TUGAS AKHIR

MERANCANG DAN MENGANALISA KEKUATAN BAHAN PADA MODEL LENGAN *EXCAVATOR* DENGAN MENGGUNAKAN *SOFTWARE SOLIDWORK*

Diajukan Untuk Memenuhi Syarat Memperoleh Gelar Sarjana Teknik Mesin Pada Fakultas Teknik Universitas Muhammadiyah Sumatera Utara

Disusun Oleh:

BASYARUDDIN 1407230265

PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA MEDAN 2020

HALAMAN PENGESAHAN

Fugas Akht mi dimukan oleh:

Natia NPM Program Stadi Judul Tugas Akhir

Bidang Ilma

Basyaraddin 1407230355 Teknik Mesin Menineang dan Menganalita Kekeatan Bahan Pada Mode Lengan Excavator Dengan Menggonakan Software Solidwork Konstruksi Marafakan

Telah berhasil dipertahasikan di badapan Tim Pengaji dan diteruna sebagai salah sata syarat yang dipertakan untuk memperoleh gelar Sarjara Teknik pada Program Stadi Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah Samatera Utara

Medan Jej Februari 2020.

Mergerahai dan menyengut

Dosen Pergup I

Ahmad Marabdi Siragar, S. L.M. I

Dosen Penguji III.

Munuwar Alfannay Siregar, S.T. M.T.

Desen Penguei II

Chandra A Stregar, S.T.M.I

Donen Peguji IV

H Muhamif M, S.T., M.Sc

н.

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Saya yang bertanda tangan di bawah im-

Name Lengkap Terroat Transval Labor	 Besyaruddin Meranti Pahari, 12 april 1996 					
NPM	1407230265					
Fakultas.	Teknik					
Program Studi	Tehnik Mesin					

Menyatakan dengan sesunggahnya dan sejujumya, hahwa lapuran Tugas Akhir saya yang bersudul

"Mersneang dan Menganalian Kekuatan Battan Pada Model Lengan Escavator Dengan Menggunakan Software Solidwork"

Bukan merupakan plagarisme, pencurur hasil karya milik orang lain, hasil kerjaorang lain untuk kepentingan saya karena hubungan material dan non-material, ataupun segala kemungkiran lain, yang pada hakekatnya bukan merupakan karyatula Tugas Akhir saya secara orisinil dan contuk.

Bila kemudian han diduga kuat ada ketidaksesuaian antara fakta dengan kenyataan ini, saya bersedia diprotes oleh Tim Fakultus yang dibentuk uttak melakukan verifikasi, dengan sariksi terberat berupa pembatahat kelulusaav ketarjanaan saya.

Demikian Sant Pernyataan mi seya huat dengan kesadaran sendiri dan tidak atas tekanan ataupan paksaan dari pitak manapun demi menegakkan integritas akademik di Program Studi Teknik Mesin Fakultas Teknik, Universitas Muhammadiyah Sumatera Dana

Medan, 14 Februari 2020

Saya yang menyatakan,

Bassaradda

NB .

ABSTRAK

Excavator memiliki beberapa besar mekanisme kerja diantaranya mekanisme kerja dari lengan excavator yaitu mekanisme kerja *boom*, *arm*, dan *bucket*. Untuk mengetahui kekuatan dari pada bahan lengan excavator tersebut dapat dilakuakan dengan berbagai cara salah satunya dengan menggunakan simulasi software seperti solidwork. Program solidwork memiliki keunggulan dalam proses analisis material yang hampir mendekati sama dengan material aslinya sehingga sangat sesuai untuk menganalisis kekuatan bahan lengan excavator. Sehingga penulis mencoba merancang sebuah model lengan excavator untuk kemudian menganalisis kekuatan bahannya dengan mengguanakan software solidwork. Berdasarkan uraian diatas penulis menguraikan permasalahan yang terjadi dalam pengujian kekuatan bahan pada material lengan excavator menggunakan simulasi software solidwork 2016, yaitu tegangan dan regangan yang dihasilkan. Pengumpulan data pada analisa spesimen boom, arm, dan bucket excavator menggunakan software solidwork 2016. Dari hasil penelitian dengan melakukan proses simulasi Force sebesar 441 N pada setiap spesimen model lengan excavator dengan software solidwork 2016 untuk mencari tegangan dan regangan, diperoleh hasil sebagai berikut ; simulasi pada lengan excavator tebal pelat 5 mm berbahan Cast Iron (SN) dengan Hasil dari simulasi tegangan (stress) maksimum pada boom sebesar 1.804e+007 N/m², pada arm sebesar 6.925e+008 N/m², dan pada bucket sebesar 1.175e+009 N/m². Hasil *displacement* maksimum pada *boom* sebesar 1.164e-001 mm, pada arm sebesar 3.350e+000 mm, dan pada bucket sebesar 2.113e+001 mm, serta Hasil dari simulasi regangan (strain) maksimum pada boom sebesar 9.515e-005 N/m², pada arm sebesar 3.571e-003 N/m², dan pada bucket sebesar 7.352e-003 N/m².

Kata Kunci : model lengan excavator, *boom, arm, bucket,* Program *Solidwork*, tegangan, regangan.

ABSTRACT

Excavators have several major working mechanisms including the working mechanism of the excavator's arm, the boom, arm and bucket working mechanism. To find out the strength of the excavator arm material can be done in various ways one of them by using software simulations such as solidwork. The solidwork program has an advantage in the material analysis process which is almost the same as the original material so it is very suitable for analyzing the strength of the excavator arm material. So the author tries to design an excavator arm model to then analyze the strength of the material by using solidwork software. Based on the description above, the authors describe the problems that occur in testing the strength of the material on the excavator arm material using the simulation of 2016 solidwork software, namely the stress and strain produced. Data collection on the analysis of boom, arm, and bucket excavator specimens using the 2016 solidwork software. From the results of the study by conducting a Force simulation process of 441 N on each specimen arm excavator model with the 2016 solidwork software to find stress and strain, the following results were obtained; simulation on the excavator arm 5 mm thick plate made from Cast Iron (SN) with the results of the simulation of the maximum stress on the boom of 1,804e + 007 N / m2, on the arm of 6,925e + 008 N / m2, and on the bucket of $1,175 e + 009 N/m^2$. The maximum displacement results in the boom are $1,164e^{-1}$ 001 mm, the arm is 3,350e + 000 mm, and the bucket is 2,113e + 001 mm, and the maximum strain result of the strain simulation on the boom is 9,515e-005 N/m2, at an arm of 3,571e-003 N/m2, and on a bucket of 7,352e-003 N/m2.

Keywords: excavator arm model, boom, arm, bucket, Solidwork Program, stress, strain.

KATA PENGANTAR

Dengan nama Allah Yang Maha Pengasih lagi Maha Penyayang. Segala puji dan syukur penulis ucapkan kehadirat Allah SWT yang telah memberikan karunia dan nikmat yang tiada terkira. Salah satu dari nikmat tersebut adalah keberhasilan penulis dalam menyelesaikan laporan Tugas Akhir ini yang berjudul ""Merancang Dan Menganalisa Kekuatan Bahan Pada Model Lengan Excavator Dengan Menggunakan Software Solidwork". Sebagai syarat untuk meraih gelar akademik Sarjana Teknik pada Program Studi Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara (UMSU), Medan.

Banyak pihak telah membantu dalam menyelesaikan laporan Tugas Akhir ini, untuk itu penulis menghaturkan rasa terimakasih yang tulus dan dalam kepada:

- Bapak Munawar Alfansury Siregar S.T., M.T, selaku Dosen Pembimbing I dan Penguji serta Dekan Fakultas Teknik UMSU, yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- Bapak, H. Muharnif M S.T., M.Sc, selaku Dosen Pimbimbing II dan Penguji yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Tugas Akhir ini.
- Bapak Ahmad Marabdi Siregar S.T., M.T, selaku Dosen Pembanding I dan Penguji yang telah banyak memberikan koreksi dan masukan kepada penulis dalam menyelesaikan Tugas Akhir ini.
- 4. Bapak Chandra A Siregar, S.T.,M.T, selaku Dosen Pembanding II dan Penguji Serta Sekretaris Program Studi Teknik Mesin, Universitas Muhammadiyah Sumatera Utara.yang telah banyak memberikan koreksi dan masukan kepada penulis dalam menyelesaikan Tugas Akhir ini.
- 5. Bapak Affandi, S.T., M.T sebagai Ketua Program Studi Teknik Mesin, Universitas Muhammadiyah Sumatera Utara.
- Seluruh Bapak/Ibu Dosen di Program Studi Teknik Mesin, Universitas Muhammadiyah Sumatera Utara yang telah banyak memberikan ilmu keteknik mesinan kepada penulis.

- 7. Orang tua penulis Jamiluddin dan Darti, yang telah bersusah payah membesarkan dan membiayai studi penulis.
- Bapak/Ibu Staf Administrasi di Biro Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- Dini Nur Sawitri orang yang selalu mensuport dari belakang dan orang yang selalu menyelipkan nama penulis dibalik doa - doa nya.
- 10. Sahabat-sahabat penulis: Muhammad Nur Syahputra, Prastio, Muhammad Prayogi, Bang Panji Santoso, Bang Rizki Fajrin, Bang Bayu Mandala Putra S.T, dan Teman-teman Seperjuangan C-1 Teknik Mesin Angkatan 2014 dan lainnya yang tidak mungkin namanya disebutkan satu per satu, Juga teman teman seperjuangan satu kost.

Laporan Tugas Akhir ini tentunya masih jauh dari kesempurnaan, untuk itu penulis berharap kritik dan masukan yang konstruktif untuk menjadi bahan pembelajaran berkesinambungan penulis di masa depan. Semoga laporan Tugas Akhir ini dapat bermanfaat bagi dunia konstruksi Teknik Mesin.

