilitas sistem daya secara keseluruhan. Generator yang tidak sinkron dapat menyebabkan fluktuasi tegangan dan frekuensi, yang dapat berdampak negatif pada seluruh jaringan Jika sudut fasa tidak sinkron, daya yang dihasilkan bisa menjadi reaktif dan mengurangi efisiensi sistem.akhirnya menimbulkan gangguan sinkronisasi dengan ketidakstabilan frekuensi kerja (Ihsan,2023).

Untuk melakukan sinkronisasi, frekuensi generator yang akan disinkronkan harus sama dengan frekuensi jaringan atau generator lainnya. Jika frekuensi tidak sama, generator tidak akan bekerja secara sinkron dan dapat menyebabkan ketidakstabilan atau kerusakan pada peralatan. Frekuensi listrik yang dihasilkan oleh generator berhubungan langsung dengan kecepatan rotasi mesin penggerak generator (biasanya turbin). Untuk mencapai frekuensi tertentu (misalnya, 50 Hz atau 60 Hz), turbin harus berputar pada kecepatan yang sesuai. Kecepatan rotasi ini harus disesuaikan agar sesuai dengan frekuensi jaringan sebelum sinkronisasi.

Setelah sinkronisasi, generator harus mampu menyesuaikan frekuensinya agar tetap sesuai dengan jaringan. (Ardi, 2015) Hal ini dilakukan dengan mengatur input daya ke mesin penggerak generator (misalnya, mengatur aliran bahan bakar ke mesin diesel atau aliran uap ke turbin). Untuk menghitung frekuensi yang dihasilkan oleh generator sinkron, rumus dasar yang digunakan adalah:

$$f = \frac{P.N}{120}$$
 (3)

Di mana:

f : frekuensi dalam Hertz (Hz),

P : jumlah kutub magnet pada generator,

N : kecepatan putaran rotor dalam rotasi per menit (RPM).

Satu siklus dari frekuensi keluaran dihasilkan ketika rotor dengan kutub magnet berputar sekali. Jumlah siklus per detik bergantung pada jumlah kutub magnet dan kecepatan putaran rotor. Kecepatan sinkron merupakan kecepatan di mana medan magnet berputar di dalam mesin dengan kutub, medan magnet berputar setiap menit. Kecepatan putaran rotor dinyatakan dalam rotasi per menit (RPM). Dan Frekuensi dinyatakan dalam siklus per detik. Dalam satu rotasi, rotor dengan kutub menghasilkan pasangan kutub yang melewati satu titik tertentu dalam stator.

2.2.2. Aliran Listrik

Aliran listrik adalah pergerakan muatan listrik melalui suatu medium, seperti kawat atau sirkuit listrik. Aliran ini terjadi ketika muatan listrik (seperti elektron) bergerak dari satu titik ke titik lainnya dalam respons terhadap gaya listrik yang diterapkan, seperti yang dihasilkan oleh sumber listrik seperti baterai atau generator. (Aji, 2021) Aliran listrik menurut para ahli umumnya mengacu pada pergerakan muatan listrik dalam suatu konduktor seperti kawat. Ini terjadi karena adanya beda potensial (tegangan) antara dua titik dalam sirkuit listrik. Menurut hukum Kirchhoff dan hukum Ohm menyatakan bahwa arus yang mengalir melalui sebuah konduktor (seperti kawat) antara dua titik dalam suatu rangkaian listrik adalah sebanding dengan beda potensial (tegangan) antara dua titik tersebut, dan

berbanding terbalik dengan hambatan dari konduktor tersebut (Y. Prasetio et al., 2023). Secara matematis, hukum Ohm dapat dirumuskan sebagai:

$$V = I.R....(4)$$

$$I = \frac{V}{R}....(5)$$

$$R = \frac{V}{I}....(6)$$

di mana:

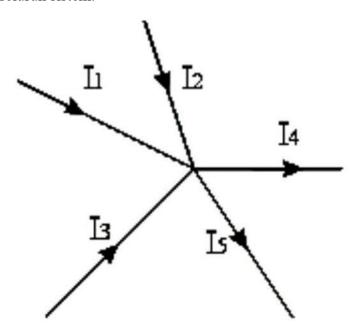
I : arus listrik yang mengalir dalam ampere (A),

V : beda potensial atau tegangan antara dua titik dalam volt (V),

R : hambatan konduktor dalam ohm (Ω)

Hukum Ohm sangat penting dalam perancangan dan analisis rangkaian listrik karena memungkinkan untuk memahami dan memprediksi bagaimana tegangan, arus, dan hambatan saling berhubungan dalam berbagai kondisi. Hubungan Hukum Ohm dalam konteks sinkronisasi turbin lebih terkait dengan pemahaman dasar tentang arus listrik, tegangan, dan resistansi dalam sistem listrik yang digunakan untuk mengoperasikan turbin dan generator. Proses menyelaraskan frekuensi, tegangan, dan fase generator dengan jaringan listrik sebelum menghubungkannya ke grid. Namun Hukum Ohm dan Hukum Kirchhoff adalah dua hukum dasar dalam analisis rangkaian listrik dalam sinkronisasi.

Hukum Kirchhoff terdiri dari dua hukum, yaitu Hukum Kirchhoff tentang Arus (KCL) dan Hukum Kirchhoff tentang Tegangan (KVL). Hukum ini menyatakan bahwa jumlah aljabar arus yang masuk ke dalam sebuah simpul (node) dalam sebuah rangkaian listrik adalah nol. Dengan kata lain, arus yang masuk ke sebuah simpul harus sama dengan arus yang keluar dari simpul tersebut. Secara matematis:


$$\sum I_{masuk} = \sum I_{keluar}$$
 (7)

Dalam hukum kircoff memiliki arti bahwa jumlah total arus yang masuk ke sebuah simpul (node) dalam sebuah rangkaian listrik harus sama dengan jumlah total arus yang keluar dari simpul tersebut. Hukum Kirchhoff tentang Arus didasarkan pada prinsip konservasi muatan, yang menyatakan bahwa muatan listrik tidak dapat diciptakan atau dimusnahkan di dalam sebuah simpul. Hukum Kirchhoff tentang arus listrik merupakan prinsip fundamental dalam analisis rangkaian listrik yang menetapkan bahwa jumlah total arus yang mengalir masuk ke sebuah simpul atau titik percabangan dalam rangkaian listrik harus sama dengan jumlah total arus yang mengalir keluar dari simpul tersebut. Prinsip ini didasarkan pada konservasi muatan listrik yang menyatakan bahwa muatan listrik tidak dapat diciptakan atau dimusnahkan di dalam sebuah simpul. Hal ini menjadi dasar penting dalam perhitungan dan analisis berbagai jenis rangkaian listrik, dari yang sederhana hingga yang kompleks, di mana aplikasi hukum ini memungkinkan insinyur dan teknisi untuk memahami dan memprediksi perilaku arus listrik dalam berbagai komponen elektronik, seperti resistor, kapasitor, dan induktor.

Penerapan hukum ini bersama dengan hukum Kirchhoff tentang tegangan memungkinkan perhitungan yang akurat untuk menentukan arus yang mengalir melalui setiap cabang dalam rangkaian, yang sangat penting dalam desain dan troubleshooting sistem listrik. Pemahaman bahwa setiap elektron yang memasuki suatu titik percabangan harus meninggalkan titik tersebut melalui salah satu jalur yang tersedia, tanpa adanya akumulasi muatan di simpul tersebut, memungkinkan analisis kuantitatif terhadap distribusi arus dalam rangkaian listrik yang rumit. Implikasi praktis dari hukum ini sangat luas dalam berbagai bidang, termasuk elektronika konsumen, sistem tenaga listrik, dan teknologi komunikasi, di mana pemahaman tentang aliran arus yang konsisten menjadi kunci dalam memastikan efisiensi dan keandalan perangkat listrik.

Prinsip ini tidak hanya penting secara teoritis tetapi juga memiliki dampak langsung pada pengembangan dan pemeliharaan infrastruktur listrik modern, dengan aplikasi yang terus berkembang seiring kemajuan teknologi. Kepatuhan terhadap hukum Kirchhoff tentang arus memastikan bahwa setiap desain rangkaian listrik beroperasi sesuai dengan prinsip-prinsip fisika yang mendasarinya, memungkinkan prediksi yang akurat tentang perilaku sistem dan optimalisasi kinerja. Hal ini pada gilirannya mendukung inovasi berkelanjutan dalam teknologi listrik dan elektronik, dengan tetap berpegang pada prinsip dasar bahwa jumlah arus

yang masuk harus selalu sama dengan jumlah arus yang keluar pada setiap titik dalam rangkaian, sambil mempertahankan integritas dan keseimbangan aliran muatan listrik di seluruh sistem.

Gambar 2.4. Hukum Kircoff

Oleh karena itu, setiap arus yang masuk ke simpul harus sama dengan arus yang keluar dari simpul. Simpul adalah titik dalam rangkaian di mana dua atau lebih elemen rangkaian bertemu. Berbeda dengan Hukum Kirchhoff tentang Tegangan yakni, hukum yang menyatakan bahwa jumlah aljabar tegangan di sekitar setiap loop tertutup dalam sebuah rangkaian listrik adalah nol. Dengan kata lain, penurunan tegangan di sekitar suatu loop harus sama dengan peningkatan tegangan di loop yang sama. Secara matematis:

$$\sum V = 0 \quad(8)$$

Persamaan diatas adalah sebuah pernyataan dari hukum Kirchoff tentang tegangan dalam rangkaian listrik. Hukum ini menyatakan bahwa jumlah aljabar dari semua perubahan tegangan di sekitar suatu loop tertutup dalam sebuah rangkaian listrik adalah nol. Secara lebih spesifik, ini berarti bahwa jika menjumlahkan semua

tegangan yang naik dan semua tegangan yang turun di sepanjang loop tertutup, hasil akhirnya akan selalu nol. Ini adalah konsekuensi dari hukum konservasi energi, yang menyatakan bahwa energi tidak dapat diciptakan atau dihancurkan, hanya diubah bentuknya dalam wujud tegangan atau *voltage*.

Tegangan listrik, atau yang sering disebut dengan *voltage*, adalah perbedaan potensial listrik antara dua titik dalam suatu rangkaian listrik. Tegangan ini adalah gaya yang mendorong arus listrik mengalir dalam sebuah konduktor. Tegangan listrik, juga merupakan jumlah energi yang diperlukan untuk memindahkan satu satuan muatan listrik positif dari satu titik ke titik lain dalam medan listrik. Tegangan diukur dalam satuan volt (V), yang diambil dari nama penemu Alessandro Volta. Dalam tegangan listrik terbagi menjadi dua kategori yaitu, tegangan Arus Searah (*Direct Current*) Merupakan tegangan yang arahnya tetap konstan, tidak berubah-ubah seiring waktu dan tegangan Arus Bolak-balik (*Alternating Current*) Merupakan tegangan yang arahnya berubah-ubah secara periodik. Berikut beberapa istilah penting dalam tegangan kelistrikan pada umumnya.

1. Tegangan Nominal

Tegangan nominal adalah nilai tegangan listrik yang ditetapkan sebagai acuan atau standar dalam suatu sistem kelistrikan. Ini merupakan nilai tegangan ideal yang diharapkan tersedia pada suatu peralatan listrik atau sistem distribusi listrik dalam kondisi normal. Tegangan nominal dapat dibagi menjadi beberapa kategori berdasarkan penggunaannya:

- a) Tegangan Nominal Rendah: Umumnya digunakan untuk aplikasi rumah tangga dan komersial ringan, seperti 120V atau 230V.
- b) Tegangan Nominal Menengah: Digunakan dalam industri dan distribusi listrik lokal, biasanya berkisar antara 1kV hingga 69kV.
- c) Tegangan Nominal Tinggi: Digunakan untuk transmisi listrik jarak jauh, umumnya di atas 69kV.

2. Tegangan Puncak (Peak Voltage)

Tegangan puncakadalah nilai maksimum absolut dari suatu tegangan bolakbalik (AC) dalam satu siklus. Sebuah parameter penting dalam analisis sinyal AC dan sistem kelistrikan. Untuk memahami tegangan puncak dengan lebih baik. Bentuk tegangan yang nilainya berubah secara periodik terhadap waktu. Bentuk gelombang AC yang paling umum adalah sinusoidal, meskipun bentuk gelombang lain seperti kotak, segitiga, atau gigi gergaji juga dapat terjadi dalam sistem tertentu. Frekuensi (f) adalah jumlah siklus lengkap yang terjadi dalam satu detik, diukur dalam Hertz (Hz). Periode (T) adalah waktu yang dibutuhkan untuk menyelesaikan satu siklus lengkap, diukur dalam detik. Hubungan antara frekuensi dan periode adalah:

$$f = \frac{1}{T} \dots (9)$$

Untuk Persamaan Matematis Tegangan Puncak dalam gelombang sinusoidal, persamaan umum tegangan sebagai fungsi waktu adalah:

$$V(t) = V_p \cdot \sin(\omega t + \varphi) \dots (10)$$

Di mana:

V(t) : tegangan pada waktu t

Vp : tegangan puncak

ω: frekuensi sudut (ω = 2πf)

t : waktu

φ : adalah sudut fase awal

Tegangan puncak (Vp) adalah nilai maksimum absolut dari fungsi ini. Untuk gelombang sinusoidal murni, nilai ini terjadi pada sudut 90° dan 270° dalam satu siklus lengkap. Untuk bentuk gelombang non-sinusoidal, analisis Fourier dapat digunakan untuk menguraikan gelombang menjadi komponen-komponen sinusoidal. Deret Fourier untuk fungsi periodik f(t) dengan periode T dapat dinyatakan sebagai:

$$f(t) = a\left(\frac{0}{2}\right) + \sum (an \cdot \cos(n\omega t) + bn \cdot \sin(n\omega t))....(11)$$

Di mana:

a0/2 : nilai rata-rata fungsi

an dan bn : koefisien Fourier

n : indeks harmonik

 $\omega = 2\pi/T$: frekuensi fundamental

Tegangan puncak dari gelombang kompleks ini akan tergantung pada jumlah dan amplitudo dari komponen-komponen harmoniknya.

3. Tegangan Efektif (RMS Voltage)

Nilai RMS (*Root Mean Square*) adalah ukuran efektif dari tegangan AC yang setara dengan tegangan DC yang menghasilkan daya yang sama. Konsep RMS sangat penting dalam sistem listrik AC karena memberikan cara yang konsisten untuk mengukur dan membandingkan besaran tegangan yang berubah-ubah secara periodik. Dalam konteks listrik rumah tangga, ketika kita mengatakan tegangan 220V atau 110V, sebenarnya kita merujuk pada nilai RMS dari tegangan AC tersebut. Untuk gelombang sinusoidal, hubungan antara tegangan puncak dan tegangan RMS adalah:

$$V(t) = V_m \cdot \sin(\omega t) \dots (12)$$

Di mana:

v(t) : tegangan sesaat pada waktu t

Vm : amplitudo maksimum tegangan

 ω : frekuensi sudut ($\omega = 2\pi f$, dengan f adalah frekuensi dalam

Hz)

t : waktu

Untuk menghitung nilai RMS dari fungsi periodik ini, kita menggunakan definisi matematika RMS:

$$V_{rms} = \sqrt{\left(\frac{1}{T}\right) \int [0+T] V^2(t) dt}$$
(13)

Di mana:

Vrms : nilai RMS tegangan

T : periode gelombang

∫ : integral

Dalam ketetapannya faktor puncak adalah rasio nilai puncak terhadap nilai RMS. Untuk gelombang sinusoidal Faktor Puncak = $Vm / Vrms = \sqrt{2} \approx 1.414$ Faktor puncak penting dalam desain peralatan listrik untuk memastikan komponen dapat menangani nilai puncak tegangan atau arus.

Arus listrik adalah aliran muatan listrik yang bergerak melalui suatu konduktor dalam suatu rangkaian listrik. Secara lebih spesifik, arus listrik didefinisikan sebagai laju perubahan muatan listrik yang melewati suatu penampang konduktor per satuan waktu. Dalam sebagian besar kasus, muatan listrik yang bergerak adalah elektron. Arus listrik merupakan fenomena fundamental dalam dunia kelistrikan yang terjadi ketika muatan listrik bergerak melalui suatu medium konduktor dalam sebuah rangkaian listrik. Secara teknis, arus listrik didefinisikan sebagai laju perubahan muatan listrik yang melewati suatu penampang konduktor dalam satuan waktu tertentu. Meskipun kita tidak dapat melihatnya secara langsung dengan mata telanjang, efek dari arus listrik dapat kita rasakan dan manfaatkan dalam berbagai peralatan elektronik yang kita gunakan sehari-hari. Arus listrik terjadi karena adanya perbedaan potensial atau tegangan antara dua titik dalam rangkaian, yang mendorong muatan listrik untuk bergerak dari potensial tinggi ke potensial rendah, mirip dengan air yang mengalir dari tempat yang tinggi ke tempat yang lebih rendah.

