TUGAS AKHIR

UPAYA PENINGKATAN PENYERAPAN ENERGI PANAS SOLAR WATER HEATER (SWH) DENGAN MEMANFAATKAN HONEYCOMB SEBAGAI ALIRAN AIR

Diajukan Untuk Memenuhi Syarat Memperoleh Gelar Sarjana Teknik Mesin Pada Fakultas Teknik Universitas Muhammadiyah Sumatera Utara

Disusun Oleh:

ABDI KURNIAWAN 1607230138

PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA MEDAN 2021

HALAMAN PENGESAHAN

Tugas Akhir ini diajukan oleh:

Abdi Kurniawan Nama 1607230138 NPM Teknik Mesin Program Studi

Upaya Peningkatan Penyerapan Energi Panas Judul Tugas Akhir

Heater (SWH) Dengan Water Solar

Memanfaatkan Honeycomb Sebagai Aliran Air

Konversi Energi Bidang ilmu

Telah berhasil dipertahankan di hadapan Tim Penguji dan diterima sebagai penelitian tugas akhir untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, Oktober 2021

Mengetahui dan menyetujui:

Dosen Penguji

Ahmad Marabdi Siregar, S.T., M.T

Dosen Penguji

Sudirman Lubis, S.T., M.T.

Dosen Penguji

Chandra A Siregar, S.T., M.T.

Chandra A Siregar, S.T., M.T

Program Studi Teknik Mesin

Ketua,

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Saya yang bertanda tangan di bawah ini:

Nama Lengkap : Abdi Kurniawan

Tempat /Tanggal Lahir: Laut Tawar / 18 Agustus 1995

NPM : 1607230138
Fakultas : Teknik
Program Studi : Teknik Mesin

Menyatakan dengan sesungguhnya dan sejujurnya, bahwa laporan Tugas Akhir saya yang berjudul:

"Upaya Peningkatan Penyerapan Energi Panas Solar Water Heater (SWH) Dengan Memanfaatkan Honeycomb Sebagai Aliran Air",

Bukan merupakan plagiarisme, pencurian hasil karya milik orang lain, hasil kerja orang lain untuk kepentingan saya karena hubungan material dan non-material, ataupun segala kemungkinan lain, yang pada hakekatnya bukan merupakan karya tulis Tugas Akhir saya secara orisinil dan otentik.

Bila kemudian hari diduga kuat ada ketidaksesuaian antara fakta dengan kenyataan ini, saya bersedia diproses oleh Tim Fakultas yang dibentuk untuk melakukan verifikasi, dengan sanksi terberat berupa pembatalan kelulusan/kesarjanaan saya.

Demikian Surat Pernyataan ini saya buat dengan kesadaran sendiri dan tidak atas tekanan ataupun paksaan dari pihak manapun demi menegakkan integritas akademik di Program Studi Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.

Medan, September 2021

yang menyatakan,

Abdi Kurniawan

ABSTRAK

Pemanfaatan energi panas matahari dapat digunakan untuk berbagai peralatan sehari-hari, seperti solar water heater (SWH). SWH merupakan salah satu solusi penyedia air panas untuk kebutuhan mandi baik dalam skala rumah tangga maupun komersil guna mengurangi penggunaan energi listrik dan bahan bakar fosil. Ada dua bagian penting dalam system pemanas air tenaga surya yaitu pengumpul surya (kolektor) dan tangki penyimpanan air panas. Pengumpul surya terdiri atas plat penyerap panas dan pipa-pipa yang di dalam nya terdapat air yang akan dipanaskan. Honeycomb adalah metode penyusunan pipa yang menyeruoai sarang lebah. Dengan pemakaian pelat aluminium dengan ketebalan 0,2 mm yang di bentuk segi enam (hexagonal) dengan diameter 30 mm dan disusun berderet layaknya sarang lebah (honeycomb) mampu memanaskan air yang berkapasitas 63 liter. Arah kolektor solar water heater adalah menghadap arah utara. Potensi radiasi sinar matahari tertinggi adalah pukul 12:00 siang. Penyerapan panas tertinggi terjadi pada kolektor tanpa menggunakan kaca penutup.

Kata Kunci : Solar Water Heater, Honeycomb, Alat Penukar kalor

ABSTRACT

Utilization of solar thermal energy can be used for various daily equipment, such as solar water heaters (SWH). SWH is one of the hot water solutions for bathing needs both on a household and commercial scale to reduce the use of electrical energy and fossil fuels. There are two important parts in a solar water heating system, namely the solar collector and hot water storage tank. The solar collector consists of a heat-absorbing plate and pipes in which there is water to be heated. Honeycomb is a method of arranging pipes that resembles a honeycomb. By using an aluminum plate with a thickness of 0.2 mm which is in the form of a hexagon with a diameter of 30 mm and arranged in a row like a honeycomb capable of heating water with a capacity of 63 liters. The direction of the solar water heater collector is facing north. The highest potential for solar radiation is at 12:00 noon. The highest heat absorption occurs in the collector without using cover glass.