Medan, Februari 2020

Basyaruddin

DAFTAR ISI

LEMBAR PENGESAHAN LEMBAR PERNYATAN KEASLIAN TUGAS AKHIR ABSTRAK <i>ABSTRACT</i> KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI	ii iii iv v vi viii x xi xiii
BAB 1 PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Perumusan Masalah	3
1.3 Ruang Lingkup	3
1.4 Tujuan Penelitian	3
1.5 Manfaat Penelitian	3
BAB 2 TINJAUAN PUSTAKA	5
2.1 Pengertian dan Sejarah Excavator	5
2.2 Excavator Hidrolik Secara Umum	7
2.2.1 Defenisi Excavator Hidrolik	7
2.2.2 Fungsi Excavator Hidrolik	7
2.2.3 Tenaga Penggerak	7
2.2.4 Nama-nama Komponen Excavator	8
2.2.5 Kontruksi Excavator Secara Umum	12
2.2.6 Mekanisme Kerja	13
2.3 Bahan Model Lengan Excavator	16
2.4 Identifikasi Material	16
2.5 Alat Uji Tekan	16
2.6 Kekuatan Tekan	17
2.7 Tegangan - Regangan	20
2.7.1 Tegangan	20
2.7.2 Regangan	20
2.7.3 Hukum Hooke	20
2.7.4 Modulus Elastisitas	21
2.7.5 Deformasi Benda	21
2.8 Software solidworks	22
BAB 3 METODE PENELITIAN	24
3.1 Tempat dan Waktu	24
3.1.1 Tempat Penelitian	24
3.1.2 Waktu Penelitian	24
3.2 Banan dan Alat	25
3.3.2 Software Solidwork 2016	25

3.3 Diagram Alir Penelitian	26
3.4 Prosedur Perancangan Model Lengan Excavator	27
3.4.1 Prosedur Perancangan Boom	27
3.4.2 Prosedur Perancangan Arm	33
3.4.3 Prosedur Perancangan Bucket	37
3.5 Prosedur Pengujian Pada Model Lengan Excavator	42
BAB 4 Hasil Dan Pembahasan	46
4.1 Hasil Gambar Rancangan Keselruhan Model Lengan Excavator	46
4.2 Hasil Simulasi Pengujian kekuatan Material Lengan Excavator	46
4.2.1 Hasil Simulasi Pengujian Kekuatan Material Pada Boom	1.0
Excavator	46
4.2.2 Hasil Simulasi Pengujian Kekuatan Material Pada Arm	10
Excavator	49
4.2.3 Hasil Simulasi Pengujian Kekuatan Material Pada Bucket	
Excavator	53
BAB 5 Kesimpulan Dan Saran	57
5.1 Kesimpulan	57
5.1.1 Hasil Simulasi Kekuatan Bahan Pada Boom Excavator Der Tebal Plat 5 mm Berbahan <i>Gray Cast Iron (SN)</i>	igan
Pada Gaya 441 N.	57
5.1.2 Hasil Simulasi Kekuatan Bahan Pada Arm Excavator Dengan Tebal Plat 5 mm Berbahan <i>Gray Cast Iron (SN)</i> Pada Gaya 441 N.	57
5.1.3 Hasil Simulasi Kekuatan Bahan Pada Bucket Excavator Dengan Tebal Plat 5 mm Berbahan Gray Cast Iron (SN)	
Pada Gaya 441 N.	57
5.2 Saran	58
DAFTAR PUSTAKA	59
LAMPIRAN	
LEMBAR ASISTENSI	
DAFTAR RIWAYAT HIDUP	
-	

DAFTAR TABEL

Tabel 3.1Jadwal waktu dan kegiatan saat melakukan penelitian24

DAFTAR GAMBAR

Gambar 2.1 Komponen Excvator	8
Gambar 2.2 Standart Bucket	9
Gambar 2.3 Ripper Bucket	10
Gambar 2.4 Trapezoid Bucket	10
Gambar 2.5 Slope finishing bucket	11
Gambar 2.6 Ditch cleaning bucket	11
Gambar 2.7 Single shank ripper	12
Gambar 2.8 Bagian-bagian excavator	13
Gambar 2.9 Diagram Sistem Hidraulic excavator	15
Gambar 2.10 Alat Uji Tekan	17
Gambar 2.11 Perubahan benda yang disebabkan oleh tegangan tekan	18
Gambar 2.12 Kurva tegangan – regangan.	22
Gambar 3.1 Diagram Alir	26
Gambar 3.2 Tampilan awal solidwork	27
Gambar 3.3 Tampilan jendela kerja solidwork	27
Gambar 3.4 Sketch Awal Boom	28
Gambar 3.5 Proses Boss Extrude	28
Gambar 3.6 Sketch Plat Atas	29
Gambar 3.7 Proses Extrude sepanjang 93mm	29
Gambar 3.8 Proses Mirror	30
Gambar 3.9 Proses Pembuatan Sketch Plat Tengah	30
Gambar 3.10 Pembuatan Sketch dudukan silinder hidrolik	31
Gambar 3.11 Proses Extrude	31
Gambar 3.12 Proses Mirror	32
Gambar 3.13 Design Boom	32
Gambar 3.14 Sketch Arm	33
Gambar 3.15 Proses Extrude	33
Gambar 3.16 Sketch Plat Atas Arm	34
Gambar 3.17 Proses Boss Extrude	34
Gambar 3.18 Proses Mirror	35
Gambar 3.19 Proses Pembuatan Plat Penghubung	35
Gambar 3.20 Proses Boss Extrude	36
Gambar 3.21 Desin Arm	36
Gambar 3.22 Sketch Bucket	37
Gambar 3.23 Proses Boss Extrude	37
Gambar 3.24 Proses Shell	38
Gambar 3.25 Sketch Gigi Bucket	38
Gambar 3.26 Proses Extrude Gigi Bucket	39
Gambar 3.27 Sketch Gigi Bucket	39
Gambar 3.28 Pemotongan Sketch Gigi Bucket	40
Gambar 3.29 Sketch Plat Bucket	40
Gambar 3.30 Proses Boss Extrude	41
Gambar 3.31 Proses Mirror	41
Gambar 3.32 Design Bucket	42
Gambar 3.33 Tampilan speciment dalam menu simulation solidwork	42

Gambar 3.34 Tampilan New study dalam software solidwork	43
Gambar 3.35 Tampilan <i>Fixed goemetry</i> dalam software solidwork	43
Gambar 3.36 Tampilan pemberian Force	44
Gambar 3.37 Tampilan pengaturan Mesh, Global Mesh dan Tolerance	44
Gambar 3.38 Tampilan pengujian kekuatan material pada menu solidwork	45
Gambar 3.39 Tampilan data hasil pengujian	45
Gambar 4.1 Hasil Rancangan Model Lengan Excavator	46
Gambar 4.2. Hasil Gambar Boom	46
Gambar 4.3 Hasil Proses Meshing Boom	47
Gambar 4.4 Hasil Tegangan Boom	47
Gambar 4.5 Hasil Displacement Boom	48
Gambar 4.6 Hasil Regangan Boom	49
Gambar 4.7 Hasil Gambar Arm	50
Gambar 4.8 Hasil Proses Meshing Arm	50
Gambar 4.9 Hasil Tegangan Arm	51
Gambar 4.10 Hasil Displacement Arm	51
Gambar 4.11 Hasil Regangan Arm	52
Gambar 4.12 Hasil Gambar Bucket	53
Gambar 4.13 Hasil Proses Meshing Bucket	53
Gambar 4.14 Hasil Tegangan Bucket	54
Gambar 4.15 Hasil Displacement Bucket	55
Gambar 4.16 Hasil Regangan Bucket	55

DAFTAR NOTASI

- A = Luas Penampang
- F = Gaya yang bekerja sebagai penekanan
- L0 = Panjang Awal
- L1 = Perubahan panjang
- ε = Regangan Aksial
- ΔL = Perubahan panjang benda uji
- L_0 = Panjang atau tinggi benda uji mula-mula
- A_c = Luas penampang benda uji selama pembebanan
- A_0 = Luas penampang benda uji mula-mula
- ε = Regangan aksial
- σ = Tegangan aksial
- P = Beban aksial
- A_c = Luas penampang terkoreksi
- E_s = Modulus elastisitas awal
- $\Delta \sigma$ = Beda tegangan aksial di antara dua titik pada garis lurus kurva awal
- $\Delta \epsilon$ = Beda regangan aksial di antara dua titik pada garis lurus kurva
- δl = Perubahan panjang benda
- l = Panjang awal benda
- E = Modulus elastisitas
- ΔL = Perubahan panjang yang terjadi akibat perubahan statik

BAB 1 PENDAHULUAN

1.1. Latar Belakang

Pekerjaan infrastruktur dalam skala besar tidak luput dari alat bantu guna menyelesaikan pekerjaan dengan baik dan dapat selesai pada waktu yang diharapkan, pada akhirnya diperlukan pertimbangan mempergunakan alat-alat berat yang disesuaikan dengan kondisi pekerjaan yang bersangkutan. Hal ini sudah tidak dapat dihindari lagi mengingat pemanfaatan tenaga manusia secara manual dengan alat-alat konvensional tidaklah efisien dan sanggup untuk menyelesaikan target kerjaan secara hasil yang maksimal dan tepat waktu dengan beban pekerjaan yang berat. Pembangunan gedung, jembatan, jalan dan lain sebagainya merupakan pekerjaan yang besar yang membutuhkan alat-alat berat didalam pelaksanaannya, salah satu jenis alat berat yang digunakan adalah alat gali (*excavator*). *Excavator* itu sendiri terdiri dari 4 tipe, yaitu *front Shovel, drag Line, clamshell* dan *backhoe. Excavator* dapat melakukan penggalian dengan menggunakan bantuan tenaga dari sistem hidrolik. Sistem hidrolik adalah sistem daya yang menggunakan fluida kerja zat cair, dapat bekerja karena adanya daya dari mesin yang diteruskan secara mekanik, elektris atau hidrolis.

Hidrolik menurut "*bahasa greek*" berasal dari kata "*hydro*" yang berarti air dan "*aulos*" yang berarti pipa. Jadi hidrolik bisa diartikan suatu alat yang bekerjanya berdasarkan air dalam pipa. Prinsip yang digunakan adalah Hukum Pascal, yaitu : benda cair yang ada di ruang tertutup apabila diberi tekanan, maka tekanan tersebut akan dilanjutnya ke segala arah dengan sama besar.

Excavator memiliki beberapa besar mekanisme – mekanisme kerja diantaranya adalah mekanisme kerja dari lengan excavator yaitu : Mekanisme kerja *boom*, mekanisme *boom* adalah bagian dari mekanisme lengan ekskavator yang memiliki kontruksi paling besar. Mekanisme *boom* terdiri dari batang *boom* dan pengendali *boom* berupa dua buah silinder hidrolik yang berfungsi untuk menggerakkan *boom*. Mekanisme kerja dari *arm*, mekanisme *arm* terdiri dari sebuah batang *arm* dan pengendalinya sebuah silinder hidrolik. Batang *arm* dipasang pada ujung batang *boom* lalu dihubungkan dengan batang arm.

Sedangkan mekanisme kerja dari *bucket* adalah didekati sebagai mekanisme empat batang atau *fourbar linkage* dengan silinder hidrolik sebagai penggeraknya. Dengan demikian maka mekanisme *bucket* terdiri dari sebuah silinder hidrolik dan mekanisme empat batang serta *bucket* itu sendiri.