Dalam kebanyakan kasus, muatan listrik yang bergerak dalam konduktor adalah elektron. Elektron-elektron ini merupakan partikel subatomik bermuatan negatif yang terdapat dalam struktur atom dari bahan konduktor, seperti tembaga atau aluminium. Ketika sebuah beda potensial diterapkan pada konduktor, elektron-elektron bebas dalam konduktor tersebut akan mulai bergerak secara teratur, menciptakan arus listrik. Kecepatan pergerakan elektron ini dipengaruhi oleh

berbagai faktor, termasuk jenis bahan konduktor, luas penampang konduktor, dan besarnya tegangan yang diberikan. Pemahaman tentang perilaku elektron dalam konduktor ini sangat penting dalam pengembangan teknologi listrik dan elektronika.

Pengukuran arus listrik dilakukan dalam satuan ampere (A), yang didefinisikan sebagai jumlah muatan listrik sebesar satu coulomb yang mengalir melewati suatu penampang konduktor dalam waktu satu detik. Dalam praktiknya, arus listrik dapat dibagi menjadi dua jenis utama: arus searah (DC) dan arus bolakbalik (AC). Arus searah mengalir dalam satu arah yang konstan, seperti yang dihasilkan oleh baterai, sementara arus bolak-balik secara periodik berganti arah, seperti yang umum digunakan dalam sistem kelistrikan rumah tangga. Pemahaman tentang karakteristik kedua jenis arus ini sangat penting dalam perancangan dan penggunaan peralatan listrik, karena masing-masing memiliki aplikasi dan kegunaan yang berbeda. Pemahaman yang mendalam tentang arus listrik telah memungkinkan manusia untuk mengembangkan berbagai teknologi yang mengubah cara kita hidup. Dari lampu yang menerangi rumah kita hingga komputer yang memproses data dengan kecepatan luar biasa, semua ini bergantung pada kemampuan kita untuk mengendalikan dan memanfaatkan arus listrik. Perkembangan dalam bidang elektronika dan teknologi semikonduktor telah memungkinkan kita untuk menciptakan perangkat yang semakin efisien dan canggih dalam memanfaatkan arus listrik. Selain itu, pemahaman tentang arus listrik juga penting dalam konteks keselamatan, karena arus listrik yang tidak terkendali dapat membahayakan manusia dan peralatan. Oleh karena itu, pengetahuan tentang cara kerja dan penanganan arus listrik yang aman tetap menjadi aspek penting dalam pendidikan dan praktik kelistrikan.

Hukum Ampère menyatakan bahwa integral garis medan magnet di sekitar loop tertutup sama dengan arus listrik total yang melewati loop tersebut dikalikan dengan permeabilitas ruang hampa.

$$\oint B \cdot dl = \mu \cdot 0 \cdot I_{enc} \quad ... \quad (14)$$

Di mana:

B : Medan magnet

dl : Elemen panjang loop

I enc : Arus total yang dilingkupi oleh loop

Arus listrik diukur dalam satuan Ampere (A), yang dinamai sesuai dengan nama ilmuwan Prancis André-Marie Ampère. Satu ampere didefinisikan sebagai aliran satu coulomb muatan listrik per detik. Persamaan dasar untuk arus listrik adalah:

$$I = \frac{dQ}{dt} \tag{15}$$

Di mana:

I : Arus listrik (dalam ampere, A)

Q : Muatan listrik (dalam coulomb, C)

t : Waktu (dalam detik, s)

dQ/dt : Laju perubahan muatan terhadap waktu

Arus searah adalah arus listrik yang mengalir dalam satu arah yang konstan. Sumber arus searah meliputi baterai, sel surya, dan generator DC. Dalam arus searah, elektron bergerak dari terminal negatif ke terminal positif. Arus bolak-balik adalah arus listrik yang secara periodik berubah arah dan besarnya. Arus ini umumnya digunakan dalam sistem distribusi listrik rumah tangga dan industri. Arus bolak-balik dapat digambarkan dengan fungsi sinusoidal:

$$I_{(t)} = I_{max} \cdot \sin(\omega t) \dots (16)$$

Di mana:

I(t) : Arus pada waktu t

I max: Amplitudo maksimum arus

 ω : Frekuensi sudut ($2\pi f$, di mana f adalah frekuensi dalam Hz)

t : Waktu

Hubungan antara resistansi dan arus listrik yaitu resistansi berbanding terbalik dengan arus listrik, semakin besar resistansi, semakin kecil arus yang mengalir (dengan tegangan tetap), resistansi menghambat aliran arus listrik dalam rangkaian, jika tegangan tetap, peningkatan resistansi akan mengurangi arus, dan sebaliknya. Resistansi adalah ukuran kemampuan suatu bahan untuk menghambat aliran arus listrik. Persamaan resistansi:

$$R = \rho \cdot \frac{L}{A} \tag{17}$$

Dimana:

L : Panjang konduktor (m)

A : Luas penampang konduktor (m²)

ρ: Resistivitas bahan (Ωm)

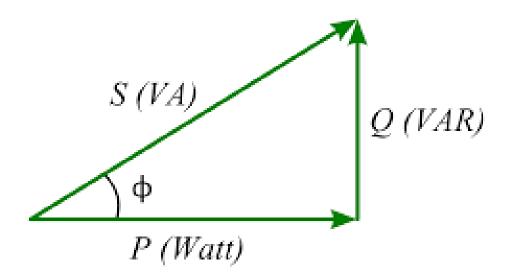
Dari persamaan diatas, bahwa arus listrik berbanding terbalik dengan resistansi. Artinya, semakin besar resistansi, semakin kecil arus listrik yang mengalir. Pengaruh Resistansi terhadap Arus yaitu ketika resistansi meningkat - Arus listrik menurun (jika tegangan tetap) dan Energi listrik lebih banyak diubah menjadi panas, saat resistansi menurun arus listrik meningkat (jika tegangan tetap) dan lebih sedikit energi listrik yang diubah menjadi panas. Dalam dunia kelistrikan efek Joule sangat berpengaruh terhadap arus yang mengalir melalui komponen sebagian energi listrik diubah menjadi panas. Pada suhu sangat rendah, beberapa bahan menjadi superkonduktor dengan resistansi mendekati nol. Dalam kondisi ini, arus dapat mengalir tanpa hambatan.

Daya listrik adalah laju energi listrik yang digunakan atau dihasilkan dalam suatu rangkaian listrik. Menurut William Hayt Daya listrik adalah laju energi listrik yang ditransfer per satuan waktu dalam sebuah rangkaian listrik. Daya listrik didefinisikan sebagai jumlah kerja yang dilakukan oleh arus listrik dalam satuan waktu tertentu. Daya listrik merujuk pada kecepatan perubahan energi listrik menjadi bentuk energi lain seperti panas, cahaya, atau gerak mekanis. Daya diukur dalam watt (W). Persamaan daya listrik:

$$P = V . I(18)$$

Di mana:

P : Daya (dalam watt, W)


V : Tegangan (dalam volt, V)

I : Arus (dalam ampere, A)

Dengan menggunakan Hukum Ohm, kita dapat menurunkan dua persamaan daya lainnya:

$$P = I^2 \cdot R \quad ... \tag{19}$$

Daya listrik dalam suatu rangkaian memiliki beberapa komponen utama yaitu. Daya Aktif, Daya Reaktif dan Daya Semu yang disebut dengan Segitiga daya.

Gambar 2.5. Segitiga Daya

Segitiga daya adalah representasi grafis dari hubungan antara ketiga komponen daya. Hubungan matematis antara komponen-komponen ini dapat dijelaskan menggunakan teorema Pythagoras:

$$S^2 = P^2 + Q^2 \tag{20}$$

Dalam segitiga daya terdapat faktor daya yang memiliki nilai rasio antara daya aktif dan daya reaktif. Ini dapat dihitung sebagai:

$$\cos \varphi = \frac{P}{S} \tag{21}$$

Faktor daya merupakan indikator penting dalam sistem kelistrikan yang menggambarkan tingkat efisiensi penggunaan daya listrik. Konsep ini mencerminkan seberapa optimal suatu peralatan atau instalasi listrik memanfaatkan energi yang disuplai kepadanya. Nilai faktor daya dinyatakan dalam rentang 0 hingga 1, di mana angka 1 merepresentasikan kondisi ideal dengan efisiensi sempurna. Pada kondisi ini, seluruh daya yang disediakan dikonversi menjadi daya aktif yang bermanfaat, tanpa adanya daya reaktif yang tidak menghasilkan kerja nyata. Semakin mendekati angka 1, semakin baik kinerja sistem listrik tersebut dalam hal efisiensi penggunaan daya baik secara semu, reaktif atau pun aktif.

Daya aktif adalah konsep penting dalam sistem listrik dan elektronikaDaya aktif, juga dikenal sebagai daya nyata atau daya riil, adalah ukuran laju aliran energi listrik yang dapat dikonversi menjadi bentuk energi lain yang berguna, seperti energi mekanik, panas, atau cahaya. Ini adalah komponen daya yang benar-benar melakukan pekerjaan dalam sirkuit listrik. Daya aktif diukur dalam watt (W) dan didefinisikan sebagai hasil kali dari tegangan efektif (V), arus efektif (I), dan faktor daya ($\cos \varphi$) dalam sirkuit AC. Dalam sirkuit DC, daya aktif hanya merupakan hasil kali tegangan dan arus.

$$P = V \cdot I \cdot \cos \varphi \tag{22}$$

Dalam sistem tiga fase, perhitungan daya aktif menjadi lebih kompleks. Untuk sistem tiga fase seimbang, daya aktif total adalah tiga kali daya satu fase:

$$P_{total} = 3. V_{(line\ to\ neutral)}. I_{(line)}. \cos \varphi ...$$
 (23)

Atau dalam bentuk lain:

$$P_{total} = \sqrt{3.V_{(line\ to\ line)} \cdot I_{(line)} \cdot \cos\varphi} \quad(24)$$

Di mana:

P : Daya aktif (Watt)

V : Tegangan efektif (Volt)

I : Arus efektif (Ampere)

cos φ : Faktor daya (nilai antara 0 dan 1)

Daya Aktif melakukan pekerjaan nyata, diukur dalam watt (W) dengan pengaplikasian dan peningkatan tegangan biasanya meningkatkan daya aktif, tergantung pada karakteristik beban arus secara langsung.

Daya reaktif adalah konsep penting dalam sistem tenaga listrik AC (arus bolak-balik). Untuk memahami daya reaktif, kita perlu terlebih dahulu memahami komponen-komponen daya dalam sistem AC yang terdiri dari dua komponen utama yaitu daya daya aktif, dan Daya reaktif untuk diperlukannya operasi berbagai peralatan listrik seperti motor, transformator, dan peralatan induktif lainnya. Daya reaktif terus-menerus mengalir bolak-balik antara sumber dan beban. Persamaan Matematis Daya Reaktif:

$$Q = V \cdot I \cdot \sin \varphi \quad ... \tag{25}$$

Daya Reaktif dalam Rangkaian Induktif Murni:

$$Q = V \cdot I = I^2 \cdot X_L = \frac{V^2}{X_L}$$
 (26)

Daya Reaktif dalam Rangkaian Kapasitif Murni:

$$Q = -V \cdot I = -I^2 \cdot X_c \cdot = \frac{V^2}{X_C}$$
 (27)

Daya Reaktif dalam Sistem Tiga Fasa Seimbang:

$$Q = \sqrt{3}.V_L \cdot I_L \cdot \sin \varphi \qquad (28)$$

Di mana:

 X_L : Reaktansi induktif = $2\pi fL$

f : Frekuensi (Hz)

L : Induktansi (Henry)

 X_c : Reaktansi kapasitif = 1 / $(2\pi fC)$

C : Kapasitansi (Farad)

S : Daya kompleks (VA)

P : Daya aktif (Watt)

Q : Daya reaktif (VAR)

V_L : Tegangan saluran

I_L : Arus saluran

Daya reaktif memiliki karakteristik unik dalam sistem kelistrikan. Berbeda dengan daya aktif, daya reaktif tidak digunakan untuk melakukan kerja nyata. Sebaliknya, ia terus-menerus berosilasi antara sumber dan beban. Fenomena ini terjadi karena komponen reaktif seperti kapasitor dan induktor menyimpan dan melepaskan energi secara bergantian.

Daya semu adalah besaran yang digunakan dalam rangkaian listrik arus bolak-balik (AC) untuk menggambarkan total daya yang mengalir dalam suatu sistem. Daya semu merupakan kombinasi dari daya aktif (daya nyata) dan daya reaktif. Dalam sistem AC, daya semu menjadi penting karena adanya perbedaan fase antara tegangan dan arus yang disebabkan oleh komponen reaktif dalam rangkaian. Daya semu (S) didefinisikan sebagai hasil perkalian antara nilai efektif tegangan (V) dan nilai efektif arus (I):

$$S = V . I(29)$$

Untuk sistem tiga fase seimbang, daya semu dihitung dengan rumus:

$$S = \sqrt{3} \cdot V_L \cdot I_L \dots (30)$$

Dimana:

S : Daya semu (VA - Volt-Ampere)

V : Tegangan efektif (Volt)

I : Arus efektif (Ampere)

VL : Tegangan line-to-line (Volt)

IL : Arus line (Ampere)

Dalam sistem dengan distorsi harmonik, perhitungan daya semu menjadi lebih kompleks. Daya semu total (St) harus mempertimbangkan komponen harmonik:

$$S_{t^2} = (P1 + PH)^2 + (Q1 + QH)^2 + D^2$$
(31)

Dimana:

P1 : Daya aktif pada frekuensi fundamental

PH : Daya aktif harmonik

Q1 : Daya reaktif pada frekuensi fundamental

QH : Daya reaktif harmonik

D : Daya distorsi

2.2.3. Sistem Proteksi

Sistem proteksi adalah suatu sistem yang dirancang untuk melindungi peralatan listrik dan sistem tenaga listrik dari kerusakan akibat gangguan atau kondisi abnormal. Menurut Stevenson (1996). Sistem proteksi adalah serangkaian peralatan listrik yang digunakan untuk mendeteksi kondisi abnormal pada sistem tenaga listrik dan secara otomatis memisahkan bagian yang terganggu dari sistem yang sehat. Secara umum, para ahli sepakat bahwa sistem proteksi adalah serangkaian peralatan yang berfungsi untuk mendeteksi kondisi abnormal pada sistem tenaga listrik dan mengambil tindakan otomatis untuk membatasi dampak dari kondisi tersebut, biasanya dengan mengisolasi bagian yang terganggu. Tujuan

utamanya adalah untuk mendeteksi kondisi abnormal, mengisolasi bagian yang terganggu, dan meminimalkan dampak gangguan pada sistem secara keseluruhan.

Sistem proteksi listrik merupakan komponen vital dalam infrastruktur kelistrikan modern yang berfungsi sebagai "sistem kekebalan" bagi jaringan listrik. Layaknya sistem imun dalam tubuh manusia yang mendeteksi dan merespons ancaman, sistem proteksi listrik secara kontinyu memantau berbagai parameter seperti arus, tegangan, frekuensi, dan suhu untuk mengidentifikasi kondisi abnormal yang dapat membahayakan peralatan listrik maupun keselamatan manusia. Ketika terjadi gangguan seperti hubung singkat, beban lebih, atau kegagalan isolasi, sistem proteksi akan bereaksi dalam hitungan milidetik untuk memutus aliran listrik pada bagian yang terganggu, mencegah kerusakan yang lebih parah dan menjaga keandalan pasokan listrik ke bagian sistem yang masih sehat. Sebagai contoh, ketika terjadi hubung singkat pada salah satu cabang jaringan distribusi akibat pohon tumbang, rele arus lebih akan mendeteksi lonjakan arus yang drastis dan mengirim sinyal ke pemutus circuit breaker untuk memutus aliran listrik ke cabang tersebut, sementara cabang lain tetap mendapat pasokan normal.

Dalam implementasinya, sistem proteksi terdiri dari beberapa komponen utama yang bekerja secara terkoordinasi. Pertama, terdapat trafo instrumen berupa Current Transformer (CT) dan Potential Transformer (PT) yang berfungsi menurunkan besaran arus dan tegangan ke level yang dapat dibaca oleh rele proteksi. Selanjutnya, rele proteksi sebagai "otak" sistem akan menganalisis input dari trafo instrumen dan membandingkannya dengan setting yang telah diprogram. Jika terdeteksi anomali, rele akan mengirim sinyal trip ke Circuit Breaker (CB) yang berperan sebagai "tangan" sistem proteksi untuk memutus aliran listrik. Sebagai ilustrasi penerapannya di industri, sebuah pabrik tekstil menggunakan sistem proteksi diferensial pada transformator daya 20 kV untuk mendeteksi gangguan internal. Jika terjadi hubung singkat di dalam transformator, rele diferensial akan membandingkan arus masuk dan keluar trafo. Ketika ditemukan ketidakseimbangan yang signifikan, rele akan memerintahkan CB untuk trip dan mengisolasi transformator yang gagal.