Keywords: Solar Water Heater, Honeycomb, Heat Exchanger

KATA PENGANTAR

Dengan nama Allah Yang Maha Pengasih lagi Maha Penyayang. Segala puji dan syukur penulis ucapkan kehadirat Allah SWT yang telah memberikan karunia dan nikmat yang tiada terkira. Salah satu dari nikmat tersebut adalah keberhasilan penulis dalam menyelesaikan laporan Tugas Akhir ini yang berjudul "Upaya Peningkatan Penyerapan Energi Panas *Solar Water Heater* (SWH) Dengan Memanfaatkan *Honeycomb* Sebagai Aliran Air" sebagai syarat untuk meraih gelar akademik Sarjana Teknik pada Program Studi Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara (UMSU), Medan.

Banyak pihak telah membantu dalam menyelesaikan laporan Tugas Akhir ini, untuk itu penulis menghaturkan rasa terimakasih yang tulus dan dalam kepada:

- Bapak Chandra A Siregar, S.T., M.T selaku Dosen Pembimbing yang telah banyak membimbing dan mengarahkan penulis dalam menyelesaikan Laporan Tugas Akhir ini dan selaku Ketua Program Studi Teknik Mesin, Universitas Muhammadiyah Sumatera Utara.
- Bapak Ahmad Marabdi Siregar, S.T., M.T selaku Dosen Pembanding I sekaligus Sekretaris Program Studi Teknik Mesin, Universitas Muhammadiyah Sumatera Utara.
- 3. Bapak Sudirman Lubis, S.T., M.T selaku Dosen Pembanding II.
- 4. Bapak Munawar Alfansury Siregar, S.T, MT selaku Dekan Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- Seluruh Bapak/Ibu Dosen di Program Studi Teknik Mesin, Universitas Muhammadiyah Sumatera Utara yang telah banyak memberikan ilmu keteknik mesinan kepada penulis.
- 6. Orang tua penulis: Alm.Sawit Suharyono dan Martinah Ningsih, yang telah bersusah payah membesarkan dan membiayai studi penulis.
- 7. Bapak/Ibu Staf Administrasi di Biro Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara.
- 8. Sahabat-sahabat penulis: Panji Kusuma, Ari Gunawan, Toto Tumanggor, Zulkarnain, Pandu Pratama Yuda, Riki Handoko, Wahyu Pratama, Oji

Indrawan, Edly Sulistiawan, Sony Gustafani dan lainnya yang tidak mungkin namanya disebut satu per satu.

9. Sri Ramadaningsih dan Sri Intan yang selalu memberikan support serta semangat kepada penulis sehingga penulis dapat menyelesaikan laporan Tugas Akhir ini.

Laporan Tugas Akhir ini tentunya masih jauh dari kesempurnaan, untuk itu penulis berharap kritik dan masukan yang konstruktif untuk menjadi bahan pembelajaran berkesinambungan penulis di masa depan. Semoga laporan Tugas Akhir ini dapat bermanfaat bagi pengembangan ilmu keteknik-mesinan.

Medan, September 2021

Abdi Kurniawan

DAFTAR ISI

LEMBAR PENGESAHAN LEMBAR PERNYATAN KEASLIAN TUGAS AKHIR ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI			ii iii iv v vi viii x xi xii	
BAB 1	PEN	IDAHULUAN	1	
	1.1.	Latar Belakang	2	
	1.2.	Rumusan masalah	2	
		Ruang lingkup	2 2	
		Tujuan	2	
	1.5.	Manfaat	3	
BAB 2	TIN	JAUAN PUSTAKA	4	
	2.1.	Prinsip Pemanas Air Tenaga Surya (Solar Water Heater)	4	
	2.2.	Klasifikasi Pemanas Air Tenaga Surya (Solar Water Heater)	5	
		2.2.1. Solar water heater pasif	5	
		2.2.2. Solar Water Heater Aktif	6	
	2.3.	Komponen Utama Solar Water Heater (SWH)	7	
		2.3.1. <i>Kolektor</i> Penyerap Panas (Pengumpul Surya)	7	
		2.3.2. Tangki Penyimpanan	9	
	2.4.	Perpindahan panas	9	
		2.4.1 Konduksi	10	
		2.4.2 Konduktivitas termal	10	
		2.4.3 Konveksi	11	
		2.4.4 Radiasi	12	
		2.4.5 Energi yang berguna	13	
	2.5	2.4.6 Efisiensi kolektor	13 13	
		Cara Kerja Pemanas Air Tenaga Surya Aluminium	13	
	2.0.	2.6.1. Sifat-Sifat Aluminium	14	
		2.6.2. Karakteristik Aluminium	16	
		2.6.3. Kelebihan Aluminium	16	
		2.6.4. Kekurangan Aluminium	16	
	2.7.	Kaca Penutup	17	
	,	2.7.1.Karakteristik Dasar Fasa Kaca	17	
BAB 3	ME	TODE PENELITIAN	20	
	3.1	Tempat dan Waktu	20	
		3.1.1 Tempat Penelitian	20	