Ada pun hal-hal yang terkait dengan *excavator* yang dijelaskan diatas, bisa memanfaatkan perkembangan teknologi untuk memudahkan penulis atau ilmuan dalam merancang suatu produk. Berkembangnya teknologi *hardware* dan *software* pada komputer sangat membantu dalam proses manufaktur karena dapat mensimulasikan perhitungan numerik dan memvisualisasikan hal-hal yang mungkin terjadi pada proses *manufactur* yang selanjutnya dapat diaplikasikan dilapangan.

Software pemrograman komputer yang diharapkan mampu dalam pelaksanaan analisis kekuatan dari pada bahan lengan *excavator* itu bisa seperti : Software Ansys, Software Solidwork, Software Catia dan masih banyak lagi software pemrograman komputer yang bisa digunakan untuk menganalisis kekuatan bahan lengan *excavator* tersebut. Dimana software tersebut memiliki keunggulan tersendiri. Dan proses penganalisaan menggunakan software solidwork memberikan hasil yang mendekati sama. Atau mungkin dapat dikatakan sama karena perbedaannya tidak berarti. Maka software pemprograman komputer dengan solidwork adalah software yang dipilih penulis untuk menganalisa dari kekuatan bahan.

Seiring karena rasa ingin tahuan penulis mengenai bagaimana kekuatan pada bahan model lengan excavator yang ingin dirancang dengan beban maksimal sebesar 45 kg dan belom adanya juga beredar dipasaran, sehingga penulis mencoba merancang dan menganalisa dengan membuat model lengan excavator menggunakan sistem hidrolik dengan software solidwork dan mengangkatnya menjadi skripsi dengan judul *"Merancang Dan Menganalisa Kekuatan Bahan Pada Model Lengan Excavator Dengan Menggunakan Software Solidwork"*.

1.2 Perumusan Masalah

Berdasarkan latar belakang diatas, rumusan masalah dapat di deskripsikan sebagai berikut :

- 1. Bagaimana merancang lengan *excavator* menggunakan *software solidwork* (gambar perancangan).
- 2. Bagaimana kemampuan *software* solidwork untuk mendapatkan dimensi pada lengan *excavator*.
- 3. Bagaimana mengetahui nilai besaran kekuatan bahan yang terjadi pada lengan *excavator* dengan menggunakan *software solidwork*.

1.3 Ruang Lingkup

- 1. Pemilihan bahan material yang tepat dari beberapa bahan yang dirancang.
- 2. Perhitungan yang meliputi gaya gaya yang terjadi serta tegangan dan regangan bahan yang divariasikan menggunakan *software solidwork*.
- 3. Perancangan menggunakan beban maksimal 45 kg.
- 4. Kemampuan *software solidwork* dalam perancangan.
- 1.4 Tujuan Penelitian
 - 1. Untuk mendapatkan dimensi lengan excavator.
 - 2. Untuk mendapatkan nilai atau besaran kekuatan sebagai indikator pemilihan bahan lengan *excavator*.
 - 3. Untuk mengetahui nilai kekuatan bahan dari simulasi menggunakan *software solidwork*.

1.5 Manfaat Penelitian

Sedangkan manfaat yang diperoleh dari penulisan laporan akhir ini adalah:

- 1. Hasil penelitian ini diharapkan dapat bermanfaat bagi penulis untuk menambah wawasan dan pengetahuan. Khususnya hal-hal yang menyangkut tentang penggunaan *software solidwork* dalam merancang dan menganalisa suatu bahan.
- Dari hasil penelitian ini dapat dijadikan sebagai referensi untuk penelitian berikutnya dengan tema yang sama.

BAB 2 TINJAUAN PUSTAKA

2.1 Pengertian dan Sejarah *Excavator*

Ekskavator (*Excavator*) adalah alat berat yang terdiri dari lengan (*arm*), bahu (*boom*), serta alat keruk (*bucket*) dan digerakkan oleh tenaga hidrolis yang dimotori dengan mesin diesel dan berada di atas roda rantai (*trackshoe*). *Excavator* merupakan alat berat paling serbaguna karena bisa menangani berbagai macam pekerjaan alat berat lain. Sesuai dengan namanya (*excavation*), alat berat ini memiliki fungsi utama untuk pekerjaan penggalian. Namun tidak terbatas itu saja, *excavator* juga bisa melakukan pekerjaan kontruksi seperti membuat kemiringan (*sloping*), memuat dumptruck (*loading*), pemecah batu (*breaker*), dan sebagainya (Lidiawati, 2013).

Excavator juga merupakan alat berat yang biasa digunakan dalam industri konstruksi, pertanian atau perhutanan. Mempunyai belalai yang terdiri dari dua piston yang terdekat dengan body disebut *boom* dan yang mempunyai *bucket* (ember keruk) disebut *dipper*. Ruang pengemudi disebut *House* (kabin), terletak diatas roda (*trackshoe*), dan bisa berputar arah 360 derajat.

Pada bagian *arm* terdapat sebuah pin yang berfungsi sebagai pengunci antara arm dengan *arm* lainnya ataupun *arm* dengan *bucket*. Pin *Bucket* adalah sebuah pin yang digunakan untuk mengunci antara *arm* dengan *bucket*. Dalam pemakaiannya, pin *bucket* menerima gaya lintang dan gesekan pada saat proses menggali atau mengangkut. Hal ini yang menyebabkan terjadinya patah pada pin *bucket* dan dapat mengurangi umur pin *bucket*.

Excavator ada yang mempunyai roda dari ban biasa digunakan untuk jalanan padat dan rata disebut "*Wheel Excavators*" dan ada yang mempunyai roda dari rantai besi yang akan memudahkannya untuk berjalan di jalanan yang tidak padat atau mendaki. *Excavator* beroda rantai besi ini disebut juga "*Crawler Excavator*" Tungkai dari *excavator* dioperasikan dengan sistem engsel (*winches*) yang ditarik oleh mesin *hydraulic* dengan menggunakan kawat baja.

Excavator merupakan alat dari golongan shovel yang khusus dibuat untuk menggali material di bawah permukaan tanah atau di bawah tempat kedudukan

alatnya. Galian dibawah permukaan ini misalnya parit, lubang untuk basement, lahan untuk pekerjaan jalan dan lain-lain. Keuntungan *excavator* ini dapat menggali sambil mengatur dalamnya galian yang lebih baik. Bagi sebagian orang melihat proyek kontruksi rumah tinggal masih belum cukup efektif menggunakan *excavator* sebagai alat gali karena tenaga manusia dianggap cukup dan mahalnya biaya sewa *excavator* untuk pekerjaan tersebut, besarnya kubikasi galian tanah yang akan dikerjakan menjadi landasan yang kuat kenapa alat konstruksi *excavator* dibutuhkan untuk proyek rumah tinggal (Simanjuntak, 2013).

Excavator juga memiliki fungsi utama untuk menggali dan memuat tanah galian tersebut kedalam truck atau lokasi penumpukan. Dalam industri perhutanan *Excavator* digunakan untuk mengangkut kayu (*logs*).

Menurut J simbolon, (2014), *Excavator* diciptakan pertama kali pada tahun 1835 oleh seorang ahli mekanik berusia 22 tahun asal Amerika Serikat yang bernama William Smith Otis. *Excavator* ciptaan Otis pada awalnya digerakan oleh mesin uap dan menggunakan rel kereta api untuk dapat berjalan. Hal ini dikarenakan *excavator* tersebut awalnya di ciptakan untuk memudahkan pekerjaan penggalian rel kereta api.

Pada tahun 1939 Otis menerima hak paten atas mesin ciptaannya ini, namun pada tahun yang sama ia meninggal dunia. Otis meninggalkan 7 unit *excavator* yang kemudian dikembangkan oleh tekhnologi modern.

Excavator kadang disingkat dengan sebutan "*Exca*" atau "*PC*" (untuk brand Komatsu singkatan dari Power Crane). Menyebutnya dengan sebutan "*Beko*" tidak sepenuhnya benar, karena hanya mengacu kepada *Backhoe*, sebutan *backhoe* sendiri merupakan alat berat yang memiliki bagian lengan yang mempunyai *bucket* dan memiliki prinsip kerja menggali kearah *House* atau kearah atas

2.2. *Excavator Hydraulic* Secara Umum

2.2.1. Definisi Excavator Hydraulic

Excavator adalah alat berat yang dipergunakan untuk menggali dan mengangkut (*loading and unloading*) suatu material tanah, batubara, pasir dan

lain-lainnya. Berdasarkan sistem penggeraknya, *excavator* dibedakan menjadi dua yaitu:

- A. Sistem Tali, pada saat sekarang sistem ini jarang digunakan karena kurang efisien dalam operasionalnya.
- B. Sistem Hidrolik dengan media utama fluida, sistem ini banyak digunakan dan terus mengalami perkembangan yang disebabkan efisiensi yang lebih baik, operasional yang lebih mudah dan perawatan yang sederhana. Untuk selanjutnya *excavator* yang dimaksud oleh penulis adalah *excavator* dengan sistem penggerak hidrolik (*hydraulic excavator*).
- 2.2.2. Fungsi Excavator Hydraulic

Fungsi dari Excavator Hydraulic secara umum adalah:

- A. Mengerjakan kegiatan pertambangan.
- B. Pembukaan lahan hutan untuk lahan pertanian.
- C. Pembuatan jalan perintis.
- D. Pembuatan parit dan saluran irigasi.
- E. Mengerjakan kegiatan kehutanan
- 2.2.3. Tenaga Penggerak

Pada dasarnya tenaga penggerak *Excavator Hydraulic* ada dua yaitu *Engine Type* (penggerak motor bakar Diesel) dan *Battery Type* (penggerak Motor Listrik). Secara umum tenaga penggerak utama *Excavator Hydraulic* adalah mesin diesel yang merubah energi mekanik menjadi energi hidraulik melalui tekanan pompa yang kemudian didistribusikan ke silinder hidraulik untuk menghasilkan gerakan. Sedangkan motor listrik untuk menstarter dan menyuplai energi komponen - komponen elektrik seperti dinamo, lampu, alat-alat ukur operator dan sebagainya.

Gambar 2.1 Komponen Excavator

1. Boom

Boom adalah lengan besar yang terhubung langsung ke *chasis excavator*, fungsi *boom* ini adalah untuk mengayunkan *arm* lebih jauh lagi sehingga jangkauan gerak *bucket* bisa lebih jauh.

2. Boom Cylinder

Boom cylinder merupakan aktuator hidrolik yang terdapat pada *boom*, fungsinya untuk menggerakan *boom* naik turun. Silinder ini sama seperti *arm cylinder* dan *bucket cylinder*. Namun dalam sebuah *excavator* umumnya memiliki dua *boom cylinder*, mengingat beban angkat *boom cylinder* paling berat dibandingkan silinder lainnya.