Keandalan sistem proteksi sangat bergantung pada prinsip selektivitas, sensitivitas, kecepatan, dan keamanan yang menjadi acuan dalam desain dan settingnya. Selektivitas berarti sistem harus mampu memilih dengan tepat bagian mana yang harus diisolasi ketika terjadi gangguan, tanpa mempengaruhi bagian yang masih beroperasi normal. Sensitivitas mengacu pada kemampuan sistem untuk mendeteksi gangguan sekecil mungkin namun tetap kebal terhadap kondisi normal seperti arus starting motor. Kecepatan respons sangat krusial karena durasi gangguan yang terlalu lama dapat menyebabkan kerusakan peralatan, sedangkan keamanan berarti sistem tidak boleh trip tanpa alasan yang valid. Dalam aplikasinya di pembangkit listrik, koordinasi proteksi yang kompleks diterapkan mulai dari generator, transformator step-up, hingga saluran transmisi. Misalnya, rele jarak (distance relay) pada saluran transmisi diatur untuk memiliki beberapa zona proteksi dengan waktu tunda berbeda, sehingga gangguan dapat diisolasi secara selektif dan bertahap.

Seiring perkembangan teknologi, sistem proteksi terus mengalami evolusi dari rele elektromekanik konvensional menuju rele numerik berbasis mikroprosesor yang lebih canggih. Rele modern ini tidak hanya mampu melakukan fungsi proteksi yang lebih kompleks, tetapi juga dilengkapi kemampuan merekam dan menganalisis data gangguan, komunikasi digital, serta integrasi dengan sistem otomasi gardu induk. Salah satu contoh penerapan teknologi terkini adalah penggunaan sistem proteksi adaptif yang dapat menyesuaikan settingnya secara otomatis berdasarkan kondisi sistem yang berubah-ubah. Pada jaringan distribusi pintar (smart grid), rele adaptif dapat mengoptimalkan sensitivitas dan selektivitasnya ketika terjadi perubahan topologi jaringan atau ketika sumber energi terbarukan seperti panel surya mengalami fluktuasi output.

Tantangan kedepan dalam pengembangan sistem proteksi adalah menghadapi kompleksitas jaringan listrik modern yang semakin tinggi. Integrasi sumber energi terbarukan yang bersifat intermiten, penetrasi kendaraan listrik, serta implementasi microgrid membutuhkan pendekatan proteksi yang lebih sophisticated. Inovasi seperti penggunaan kecerdasan buatan untuk prediksi gangguan, proteksi berbasis sinkrofasor untuk deteksi gangguan lebih akurat, serta koordinasi proteksi otomatis menggunakan komunikasi antar rele menjadi fokus penelitian dan pengembangan. Sebagai contoh aplikasi masa depan, sebuah microgrid yang menggabungkan pembangkit konvensional dengan renewable

energy dapat menggunakan sistem proteksi adaptif yang secara real-time menyesuaikan logika proteksinya berdasarkan arah aliran daya dan kontribusi arus hubung singkat yang berubah-ubah. Ketika microgrid beralih dari mode grid-connected ke mode isolated, sistem proteksi secara otomatis mengubah settingnya untuk menjaga stabilitas dan keandalan pasokan listrik.

Sistem proteksi bertujuan melindungi peralatan dan personel dari bahaya. Prinsip dasarnya meliputi:

1. Selektivitas

Untuk mencapai selektivitas, sistem proteksi harus dirancang dengan koordinasi yang tepat antara perangkat proteksi, termasuk pengaturan waktu dan level arus trip. Faktor-faktor seperti jenis rele, karakteristik kurva waktu-arus, dan skema proteksi yang digunakan juga mempengaruhi selektivitas sistem. Selektivitas yang baik memastikan bahwa hanya pemutus sirkuit terdekat dengan lokasi gangguan yang akan trip, sementara pemutus lain tetap tertutup. Ini mencegah pemadaman yang tidak perlu di area yang lebih luas.

2. Sensitivitas

Sensitivitas sistem proteksi mengacu pada kemampuan sistem untuk mendeteksi dan merespons dengan cepat dan akurat terhadap gangguan atau kondisi abnormal dalam sistem kelistrikan. Ini merupakan aspek kritis dalam menjaga keandalan dan keamanan jaringan listrik. Sistem proteksi yang sensitif dapat membedakan antara kondisi normal dan gangguan, serta merespons dengan tepat untuk mencegah kerusakan peralatan dan meminimalkan gangguan layanan. Sensitivitas yang optimal memastikan bahwa sistem bereaksi hanya ketika diperlukan, menghindari trip yang tidak perlu. Faktor-faktor yang mempengaruhi sensitivitas termasuk pengaturan rele, karakteristik peralatan, dan konfigurasi jaringan.

3. Kecepatan

Peningkatan kecepatan sistem proteksi terus menjadi fokus dalam pengembangan teknologi smart grid, bertujuan meningkatkan stabilitas dan ketahanan jaringan listrik. Kecepatan sistem proteksi merujuk pada waktu

yang dibutuhkan oleh sistem untuk mendeteksi, mengidentifikasi, dan merespons gangguan atau kondisi abnormal dalam jaringan listrik. Kecepatan ini bergantung pada beberapa faktor, termasuk jenis rele yang digunakan (elektromekanis atau digital), konfigurasi sistem, dan kompleksitas gangguan. Rele digital modern umumnya lebih cepat dibandingkan rele elektromekanis konvensional.

4. Keandalan: Selalu beroperasi ketika dibutuhkan.

Keandalan sistem proteksi mencakup deteksi cepat terhadap kondisi abnormal, isolasi bagian yang bermasalah, dan pencegahan kerusakan lebih lanjut. Faktor-faktor yang mempengaruhi keandalan meliputi kualitas komponen, desain sistem, pemeliharaan rutin, dan pengujian berkala. Sistem yang andal harus mampu beroperasi dalam berbagai kondisi, termasuk situasi ekstrem. Redundansi dan diversitas dalam desain dapat meningkatkan keandalan. Evaluasi dan peningkatan terus-menerus diperlukan untuk memastikan sistem tetap efektif menghadapi ancaman yang berkembang. Keandalan yang tinggi mengurangi risiko kegagalan dan meningkatkan keamanan keseluruhan.

Kalkulasi melibatkan analisis kuantitatif berbagai aspek keamanan. Ini mencakup evaluasi risiko potensial, penentuan tingkat perlindungan yang diperlukan, dan perancangan solusi yang efektif. Perhitungan dapat meliputi probabilitas kejadian berbahaya dan efektivitas tindakan pencegahan. Berikut adalah perhitungan system proteksi secara matematis. Proteksi arus lebih bekerja berdasarkan suatu persamaan fundamental. Persamaan ini menjadi dasar untuk menentukan bagaimana sistem proteksi akan merespons ketika terjadi arus berlebih dalam sebuah rangkaian listrik.

$$I > I_{set} (32)$$

Dimana:

I : Arus yang terukur

Iset : Arus pengaturan rele

Waktu operasi rele dapat dihitung menggunakan kurva inverse time-current:

$$t = TMS \cdot \left[\frac{A}{\left(\left(\frac{I}{I_{set}}\right)^{P} - 1\right)} + B\right] \tag{33}$$

Dimana:

t : Waktu operasi rele

TMS: Time Multiplier Setting

A, B, p: Konstanta yang bergantung pada karakteristik kurva

I : Arus gangguanIset : Arus pickup rele

2.2.4. Rele

Rele merupakan komponen kunci dalam sistem proteksi listrik. Hubungan antara rele dan sistem proteksi sangat erat dan fundamental, dimana rele berfungsi sebagai kendali yang mendeteksi gangguan dan mengambil keputusan untuk mengaktifkan peralatan proteksi lainnya. Fungsi Utama Rele dalam Sistem Proteksi:

1. Deteksi Gangguan

Rele bertugas mendeteksi kondisi abnormal atau gangguan dalam sistem tenaga listrik. Ini mencakup arus lebih, tegangan lebih/kurang, frekuensi abnormal, dan arah daya terbalik.

2. Pengambilan Keputusan

Setelah mendeteksi gangguan, rele akan memproses informasi tersebut dan memutuskan apakah perlu mengambil tindakan proteksi atau tidak.

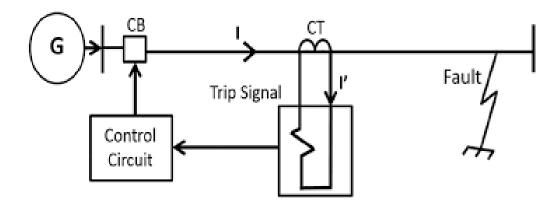
3. Inisiasi Tindakan Proteksi

Jika diperlukan, rele akan mengirimkan sinyal ke peralatan switching (seperti pemutus sirkuit) untuk mengisolasi bagian sistem yang terganggu.

4. Koordinasi Proteksi

Rele diatur untuk bekerja dalam urutan dan waktu tertentu untuk memastikan selektivitas sistem proteksi.

Dalam sistem proteksi, terdapat berbagai macam perangkat pengaman yang berperan penting. Berikut adalah jenis-jenis rele pada system kelistrikan.


1. Rele Arus Lebih (Over Current Rele)

Rele Arus Lebih adalah perangkat proteksi yang digunakan dalam sistem tenaga listrik untuk mendeteksi dan merespon kondisi arus berlebih dalam nilai setting tertentu (Mandala & Umar, 2020).

Gambar 2.6. Fisik Rele Arus Lebih (Over Current Rele)

Fungsi utamanya adalah melindungi peralatan listrik dari kerusakan akibat arus berlebih yang dapat disebabkan oleh beban lebih (overload) atau hubung singkat (short circuit).

Gambar 2.7. Rele Arus Lebih (Over Current Rele)

Selama arus yang terdeteksi masih berada di bawah nilai setting, rele akan tetap dalam kondisi normal tanpa melakukan intervensi apapun. Namun, situasi berubah ketika arus yang terdeteksi melampaui nilai setting. Pada kondisi ini, rele arus lebih akan segera merespon dengan mengirimkan sinyal trip. (Pasaribu et al., 2021) Sinyal ini ditujukan kepada pemutus arus, yang merupakan komponen terpisah namun terkait erat dengan sistem proteksi (Ramadani et al., 2024). Setelah menerima sinyal trip dari rele, pemutus arus akan segera bereaksi. Fungsinya adalah memutuskan aliran listrik dalam sistem dengan cepat dan efektif. Tindakan ini bertujuan untuk mencegah potensi kerusakan pada peralatan listrik atau bahaya yang lebih besar akibat arus berlebih.

Terdapat karakteristik yang menggambarkan hubungan antara waktu operasi rele dan arus gangguan. Semakin besar arus gangguan, semakin cepat rele bekerja. Persamaan umum untuk karakteristik waktu terbalik:

$$t = TMS \cdot \left(\frac{k}{\left(\frac{l}{l_S}\right)^{\alpha} - 1}\right) \tag{34}$$

Dimana:

t : waktu operasi rele (detik)

TMS: Time Multiplier Setting

k : konstanta (tergantung pada jenis kurva)

I : arus gangguan

Is : arus setting

α : konstanta (tergantung pada jenis kurva)

Tabel 2.1. Jenis-jenis kurva karakteristik inverse

Standar Invers	k = 0.14
	$\alpha = 0.02$
Very Inverse	k = 13.5
	$\alpha = 1$
Extremely Inverse	k = 80
	$\alpha = 1$
Long Inverse	k = 120
	$\alpha = 1$

Durasi aktivasi rele bersifat konstan, tanpa dipengaruhi oleh intensitas arus yang timbul akibat gangguan. Dengan kata lain, waktu yang dibutuhkan rele untuk bereaksi tetap sama, terlepas dari seberapa besar atau kecil arus gangguan yang terjadi (Pasaribu et al., 2022). Karakteristik ini menunjukkan bahwa respons rele tidak bergantung pada variasi tingkat keparahan gangguan listrik. Persamaan matematisnya lebih sederhana:

$$t = t_S \dots (35)$$

Dimana:

t : waktu operasi rele (detik)

ts : waktu setting (detik)

Untuk memastikan selektivitas dalam sistem proteksi, diperlukan koordinasi antar rele. Prinsip dasarnya adalah rele yang lebih dekat dengan sumber gangguan harus bekerja lebih cepat. Persamaan untuk koordinasi waktu:

$$\Delta_t = t_2 - t_1 \ge CTI \dots (36)$$

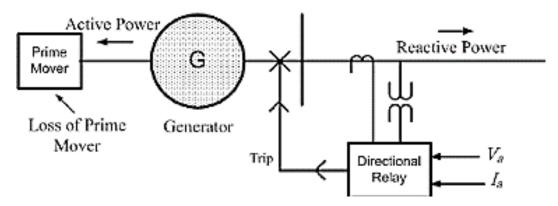
Dimana:

 Δt : selisih waktu operasi antara dua rele

t₁ : waktu operasi rele backup

t₂ : waktu operasi rele utama

CTI : Coordination Time Interval (biasanya 0.2 - 0.5 detik)


2. Rele Daya Balik (Reverse Power Relay)

Rele Daya Balik adalah perangkat proteksi yang digunakan dalam sistem tenaga listrik untuk melindungi generator dari kondisi daya balik. Reverse Power Rele adalah rele proteksi yang dirancang untuk mendeteksi aliran daya aktif yang tidak normal dari sistem ke generator. Fungsi utama dari rele daya balik yaitu melindungi generator dari kerusakan mekanis akibat beroperasi sebagai motor. mencegah pemborosan bahan bakar ketika generator tidak menghasilkan daya. mengisolasi generator dari sistem ketika terjadi gangguan.

Gambar 2.8 Fisik Rele Daya Balik (Reverse Power Relay)

Rele daya balik bekerja berdasarkan prinsip pengukuran daya aktif. Dalam operasi normal, daya mengalir dari generator ke sistem. Namun, dalam kondisi abnormal, daya dapat mengalir balik dari sistem ke generator, yang dapat menyebabkan generator beroperasi sebagai motor.

Gambar 2.9. Rele Daya Balik (Reverse Power Relay)

Rele daya balik biasanya diatur pada nilai 2-8% dari kapasitas daya generator. Pengaturan ini dinyatakan dalam persentase daya nominal generator:

$$P_{set} = (X\%) . P_{Nominal}$$
(37)

Di mana:

P_{setting}: Nilai pengaturan RPR (Watt)

x% : Persentase pengaturan (biasanya 2-8%)

P_{nominal}: Kapasitas daya nominal generator (Watt)

Rele daya terbalik menjadikan perangkat pengaman yang menggunakan pengukuran tegangan dan arus untuk menghitung daya aktif dalam sistem kelistrikan. Rele ini akan bekerja atau aktif jika terjadi aliran daya yang berlawanan arah dengan yang seharusnya. Saat kondisi yang telah ditentukan terpenuhi, rele akan memicu tindakan protektif seperti memutus sirkuit atau memberi sinyal peringatan. Hal ini dapat dilihat pada persamaan dibawah ini.

$$P_{measured} < -P_{setting}$$
(38)

Di mana:

P_{measured}: Daya aktif terukur

P_{setting} : Nilai pengaturan RPR

Tanda negatif menunjukkan arah aliran daya yang terbalik.

Reverse power rele memiliki dua jenis umum berdasarkan karakteristik waktu operasinya yang dapat diatur. Rele dengan waktu operasi tetap memiliki waktu tunda yang telah ditentukan sebelumnya. Ketika kondisi daya balik terdeteksi, rele akan menunggu selama periode waktu yang tetap sebelum memicu tindakan. Sedangkan Rele dengan waktu operasi inverse memiliki waktu operasi bervariasi tergantung pada besarnya daya balik. Semakin besar daya balik yang terdeteksi, semakin cepat rele akan bereaksi. Karakteristik ini memungkinkan respon yang lebih cepat terhadap kondisi daya balik yang parah. Kedua jenis rele ini memiliki kelebihan masing-masing. Rele waktu tetap memberikan konsistensi dalam operasi, sementara rele inverse menawarkan fleksibilitas dan respon yang lebih cepat terhadap situasi kritis. Pemilihan jenis rele tergantung pada kebutuhan spesifik sistem dan tingkat perlindungan yang diperlukan. Berikut dapat dilihat pada persamaan berikut.

$$t_{operasi} = t_{setting}....(39)$$

$$t_{operasi} = \frac{K}{\frac{P_{measured}}{P_{setting}-1}}....(40)$$

Di mana:

t_{operasi}: Waktu operasi rele

K : Konstanta waktu

P_{measured}: Daya balik terukur

P_{setting}: Nilai pengaturan RPR

Sensitivitas *Reverse Power Relay* mengacu pada kemampuan perangkat untuk mendeteksi aliran daya balik dalam sistem kelistrikan. Semakin rendah nilai sensitivitasnya, semakin kecil daya balik yang bisa dideteksi, menunjukkan tingkat keakuratan yang lebih tinggi. Hal ini dibuktikan dengan persamaan:

$$S_{min} = \frac{(V_{min} \cdot I_{min} \cdot \cos \varphi)}{\sqrt{3}}.$$
(41)

Di mana:

 S_{min} : Daya minimum yang dapat dideteksi

 V_{min} : Tegangan minimum yang dapat diukur

I_{min} : Arus minimum yang dapat diukur

cos φ : Faktor daya minimum yang dapat dideteksi

Reverse Power Relay bukan hanya berfungsi sebagai pelindung generator, tetapi juga dapat dimanfaatkan untuk mengawasi efisiensi operasinya. Dengan memantau konsistensi keluaran daya, Reverse Power Relay membantu mengidentifikasi penurunan kinerja atau potensi kerusakan. Perubahan pola aliran daya dapat menunjukkan masalah mekanis atau elektris yang mempengaruhi efisiensi. Dengan mengetahui efisiensi generator sebagai berikut.

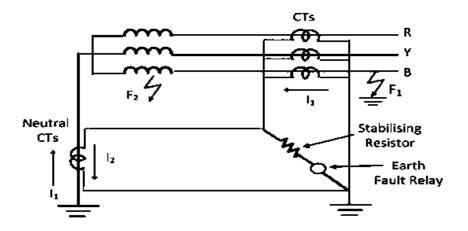
$$\eta = \left(\frac{P_{out}}{P_{in}}\right) .100\% \qquad (42)$$

Di mana:

η : Efisiensi generator (%)

Poutput : Daya keluaran generator (Watt)

P_{input}: Daya masukan generator (Watt)


3. Rele Gangguan Tanah (Earth Fault Relay)

Rele Gangguan Tanah, adalah perangkat proteksi yang sangat penting dalam sistem tenaga listrik. Fungsi utamanya adalah mendeteksi dan merespon arus bocor ke tanah yang melebihi batas yang ditentukan dalam melindungi peralatan listrik, personel, dan sistem secara keseluruhan dari bahaya yang ditimbulkan oleh gangguan hubung tanah.

Gambar 2.10. Fisik Rele Gangguan Tanah (Earth Fault Relay)

Prinsip kerja *Earth Fault Relay* didasarkan pada deteksi ketidakseimbangan arus dalam sistem tiga fasa. Dalam kondisi normal, jumlah vektor arus tiga fasa harus sama dengan nol. Namun, ketika terjadi gangguan tanah, akan muncul arus tidak seimbang yang mengalir melalui jalur ke tanah.

Gambar 2.11. Rele Gangguan Tanah (Earth Fault Relay)

Earth Fault Relay mendeteksi arus tidak seimbang ini dan memicu tindakan protektif jika melebihi nilai ambang yang telah ditetapkan. Terdapat beberapa jenis

Earth Fault Relay yang digunakan dalam berbagai aplikasi, masing-masing dengan karakteristik dan keunggulan tersendiri dapat dilihat sebagai berikut:

1. Rele Arus Lebih Tanah (Earth Overcurrent Relay)

Rele Arus Lebih Tanah adalah perangkat proteksi yang sangat penting dalam sistem kelistrikan. Fungsi utamanya adalah untuk mendeteksi dan merespons arus gangguan tanah (*ground fault current*) yang melebihi batas yang telah ditentukan. Rele ini berperan krusial dalam melindungi peralatan listrik dan sistem distribusi dari kerusakan akibat gangguan hubung singkat ke tanah. Prinsip kerja rele ini didasarkan pada pengukuran arus netral atau arus residu dalam sistem. Dalam kondisi normal, jumlah arus tiga fase seimbang dan arus netral mendekati nol. Namun, ketika terjadi gangguan ke tanah, akan muncul ketidakseimbangan arus yang mengakibatkan arus mengalir melalui jalur netral atau langsung ke tanah. Rele Arus Lebih Tanah dirancang untuk mendeteksi arus abnormal.

2. Rele Arus Sisa (Residual Current Relay)

Rele Arus Sisa (Residual Current Relay) adalah perangkat pengaman listrik yang dirancang untuk mendeteksi kebocoran arus listrik dalam sistem kelistrikan. Perangkat ini bekerja dengan prinsip membandingkan arus yang masuk dan keluar dari suatu rangkaian. Dalam kondisi normal, jumlah arus yang masuk harus sama dengan jumlah arus yang keluar. Jika terjadi perbedaan atau ketidakseimbangan antara arus masuk dan keluar, maka rele akan mendeteksi adanya arus sisa atau arus bocor. Fungsi utama Rele Arus Sisa adalah melindungi manusia dan peralatan dari bahaya sengatan listrik dan kebakaran yang mungkin timbul akibat kebocoran arus. Rele ini umumnya digunakan dalam sistem distribusi listrik tegangan rendah, baik di lingkungan rumah tangga, komersial, maupun industri. Keunggulan Rele Arus Sisa terletak pada sensitivitasnya yang tinggi, mampu mendeteksi kebocoran arus sekecil 5-30 mA, jauh lebih sensitif dibandingkan dengan pengaman konvensional seperti sekering atau MCB (Miniature Circuit Breaker). Rele Arus Sisa sering diintegrasikan dengan perangkat pemutus arus lainnya, membentuk sebuah sistem yang dikenal sebagai RCCB (Residual Current Circuit Breaker) atau ELCB (Earth Leakage Circuit Breaker). Penggunaan Rele Arus Sisa telah

menjadi standar keamanan listrik di banyak negara, mengingat efektivitasnya dalam mencegah kecelakaan listrik.

3. Rele Tegangan Nol (Zero Sequence Voltage Relay)

Rele Tegangan Nol (Zero Sequence Voltage Relay) adalah perangkat proteksi yang digunakan dalam sistem tenaga listrik untuk mendeteksi gangguan ketidakseimbangan atau gangguan tanah. Rele ini bekerja berdasarkan prinsip pengukuran tegangan urutan nol yang muncul saat terjadi gangguan tidak seimbang atau gangguan ke tanah dalam sistem tiga fasa. Dalam kondisi normal, jumlah vektor tegangan tiga fasa seimbang adalah nol. Namun, ketika terjadi gangguan, muncul komponen tegangan urutan nol yang dapat dideteksi oleh rele ini. Rele Tegangan Nol biasanya terhubung ke belitan tersier transformator atau ke rangkaian terbuka dari transformator tegangan yang terhubung secara broken delta. Rele ini sangat sensitif terhadap gangguan tanah dan dapat mendeteksi gangguan dengan impedansi tinggi yang mungkin tidak terdeteksi oleh rele arus lebih konvensional. Keunggulan utamanya adalah kemampuan untuk mendeteksi gangguan tanah pada sistem yang ditanahkan melalui impedansi tinggi atau sistem yang tidak ditanahkan. Aplikasi umum dari Rele Tegangan Nol meliputi proteksi transformator daya, proteksi feeder, dan deteksi gangguan tanah pada sistem distribusi. Rele ini juga dapat digunakan sebagai backup untuk rele diferensial atau rele jarak dalam mendeteksi gangguan tanah.

4. Rele Directional Earth Fault

Rele *Directional Earth Fault* adalah perangkat proteksi yang digunakan dalam sistem tenaga listrik untuk mendeteksi dan melokalisasi gangguan hubung singkat ke tanah secara selektif. Rele ini menggabungkan fungsi rele arus lebih dan rele arah, memungkinkannya untuk membedakan arah aliran arus gangguan. Prinsip kerja rele ini didasarkan pada pengukuran magnitude arus gangguan tanah dan sudut fasa antara arus gangguan dan tegangan referensi. Rele akan beroperasi hanya jika arus gangguan melebihi nilai ambang batas yang ditentukan dan mengalir dalam arah yang telah diatur sebelumnya. Keunggulan utama rele ini adalah kemampuannya untuk membedakan antara gangguan di zona yang dilindungi dan di luar zona tersebut. Rele *Directional*

43

Earth Fault biasanya digunakan pada sistem distribusi, feeder, dan transformator daya. Pengaturannya meliputi nilai pickup arus, karakteristik waktu operasi, dan sudut karakteristik yang menentukan arah operasi rele. Penggunaan rele ini meningkatkan selektivitas sistem proteksi, mengurangi area pemadaman saat terjadi gangguan, dan meningkatkan keandalan sistem tenaga listrik secara keseluruhan.

Untuk memahami lebih dalam tentang *Earth Fault Relay* dalam sistem tiga fasa, arus gangguan tanah (If) dapat dihitung menggunakan persamaan:

$$I_f = \frac{3V}{(Z_1 + Z_2 + Z_0 + 3Z_f)} \tag{43}$$

Dimana:

V : Tegangan fasa-netral sistem

Z1 : Impedansi urutan positif

Z2 : Impedansi urutan negatif

Z0 : Impedansi urutan nol

Zf : Impedansi gangguan

Earth Fault Relay sering menggunakan kurva karakteristik waktu terbalik (inverse time characteristic). Salah satu rumus yang umum digunakan adalah karakteristik inverse definite minimum time (IDMT):

$$t = TMS \cdot \left(\frac{0.14}{\left(\frac{1}{I_S}\right)^{0.02} - 1\right)} + 0.5 \dots (44)$$

Dimana:

t : Waktu operasi rele (detik)

TMS: Time Multiplier Setting

I : Arus gangguan

Is : Arus pickup

Dalam sistem tiga fasa seimbang, jumlah vektor arus adalah nol:

$$IA + IB + IC = 0.....(45)$$

Namun, saat terjadi gangguan tanah, akan muncul arus residu (Ir):

$$Ir = IA + IB + IC \neq 0....(46)$$

Besarnya Ir ini yang dideteksi oleh Earth Fault Relay.

Sensitivitas rele dapat dihitung sebagai rasio antara arus gangguan minimum yang dapat dideteksi (Imin) dengan arus beban penuh (Ifull):

$$Sensitivitas = \frac{Imin}{Ifull}....(47)$$

Jenis sistem pembumian sangat mempengaruhi karakteristik gangguan tanah dan, karenanya, pengaturan *Earth Fault Relay*.

2.2.5. SVERKER 750

Sverker 750 merupakan alat uji relay proteksi yang sangat penting dalam industri kelistrikan. Dikembangkan oleh Megger (sebelumnya dikenal sebagai Programma), alat ini telah menjadi standar industri untuk pengujian relay proteksi sekunder. Dengan kemampuannya yang komprehensif, Sverker 750 memungkinkan teknisi dan insinyur untuk melakukan berbagai pengujian yang diperlukan untuk memastikan keandalan sistem proteksi listrik.

Gambar 2.12 SVERKER 750

Spesifikasi teknis alat ini mencakup karakteristik keluaran yang komprehensif, dengan kemampuan arus AC yang memiliki rentang 0-100A, resolusi detail hingga 0.001A, akurasi tinggi ±0.5% dari pembacaan, dan distorsi harmonik minimal kurang dari 0.1%, sementara untuk tegangan AC menawarkan rentang 0-250V dengan resolusi 0.1V, akurasi yang sama ±0.5% dari pembacaan, serta kapasitas beban 200VA pada 250V. Alat ini dilengkapi timer internal berteknologi tinggi dengan resolusi presisi 1 ms, rentang operasional luas dari 0 hingga 999999.999 detik, dan tingkat akurasi yang sangat baik yakni ±0.01% dari pembacaan ditambah ±1 ms. Dari segi fisik, alat ini dirancang dengan dimensi yang kompak namun fungsional yaitu 350 x 270 x 220 mm, dengan bobot 15 kg yang memberikan stabilitas optimal saat dioperasikan. Konstruksi casing menggunakan material aluminium berkualitas tinggi yang tahan benturan, memberikan perlindungan maksimal pada komponen internal. Sebagai antarmuka pengguna, alat ini dilengkapi dengan layar LCD backlit yang dapat menampilkan berbagai parameter secara simultan, memudahkan operator dalam memantau dan mengontrol berbagai fungsi alat secara efisien dan efektif.

Selain pengujian relai arus lebih, Sverker 750 unggul dalam mengevaluasi relai terarah dengan menyediakan kontrol yang tepat atas sudut fase antara arus dan

tegangan, memungkinkan verifikasi menyeluruh karakteristik terarah dan polarisasi tegangan-arus. Untuk pengujian relai diferensial, perangkat ini dapat secara efektif menilai karakteristik pengekangan, memverifikasi pickup pada berbagai level arus pengekangan, dan menguji stabilitas selama kondisi gangguan tembus. Kemampuan pengujian komprehensif ini memastikan bahwa relai proteksi bekerja secara akurat dan andal dalam aplikasi dunia nyata.

Peralatan ini dilengkapi dengan beberapa fitur tambahan yang meningkatkan fungsionalitas dan pengalaman penggunanya. Memori internal memungkinkan penyimpanan hasil pengujian, sementara port komunikasi memfasilitasi transfer data ke komputer untuk analisis dan dokumentasi lebih lanjut. Perangkat ini juga mencakup generator frekuensi variabel yang beroperasi antara 45-65 Hz dan output DC tambahan untuk catu daya relai, menjadikannya solusi pengujian mandiri untuk sebagian besar skenario pengujian relai.

Pengoperasian Sverker 750 yang tepat memerlukan persiapan yang cermat dan kepatuhan terhadap prosedur pengujian standar. Sebelum memulai pengujian apa pun, pengguna harus melakukan inspeksi visual, memverifikasi kalibrasi jika perlu, memastikan sambungan kabel pengujian yang benar, dan membuat landasan yang tepat demi keselamatan. Prosedur pengujian standar melibatkan pengaturan parameter pengujian secara metodis, menyuntikkan arus atau tegangan secara bertahap, mengamati dan mencatat hasil dengan cermat, dan menganalisis hasil ini terhadap spesifikasi relai. Kemampuan dokumentasi merupakan kekuatan utama Sverker 750, dengan perekaman otomatis waktu pengoperasian, penyimpanan internal hasil, dan kemampuan untuk membuat laporan pengujian tercetak. Fiturfitur ini secara signifikan menyederhanakan proses pengujian dan memastikan pencatatan yang akurat untuk tujuan kepatuhan dan pemeliharaan. Perangkat ini memainkan peran penting dalam berbagai aplikasi, termasuk komisioning sistem proteksi, yang memverifikasi pengaturan relai sebelum pengaktifan dan memungkinkan pengujian skema proteksi menyeluruh. Aktivitas perawatan rutin sangat bergantung pada Sverker 750 untuk pengujian rutin sesuai jadwal perawatan, memverifikasi tidak adanya penurunan kinerja, dan mengkalibrasi ulang relai bila perlu. Dalam skenario pemecahan masalah, perangkat ini terbukti sangat berharga untuk menganalisis kegagalan operasi relai, memverifikasi pengaturan setelah

kejadian kesalahan, dan menguji setelah perbaikan atau penggantian komponen, memastikan keandalan sistem proteksi yang berkelanjutan.

Pertimbangan keselamatan sangat penting saat mengoperasikan Sverker 750. Pengguna harus menggunakan peralatan pelindung diri yang sesuai, mengikuti prosedur penguncian-penandaan, memverifikasi isolasi sebelum pengujian, dan memahami protokol penghentian darurat. Peralatan itu sendiri memerlukan perawatan rutin, termasuk kalibrasi tahunan, pembersihan dan pemeriksaan rutin, penyimpanan yang tepat, dan penggantian komponen tepat waktu seperti yang direkomendasikan oleh produsen.

BAB III

METODOLOGI PENELITIAN

Metodologi merupakan alat untuk mencapai tujuan dan penelitian adalah suatu proses pengumpulan informasi untuk meningkatkan dan memodifikasi penyelidikan. Untuk mencapai tujuan tersebut maka diperlukan sebuah metode yang relevan dengan tujuan yang ingin dicapai.

3.1. Tempat dan Waktu Penelitian

Penelitian ini bertujuan untuk mendapat gambaran dan informasi yang lebih jelas, lengkap, serta memungkinkan dan mudah bagi peneliti untuk melakukan penelitian. Oleh karena itu, maka penulis menetapkan lokasi penelitian adalah tempat di mana penelitian akan dilakukan. Dalam hal ini, lokasi penelitian terletak di PT. FAIRCO AGRO MANDIRI, yang terletak di Jalan Poros Desa Kaliorang, Kec. Kelana Babara, Kab. Kutai Timur, Provinsi Kalimantan Timur. Penelitian ini dilakukan pada Juli 2024 – Desember 2024.

3.2. Instrumen Penelitian

Untuk memastikan penelitian berjalan dengan efektif dan menghasilkan data yang valid, beberapa instrumen penelitian mungkin diperlukan. Observasi langsung mungkin diperlukan untuk mengamati perilaku atau fenomena yang diteliti secara langsung di lapangan. Berikut peralatan yang digunakan dalam penelitian tugas akhir ini.

1. SVERKER Megger 750

Sverker 750 pada penelitian ini berfungsi untuk mengkalibrasi dan melakukan pengujian pada peralatan relay proteksi termasuk rele arus lebih,daya balik,dan gangguan tanah.