3. Arm

Arm atau lengan excavator berfungsi untuk mengayunkan bucket lebih jauh, berkat adanya lengan ini jarak ayunan bucket bisa lebih jauh sehingga mampu menunjang fungsi lebih luas. Selain sebagai pengayun, arm ini juga dijadikan tempat pemasangan bucket dan peletakan bucket cylinder. 4. Arm cylinder

Arm cylinder adalah aktuator hidrolik berbentuk tabung yang terletak pada *boom excavator* yang terhubung dengan batang *arm, arm cylinder* sendiri memiliki fungsinya untuk menggerakan *arm* agar dapat mengayun agar dapat menjangkau pekerjaan lebih luas.

5. Bucket

Bucket adalah keranjang yang berfungsi untuk menunjang fungsi utama *excavator* untuk mengeruk. Bentuk *bucket* ini seperti keranjang dengan ujung *bucket* terdapat beberapa jari-jari. Fungsi jari-jari ini seperti garpu yang mempermudah proses pengerukan.

6. Bucket cylinder

Bucket cylinder merupakan aktuator sistem hidrolik yang berbentuk silinder, lokasinya ada pada arm atau lengan *excavator*. Fungsi *bucket cylinder*, adalah untuk menggerakan *bucket* agar bisa bergerak mengayun.

Karena perbedaan kebutuhan dalam pemakaian *Excavator* dalam suatu bidang industri, sehingga *Excavator* dapat dibedakan menjadi beberapa jenis berdasarkan jenis *bucketnya*, antara lain :

a. *Standart Bucket* : adalah jenis bucket yang sering digunakan karena *flexible* untuk beberapa kondisi pekerjaan.

Gambar 2.2 Standart Bucket

b. *Ripper Bucket* : *Bucket* jenis ini cocok untuk menggali lapisan bebatuan dan tanah liat yang keras. *Bucket* ini mempunyai penetrasi cukup dalam.

Gambar 2.3 Ripper Bucket

c. Trapezoid bucket : Digunakan untuk membangun kanal atau irigasi.

Gambar 2.4 Trapezoid Bucket

d. *Slope finishing bucket* : Digunakan untuk meratakan permukaan tanah karena memiliki bucket yang datar dan lebar. Biasa untuk meratakan jalan, kanal, sisi lereng, sisi sungai, dll.

Gambar 2.5 Slope finishing bucket

e. *Ditch cleaning bucket* : *Bucket* ini memiliki fungsi untuk membersihkan sungai atau mengeruk lumpur di dasar sungai. *Bucket* ini mempunyai beberapa lubang yang berfungsi sebagai tempat keluarnya air.

Gambar 2.6 Ditch cleaning bucket

f. *Single shank ripper* : digunakan untuk mempersiapkan lahan yang akan digali terutama untuk lahan bebatuan dan juga untuk mencabut akar pada batang pohon.

Gambar 2.7 Single shank ripper

2.2.5. Konstruksi Ekskavator Secara umum

Excavator Hydraulic terdiri dari *attachment* dan *Base Machine* yang masing-masing meliputi:

A. Attachment terdiri dari:

a. *Boom* adalah *attachment* yang menghubungkan *base frame* ke *arm* dengan panjang tertentu untuk menjangkau jarak *loading/ unloading*.

b. *Arm* adalah *attachment* yang menghubungkan *boom* ke *Bucket*.c. *Bucket* adalah *attachment* yang berhubungan langsung dengan material pada saat *loading*.

d. *Grapple* adalah *attachment* yang berhubungan langsung dengan material pada saat mengangkat kayu.

B. Base Machine terdiri dari:

a. *Base Frame* adalah bagian yang terdiri dari cabin (untuk pusat operasional operator), mesin, *counter weight* (beban pemberat) dan komponen lainnya diatas *revo frame*.

b. *Track Frame* adalah komponen yang terdiri dari *center frame* dan *crawler frame* yang menjadi tumpuan operasional *Excavator Hydraulic*.

c. *Track Shoe* adalah komponen yang berfungsi seperti roda pada kendaraan, untuk menggerakan *Excavator Hydraulic*. Untuk memperjelas konstruksi Excavator Hydraulic beserta bagian-bagiannya dapat dilihat pada gambar berikut :

Gambar 2.8 Bagian-bagian excavator

2.2.6. Mekanisme Kerja

Mekanisme kerja pada *Excavator Hydraulic* yang digerakkan secara *hydraulic* adalah:

A. Mesin Diesel memutar pompa yang kemudian mengalirkan *fluida hydraulic* dari tangki ke dalam sistem dan kembali lagi ke tangki.

B. Komponen-komponen yang mendapat distribusi *fluida hydraulic* dari pompa adalah *Bucket Cylinder, Arm Cylinder, Boom Cylinder, Swing Motor* dan *Travel Motor* untuk menghasilkan suatu kondisi kerja tertentu. Kondisi kerja Excavator Hydraulic dibagi menjadi enam (6), yaitu:

a. Swing

Pergerakan pada saat Body dan *Attachment Excavator Hydraulic* berputar sampai 360°. Sistem gerakan ini adalah dengan menggerakan lever (tuas kemudi) yang membuka katup pada *Control Valves* yang berisi *fluida hydraulic* agar mengalir ke *Swing Motor* sehingga *Excavator Hydraulic* akan berputar dengan putaran tertentu sesuai dengan keinginan operator.

b. Traveling Left Shoe

Pergerakan ini dibagi menjadi dua gerakan yaitu gerakan maju dan gerakan mundur yang digerakan oleh katup yang ada di *Control Valves*.

Energi *hydraulic* dari pompa akan diubah lagi menjadi energi mekanis melalui Travel Motor. Travel Motor memutar *Sprocket* selanjutnya menggerakkan *Track Shoe* sehingga menghasilkan gerakan pada *Excavator Hydraulic*. *Traveling Left Shoe* merupakan gerakan *track shoe* yang sebelah kiri.

c. Traveling Right Shoe

Pergerakan ini dibagi menjadi dua gerakan yaitu gerakan maju dan gerakan mundur yang digerakkan oleh katup yang ada di *Control Valves*. Energi hydraulic dari pompa akan diubah lagi menjadi energi mekanis melalui Travel Motor. Travel Motor memutar *Sprocket* selanjutnya menggerakan Track Shoe sehingga menghasilkan gerakan pada *Excavator Hydraulic*. *Traveling Right Shoe* merupakan gerakan *track shoe* yang sebelah kanan.

d. Boom (Raise-Down)

Pergerakan *Boom* dilakukan oleh *Boom Cylinder*. Sistem gerakan ini dilakukan dengan menggerakkan lever (tuas kemudi) di ruang operator sehingga katup *Boom Raise* dan *katup Boom Dowm* pada *Control Valve* yang berhubungan dengan *Boom Cylinder* akan membuka. *Boom* akan melakukan gerakan mengangkat jika katup *Boom Raise* terbuka sedangkan katup Boom Down tertutup. Fluida akan mengalir dari katup *Boom Raise* dan menekan piston dari *Cylinder Boom*.

e. Arm (In-Out)

Pergerakan Arm dilakukan oleh Arm Cylinder. Sistem gerakan ini diatur oleh katup Arm In dan katup Arm Out. Arm akan melakukan gerakan rnengangkat jika katup Arm out terbuka sedangkan katup Arm In tertutup. Fluida akan mengalir dari katup Arm Out dan menekan piston Arm Cylinder. Sedangkan untuk gerakan Arm turun, kondisi katup arm in dan arm out berlaku sebaliknya.

f. Bucket (Crawl-Dump)

Pergerakan Bucket dilakukan oleh Bucket Cylinder. Sistem gerakan ini diatur oleh pergerakan katup Bucket Crawl dan katup Bucket Dump. Bucket akan melakukan gerakan mengangkat (dump) jika katup Bucket dump terbuka sedangkan katup Bucket Crawl tertutup. Pada saat itu, fluida akan mengalir dari katup Bucket dump dan menekan piston Bucket Cylinder. Sedangkan gerakan Bucket menekuk (crawl) kondisi katup bucket crawl dan katup bucket dump adalah sebaliknya.

Mekanisme dan kondisi kerja Excavator secara Hydraulic dapat dilihat pada (Gambar 2.9):

Gambar 2.9 Diagram Sistem Hidraulic excavator

2.3 Bahan Model Lengan *Excavator*

Bahan yang akan digunakan untuk perancangan lengan ekskavator ini adalah besi plat. Besi plat baja adalah bahan baku utama untuk membuat berbagai mesin, kendaraan beroda empat, kapal, alat berat, dan keperluan industri lainnya. Namun, besi berbentuk lempengan ini juga sering digunakan untuk berbagai kebutuhan konstruksi dan alat-alat rumah tangga. Penggunaan besi plat untuk konstruksi sangat baik karena jenis besi ini terkenal memiliki daya tahan terhadap korosi yang sangat baik. Sehingga penulis memutuskan untuk menggunakan besi plat dengan ketebalan 5 mm.

2.4 Identifikasi Material

Identifikasi pada material dapat dilakukan dengan melakukan pengujian pada material uji. Dengan melakukan pengujian, sifat-sifat material yang diuji dapat diketahui. Untuk mengidentifikasi suatu material dapat dilakukan pengujian mekanis, fisik dan kimia. Uji mekanis dilakukan dengan uji keras, dan uji fisik dilakukan dengan uji metalografi. Serta dilakukan uji kimia untuk mengetahui komposisi bahan yang terdapat pada bahan lengan excavator.

2.5 Alat Uji Tekan

Alat uji tekan adalah salah satu alat uji mekanik untuk mengetahui kekuatan bahan terhadap gaya tekan. Caranya adalah dengan memberikan gaya tekan kepada bahan uji. Untuk melaksanakan pengujian tekan, kita memerlukan benda uji yang pada umumnya bersifat getas. Benda uji dipasang pada mesin penguji, dengan gaya tekan dari alat uji yang akan semakin bertambah besar akhirnya semakin menekan benda uji, maka benda uji ini akan menjadi pendek dan akhirnya rusak dan pecah. Alat uji tekan akan memberikan informasi mengenai seberapa besar pengukuran yang akan diuji terhadap bahan sehingga standarisasi yang diinginkan dapat tercapai dengan sempurna. Alat uji seperti pada gambar 2.10.