Gambar 3.1. SVERKER 750

2. Rele Arus Lebih (OverCurrent Relay)

OCR berfungsi untuk pemutus jaringan listrik apabila telah terdeteksi terjadinya arus lebih dalam nilai setting tertentu.

Gambar 3.2. Rele Arus Lebih (Over Current Rele)

3. Rele Daya Balik (Reverse Power Relay)

RPR berfungsi sebagai proteksi yang digunakan untuk melindungi generator dari kondisi daya balik dengan mendeteksi aliran daya aktif yang tidak normal dari sistem ke generator.

Gambar 3.3 Rele Daya Balik (Reverse Power Relay)

4. Rele Gangguan Tanah (Earth Fault Relay)

EFR berfungsi sebagai pendeteksi dan merespon arus bocor ketanah yang melebihi batas yang ditentukan dalam melidungi peralatan listrik dari bahaya yang ditimbulkan oleh gangguan tanah.

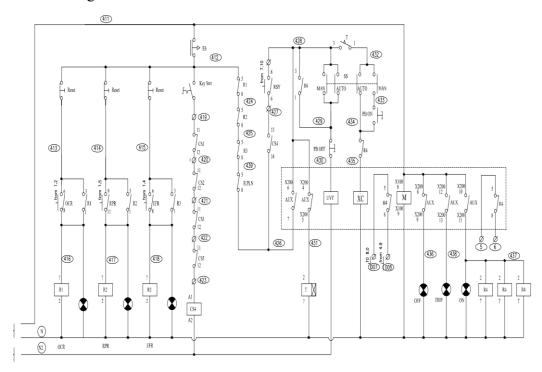
Gambar 3.4. Rele Gangguan Tanah (Earth Fault Relay)

5. Panel Sinkron Generator Turbin

Adalah panel yang digunakan untuk mengotrol serta mensinkronkan generator turbine ke generator lainnya, didalam nya juga terdapat proteksi yang digunakan untuk melindungi generator tersebut.

Gambar 3.5. Panel Sinkron Generator Turbine

6. Panel Sinkron Generator Set


Adalah panel yang digunakan untuk mengotrol serta mensinkronkan generator set ke generator lainnya, didalam nya juga terdapat proteksi yang digunakan untuk melindungi generator tersebut.

Gambar 3.6. Panel Sinkron Generator set

3.3. Diagram Rangkaian Penelitian

1. Rangkaian Kontrol Panel Sinkron Generator Turbine

Gambar 3.7. Rangkaian Kontrol Panel Sinkron Generator Turbine

Pada gambar 3.7. tersebut menunjukkan rangkaian kontrol dipanel sinkron generator turbine yang terdapat proteksi OCR,RPR, dan EFR yang berfungsi untuk memutuskan sumber arus listrik apabila terjadi kesalahan atau kegagalan system sinkron dengan memutus kontak utama dari Air Circuit Breaker (ACB) yang ada dipanel sinkron generator turbine.

412 8 (424) 425 **415** PB OFF R3 **430** (435) 439 R.PLN XC UVT 422 431) Т N (N2) OCR

2. Rangkaian Kontrol Panel Sinkron Generator Set

Gambar 3.8. Rangkaian Kontrol Panel Sinkron Generator Set

Pada gambar 3.8. tersebut menunjukkan rangkaian kontrol dipanel sinkron generator set yang terdapat proteksi OCR,RPR, dan EFR yang berfungsi untuk memutuskan sumber arus listrik apabila terjadi kesalahan atau kegagalan system sinkron dengan memutus kontak utama dari Air Circuit Breaker (ACB) yang ada dipanel sinkron generator set.

3.4. Jalannya Penelitian

Dalam Penelitian ini mengikuti serangkaian tahapan sistematis untuk memastikan hasil yang valid dan dapat diandalkan. Alur penelitian yang akan dilaksanakan meliputi.

1. Merumuskan masalah dan tujuan penelitian

Langkah pertama adalah mengidentifikasi masalah yang akan diteliti serta menentukan tujuan spesifik dari penelitian tersebut. Rumusan masalah yang jelas akan mengarahkan seluruh proses penelitian selanjutnya.

2. Melakukan kajian literatur

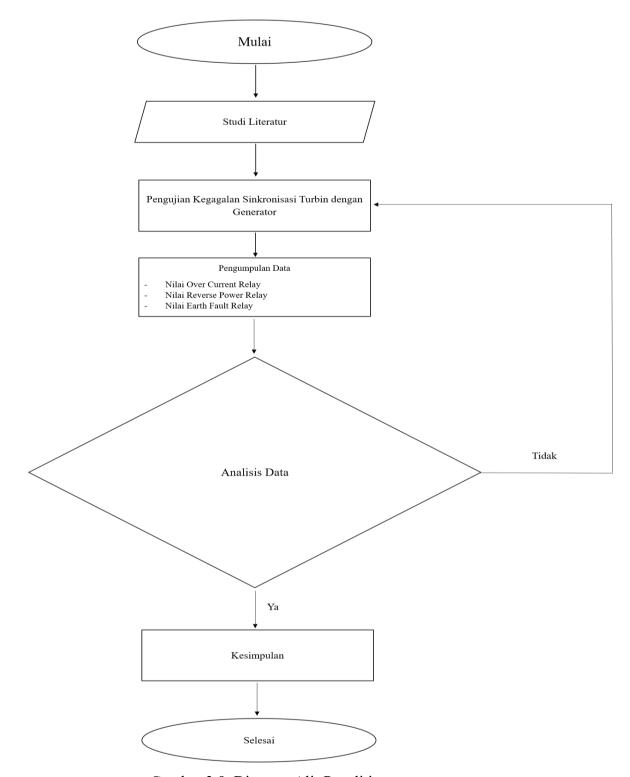
Peneliti kemudian mempelajari literatur yang relevan dengan topik penelitiannya. Hal ini mencakup tinjauan terhadap penelitian-penelitian sebelumnya, teori-teori terkait, serta publikasi ilmiah yang berhubungan.

3. Menentukan metodologi penelitian

Berdasarkan rumusan masalah dan kajian literatur, peneliti memilih metodologi yang paling sesuai. Ini meliputi penentuan jalannya penelitian, teknik pengambilan data, instrumen alat yang digunakan, serta metode analisis yang akan digunakan.

4. Mengumpulkan data

Tahap ini melibatkan pengumpulan data sesuai dengan metodologi yang telah ditentukan. Data dapat berupa data primer (dikumpulkan langsung oleh peneliti) dan data sekunder (diperoleh dari sumber yang sudah ada).

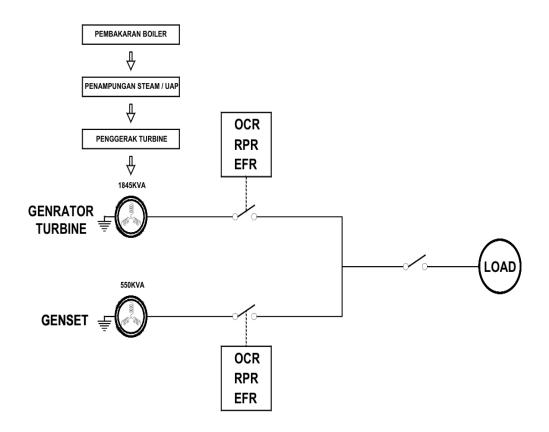

5. Menganalisis data

Setelah data terkumpul, peneliti melakukan analisis menggunakan metode yang telah ditentukan sebelumnya. Analisis ini dapat bersifat kuantitatif, kualitatif, atau gabungan keduanya, tergantung pada jenis penelitian.

6. Menarik kesimpulan

Berdasarkan hasil analisis data, peneliti menarik kesimpulan yang menjawab rumusan masalah dan tujuan penelitian. Kesimpulan ini harus didukung oleh bukti-bukti yang kuat dari hasil analisis.

Untuk lebih jelasnya jalannya penelitian tersebut. Dapat dilihat diagram alir penelitian pada gambar 3.2. berikut ini

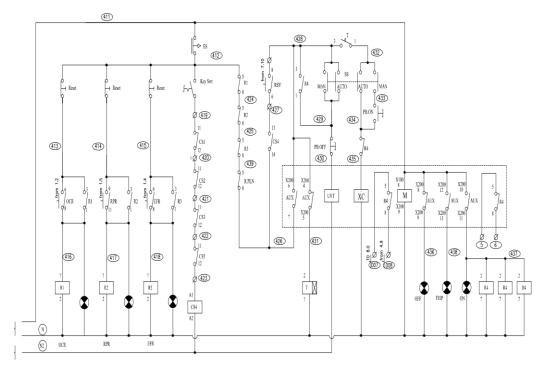


Gambar 3.9. Diagram Alir Penelitian

BAB IV

HASIL DAN PEMBAHASAN

4.1. Single Line Diagram Sinkronisasi Generator Turbine Dan Genset



Gambar 4.1. Single Line Diagram Sinkronisasi

Pada gambar 4.1. tersebut menunjukan komponen utama dan jalur aliran Listrik pada proses sinkronisasi serta terdapat simbol dari generator turbine dan genset serta kompenen utama lain seperti Air Circuit Breaker (ACB), OCR, RPR, EFR yang digambarkan secara satu garis yang memudahkan untuk melihat aliran dari sinkronisasi.

4.2. Rankaian Kontrol Pada Panel Sinkron Generator Turbine Dan Genset

4.2.1. Rangkaian Kontrol Panel Sinkron Generator Turbine

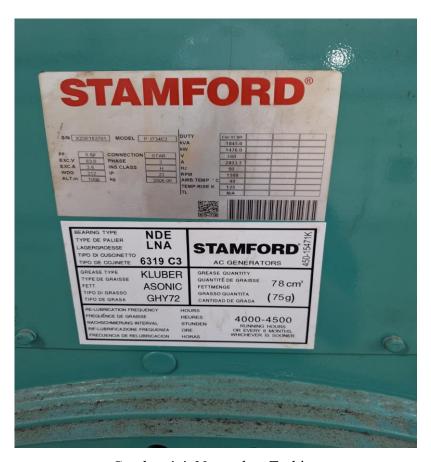
Gambar 4.2. Rankaian Kontrol Panel Sinkron Generator Turbine

Pada gambar 4.2. tersebut menunjukkan rangkaian kontrol dipanel sinkron generator turbine yang terdapat proteksi OCR, RPR, dan EFR yang berfungsi untuk memutuskan sumber arus listrik apabila terjadi kesalahan atau kegagalan system sinkron dengan memutus kontak utama dari Air Circuit Breaker (ACB) yang ada dipanel sinkron generator turbine. Dengan adanya gambar rangkaian kontrol ini saya dapat menganalisa system kerja rangkaian kontrolnya dan memudahkan untuk mengidentifikasi proteksi mana yang bekerja apabila mengalami kegagalan pada saat sinkron antara turbine dan genset.

411) **412**) 424 (419) 425 **415**) 413 414 **430** 435) 439 R.PLN XC (121) 422 T N (N2) OCR RPR EFR

4.2.1. Rangkaian Kontrol Panel Sinkron Generator Set

Gambar 4.3. Rankaian Kontrol Panel Sinkron Genset

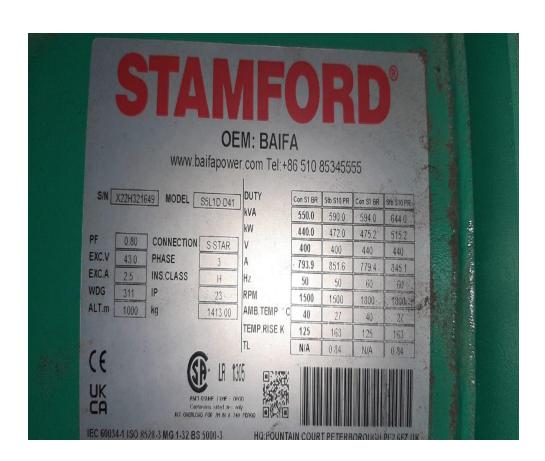

Pada gambar 4.3. tersebut menunjukkan rangkaian kontrol dipanel sinkron generator set yang terdapat proteksi OCR,RPR, dan EFR yang berfungsi untuk memutuskan sumber arus listrik apabila terjadi kesalahan atau kegagalan system sinkron dengan memutus kontak utama dari Air Circuit Breaker (ACB) yang ada dipanel sinkron generator set. Dengan adanya gambar rangkaian kontrol ini saya dapat menganalisa system kerja rangkaian kontrolnya dan memudahkan untuk mengidentifikasi proteksi mana yang bekerja apabila mengalami kegagalan pada saat sinkron antara genset dan turbine.

4.3. Spesifikasi Dan Parameter Settingan Pada Generator Turbine Dan Generator Set

4.3.1. Spesifikasi Pada Generator Turbine

Table 4.1. Spesifikasi Turbine

kVA	1845
kW	1476
V	380
A	2803,3
Hz	50
RPM	1500
PHASE	3
CONNECTION	STAR



Gambar 4.4. Nameplate Turbine

4.3.2. Spesifikasi Pada Generator Set

Table 4.2. Spesifikasi Genset

kVA	550
kW	440
V	400
A	793,9
Hz	50
RPM	1500
PHASE	3
CONNECTION	STAR

Gambar 4.5. Nameplate Genset

4.3.3. Parameter Settingan Untuk Turbine Dan Genset

Tabel 4.3. Settingan Generator Turbine

Setting(%)		Time(Sec)	Arus(A)
OverCurrent	95%	5	2663,1
Reverse Power	6%	5	168,1
Earth Fault	15%	0,6	420,4

Tabel 4.4. Settingan Genset

Setting(%)		Time(Sec)	Arus(A)
OverCurrent	95%	5	754,2
Reverse Power	6%	5	47,6
Earth Fault	15%	0,6	119

4.4. Nilai Settingan Pada Proteksi di Panel Sinkron

Nilai settingan pada proteksi ini bertujuan untuk mengamankan gangguan pada system tenaga listrik dan juga melindungi dari gangguan tertentu yang disebabkan oleh ketidak normalan pada system arus listik yang berakibat fatal bagi turbine dan genset.

Adapun nilai yang disetting pada proteksi memiliki tujuan tertentu sesuai dengan fungsi dari proteksi tersebut. Misalnya ;

- proteksi OCR disetting berdasarkan nilai dari kemampuan generator turbine atau genset untuk mengatur nilai arus yang keluar dari generator agar tidak melebihi dari kemampuannya.
- 2. Proteksi RPR disetting berdasar kan kondisi daya balik dengan mendeteksi aliran daya aktif yang tidak normal dari sistem ke generator.

3. Proteksi EFR disetting berdasarkan pada deteksi ketidakseimbangan arus dalam sistem tiga fasa. Dalam kondisi normal, jumlah vektor arus tiga fasa harus sama dengan nol. Namun, ketika terjadi gangguan tanah, akan muncul arus tidak seimbang yang mengalir melalui jalur ke tanah.

4.4.1. Settingan Proteksi Di Panel Sinkron Turbine

Diketahui:

Kemampuan generator turbine: 2803,3 A

Current Transformer (CT): 3000/5A

Untuk melakukan pengaturan Batasan pada proteksi di panel turbine maka terlebih dahulu untuk melakukan perhitungan untuk penyesuaian antara nilai pada kemampuan generator dengan nilai pembacaan current transformer (CT).

Tabel 4.5. Perbandingan Nilai Settingan Generator Turbine dengan Proteksi Pada Panel

SETTINGAN PADA			SETTINGAN PADA		
GENERATOR TURBINE			PROTEKSI DIPANEL		
OverCurrent	95%	2663,1A	OCR	88,77%	2663,1A
Reverse	6%	168,1A	RPR	5,61%	168,3A
Power					
Earth Faulth	15%	420,4 A	EFR	14,02%	420,6A

Nilai proteksi dipanel sinkron turbine disetting sehingga mendekati atau sama nilainya dengan seetingan yang diminta pada generator sehingga dapat melindungi generator dari ganguan yang disebabkan oleh beban lebih, arus balik, gangguan dari kebocoran arus.

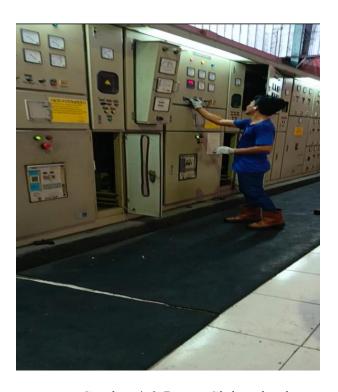
4.4.2. Settingan Proteksi Di Panel Sinkron Genset

Diketahui:

Kemampuan genset: 793,9 A

Current Transformer (CT): 800/5A

Untuk melakukan pengaturan Batasan pada proteksi di panel genset maka terlebih dahulu untuk melakukan perhitungan untuk penyesuaian antara nilai pada kemampuan generator dengan nilai pembacaan current transformer (CT).