Gambar 2.10 Alat Uji Tekan

2.6 Kekuatan Tekan

Kekuatan tekan adalah kapasitas dari suatu bahan atau struktur dalam menahan beban yang akan mengurangi ukurannya. Kekuatan tekan dapat diukur dengan memasukkannya ke dalam kurva tegangan-regangan dari data yang didapatkan dari mesin uji. Beberapa bahan akan patah pada batas tekan, beberapa mengalami deformasi yang tidak dapat dikembalikan. Deformasi tertentu dapat dianggap sebagai batas kekuatan tekan, meski belum patah, terutama pada bahan yang tidak dapat kembali ke kondisi semula (*irreversible*). Kekuatan tekan dapat diukur dengan mesin uji. Pengujian kekuatan tekan, seperti halnya pengujian kekuatan tarik, dipengaruhi oleh kondisi pengujian (penyiapan spesimen, kondisi kelembaban dan temperatur ruang uji, dan sebagainya). Ketika dalam pengujian tekan, spesimen (biasanya berbentuk silinder) akan lebih mengecil seperti menyebar lateral. Perubahan benda yang disebabkan tegangan tekan dapat dilihat pada gambar 2.11.

Gambar 2.11 Perubahan benda yang disebabkan oleh tegangan tekan

Keterangan :

A = Luas Penampang

F = Gaya yang bekerja sebagai penekanan

L0 = Panjang Awal

L1 = Perubahan panjang

Untuk memperoleh nilai kuat tekan maksimum dilakukan beberapa tahapan penghitungan dengan menggunakan persamaan-persamaan berikut :

1. Regangan aksial (ε)

$$\varepsilon = \frac{\Delta L}{L_0} \times 100\%$$

Dimana :

 ΔL : perubahan panjang benda uji

 L_0 : panjang atau tinggi benda uji mula-mula

2. luas penampang benda uji selama pembebanan (A_c)

$$A_c = \frac{A_0}{1 - \varepsilon}$$

Dimana :

 A_0 : luas penampang benda uji mula-mula

 ε : regangan aksial

3. tegangan aksial (σ)

$$\sigma = \frac{P}{A_c}$$

Dimana :

P : beban aksial

 A_c : luas penampang terkoreksi

4. Kurva tegangan – regangan

Dibuat dengan dengan menghubungkan data regangan aksial (ϵ) pada sumbu absis dan tegangan aksial (σ) pada sumbu kordinat. Kuat tekan aksial ditentukan berdasarkan nilai tegangan aksial maksimum, qu = σ max. Regangan yang dicapai pada saat qu adalah regangan runtuh (ϵ f).

5. Modulus elastisitas awal (Es)

Modulus elastisitas awal (initial modulus of elasticity) adalah kemiringan bagian kurva teganan – regangan yang lurus mulai dari awal kurva (titik O). Modulus elastisitas dihitung :

$$E_s = \frac{\Delta\sigma}{\Delta\varepsilon}$$

Dimana :

 $\Delta \sigma$ = beda tegangan aksial di antara dua titik pada garis lurus kurva awal $\Delta \varepsilon$ = beda regangan aksial di antara dua titik pada garis lurus kurva

2.7 Tegangan – Regangan

2.7.1 Tegangan

Setiap material adalah elastis pada keadaan alaminya. Karena itu jika gaya luar bekerja pada benda, maka benda tersebut akan mengalami deformasi. Ketika benda tersebut mengalami deformasi, molekulnya akan membentuk tahanan terhadap deformasi. Tahanan ini persatuan luas dikenal dengan istilah tegangan. Secara matematik tegangan bisa didefinisikan sebagai gaya persatuan luas, atau:

$$\sigma = \frac{P}{A}$$

Dimana :

P : beban atau gaya yang bekerja pada benda

A : luas penampang benda

2.7.2 Regangan

Deformasi persatuan panjang disebut dengan regangan. Secara matematis ditulis:

$$\varepsilon = \frac{\delta l}{l}$$

Atau :

 $\delta l = \varepsilon. l$

Dimana :

 δl : perubahan panjang benda

l : panjang awal benda

2.7.3 Hukum Hooke

Jika benda dibebani dalam batas elastisnya, maka tegangan berbanding lurusdengan regangannya". Secara matematis ditulis:

$$\frac{tegangan}{regangan} = E = konstan$$

2.7.4 Modulus Elastisitas

Tegangan berbanding lurus dengan regangan, dalam daerah elastisnya, atau:

$$E = \frac{\sigma}{\varepsilon}$$

Dimana :

 σ : tegangan

 ε : regangan

E : modulus elastisitas

2.7.5 Deformasi Benda

Misalkan:

P = Beban atau gaya yang bekerja pada benda

l= Panjang benda

A = Luas penampang benda

 σ = Tegangan yang timbul pada benda

E = Modulus Elastisitas material benda

 $\varepsilon = \text{Regangan}$

 δl = Deformasi benda

Tegangan :
$$\sigma = \frac{P}{A}$$

Regangan : $\varepsilon = \frac{\sigma}{E} = \frac{P}{AE}$, maka
Deformasi : $\delta l = \varepsilon$. $l = \frac{\sigma \cdot l}{E} = \frac{Pl}{AE}$

Adapun kurva tegangan – regangan akibat beban tekan yang ditunjukkan pada gambar 2.12

Regangan atau strain

Gambar 2.12.Kurva tegangan – regangan.

Dalam penelitian ini terdapat bahan yang mengalami deformasi plastis jika terus diberikan tegangan dan bahan ini tidak akan berubah kebentuk semula. Biasanya material teknik terjadi pada daerah elastis yang hampir berimpitan dengan batas proposionalistik. Perubahan panjang ini disebut sebagai regangan teknik yang didefinisikan sebagai perubahan panjang yang terjadi akibat perubahan statik (Δ L) terhadap panjang batang mula-mula (L0). Tegangan yang dihasilkan pada proses ini disebut dengan tegangan teknik, dimana didefinisikan sebagai nilai pembebanan yang terjadi (F) pada suatu luas penampang awal (A0).

2.8. Software Solidworks

Solidworks adalah salah satu cad software yang dibuat oleh dassault systems digunakan untuk merancang part permesinan atau susunan part permesinan yang berupa assembling dengan tampilan 3d untuk merepresentasikan part sebelum real part nya dibuat atau tampilan 2d (drawing) untuk gambar proses permesinan, solidworks diperkenalkan pada tahun 1995 sebagai pesaing untuk program cad seperti pro / engineer, nx siemens, i-deas, unigraphics, autodesk inventor, autodeks autocad dan catia.

Solidworks corporation didirikan pada tahun 1993 oleh jon hirschtick, dengan merekrut tim insinyur untuk membangun sebuah perusahaan yang mengembangkan perangkat lunak cad 3d, dengan kantor pusatnya di concord, massachusetts, dan merilis produk pertama, solidworks 95, pada tahun 1995.

Saat ini banyak industri manufaktur yang sudah memakai software ini, menurut informasi wiki , *solidworks* saat ini digunakan oleh lebih dari 3 / 4 juta insinyur dan desainer di lebih dari 80.000 perusahaan di seluruh dunia. Dahulu orang familiar dengan autocad untuk desain perancangan gambar teknik seperti yang penulis alami.

Untuk permodelan pada industri pengecoran logam dalam hal pembuatan pattern nya, program program 3d seperti ini sangat membantu sebab akan memudahkan operator pattern untuk menterjemahkan gambar menjadi pattern /model casting pengecoran logam dan tentunya akan mengurangi kesalahan pembacaan gambar yang bisa mengakibatkan salah bentuk. Untuk industri permesinan selain dihasilkan gambar kerja untuk pengerjaan mesin manual juga hasil geometri dari solidworks ini bisa langsung diproses lagi dengan cam program semisal mastercam, solidcam, visualmill dll. Untuk membuat g code yang dipakai untuk menjalankan proses permesinan automatic dengan cnc.

BAB 3

METODE PENELITIAN

3.1 Tempat Dan Waktu

3.1.1 Tempat Penelitian

Adapun tempat dilakukannya perancangan dan pengujian kekuatan bahan pada model lengan ekskavator dengan menggunkan *software Solidwork, dan* dilakukan di Laboratorium Komputer Universitas Muhammadiyah Sumatera Utara Jalan Kapten Mukhtar Basri No.3 Medan.

3.1.2 Waktu Penelitian

Waktu pelaksanaan merancang dan menganalisa dilakukan selama 8 bulan setelah proposal tugas sarjana disetujui.

No	Nama Kegiatan	Waktu (Bulan)							
		7	8	9	10	11	12	1	2
1	ReferensiJudul								
2	ACC Judul								
3	Pembuatan Proposal								
	Pembuatan model								
4	lengan excavator								
	Pengujian bahan lengan								
5	excavator dengan								
	software solidwork 2016								
6	Pembuatan Laporan								
7	Seminar								
8	Sidang								

Tabel 3.1. Waktu penelitian

3.2 Bahan dan Alat

Adapun alat yang digunakan dalam proses merancang dan menganalisa kekuatan lengan ekskavator ini adalah :

3.2.1 Laptop

Spesifikasi laptop yang digunakan dalam pengujian ini adalah sebagai berikut :

- 1. *Processor* : *Intel* (*R*) *core* (*TM*) *i3 CPU M 370* @ 2.40 *GHz*
- 2. *RAM* : 2.00 *GB* (1,74 *GB* Usable)
- 3. Operating system : windows 10 pro 64 bit operating system

3.2.2 Software Solidwork 2016

Software solidwork yang sudah terinstal pada komputer adalah *solidwork* 2016 64 bit yang didalamnya terdapat *sketch* gambar 3D adalah sebagai berikut:

- 1. Processor : AMD with Radeon Support 64 bit Operation System
- 2. RAM : 4 GB or more
- 3. Disk Space : 5 GB or more
3.3 Diagram Alir Penelitian

Gambar 3.1. Diagram Alir

- 3.4 Proses Perancangan Model Lengan *Ekskavator*
- 3.4.1 Prosedur Perancangan Boom
 - 1. Membuka Software Solidwork 2016

Untuk membuka *solidwork* 2016 dimulai dengan mengklik start menu *solidwork*. Tampilan layar pembuka *solidwork* 2016 dan tampilan jendela kerja *solidwork* secara berurutan dilihat pada gambar 3.2 dan 3.3.

Gambar 3.2 Tampilan Layar Pembuka Solidwork 2016

Solidworks	- Part5	Search Commands Q - ? 5 ×
Sketch Smart Dimension O · O · A Convert Corrise BB Linear	Entities Lopingy/Delete Repair Sketch Pattern Relations Sketch Pattern	
Features Sketch Evaluate DimXpert SOLIDWORKS Add-Ins Simulation SOL	IDWORKS MBD Analysis Preparation Flow Simulation	
Constants Constants	C C B C S S · P · P · P · P · P · P · P	
< > *Trimetric Telleritation Model 3D Views Motion Study 1		
Part5		Editing Part MMGS + 🥔
📲 🔎 🖽 🔁 🛍 📾 🔟 🔛 🔐 🤗		∧ ■ ⊕ ⊄× 20.53 ■

Gambar 3.3 Tampilan Jendela Kerja Solidwork 2016

2. Klik *Newpart*, membuat desain *Sketch Boom* dengan ukuran dimensi awal sesuai rancangan dengan ukuran yang tertera, seperti pada gambar 3.4

Gambar 3.4 Sketch Awal Boom

3. Kemudian setelah gambar sketch awal jadi, selanjutnya extrude sketch

Gambar 3.5 Proses Boss Extrude

4. Pembuatan sketch plat atas dengan ketebalan 3 mm, ditunjukkan dengan

Gambar 3.6 Sketch Plat Atas

5. Kemudian langkah selanjutanya iyalah dengan melakukan extrude

sepanjang 93 mm, seperti pada gambar 3.7.

Gambar 3.7 Proses Extrude sepanjang 93mm

6. Menggandakan sketch awal dengan proses mirror, seperti pada gambar

Gambar 3.8 Proses Mirror

 Pembuatan *sketch* plat tengah penghubung atau penahan antara *sketch* 1 dan *sketch* 2 dengan tebal 5 mm, ditunjukkan pada gambar 3.9.

Gambar 3.9 Proses Pembuatan Sketch Plat Tengah

8. Pembuatan sketch plat dudukan silinder hidrolik dengan dimensi dan

Gambar 3.10 Pembuatan Sketch dudukan silinder hidrolik

9. Proses boss extrude pada dudukan silinder hidrolik denga ketebalan

10 mm, ditunjukkan pada gambar 3.11

Gambar 3.11 Proses Extrude

10. Menggandakan sketch plat dudukan silinder hidrolik slisih jarak 20 mm,

dengan proses mirror, dilihat pada gambar 3.12

Gambar 3.12 Proses Mirror

11. Design boom yang sudah jadi, dapat dilihat pada gambar 3.13

Gambar 3.13 Design Boom

3.4.2 Prosedur Perancangan Arm

1. Klik Newpart, membuat desain Sketch Arm dengan ukuran dimensi awal

sesuai rancangan, seperti pada gambar 3.14

Gambai 5.14 Skeich Arm

2. Selanjutnya langkah extrude dengan ketebalan 5 mm, seperti pada gambar

Gambar 3.15 Proses Extrude

3. Pembuatan *sketch* plat atas dengan ketebalan 3 mm, ditunjukkan dengan garis berwarna hitam pada bagian atas *boom*, seperti pada gambar 3.16

Gambar 3.16 Sketch Plat Atas Arm

4. Proses boss extrude dengan lebar 94 mm, seperti pada gambar 3.17.

Gambar 3.17 Proses Boss Extrude

5. Menggandakan sketch arm awal dengan proses mirror dengan lebar 94

Gambar 3.18 Proses Mirror

6. Pembuatan plat penghubung sisi *arm* satu dengan sisi *arm* lain, ditandai

dengan warna biru dengan ketebalan plat5 mm, seperti pada gambar 3.19.

Gambar 3.19 Proses Pembuatan Plat Penghubung

7. Lakukan proses boss extrude plat penghubung sesuai ukuran plat arm,

seperti pada gambar 3.20.

8. Design Arm yang sudah jadi, dapat dilihat pada gambar 3.21.

Gambar 3.21 Desin Arm

3.4.3 Prosedur Perancangan Bucket

1) Klik Newpart, membuat desain Sketch Bucket dengan ukuran dimensi awal

sesuai rancangan, seperti pada gambar 3.22

Gambar 3.22 *Sketch Bucket*

2) Selanjutnya langkah extrude dengan ketebalan 200 mm, seperti pada

Gambar 3.23 Proses Boss Extrude

3) Proses pemotongan plat dengan tebal 3 mm dengan proses shell, sepeti

Gambar 3.24 Proses Shell

4) Pembuatan sketch gigi atau alat keruk pada bucket dengan ukuran, seperti

Gambar 3.25 Sketch Gigi Bucket

5) Proses boss extrude gigi bucket dengan lebar 200 mm, seperti pada gambar

Gambar 3.27 Sketch Gigi Bucket

7) Proses pemotongan *sketch* gigi *bucket*, seperti pada gambar 3.28

Gambar 3.28 Pemotongan Sketch Gigi Bucket

8) Proses pembuatan *sketch* plat penghubung antara penghubung *bucket* dengan *arm* dan *bucket* dengan silinder hidrolik *bucket*, seperti pada

gambar 3.29.

Gambar 3.29 Sketch Plat Bucket

9) Proses *boss extrude* plat dengan ketebalan 5 mm, seperti gambar 3.30.

Gambar 3.30 Proses Boss Extrude

10) Proses penggandaan plat penghubung dengan selisih lebar 100 mm dengan

proses mirror, seperti pada gambar 3.31

Gambar 3.31 Proses Mirror

11) Design *bucket* yang sudah jadi, dapat dilihat pada gambar 3.32

Gambar 3.32 Design Bucket

- 3.5 Prosedur Pengujian pada model lengan *excavator*
 - 1. Memasukkan *speciment* yang telah digambar kedalam menu *Simulation* pada *software solidwork* 2016.

Gambar 3.33 Tampilan speciment dalam menu simulation solidwork

2. Pilih Study Advisor, klik New Study dan pilih jenis pengujian

Gambar 3.34 Tampilan New study dalam software solidwork

3. Menentukan Fixed Geometry

Gambar 3.35 Tampilan Fixed goemetry dalam software solidwork

4. Memberikan Force sebesar 441 N pada Specimen

Gambar 3.36 Tampilan pemberian Force

5. Mengatur Mesh, Global Mesh sebesar 15 mm dan Tolerance sebesar

Gambar 3.37 Tampilan pengaturan Mesh, Global Mesh dan Tolerance

 Setelah proses meshing pada setiap speciment, kemudian dilakukan pengujian kekuatan material yaitu stress (tegangan), displacement (pemindahan), serta Strain (regangan)

Gambar 3.38 Tampilan pengujian kekuatan material pada menu solidwork

7. Setelah proses pengujian kekuatan material diatas dilakukan pengumpulan data hasil

Name	Туре	Min	Max
Strain1	ESTRN: Equivalent Strain	3.40663e-006 Element: 4758	0.0073517 Element: 4682
Model name Bucket Study name State, 14,64% Deformation scale: 1,374		ESTRA	7,552+00) 5,754-00 5,755-00 5,555-00 3,658-00 3,658-00 1,640-00 1,640-00 1,640-00 1,640-00 1,248-00 5,58-00
À.			

Gambar 3.39 Tampilan data hasil pengujian

8. Selesai

BAB 4 HASIL DAN PEMBAHASAN

4.1 Hasil Gambar Rancangan Keseluruhan Model Lengan *Excavator*

Hasil gambar rancangan keseluruhan model lengan *excavator* yang telah dibuat dengan menggunakan *software solidwork* 2016, dapat dilihat pada gambar 4.1 berikut.

Gambar 4.1 Hasil Rancangan Model Lengan Excavator

- 4.2. Hasil Simulasi pengujian kekuatan material lengan ekskavator
- 4.2.1. Hasil Simulasi pengujian kekuatan material pada Boom ekskavator
 - 1. Gambar spesiment Boom

î

Hasil gambar spesiment *Boom ekskavator* dengan tebal pelat 5 mm menggunakan *software solidwork* 2016 yang akan disimulasikan seperti yang terlihat pada gambar 4.1 dibawah ini.

Gambar 4.2. Hasil Gambar Boom

Sebelum melakukan prosedur simulasi sebaiknya tentukan jenis material dan berapa beban yang akan diberikan terhadap *specimen*. Jenis material yang diberikan kepada *specimen* berbahan *Gray Cast Iron (SN)* dan beban yang diberikan sebesar 441 N.

2. Hasil Meshing spesiment Boom

Model name:Test 1 Study name:Static 1(-Default-) Mesh type: Solid Mesh

1

Gambar 4.3 Hasil Proses Meshing Boom

Sebelum melakukan prosedur simulasi dilakukan proses *meshing* terlebih dahulu. Proses *meshing* merupakan bagian integral dari simulasi rekayasa dibantu proses komputer. *Meshing* mempengaruhi akurasi, kecepatan konvergensi dari solusi. Hasil dari proses *meshing boom ekskavator* telah diperlihatkan seperti pada gambar 4.2 diatas.

3. Hasil Tegangan (stress) Boom

Gambar 4.4 Hasil Tegangan Boom

Proses tegangan (*stress*) merupakan proses yang terjadi akibat gesekan, berdasarkan hasil tegangan *boom* pada gambar 4.3 diatas diperoleh nilai beban minimalnya sebesar 0.000e+000 N/m² yang ditandai dengan warna biru tua menandakan bagian daerah yang aman dan terletak pada bagian ujung bawah *boom*, pada warna hijau muda bagian spesimen boom mulai mengalami proses tegangan (*stress*) dan pada bagian warna kuning spesimen terkena tegangan pada tingkat medium, serta hasil terakhir dari simulasi adalah dengan beban maksimal sebesar 1.804e+007 N/m² ditandai dengan warna merah pada bagian tersebut bahan material paling terbebani/kritis dapat dilihat pada bagian tengah *boom* mengalami sedikit perubahan dari segi bentuk tepatnya dibagian pen penghubung antara *boom* dengan hodrolik *boom*. Dan lebih jelasnya bisa dilihat pada gambar proses tegangan (stress) *boom* dilampiran.

4. Hasil Displacement (pemindahan) Boom

i name:Test 1 name:Static 1(-Default-) ype: Static displacement Displacement 1 mation scale: 691.429

UEES (mm) 1.164-001 1.067-007 9.700-002 0.7760-002 1.582-002

Gambar 4.5 Hasil Displacement Boom

Proses *displacement* merupakan suatu proses dimana suatu daya berpindah dalam kurun waktu tertentu sesuai perintah yang diberikan pada program tersebut. berdasarkan hasil *displacement boom* pada gambar 4.4 diatas diperoleh beban minimal yang terjadi sebesar 1.000e-030 mm dengan susunan warna biru menandakan bagian aman terlihat pada bagian bawah boom dan pada warna hijau muda bagian spesimen *boom* mulai mengalami proses *displacement* selanjunya pada bagian warna kuning spesimen terkena pemindahan pada tingkat medium, terakhir beban maksimal yang dapat diterima sebesar 1.164e-001 mm ditandakan

dengan warna merah yang artinya bagian yang paling terbebani/kritis. Dan lebih jelasnya bisa dilihat pada gambar proses *displacement boom* dilampiran.