Tabel 4.6. Perbandingan Nilai Settingan Genset dengan Proteksi Pada Panel

SETTINGAN PADA GENSET			SETTINGAN PADA			
			PROTEKSI DIPANEL			
OverCurrent	95%	754,2A	OCR 94,28% 754,2A			
Reverse	6%	47,6A	RPR	5,95%	47,6A	
Power						
Earth Faulth	15%	119 A	EFR	14,88%	119A	

Nilai proteksi dipanel sinkron genset disetting sehingga mendekati atau sama nilainya dengan seetingan yang diminta pada generator sehingga dapat melindungi generator dari ganguan yang disebabkan oleh beban lebih, arus balik, gangguan dari kebocoran arus

4.5. Proses Sinkronisasi Pada Generator Turbine Dan Genset

Proses sinkronisasi dalam sistem pembangkit tenaga listrik adalah suatu tahapan teknis yang bertujuan untuk menghubungkan dua atau lebih sumber daya listrik ke dalam satu sistem jaringan secara paralel. Dalam penelitian ini, sinkronisasi dilakukan antara turbine 1845 kVA sebagai sumber utama, dengan genset 550 kVA sebagai sumber cadangan atau pendukung.

Gambar 4.6. Proses Sinkronisasi

Adapun parameter yang harus disesuaikan pada saat sinkronisasi adalah sebagai berikut :

Tabel 4.7. Parameter Nilai Sinkronisasi

Parameter	Satuan	Nilai Ideal
Tegangan (Voltage)	Volt	± 3 volt dari sistem
Frekuensi (Frequency)	Hz	±0.2 Hz dari sistem
Sudut Phasa (Phase	Derajat	$\approx 0^{\circ} (\text{sinkron})$
Angle)		
Urutan Phasa	R-S-T	Sama

Tabel 4.8. Data Parameter Turbine Sebelum Sinkronisasi

Parameter	Nilai	Satuan	Keterangan
Tegangan Output	390	Volt	Stabil, Jadi Referensi Sinkron
Frekuensi	50.0	Hz	Stabil, Acuan Sistem
Arus R	1822	Ampere	Beban Aktif
Arus S	1794	Ampere	Beban Aktif
Arus T	1811	Ampere	Beban Aktif
Power Factor	0.95	-	Normal Untuk Sistem Industri
Status Operasi	Online	-	Aktif, Menyuplai Beban Sistem

Pada tabel 4.8. menunjukkan nilai parameter turbine Sebelum proses sinkronisasi dilakukan, turbine berada dalam kondisi online dan beroperasi secara stabil, menyuplai daya ke sistem. Tegangan keluarannya sebesar 390 Volt dengan frekuensi 50,0 Hz, sesuai dengan standar sistem. Ketiga fasa (R, S, T) menunjukkan nilai arus yang tinggi, masing-masing 1822 A, 1794 A, dan 1811 A, menandakan bahwa turbine sedang menangani beban aktif penuh. Nilai power factor sebesar 0,95 menunjukkan efisiensi sistem yang baik dan operasional normal.

Tabel 4.9. Data Parameter Genset Sebelum Sinkronisasi

Parameter	Nilai	Satuan	Keterangan
Tegangan Output	386	Volt	Masih Dalam
			Penyesuaian
Frekuensi	47.0	Hz	Masih Dalam Penyesuaian
Arus R	0	Ampere	Tidak Ada Beban
Arus S	0	Ampere	Tidak Ada Beban
Arus T	0	Ampere	Tidak Ada Beban
Power Factor	-	-	Belum Terbebani
Status Operasi	Standby	-	Aktif, Menyuplai
			Beban Sistem

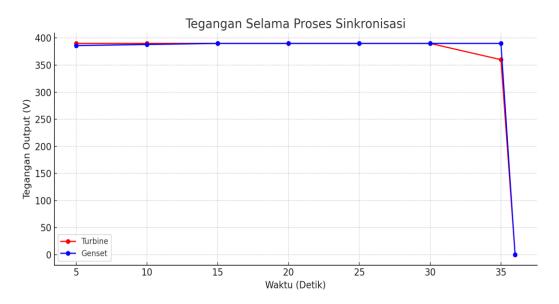
Pada tabel 4.9. menunjukkan bahwa Genset masih berada dalam kondisi standby dan belum menerima beban. Tegangan keluarannya sebesar 386 Volt dan frekuensi 47 Hz, menunjukkan bahwa parameter ini belum sesuai dengan sistem dan masih dalam proses penyesuaian. Nilai arus pada ketiga fasa adalah 0 A, dengan power factor belum terbaca karena genset belum terbebani. Kondisi ini menunjukkan bahwa genset masih belum layak untuk disinkronkan hingga parameter lebih mendekati sistem utama (turbine).

Tabel 4.10. Data Parameter Turbine Selama Proses Sinkronisasi

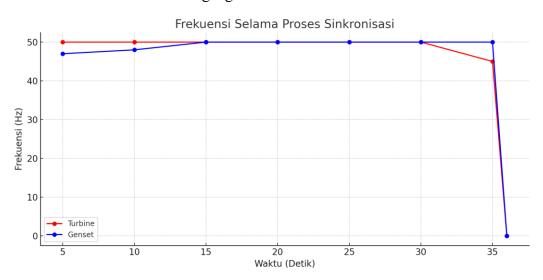
Waktu	Tegangan	Frekuensi	Arus	Arus	Arus	Power	Status
(Detik)	Output	(Hz)	R	S	T	Factor	Sinkronisasi
	(V)		(A)	(A)	(A)		
5	390	50	1822	1794	1811	0,95	Belum
10	390	50	1822	1794	1811	0,95	Belum
15	390	50	1822	1794	1811	0,95	Belum
20	390	50	1704	1690	1700	0,91	Sinkron
25	390	50	1502	1500	1506	0,91	Sinkron
30	390	50	1432	1407	1421	0,95	Sinkron
35	360	45	3009	2991	3000	-	Lepas
							Sinkron
36	0	0	0	0	0	0	Blackout

Pada tabel 4.10. Pengamatan terhadap parameter turbine dilakukan selama proses sinkronisasi dari detik ke-5 hingga detik ke-36. Tegangan output dari turbine stabil pada 390 Volt, dan frekuensi tetap pada 50 Hz hingga detik ke-30. Arus fasa tetap tinggi hingga detik ke-15, lalu mulai menurun pada detik ke-20 yang menandakan proses sinkronisasi telah berhasil dilakukan hingga 30, menandakan terjadinya pembagian beban dengan genset.

Pada detik ke-35, terjadi gangguan sistem yang ditandai dengan turunnya tegangan ke 360 Volt dan frekuensi ke 45 Hz, serta lonjakan arus tinggi (hingga 3009 A pada phasa R, 2991 A pada phasa S, 3000 A pada phasa T) sehingga menyebabkan indikasi tripnya OCR dan EFR sehingga putusnya koneksi ACB ke beban. Pada detik ke-36, semua parameter turun ke nol, yang menunjukkan telah terjadi blackout total.


Tabel 4.11. Data Parameter Genset Selama Proses Sinkronisasi

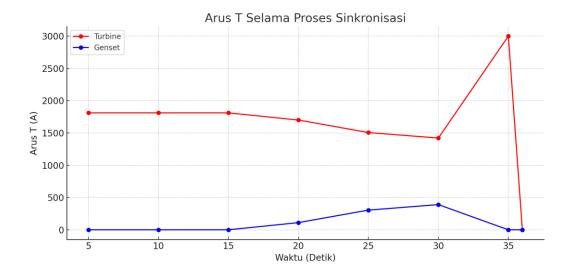
Waktu	Tegangan	Frekuensi	Arus	Arus	Arus	Power	Status
(Detik)	Output	(Hz)	R	S	T	Factor	Sinkronisasi
	(V)		(A)	(A)	(A)		
5	386	47	0	0	0	-	Belum
10	388	48	0	0	0	-	Belum
15	390	50	0	0	0	-	Belum
20	390	50	118	104	111	0,91	Sinkron
25	390	50	320	294	305	0,91	Sinkron
30	390	50	390	387	390	0,95	Sinkron
35	390	50	0	0	0	-	Lepas
							Sinkron
36	0	0	0	0	0	0	Trip Proteksi

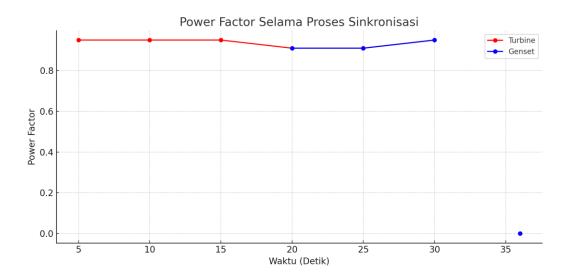

Pada tabel 4.11. awal pengamatan (detik ke-5 hingga 15), genset belum menerima beban. Tegangan perlahan meningkat dari 386 V ke 390 V, dan frekuensi naik dari 47 Hz ke 50 Hz, nilai dari voltase dan frekuensi harus disesuaikan guna mencapai sinkronisasi turbine dan genset penyesuaian tersebut dilakukan secara manual dengan potensio yang sudah disambung ke avr dan modul di alternator genset. Sinkronisasi terjadi mulai dari detik ke-20, ditandai dengan munculnya arus fasa dan pembacaan power factor 0,91 hingga detik ke 30.

Arus genset terus meningkat hingga detik ke-30, dengan arus phasa R mencapai 390 A, phasa S 387 A, phasa T 390 A dan power factor meningkat ke 0,95. Namun pada detik ke-35, arus kembali nol, menandakan terputusnya koneksi sinkronisasi, dan pada detik ke-36 sistem mencatat status Trip pada RPR sehingga memutuskan koneksi ACB genset, menunjukkan bahwa proteksi sistem memutuskan hubungan genset dari jaringan untuk mencegah kerusakan.


4.5.1. Kegagalan Sinkronisasi Pada Generator Turbine Dan Genset


Grafik 4.1. Tegangan Selama Proses Sinkronisasi


Grafik 4.2. Frekuensi Selama Proses Sinkronisasi


Grafik 4.3. Arus phasa R Selama Proses Sinkronisasi

Grafik 4.4. Arus phasa S Selama Proses Sinkronisasi

Grafik 4.5. Arus phasa T Selama Proses Sinkronisasi

Grafik 4.6. Power Factor Selama Proses Sinkronisasi

Berdasarkan pada grafik 4.1, grafik 4.2, grafik 4.3, grafik 4.4, grafik 4.5, dan grafik 4.6 Pengamatan terhadap parameter Turbine dan Genset dilakukan selama proses sinkronisasi dari detik ke-5 hingga detik ke-36. Tegangan output dari Turbine stabil pada 390 Volt dan frekuensi tetap di 50 Hz hingga detik ke-30. Arus pada ketiga fasa Turbine (R, S, dan T) berada pada nilai tinggi hingga detik ke-15, lalu mulai menurun pada detik ke-20, menandakan proses sinkronisasi berhasil

dilakukan dan terjadi pembagian beban dengan Genset. Sementara itu, pada awal pengamatan (detik ke-5 hingga ke-15), Genset belum menerima beban. Tegangan perlahan meningkat dari 386 Volt ke 390 Volt, dan frekuensi naik dari 47 Hz ke 50 Hz. Penyesuaian voltase dan frekuensi dilakukan secara manual dengan menggunakan potensio yang terhubung ke AVR dan modul pada alternator Genset agar selaras dengan parameter Turbine. Sinkronisasi mulai terjadi pada detik ke-20, ditandai dengan munculnya arus pada ketiga fasa Genset serta pembacaan power factor sebesar 0,91. Arus Genset terus meningkat hingga detik ke-30 dengan Arus R mencapai 390 A, Arus S 387 A, Arus T 390 A, dan power factor naik ke 0,95. Namun, pada detik ke-35 terjadi gangguan sistem yang ditandai dengan penurunan tegangan Turbine menjadi 360 Volt dan frekuensi turun menjadi 45 Hz, disertai lonjakan arus signifikan pada ketiga fasa Turbine (Arus R 3009 A, Arus S 2991 A, Arus T 3000 A), yang menyebabkan putusnya koneksi sinkronisasi. Arus Genset juga kembali menjadi nol pada saat yang sama, dan pada detik ke-36, semua parameter turun ke nol. Sistem mencatat status trip pada RPR (Reverse Power Relay), yang memicu pemutusan ACB (Air Circuit Breaker) pada Genset sebagai bentuk proteksi, sehingga memutus koneksi Genset dari jaringan untuk mencegah kerusakan lebih lanjut. Proteksi turbine juga mencatat status trip pada OCR (Over Current Relay) dan EFR (Earth Fault Relay) yang sebabkan oleh lonjakan arus yang terjadi pada saat putusnya koneksi genset sehingga beban berpindah secara kejut ke turbine kemudian menicu pemutusan ACB (Air Circuit Breaker) pada turbine sebagai bentuk proteksi, sehingga kondisi ini memicu blackout total pada sistem.

4.6. Dampak Terjadinya Kegagalan Sinkronisasi Terhadap Turbine Dan Genset

Dampak dari terjadinya kegagalan sinkronisasi ini dapat menyebabkan terjadi permalasahan teknis dikedua pembangkit yang dapat merusak atau mempengaruhi kinerja dari turbine dan geset serta berhentinya seluruh aktivitas yang bergantung pada Listrik yang menyebabkan terhentinya produksi pabrik yang dapat memberikan kerugian yang besar.

4.6.1. Dampak Terhadap Turbine

1. Lonjakan Arus Beban Yang Mendadak

Lonjakan Beban Mendadak Saat Genset terlepas dari sistem (detik ke-35), seluruh beban kembali ditanggung oleh Turbine. Hal ini menyebabkan lonjakan arus ekstrem (hingga >3000 A) yang sangat membebani sistem mekanik dan elektrik dari Turbine.

> Arus R: 3009 A

> Arus S: 2991 A

> Arus T: 3000 A

Lonjakan arus ini berpotensi menyebabkan overheating pada gulungan stator. Daya nyata (apparent power) dapat dihitung menggunakan rumus:

$$s = \sqrt{3} \cdot v \cdot I$$

Dengan

➤ V=360V (tegangan saat gangguan),

> I=3009 A (arus fasa tertinggi).

$$S=1,732 \times 360 \times 3009 = 1876 \text{ Kva}$$

Ini adalah beban yang sangat tinggi, melebihi kapasitas nominal operasional ratarata turbine dan berisiko merusak generator jika tidak ditangani segera oleh sistem proteksi.

2. Penurunan Tegangan Dan Frekuensi

Penurunan Tegangan dan Frekuensi Tegangan Turbine turun dari 390 V ke 360 V dan frekuensi turun ke 45 Hz. Hal ini menandakan penurunan performa dan kestabilan Turbine dalam mempertahankan kondisi nominal, yang dapat berdampak buruk pada efisiensi operasi dan umur peralatan.

Penurunan 5 Hz berarti turunnya kecepatan putaran turbine sekitar 10%. Karena frekuensi berkaitan dengan kecepatan rotor, ini menandakan instabilitas mekanis yang berbahaya bagi sistem rotasi turbine.

3. Risiko Kerusakan Generator

Overload akibat arus tinggi dan ketidakstabilan frekuensi dapat mempercepat keausan atau menyebabkan kerusakan langsung pada alternator Turbine, khususnya bagian rotor dan stator.

4.6.2. Dampak Terhadap Genset

1. Trip Proteksi RPR Genset

Trip Proteksi RPR Genset mengalami trip pada *Reverse Power Relay* akibat deteksi aliran daya balik (reverse power). Ini menandakan bahwa Genset dalam kondisi berisiko menyerap daya dari sistem, yang berbahaya bagi mesin dan alternator.

Pemutusan ACB Secara Otomatis ACB (Air Circuit Breaker) Genset diputus oleh sistem sebagai respons terhadap trip. Hal ini mengindikasikan intervensi proteksi untuk mencegah kerusakan, namun juga berarti Genset tidak lagi berkontribusi pada sistem daya.

Terhentinya Beban Bertahap Sebelum trip, Genset menunjukkan penurunan arus secara tiba-tiba menjadi nol. Ini bisa disebabkan oleh gangguan pada sinkronisasi atau perintah lepas paksa dari sistem proteksi, yang berdampak pada hilangnya kontinuitas suplai daya dari Genset.

2. Kerusakan System Pengaturan AVR Dan Modul Alternator

Risiko Kerusakan Sistem Pengaturan (AVR dan Modul Alternator): Ketidaksesuaian voltase dan frekuensi yang tidak tertangani dengan cepat dapat merusak sistem pengatur tegangan otomatis (AVR) dan modul alternator, yang krusial dalam proses sinkronisasi.