5. Hasil Regangan (strain) Boom

Gambar 4.6 Hasil Regangan Boom

Pada proses ini kita dapat melihat hasil dari simulasi yang terjadi akibat regangan yang diberikan, berdasarkan hasil regangan *boom* pada gambar 4.5 diatas diperoleh beban minimal yang dapat diterima sebesar 0.000e+000 N/m² diperlihatkan pada bagian ujung boom ditandai dengan warna biru dan dan pada warna hijau muda bagian *spesimen boom* mulai mengalami proses regangan (*strain*) selanjunya pada bagian warna kuning spesimen terkena regangan pada tingkat medium, serta terakhir beban maksimal yang dapat diterima sebesar 9.515e-005 N/m² menandakan bagian yang paling terbebani ditandai dengan warna merah dilihat pada bagian pen penghubung antara *boom* dengan hidrolik *boom*. Dan lebih jelasnya bisa dilihat pada gambar proses regangan (*strain*) *boom* dilampiran.

4.2.2. Hasil Simulasi pengujian kekuatan material pada Arm ekskavator

1. Gambar spesiment Arm

Hasil gambar *spesiment Arm* ekskavator dengan tebal pelat 5 mm menggunakan *software solidwork* 2016 yang akan disimulasikan seperti yang terlihat pada gambar 4.7 dibawah ini.

Gambar 4.7 Hasil Gambar Arm

Sebelum melakukan prosedur simulasi sebaiknya tentukan jenis material dan berapa beban yang akan diberikan terhadap *specimen*. Jenis material yang diberikan kepada *specimen arm* berbahan *Gray Cast Iron (SN)* dan beban yang diberikan sebesar 441 N.

2. Hasil Meshing spesiment Arm

Model nane⊉art2 Sudy amestatic (I-Defaulk-) Mein lype Solid Mein

Gambar 4.8 Hasil Proses Meshing Arm

Sebelum melakukan prosedur simulasi dilakukan proses *meshing* terlebih dahulu. Proses *meshing* merupakan bagian integral dari simulasi rekayasa dibantu proses komputer. *Meshing* mempengaruhi akurasi, kecepatan konvergensi dari solusi. Hasil dari proses *meshing* arm ekskavator diperlihatkan seperti pada gambar 4.8 diatas.

3. Hasil Tegangan (stress) Arm

Model name:Part2 Study name:Static 1(-Default-) Plot type: Static nodal stress Stress1 Deformation scale: 16.5.95

Gambar 4.9 Hasil Tegangan Arm

Proses tegangan (*stress*) merupakan proses yang terjadi akibat gesekan, berdasarkan hasil tegangan *arm* pada gambar 4.9 diatas diperoleh nilai beban minimalnya sebesar 2.908e+004 N/m² ditandakan dengan warna biru menandakan bagian yang aman dan pada warna hijau muda bagian spesimen *arm* mulai mengalami proses tegangan (*stress*) selanjutnya pada bagian warna kuning spesimen terkena tegangan pada tingkat medium, serta terakhir beban maksimalnya sebesar 6.925e+008 N/m² dengan tanda warna merah menandakan bagian yang paling terbebani/kritis dapat dilihat pada bagian ujung *arm* tepatnya yang berhubungan dengan pen *bucket*. Dan lebih jelasnya bisa dilihat pada gambar proses tegangan (*stress*) *arm* dilampiran.

4. Hasil Displacement (pemindahan) Arm

Mod el name Part2 Study na me Static 1(- Default-) Pot type: Static displacement Displacement1 Deformation scale: 16.595

L

Gambar 4.10 Hasil Displacement Arm

Proses *displacement* merupakan suatu proses dimana suatu daya berpindah dalam kurun waktu tertentu sesuai perintah yang diberikan pada program tersebut. berdasarkan hasil *displacement* arm pada gambar 4.10 diatas diperoleh beban minimal yang terjadi sebesar 1.000e-030 mm dan pada warna hijau muda bagian *spesimen arm* mulai mengalami proses *displacement* selanjunya pada bagian warna kuning spesimen terkena pemindahan pada tingkat medium, serta terakhir pada beban maksimal yang dapat diterima sebesar 3.350e+000 mm yang ditandakan dengan warna merah terletak pada pen penghubung hidrolik *boom* dengan *arm*. Dan lebih jelasnya bisa dilihat pada gambar proses *displacement arm* dilampiran.

5. Hasil Regangan (strain) Arm

Gambar 4.11 Hasil Regangan Arm

Pada proses ini kita dapat melihat hasil dari simulasi yang terjadi akibat regangan yang diberikan, berdasarkan hasil regangan *arm* pada gambar 4.11 diatas diperoleh beban minimal yang dapat diterima sebesar 3.353e-007 N/m² yang ditandai dengan warna biru dan pada warna hijau muda bagian spesimen *arm* mulai mengalami proses regangan (*strain*) selanjutnya pada bagian warna kuning spesimen terkena regangan pada tingkat medium, serta terakhir pada beban maksimal yang dapat diterima spesimen sebesar 3.571e-003 N/m² ditandakan dengan warna merah yang terletak pada ujung bawah *arm* tepatnya pada pen penghubung pen *arm* dengan *bucket*. Dan lebih jelasnya bisa dilihat pada gambar proses regangan (*strain*) *arm* dilampiran.

4.1.3. Hasil Simulasi pengujian kekuatan material pada Bucket ekskavator

1. Gambar spesiment Bucket

Hasil gambar spesiment *bucket ekskavator* dengan tebal pelat 5 mm menggunakan *software solidwork* 2016 yang akan disimulasikan seperti yang terlihat pada gambar 4.13 dibawah ini.

Gambar 4.12 Hasil Gambar Bucket

Sebelum melakukan prosedur simulasi sebaiknya tentukan jenis material dan berapa beban yang akan diberikan terhadap *specimen*. Jenis material yang diberikan kepada *specimen* arm berbahan *Gray Cast Iron (SN)* dan beban yang diberikan sebesar 441 N.

2. Hasil Meshing spesiment Bucket

î

Model name:Bucket Study name:Static 1(-Default-)

1

Gambar 4.13 Hasil Proses Meshing Bucket

Sebelum melakukan prosedur simulasi dilakukan proses *meshing* terlebih dahulu. Proses *meshing* merupakan bagian integral dari simulasi rekayasa dibantu proses komputer. *Meshing* mempengaruhi akurasi, kecepatan konvergensi dari solusi. Hasil dari proses *meshing bucket ekskavator* diperlihatkan seperti pada gambar 4.14 diatas.

3. Hasil Tegangan (stress) Bucket

Gambar 4.14 Hasil Tegangan Bucket

Proses tegangan (*stress*) merupakan proses yang terjadi akibat gesekan, berdasarkan hasil tegangan bucket pada gambar 4.15 diatas diperoleh nilai beban minimalnya sebesar 2.918e+003 N/m² ditandai dengan warna biru dan pada warna hijau muda bagian spesimen *bucket* mulai mengalami proses tegangan (*stress*) selanjutnya pada bagian warna kuning spesimen terkena tegangan pada tingkat medium, terakhir pada beban maksimalnya sebesar 7.347e+009 N/m² yang ditandakan dengan warna merah pada bagian sambungan plat *bucket* dengan *arm* dan *hidrolik bucket*. Dan lebih jelasnya bisa dilihat pada gambar proses tegangan (*stress*) *bucket* dilampiran.

4. Hasil Displacement (pemindahan) Bucket

Gambar 4.15 Hasil Displacement Bucket

Proses *displacement* merupakan suatu proses dimana suatu daya berpindah dalam kurun waktu tertentu sesuai perintah yang diberikan pada program tersebut. berdasarkan hasil *displacement bucket* pada gambar 4.16 diatas diperoleh beban minimal yang terjadi sebesar 1.000e-030 mm ditandai dengan warna biru dan pada warna hijau muda bagian spesimen *bucket* mulai mengalami proses *displacement* selanjunya pada bagian warna kuning spesimen terkena pemindahan pada tingkat medium, serta terakhir pada beban maksimal yang dapat diterima spesimen sebesar 2.113e+001 mm yang ditandakan dengan warna merah pada bagian ujung *bucket*. Dan lebih jelasnya bisa dilihat pada gambar proses *displacement bucket* dilampiran.

5. Hasil Regangan (strain) Bucket

Gambar 4.16 Hasil Regangan Bucket

Pada proses ini kita dapat melihat hasil dari simulasi yang terjadi akibat regangan yang diberikan, berdasarkan hasil regangan *bucket* pada gambar 4.17 diatas diperoleh beban minimal yang dapat diterima sebesar 3.407e-006 N/m² ditandakan dengan warna biru dan pada warna hijau muda bagian spesimen *bucket* mulai mengalami proses regangan (*strain*) selanjutnya pada bagian warna kuning spesimen terkena regangan pada tingkat medium, serta terakhir pada beban maksimal yang dapat diterima spesimen *bucket* sebesar 7.352e-003 N/m² yang ditandakan dengan warna merah pada bagian sambungan gigi *bucket* dengan *body bucket*. Dan lebih jelasnya bisa dilihat pada gambar proses regangan (*strain*) *bucket* dilampiran.

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari hasil rancangan dan analisa kekuatan bahan pada model lengan excavator dengan menggunakan *software solidwork* 2016, disimpulkan bahwa bahan yang cocok digunakan untuk pembuatan model lengan *excavator* adalah besi plat dengan ketebalan 5 mm, dan berikut merupakan data hasil dari analisa untuk mencari tegangan dan regangan pada bahan model lengan *excavator*.

- 5.1.1. Hasil Simulasi kekuatan bahan pada bagian *Boom excavator* dengan tebal plat 5 mm berbahan *Gray cast iron (SN)* pada Gaya 441 N.
 - A. Hasil dari simulasi tegangan (*stress*) "max" pada *spesimen Boom*.
 Maksimum : 1.804e+007 N/m²
 - B. Hasil dari simulasi *displacement* "max" pada *spesimen Boom*.Maksimum : 1.164e-001 mm
 - C. Hasil dari simulasi regangan (*strain*) "max" pada *spesimen Boom*.
 Maksimum : 9.515e-005 N/m²
- 5.1.2. Hasil Simulasi kekuatan bahan pada bagian *Arm excavator* dengan tebal plat 5 mm berbahan *Gray cast iron (SN)* pada Gaya 441 N.
 - A. Hasil dari simulasi tegangan (*stress*) "max" pada *spesimen Arm*.
 Maksimum : 6.925e+008 N/m²
 - B. Hasil dari simulasi *displacement* "max" pada *spesimen Arm*.
 Maksimum : 3.350e+000 mm
 - C. Hasil dari simulasi regangan (*strain*) "max" pada *spesimen Arm*.
 Maksimum : 3.571e-003 N/m²
- 5.1.3. Hasil Simulasi kekuatan bahan pada bagian *Bucket excavator* dengan tebal plat 5 mm berbahan *Gray cast iron (SN)* pada Gaya 441 N..
 - A. Hasil dari simulasi tegangan (*stress*) "max" pada *spesimen Bucket*.
 Maksimum : 1.175e+009 N/m²
 - B. Hasil dari simulasi *displacement* "max" pada *spesimen Bucket*.
 Maksimum : 2.113e+001 mm

C. Hasil dari simulasi regangan (*strain*) "max" pada *spesimen Bucket*.
 Maksimum : 7.352e-003 N/m²

5.2 Saran

- 1. Pelajari *software solidwork* 2016 untuk lebih mengerti nantinya.
- 2. Menentukan jenis material yang akan diberikan pada lengan *excavator* yang akan dibuat untuk disimulasikan selanjutnya.
- 3. Melengkapi peralatan yang cukup untuk melakukan penelitian
- 4. Teliti dalam mengerjakan.