4.6.3. Dampak Terhadap Produksi Pabrik

Kegagalan proses sinkronisasi antara Turbine dan Genset tidak hanya berdampak teknis pada sistem kelistrikan, tetapi juga menimbulkan dampak operasional yang signifikan terhadap proses produksi pabrik kelapa sawit. Sebagai industri yang sangat bergantung pada kontinuitas suplai daya listrik, gangguan seperti blackout dapat menghambat proses-proses vital sebagai berikut:

1. Gangguan Pada Proses Ekstraksi Minyak

Seluruh rangkaian mesin yang digunakan untuk proses sterilisasi, pelumatan (digester), pengepresan (press), dan klarifikasi memerlukan suplai listrik yang stabil. Kegagalan sinkronisasi menyebabkan mesin-mesin tersebut berhenti mendadak, sehingga:

- > Tandan buah segar (TBS) bisa terlalu matang atau rusak akibat tertahan di sterilizer.
- > Efisiensi ekstraksi turun, karena kelapa sawit yang diproses dalam kondisi tidak ideal.
- ➤ Kualitas CPO (Crude Palm Oil) bisa menurun akibat proses terganggu.

2. Berhentinya Operasi Sistem Air Dan Uap

Sistem boiler, pompa air, dan pompa vakum yang digunakan untuk menghasilkan uap dan mengalirkan fluida akan ikut terhenti. Hal ini sangat krusial karena:

- > Uap adalah media utama untuk proses sterilisasi dan pemanasan.
- Air digunakan untuk klarifikasi minyak dan pembersihan.

3. Risiko Kerusakan Pada Mesin Produksi

Saat arus listrik terputus secara mendadak (blackout), mesin produksi bisa mengalami shutdown tidak terkontrol, yang menyebabkan:

- > Kerusakan mekanis pada bagian-bagian bergerak seperti screw press, conveyor, dan motor.
- Risiko tinggi terhadap motor listrik 3 fasa yang terpapar tegangan tidak stabil.

4. Waktu Henti Produksi (Downtime)

Setiap kegagalan sistem sinkronisasi berujung pada waktu henti produksi (downtime) yang berdampak langsung pada kapasitas output harian:

pabrik kehilangan 5 jam produksi, dengan kapasitas 45 ton/jam → potensi kerugian = 225 ton TBS(Tandan Buah Segar) tidak terolah.

5. Dampak Finansial

Dampak finansial yang terjadi karena adanya downtime yang menyebabkan terhentinya proses produksi dari pengolahan TBS(Tandan Buah Segar:

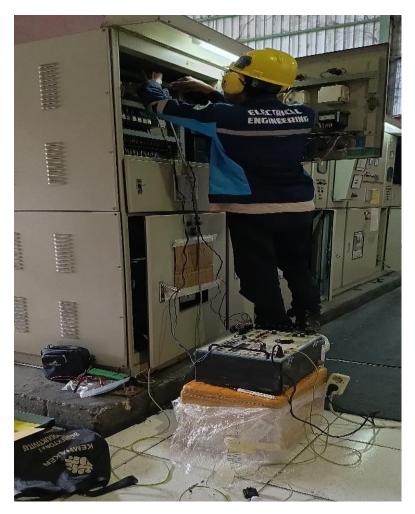
Waktu henti produksi = 5 jam

Kapasitas pengolahan = 45 ton/jam

Harga TBS = Rp 2630/Kg

Maka (waktu henti produksi) x (kapisitas pengolahan) = TBS yang tidak terolah

 $5 \times 45 = 225 \text{ ton} = 225.000 \text{ kg}$


Jadi $225.000 \times 2630 = \text{Rp.}591.750.000$

Pabrik berpotensi kehilangan kemampuan produksi 225 ton TBS (Tandan Buah Segar) atau Rp. 591.750.000

4.7. Pengujian Sistem Sinkronisasi Dan Proteksi Di Panel Turbine Dan Genset

4.7.1. Pengujian Sistem Rangkaian Sinkronisasi Turbine Dan Genset

Pengujian pada system rangkaian sinkronisasi ini bertujuan untuk mengetahuai apakah rangkaian tersebut bekerja dengan baik dan memastikan tidak ada kesalahan pada perakitan rangkaian sinkronisasi.

Gambar 4.7. Pengujian rangkaian sinkron pada panel genset

Pada gambar 4.7. pengujian ini bertujuan untuk mengecek rangkaian kontrol pada panel genset yang menggunakan sumber tegangan 220 v yang berguna untuk memastikan ada atau tidaknya permasalah yang disebabkan oleh kesalahan dari system rangkaiannya kontrolnnya.

Gambar 4.8. Pengujian rangkaian sinkron pada panel turbine

Pada gambar 4.8. pengujian ini bertujuan untuk mengecek rangkaian kontrol pada panel turbine yang menggunakan sumber tegangan 220 v yang berguna untuk memastikan ada atau tidaknya permasalah yang disebabkan oleh kesalahan dari system rangkaiannya kontrolnnya.

Pada saat pengujian rangkaian sinkron dipanel genset dan turbine tidak terdapat kesalahan dalam wiring rangkaian, sehingga dipastikan pengujian dapat berlanjut di sistem proteksinya.

4.7.2. Pengujian Kinerja Proteksi Menggunakan Sverker 750

Penggujian kinerja proteksi bertujuan untuk mengetahui berfungsi atau tidak proteksi tersebut. Pengujian kinerja proteksi ini dilakukan dengan mengikuti

setingan dari generator, settingan dari generator harus disesuaikan dengan current transformer(CT) yang menjadi dasar nilai dari settingan proteksi dipanel.

1. Pada Panel Sinkron Turbine

Tabel 4.12. Nilai Pengujian OCR Panel Turbine

OVERCURRENT RELAY						
Phasa	Settingan	Ampere	Time	Beban	Kondisi	
	Proteksi	(A)	(S)	Terbaca	Proteksi	
				(A)		
R	88,77%	4,4385	5	4,51	Trip	
S	88,77%	4,4385	5	4,53	Trip	
T	88,77%	4,4385	5	4,47	Trip	

Diketahui:

$$Ip/Is = 3000/5 A$$
 $Is aktual = 4,4385$

Maka nilai Ip actual = 4,4385 x (3000/5)

Dan hasil Ip actual = 2663,1 A

Jadi arus maksimal yang diperbolehkan untuk melewati proteksi adalah = 4,4385 A

Beban terbaca pada proteksi melebihi dari batas nilai yang ditentukan oleh proteksi, nilai tersebut diantaranya;

Phasa R: Is actual = 4,51 A

Ip actual = 2706 A

Phasa S: Is actual = 4,53

Ip actual = 2718 A

Phasa T: Is actual = 4,47

Ip actual = 2682 A

Dari pembacaan nilai diatas dapat diketahui bahwa pembatasan nilai proteksi yang tidak tepat antara nilai yang setting dengan nilai pembaacaan saat terjadinya triping atau cut arus pada proteksi OCR.

Tabel 4.13. Nilai Pengujian RPR Panel Turbine

REVERSE POWER RELAY						
Phasa	Settingan	Ampere	Time	Beban	Kondisi	
	Proteksi	(A)	(S)	Terbaca	Proteksi	
				(A)		
R,S,T	5,61%	0,2805	5	0,28	Trip	

Diketahui:

$$Ip/Is = 3000/5 A$$

Is aktual = 0,2805

Maka nilai Ip actual = 0.2805 x (3000/5)

Dan hasil Ip actual = 168.3 A

Jadi arus maksimal yang diperbolehkan untuk melewati proteksi adalah = 168,3 A

Beban terbaca pada proteksi mendekati dari nilai settingan yang ditentukan pada proteksi

Phasa R,S,T: Is actual = 0.28 A

Ip actual = 168 A

Tabel 4.14. Nilai Pengujian EFR Panel Turbine

	EARTH FAULT RELAY									
Phasa	Settingan Ampere Time Beban Kondisi									
	Proteksi	(A)	(S)	Terbaca	Proteksi					
(A)										
R,S,T,N	14,02%	0,701	0,6	0,00	Trip					

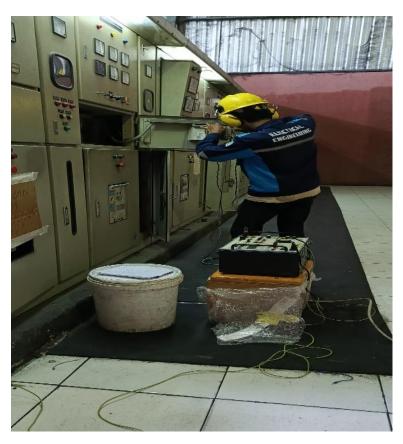
Diketahui:

$$Ip/Is = 3000/5 A$$

Is aktual = 0,701

Maka nilai Ip actual = 0,701 x (3000/5)

Dan hasil Ip actual = 420,6 A


Jadi arus maksimal yang diperbolehkan untuk melewati proteksi adalah = 420,6 A

Beban terbaca pada proteksi yang sangat berbeda dengan nilai settingan

Phasa R,S,T: Is actual = 0.00 A

Ip actual = 0 A

Dari pembacaan beban tersebut, ditemukan bahwa proteksi EFR yang mengalami kerusakan Sehingga perlu adanya pergantian terhadap EFR.

Gambar 4.9. Pergantian proteksi EFR yang mengalami kerusakan

2. Pada Panel Sinkron Genset

Tabel 4.15. Nilai Pengujian OCR Panel Genset

	OVERCURRENT RELAY										
Phasa	Settingan	Ampere	Time	Beban	Kondisi						
	Proteksi	(A)	(S)	Terbaca	Proteksi						
				(A)							
R	94,28%	4,714	5	4,89	Trip						
S	94,28%	4,714	5	4,82	Trip						
T	94,28%	4,714	5	4,85	Trip						

Diketahui:

$$Ip/Is = 800/5 A$$

Is aktual = 4,714

Maka nilai Ip actual = 4,714 x (800/5)

Dan hasil Ip actual = 754,24 A

Jadi arus maksimal yang diperbolehkan untuk melewati proteksi adalah = 754,24 A

Beban terbaca pada proteksi melebihi dari batas nilai yang ditentukan oleh proteksi, nilai tersebut diantaranya;

Phasa R: Is actual = 4,89 A

Ip actual = 782,4 A

Phasa S: Is actual = 4,82

Ip actual = 771.2 A

Phasa T: Is actual = 4,85

Ip actual = 776 A

Dari pembacaan nilai diatas dapat diketahui bahwa pembatasan nilai proteksi yang tidak tepat antara nilai yang setting dengan nilai pembaacaan saat terjadinya triping atau cut arus pada proteksi OCR.

Tabel 4.16. Nilai Pengujian RPR Panel Genset

	REVEERSE POWER RELAY									
Phasa	Phasa Settingan Ampere Time Beban Kond									
	Proteksi	(A)	(S)	Terbaca	Proteksi					
(A)										
R,S,T	5,95%	0,2975	5	0,04	Trip					

Diketahui:

Ip/Is = 800/5 A

Is aktual = 0,2975

Maka nilai Ip actual = 0,2975 x (800/5)

Dan hasil Ip actual = 47.6 A

Jadi arus maksimal yang diperbolehkan untuk melewati proteksi adalah = 47,6 A

Beban terbaca pada proteksi

Phasa R,S,T: Is actual = 0.04 A

Ip actual = 6.4 A

Reveser power yang mengalami kerusakaknan sehingga mengakibatkan tripping tidak pada settingannya

Gambar 4.10. Pergantian proteksi RPR yang mengalami kerusakan

Tabel 4.17. Nilai Pengujian EFR Panel Genset

EARTH FAULT RELAY									
Phasa	Phasa Settingan Ampere Time Beban Kondisi								
	Proteksi (A) (S			Terbaca	Proteksi				
	(A)								
R,S,T,N	14,88%	0,744	0,6	0,74	Trip				

Diketahui:

$$Ip/Is = 800/5 A$$

Is aktual = 0,744

Maka nilai Ip actual = $0,744 \times (800/5)$

Dan hasil Ip actual = 119 A

85

Jadi arus maksimal yang diperbolehkan untuk melewati proteksi adalah = 119 A

Beban terbaca pada proteksi mendekati dari nilai settingan yang ditentukan

pada proteksi

Phasa R,S,T: Is actual = 0.74 A

Ip actual = 118,6 A

Dari pengujian diatas yang menyebabkan gagalnya sinkronisasi yaitu pada proteksi RPR genset yang tidak bekerja dengan semestinya, yang seharusnya pada

nilai Batasan arus proteksi RPR sebesar 0,295 A tetapi pada saat arus baru mengalir

sebesar 0,04 A Proteksi RPR sudah aktif, sehingga menyebabkan tripping atau

pemutusan arus secara terus menerus sehingga mengganggu sinkronisasi antar

pembangkit. dan juga pada proteksi EFR pada panel Turbine yang tidak berfungsi

dengan benar, dengan pembacaan arus yang masih 0,00 A tetapi sudah terjadi

pemutusan atau tripping pada sumber arus yang mengakibatkan kegagalan dalam

sinkronisasi.

Dalam pengujian diatas ditemukan juga tidak sesuainya settingan pada

proteksi terhadap kedua generator yang dapat sangat berakibat fatal apabila tidak

langsung di setting dengan benar.

4.7.3. Kalibrasi Proteksi Pada Panel Genset Dan Turbine Menggunakan

Sverker 750

Kalibrasi proteksi ini bertujuan untuk memastikan berfungsi dan sesusainya

settingan pada proteksi OCR,RPR,EFR pada panel sinkron, sehingga dapat

mencegah kegagalan sinkron dan disebabkan oleh kesalahan dalam settingan

proteski dan kerusakan proteksi sehingga sinkronisasi yang terjadi tidak

mengalamin kegagalan yang berdampak fatal bagi pembangkit dan pabrik karena

kesalahan tersebut.

1. Kalibrasi Proteksi Dipanel Sinkron Turbine

Tabel 4.18. Nilai Kalibrasi OCR Panel Turbine

	OVERCURRENT RELAY										
Phasa	Settingan	Ampere	Time	Suntikan	Time	Kondisi					
	Proteksi	(A)	(S)	Arus (A)	(S)	Proteksi					
R	88,77%	4,4385	5	4,44	5,12	Trip					
S	88,77%	4,4385	5	4,44	4,95	Trip					
T	88,77%	4,4385	5	4,44	5	Trip					

Pada tabel diatas ditujukkan bahwa pada settingan pada OCR yang terdapat pada phasa R,S,T dengan settingan 88,77% atau 4,4385 A dengan waktu trip 5 detik. Setelah dilakukan kalibrasi menggunakan Sverker 750 dengan suntikan arus 4,44 A ditemukan bahwa pada phasa R memiliki waktu 5,12 detik untuk trip, pada phasa S memiliki waktu yang lebih singkat yaitu 4,95 detik, sedangkan pada phasa T memiliki waktu 5 detik untuk trip.

Tabel 4.19. Nilai Kalibrasi RPR Panel Turbine

	REVERSE POWER RELAY										
Phasa	Phasa Settingan Ampere Time Suntikan Time Kondisi										
	Proteksi	(A)	(S)	Arus	(S)	Proteksi					
	(A)										
R	5,61%	0,2805	5	0,28	5	Trip					

Pada tabel diatas ditunjukkan bahwa pada settingan RPR ynng terdapat diphase R dengan settingan 5,61% atau 0,2805 A dengan waktu tripping 5 detik. Setelah dilakukan kalibrasi dengan suntikan arus 0,28 A pada proteksi RPR ditemukan bahwa proteksi RPR memiliki waktu 5 detik untuk trip.

	EARTH FAULTH RELAY										
Phasa	Settingan	Ampere	Time	Suntikan	Time	Kondisi					
	Proteksi	(A)	(S)	Arus	(S)	Proteksi					
				(A)							
R,S,T,N	14,02%	0,701	0,6	0,70	0.63	Trip					

Tabel 4.20. Nilai Kalibrasi EFR Panel Turbine

Pada tabel diatas ditunjukkan bahwa pada settingan EFR ynng terdapat diphase R,S,T,N dengan settingan 14,02%% atau 0,701 A dengan waktu tripping 0,6 detik. Setelah dilakukan kalibrasi dengan suntikan arus 0,70 A pada proteksi EFR ditemukan bahwa proteksi EFR memiliki waktu 0,63 detik untuk trip.

2. Kalibrasi Proteksi Dipanel Sinkron Genset

	OVERCURRENT RELAY										
Phasa	Settingan	Ampere	Time	Suntikan	Time	Kondisi					
	Proteksi	(A)	(S)	Arus (A)	(S)	Proteksi					
R	94,28%	4,714	5	4,72	5,8	Trip					
S	94,28%	4,714	5	4,72	5.12	Trip					
T	94,28%	4,714	5	4,72	5,51	Trip					

Tabel 4.21. Nilai Kalibrasi OCR Panel Genset

Pada tabel diatas ditujukkan bahwa pada settingan pada OCR yang terdapat pada phasa R,S,T dengan settingan 94,28% atau 4,714 A dengan waktu trip 5 detik. Setelah dilakukan kalibrasi menggunakan Sverker 750 dengan suntikan arus 4,72 A ditemukan bahwa pada phasa R memiliki waktu 5,8 detik untuk trip, pada phasa S memiliki waktu yaitu 5,12 detik, sedangkan pada phasa T memiliki waktu 5,51 detik untuk trip.

Tabel 4.22. Nilai Kalibrasi RPR Panel Genset

	REVERSE POWER RELAY										
Phasa	Settingan	Ampere	Time	Suntikan	Time	Kondisi					
	Proteksi	(A)	(S)	Arus	(S)	Proteksi					
				(A)							
R	5,95%	0,2975	5	0,3	5	Trip					

Pada tabel diatas ditunjukkan bahwa pada settingan RPR ynng terdapat diphase R dengan settingan 5,95% atau 0,2975 A dengan waktu tripping 5 detik. Setelah dilakukan kalibrasi dengan suntikan arus 0,3 A pada proteksi RPR ditemukan bahwa proteksi RPR memiliki waktu 5 detik untuk trip.

Tabel 4.23. Nilai Kalibrasi EFR Panel Genset

	EARTH FAULT RELAY										
Phasa	Settingan	Ampere	Time	Suntikan	Time	Kondisi					
	Proteksi	(A)	(S)	Arus	(S)	Proteksi					
				(A)							
R,S,T,N	14,88%	0,744	0,6	0,75	0.61	Trip					

Pada tabel diatas ditunjukkan bahwa pada settingan EFR ynng terdapat diphase R,S,T,N dengan settingan 14,88% atau 0,744 A dengan waktu tripping 0,6 detik. Setelah dilakukan kalibrasi dengan suntikan arus 0,75 A pada proteksi EFR ditemukan bahwa proteksi EFR memiliki waktu 0,61 detik untuk trip.

4.7.4. Sinkronisasi Kembali Antara Genset Dan Turbine Setelah Dikalibrasi Proteksi Di Panel Sinkron

Gambar 4.11. Sinkronisasi Kembali antara panel genset dan turbine

Pada gambar 4.11. menunjukan proses sinkronisasi yang dilakukan oleh operator setelah dilakukannya kalibrasi proteksi yang ada di panel listrik sehingga sinkronisasi bisa berjalan dengan lancar.

BAB V

PENUTUP

5.1. Kesimpulan

Berdasarkan hasil analisa yang telah dilakukan maka dapat ditarik kesimpulan diantaranya sebagai berikut.

- 1. Pada proses sinkronisasi genset dan turbin menunjukkan bahwa pada proses sinkronisasi Sinkronisasi mulai terjadi pada detik ke-20, ditandai dengan munculnya arus pada ketiga fasa Genset serta pembacaan power factor sebesar 0,91. Arus Genset terus meningkat hingga detik ke-30 dengan Arus R mencapai 390 A, Arus S 387 A, Arus T 390 A, dan power factor naik ke 0,95. Namun, pada detik ke-35 terjadi gangguan sistem yang ditandai dengan penurunan tegangan Turbine menjadi 360 Volt dan frekuensi turun menjadi 45 Hz, disertai lonjakan arus signifikan pada ketiga fasa Turbine (Arus R 3009 A, Arus S 2991 A, Arus T 3000 A), yang menyebabkan putusnya koneksi sumber arus litrik sehingga blackout total pada pabrik . Arus Genset juga kembali menjadi nol pada saat yang sama, dan pada detik ke-36, semua parameter turun ke nol. Sistem mencatat status *trip* pada RPR (Reverse Power Relay), yang memicu pemutusan ACB (Air Circuit Breaker) pada Genset sebagai bentuk proteksi, sehingga memutus koneksi Genset dari sinkronisasi jaringan untuk mencegah kerusakan lebih lanjut. Proteksi turbine juga mencatat status *trip* pada OCR (*Over Current Relay*) dan EFR (Earth Fault Relay) yang sebabkan oleh lonjakan arus yang terjadi pada saat putusnya koneksi genset sehingga beban berpindah secara kejut ke turbine kemudian menicu pemutusan ACB (Air Circuit Breaker) pada turbine sebagai bentuk proteksi, sehingga kondisi ini memicu blackout total pada sistem.
- 2. Dampak terjadinya kegagalan dalam sinkronisasi yang ditandai dengan terlepasnya koneksi sinkron genset yang menyebabkan lonjakan arus ayang signifikan karena terjadi perpindahan beban secara kejut yang ditanggung oleh turbine, Dimana (Arus R 3009 A, Arus S 2991 A, Arus T 3000 A) sehingga menyebabkan indikasi trip dari OCR(OverCurrent Relay) dan EFR(Earth Faulth Relay) yang dimiliki turbine sehingga memicu blackout

- total pada distribusi Listrik sehingga dampak dari lonjakan arus yang besar tidak hanya mempengaruhi dari kemampuan generator turbine tetapi juga berdampak pada proses produksi.
- 3. Pentingnya kalibrasi terhadap kinerja proteksi yang dapat mengetahui berfungsi atau tidaknya dari proteksi tersebut, dan juga dengan kalibrasi proteksi juga dapat mengatur settingan dari proteksi sehingga memiliki keakuratan dalam pengukuran menjadi lebih tinggi. Yang dapat melindungi generator dari kerusakan yang fatal, serta mengurangi resiko dari kegagalan sinkronisasi yang disebabkan oleh tidak berfungsinya system proteksi yang ada atau ketidak sesuai dalam menentukan nialai settingan proteksi.

5.2. Saran

- 1. Untuk meningkatkan keakuratan hasil, disarankan menggunakan metode pengumpulan data yang lebih beragam.
- 2. Akan lebih baik jika penelitian ini menyertakan referensi tambahan yang relevan untuk memperkuat argumen.
- 3. Hasil dari penelitian ini memiliki potensi untuk diimplementasikan dalam sektor praktis. Oleh karena itu, peneliti selanjutnya dapat dimplementasikan dalam dunia nyata.
- 4. Diharapkan ada pengembangan dari penelitian ini untuk agar perkembangan penelitian tentang rele dan sinkronisasi lebih baik lagi

DAFTAR PUSTAKA

- Aij, R. (2021). Kegagalan Sinkronisasi Otomatis Generator Unit 1 PLTA Wonogiri. *Teknik Elektro, Universitas Muhammadiyah Jakarta*, 2(1), 56–63. http://etd.repository.ugm.ac.id/penelitian/detail/99977
- Ardhi, S. (2015). Pengendalian Sinkronisasi Generator Dengan Sumber Pembangkit Listrik Secara Otomatis Berbasis Mikrokontroller. *Dinamika Teknologi*, 7(1), 36–42.
- Hwang, M. W., Kwon, Y. M., & Ko, K. C. (2024). Optimal Design of Relay Coil Inductance to Improve Transmission Efficiency of Four-Coil Magnetic Resonance Wireless Power Transmission Systems. *Electronics (Switzerland)*, 13(7), 56–67. https://doi.org/10.3390/electronics13071261
- IEEE. (2008). IEEE Standard for Electrical Power System Device Function Numbers, Acronyms, and Contact Designations. In *IEEE Std C37.2-2008* (*Revision of IEEE Std C37.2-1996*) (Vol. 2008, Issue October).
- Ihsan, M. (2023). Sinkronisasi Pembangkit Listrik Tenaga Diesel Dengan Pembangkit Listrik Tenaga Uap Di Pt. Indomas Mitra Teknik. *Circle Archive*, 3(1), 1–13. https://circle-archive.com/index.php/carc/article/view/37%0Ahttps://circle-archive.com/index.php/carc/article/download/37/36
- Ikhsan, M., & Alfredo, D. (2022). Stabilisasi Turbin dan generator dalam penggunaan relay arus balik. *JTECS: Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem Dan Komputer*, 4(1), 1–5.
- Jayathurathnage, P., & Kumara, S. (2023). Design and optimization of wireless power transfer system Design And Optimization Of Wireless Power Transfer System. *IEEE Access*, 2(1), 16–21.
- Jeon, S. J., & Seo, D. W. (2022). Effect of Additional Transmitting Coils on Transfer Distance in Multiple-Transmitter Wireless Power Transfer System. *IEEE Access*, 10(5), 9174–9183. https://doi.org/10.1109/ACCESS.2022.3144179
- Mandala, M. A., & Umar, S. T. (2020). Analisis Perhitungan OCR (Over Current Relay) Sistem Proteksi Pada Trafo GT 15/150 kV Steam Turbine Generator

- 2.0 PT. Indonesia Power Semarang PGU. *R E L E (Rekayasa Elektrikal Dan Energi) : Jurnal Teknik Elektro*, 2(3), 18–27. http://eprints.ums.ac.id/id/eprint/83168
- Megger. (2010). User's Manual Book Sverker 750/780. Megger Power Inc.
- Nurmalasari, I., Nurwijayanti, & Hindardi. (2021). Analisa Pemilihan Relai Proteksi Pada Panel Listrik Untuk Studi Kasus Tegangan Menengah 20kV.

 Jurnal Teknologi ..., 1–11.

 https://journal.universitassuryadarma.ac.id/index.php/jti/article/view/303%0

 Ahttps://journal.universitassuryadarma.ac.id/index.php/jti/article/download/3

 03/278
- Pasaribu, F. I., Roza, I., Siregar, C., & Sitompul, F. A. (2021). ANALISA PROTEKSI OVER CURRENT RELAY PADA JARINGAN TEGANGAN MENENGAH 20kV DI PELINDO 1 CABANG BELAWAN. *RELE* (*Rekayasa Elektrikal Dan Energi*): *Jurnal Teknik Elektro*, 4(1), 18–26. http://repository.umsu.ac.id/handle/123456789/14738
- Prasetyo, A., Haryudo, S. I., Agung, A. I., & Kartini, U. T. (2021). Analisa Perubahan Daya Aktif Generator Serta Efisiensi Mekanik Generator Yang Dipengaruh Oleh Perubahan Kemiringan Sudut Sudu Turbin Berpenampang Pelat Datar Pada Kinerja Turbin Aliran Crossflow Poros Horizontal. *Jurnal Teknik Elektro*, 11(1), 30–39. https://doi.org/10.26740/jte.v11n1.p30-39
- Prasetyo, Y., Triyono, B., Prakoso, D. N., Jasa, R., & Haryo, K. (2023). Perancangan Sistem Overcurrent Relay Menggunakan Raspberry Pi. *Journal Geuthee of Engineering and Energy (JOGE)*, 2(1), 8–17. https://doi.org/10.52626/joge.v
- Rachman, S. (2023). Perancangan Sistem Human Machine Interface (HMI) untuk Monitoring Daya Sinkronisasi Paralel Genset. *Jurnal Teknologi Elekterika*, 20(1), 1. https://doi.org/10.31963/elekterika.v20i1.3592
- Ramadani, A., Rahman, Y. A., Masarrang, M., Kali, A., & Pirade, Y. S. (2024).

 Analisa Setting Proteksi Over Current Relay (Ocr) Pada Generator 30 Mw

 Unit Plta Poso Pt. Poso Energy. *Foristek*, 14(1).

 https://doi.org/10.54757/fs.v14i1.371
- Romadhoni, M. L. (2022). Penerapan Pola Koordinasi Proteksi Non-Cascade pada

- OCR Incoming dan OCR Penyulang Trafo. *Energi & Kelistrikan*, *14*(1), 119–128. https://doi.org/10.33322/energi.v14i1.1656
- Sajadi, A., Kenyon, R. W., & Hodge, B. M. (2022). Synchronization in electric power networks with inherent heterogeneity up to 100% inverter-based renewable generation. *Nature Communications*, *13*(1), 1–12. https://doi.org/10.1038/s41467-022-30164-3
- Sinulingga, R. K. (2020). Rancang Bangun Prototipe Over Current Relay Sebagai Sistem Proteksi dan Monitoring Arus Berbasis Internet of Things. https://repositori.uma.ac.id/handle/123456789/15748%0Ahttps://repositori.uma.ac.id/jspui/bitstream/123456789/15748/1/168120019_Rysgi Kurniawan Sinulingga Fulltext.pdf
- Siswanto, J. E. (2020). Analisa Pengaruh Perubahan Beban Output Turbin Terhadap Efisiensi Boiler. *Journal of Electrical Power Control and Automation (JEPCA)*, 3(2), 44. https://doi.org/10.33087/jepca.v3i2.39
- Society, I. C. (2009). *IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-2008* (Vol. 2008, Issue January).
- Taryo. (2022). Analisa Setting Over Current Relay Dan Ground Fault Relay Pada Penyulang Babakan Gardu Induk Babakan Kabupaten Cirebon. *Jurnal Teknik AMATA*, 3(2), 10–16. https://doi.org/10.55334/jtam.v3i2.300
- Taşkin, S. (2020). Power plants monitoring for reverse power flow evaluation. Istanbul University - Journal of Electrical and Electronics Engineering, 10(1), 1153–1162.
- Valenzuela, A., Simani, S., & Inga, E. (2021). Automatic overcurrent protection coordination after distribution network reconfiguration based on peer-to-peer communication. *Energies*, *14*(11). https://doi.org/10.3390/en14113253
- Yosua Alvin Adi Soetrisno, Bambang Winardi, & Enda Wista Sinuraya. (2022). Generator protection system with reverse power relay on 1000 KVA "Cummins" diesel generator at Cepu Human Resources Development Center. *World Journal of Advanced Research and Reviews*, *14*(1), 377–384. https://doi.org/10.30574/wjarr.2022.14.1.0343

UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO

BERITA ACARA BIMBINGAN TUGAS AKHIR

NAMA : ANGGA KUSUMA

NPM : 1907220111

JUDUL TUGAS AKHIR: ANALISA DAMPAK TERJADINYA KEGAGALAN PROSES

SINKRONISASI TERHADAP PEMBANGKIT TURBIN DAN

GENSET

		·	
No	Tanggal	Catatan Asistensi	Paraf
1.	02 Oktober 2024	Penambahan Jumlah Halaman Minimal 70 Halaman Dari Awal Bab 1 Samapai Kesimpulan Untuk Skripsi Analisa	Crim9
2.	07 Oktober 2024	Perbaikan Penomoran Dari Abstrak,Abstrak Inggris,Daftar Isi Sampai Daftar Gambar	Cing
3.	21 Oktober 2024	Diawal Bab 4 Dibahas Terlebih Dahulu Gambar 4.1 Dan 4.2 Selanjutnya Urutkan Bahasan Analisa Sesuai Dengan Ruang Lingkup 1,2,3	Crimo
4.	14 November 2024	Gambar Wiring Semua Diperbesar Sehingga Nampak Penulisannya Dan Jangan Blur	Crim9
5.	09 Desember 2024	Penambahan Kinerja Genset Dan Sertakan Nameplate Genset Di Bab 4. Dijelaskan Terlebih Dahulu System OCR,RPR,EFR Sehingga Dapat Membaca Nilai Yang Sudah Ditentukan	Cris Cris Cris Cris Cris Cris Cris Cris
6.	14 Desember 2024	ACC Seminar Hasil	Cris Cris

Mengetahui

Pembimbing Tugas Akhir

Faisal Irsan Pararibu, S.T., M.T,

UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO

BERITA ACARA BIMBINGAN TUGAS AKHIR

NAMA : ANGGA KUSUMA

NPM : 1907220111

JUDUL TUGAS AKHIR: ANALISA DAMPAK TERJADINYA KEGAGALAN PROSES

SINKRONISASI TERHADAP PEMBANGKIT TURBIN DAN

GENSET

No	Tanggal	Catatan Asistensi	Paraf
1.	06 Januari 2025	Penambahan Data Proses Sinkronisasi Dan Dampak Terjadinya Kegagalan Sinkronisasi	Cing
2.	23 Januari 2025	Perbaikan Abstrak	Const.
3.	17 Maret 2025	Merapikan Semua Tabel Yang Terpotong Dengan Halaman Selanjutnya	Cing.
4.	15 April 2025	Menarasikan Gambar 4.7 Dan 4.8 Agar Menambah Pemahaman Dari Gambar Tersebut	Cris-
5.	23 April 2025	ACC Sidang Tugas Akhir	(Fing

Mengetahui Pembimbing Tugas Akhir

Faisal Irsan Pasaribu, S.T., M.T,

DAFTAR RIWAYAT HIDUP

Nama : Angga Kusuma

Tempat/Tanggal Lahir : Tembung, 18 Oktober 2000

Jenis Kelamin : Laki-Laki

Umur : 24 Tahun

Agama : Islam

Status : Belum Menikah

Tinggi Badan / Berat Badan : 175 cm / 62 Kg

Kewarganegaraan : Indonesia

Alamat : Dusun XIII Pasar IX Gg. Balam Sei Rotan

No Hp : 0821-6715-6506

Email : anggakusuma1810@gmail.com

Latar Belakang Pendidikan

MIS Madinatussalam : Tahun 2006-2012

MTS Madinatussalam : Tahun 2012-2015

SMKS Teladan Medan : Tahun 2015-2018

Universitas Muhammadiyah : Tahun 2019-2025

Sumatera Utara