DAFTAR PUSTAKA

Lidiawati Indri. (2013). Pusat definisi. diakses 02 November 2013. Available from: <u>http://www.pusat-definisi.com/2012/11/excavator-adalah.html</u>

autoexpose.org/2018/07/komponen-excavator-dan-jenis.html

Macam-macam Pengujian Bahan - Scribd https://id.scribd.com/doc/140452369/Macam-macam-Pengujian-Bahan

Khollil Ahmad. 2014. "Alat Berat" ROSDA KARYA. Bandung.

- http://library.binus.ac.id/eColls/eThesisdoc/Bab2/2012-2-00273-TI%20Bab2001
- Zainuri Achmad. 2009. "Mesin Pemindah Bahan Material Handling Equipment" ANDI YOGYAKARTA. Yogyakarta
- Griffin, Jeff. Excavator continue vital role in underground construction, Senior Editor, 2001.
- Widagda Iga. (2012). Fuzzy logic. diakses 06 Mei 2014. Available from: http://igawidagda.files.wordpress.com/2012/02/diktat-fuzzy.pdf
- Dassault Systemes Solidwork Corporation, 2011, Solidwork Essentials, Massachusets

https://newbesw.blogspot.com/2015/03/pengertian-solidwork-3d-solidworks.html

- Asiyanto, Ir, MBA, IPM. 2008. Manajemen Alat Berat Untuk Kontruksi, Penerbit PT. Pradnya Paramita . Jakarta.
- Andrew Pytel dan Singer Ferdinand, L., *Ilmu Kekuatan Bahan*, Erlangga, Jakarta, 1995.
- Khurmi, R.S. (1984). Strenght Of Mechanical. New Dehli, S.Chand & Company Ltd
- E.J. Pavlina And C.J Van Tyne, Correlation Of Yield Strength And Tensile Strength With Hardness For Steels, Journal Of Materials Engineering And Performance, 17:6 2008

https://fisikazone-com.cdn.ampproject.org/v/tegangan-regangan-dan-moduluselastisitas/amp (Diakses tanggal 30 januari 2019)

LAMPIRAN

Gambar Hasil Simulasi Proses Tegangan (Stress) Pada Boom

Gambar Hasil Simulasi Proses Pemindahan (Displacement) Pada Boom

Gambar Hasil Simulasi Proses Regangan (Strain) Pada Boom

Gambar Hasil Simulasi Proses Tegangan (Stress) Pada Arm

Gambar Hasil Simulasi Proses Regangan (Strain) Pada Arm

Gambar Hasil Simulasi Proses Tegangan (Stress) Pada Bucket

Gambar Hasil Simulasi Proses Pemindahan (Displacement) Pada Arm

LEMBAR ASISTENSI TUGAS AKHIR

sterancarg dan Menganalisa Kekuatan Bahan Pada Model Lengas Ekskavator pergan Menggunukan Software Solidicard

Natia BASYARUDDIN NPM 1407230263

Doen Perdombing 1 Monovar Alfineury Siregar S.T., M.T. Doen Perdombing 2 H. Mohernif M. S.T., M.Sc.

Han 7 amesa 24 Kenness Paraf. 1) Get 126 13- 19 her Carmo belaley havens 13 Harp 101-07-19 Sibustin coferoare in 13 Joint 106-07-19 Subustin de Anaphicky 15 Joint 106-07-19 Layinter be Friguer 14 Server 109.01 19 Carjustin be purtinking R os son ho-10-19 Perbanta gambar Laugur exclavator 02 Minge 120-10-19 Perbaniki Harn remerlasi Saftware salatwork 19 Soun 109-12-19 Kemilati ke fembiniking I Acedi semiaar len \$27. 2019 :8

er stat stree	Jaho Katlar in older fanz fan 1964e 2019 fein (941) HERRE (501-1) Werde King fanz oner still fan de Gelegeren is fei
. a george	PERENTLIAN TE GAS AKORIA DAN PENGRUJUKAN DOSEN PERMIMBUNG
	Numer M201LAAU/UMSU-#19/2019
Dekori Kakulian Ter Magai Kimat Pengru	umb Universites Adultationalijsch Services Ukara, berdererkan rekomzultat Ater re Sauli Teka & Minder Pada Tanggal 27 Lord 2019. dorgen ini Mensiapion :
Nami Non Pograri Sull Seconda Julid Tigo Athi	HARY ARLIDDN SHOTSANI TEKNIK Mesh N CSIPHIN (MERANCAND DAN MINIGAKALISA ELEDATAN HAHANIPADA MERANCAND DAN MINIGAKALISA ELEDATAN HAHANIPADA
Persbirring I Persbirring II	MENAWAR ALFASHENY SIRDCAR (CM) HEACHARDE IN STATE
Desgas dramas	there has a reason or maked again with the type. Konneckan a
 Hein judiel Teil perintig any 6 Mersteil Yahr distriction Danskeine yww.pei direct ill perintitie 	par Adder sonang model digin i gjort wat barer providen dig a search providen and the search of the
	A Construction of the second structure with the second structure of the second
	arra gatest

DAFTAR HADIR SEMINAR TUGAS AKHIR TEKNIK MESIN FARULTAS TEKNIK – UMSU TAHUN AKADEMIK 2019 – 2020

pogeta Seminar Nama N2M Indal Tugas Akhir

 Bergaroddin
 1407230265
 Mentrooug Durt Mengarodis a Kekuntan Parta -Model Lirigan Escawine Dengan Menggurahan Sof-Ware Solidwirds.

LANDA TANGAN

BAFTAR HADIR

Ten	utimbing - I	Munawar A Srg.S.T.M.1	
Ť18	ibimbing II :	H.Muhamif.S.T.M.Sz	A manual
] en	ibinding-1 :	Ahmad Marabdi Seg S T M.Y	: my Martin
Ten	ibunding – II :	Chandra A Siregar S I.M.T	gut
No.	NPM	Name Matesiewa	Tanda Tengan
1.5	HOTE 0281	Alush Station	as the
	101230218	An Mar Den port	- Ma
	1301730115	Party sportose	L.
034	307230049	PT SUDIE ADDID MUST	
12	357 230 221	Istanol Junini	EV.
	807230222	The galler damage	that
	407254263	and the Roamy Present	1 det
	11111201	Aller	and the second

Medan, <u>14 http://www.likelia.com</u> 10 Metan: 2020 M

Kenna Proti T Mesan

aconse MI

DAFTAR EVALUASI SEMINAR FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIVAB SUMATERA UTARA

NAMA	Usasyarushin
NPM	1407230265
Judul T.Akhir	• Marancang Dan Merganan na Kaiyuntas Bahan Pada Medel
	Longan Escovator Dengan Mengganakan Software Solidwork

Doses Pembiniting	Mussawar A Strugar 5 T.M.T.
Dosen Petabimhing - 11	11 Multacuit S. U.M.Sc
Down Perabasting -1	: Ahmad Marabeb Sorogar S T.M.T.
Doots Pembanding - 11	Chasiro A single STMT

KEPUTUSAN

Baik depet die niese ke sistere segara (rollogium)
 Depat meng best indeng series (collogium) seretah sebest melakuarakan perbudian arawa tain
 Pastikan hessensinen zestaria Judenl, Tuguners, statede, Hacid & hessensinen pertamitien.
 Pastikan projektor panahijina.
 Boust projektor panahijina.
 Schweit lann, hespelaan den gan, keise-spadner.
 Barus mengioni semilaan kantaa.
 Pertailan.

Pethaikan

Medae 14 Juni Awal 1441 H 10 Januari 2020 M

Dikenhui : Krun Prodi, T.Mesin

MIT

Desea Purchanding-1

Cornel Macabili Siregar S T.M.T

DAFTAR EVALUASI SEMINAR FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA

NAMA NPM Judul T.Akhir

 Bonsynruddie
 3407230265
 Mernneang Dan Menganalisa Kekuntan Bahan Pada Model Lengan Escavator Dengan Menggunakan Sofware Solidwork.

Dosen Pembimbing – 1 · Munawar A Sirugar S. I. M.T. Dosen Pembimbing – II · H.Muhamat S.T.M.Sc Dosen Pembanding – I · Ahmad Marabdi Siregar S.T.M.T. Dosen Pembanding – I · Chundra A siregar S.T.M.T.

KEPUTUSAN.

 Harus mengikuti semitar kembali Perbaikan

Medan 14 Juni Awal 144 r M 10 Junuari 2020 M

Diketahui Ketua Prodi, T.Mesin

Dosen Pershinding-II

TMANT

DAFTAR RIWAYAT HIDUP

Nama	: Basyaruddin
NPM	: 1407230265
Tempat/Tanggal Lahir	: Meranti Paham/12 April 1996
Jenis Kelamin	: Laki-laki
Agama	: Islam
Status	: Belum Menikah
Alamat	
Dusun	: Empat (4)
Desa	: Meranti paham
Kecamatan	: Panai Hulu
Kabupaten	: Labuhan Batu
Provinsi	: Sumatera Utara, Indonesia
Nomor HP/WA	: 082165224721
E-mail	: basyaruddin.irud@gmail.com
Nama Orang Tua	
Ayah	: Jamiluddin
Ibu	: Darti

PENDIDIKAN FORMAL

2001-2007	: SD Negeri 116248 Meranti Paham
2007-2010	: MTS Swasta AS – Shiddiq Meranti Paham
2010-2013	: Smk Negeri 2 Rantau Utara
2014-2020	: Mengikuti Pendidikan S1 Program Studi Teknik Mesin Fakultas
	Teknik Universitas Muhammadiyah Sumatera Utara