		3.1.2. Waktu Penelitian	21
	3.2	Bahan dan Alat Penelitian	21
		3.2.1 Bahan penelitian	21
		3.2.2 Alat-alat penelitian	22
	3.3	Bagan Alir Penelitian	24
	3.4	Prosedur Penelitian	25
	3.5	Rancangan Alat Penelitian.	26
BAB 4	HAS	SIL DAN PEMBAHASAN	27
	4.1	Hasil Perancangan Alat Solar Water Heater	27
	4.2	Proses Pengujian Alat Solar Water Heater	27
	4.3	Hasil Pengambilan Data SWH	31
		4.3.1 Hasil Pengambilan Data SWH Menggunakan Kaca dan	
	Tidak	Menggunakan Kaca Hari Pertama	31
		4.3.2 Hasil Pengambilan Data SWH Menggunakan Kaca Dan	
	Tanpa	Menggunakan Kaca Hari Kedua	32
		4.3.3 Hasil Pengambilan Data SWH Menggunakan Kaca Dan	
	Tanpa	Menggunakan Kaca Hari Ketiga	32
	4.4	Hasil Pengujian Temperatur Terhadap Waktu	33
	4.5	Efektivitas SWH Menggunakan Kaca Dan Tanpa Menggunakan	
		Kaca	39
	4.6	Perhitungan penyerapan energi panas Dan Efisiensi Kolektor	40
		4.6.1 Perhitungan Kolektor Dengan Menggunakan Kaca	
		Penutup	40
		4.6.2 Perhitungan Kolektor Tanpa Menggunakan Kaca Penutup	42
BAB 5	KES	IMPULAN DAN SARAN	45
	5.1.	Kesimpulan	45
	5.2.	Saran	45

DAFTAR PUSTAKA

LAMPIRAN LEMBAR ASISTENSI SK PEMBIMBING BERITA ACARA SEMINAR TUGAS AKHIR DAFTAR RIWAYAT HIDUP

DAFTAR TABEL

	Halaman
Tabel 2.1 Konduktivitas Termal	11
Tabel 2.2 Sifat Fisika Aluminium	15
Tabel 3.1 Jadwal Kegiatan Penelitian	21
Tabel 4.1 Pengaruh Waktu TerhadapTemperatur Solar Water Heater	
Dengan menggunakan kaca saat gerimis	33
Tabel 4.2 Pengaruh Waktu Terhadap Temperatur	
Solar water heater tanpa menggunakan kaca saat gerimis	34
Tabel 4.3 Pengaruh Waktu Terhadap Temperatur Solar Water Heater	
Dengan Menggunakan Kaca Pada Saat Berawan	35
Table 4.4 Pengaruh Waktu Terhadap Temperatur Solar Water Heater	
Tanpa Menggunakan Kaca Pada Saat Berawan	36
Tabel 4.5 Pengaruh Waktu Terhadap Temperatur Solar Water Heater	
Dengan Menggunakan Kaca Pada Saat Cerah	37
Tabel 4.6 Pengaruh Waktu Terhadap Temperatur Solar Water Heater	
Tanpa Menggunakan Kaca Pada Saat Cerah	38
Tabel 4.7 Data Rata-Rata Pengujian Perhari Kolektor Dengan Kaca	40
Tabel 4.8 Data Rata-Rata Pengujian Perhari Kolektor Tanpa Kaca	42

DAFTAR GAMBAR

H	Halaman
Gambar 2.1 Klasifikasi Pemanas Air Tenaga Surya (Solar Water Heater)	5
Gambar 2.2 Solar Water Heater Pasif	6
Gambar 2.3 Solar Water Heater Aktif	6
Gambar 2.4 Kolektor penyerap panas	7
Gambar 2.5 Skema kolektor surya plat datar	8
Gambar 2.6 Skema kolektor terkonsentrasi	8
Gambar 2.7 Skema kolektor tabung terevakuasi	9
Gambar 2.8 Laju Perpindahan Panas Konduksi	10
Gambar 2.9 Perpindahan panas konveksi	12
Gambar 2.10 Perpindahan Panas Radiasi	12
Gambar 2.11 Kaca Bening	17
Gambar 2.12 kaca Rayben	18
Gambar 2.13 Kaca Es	19
Gambar 2.14 Kaca Bening	19
Gambar 3.1 Tempat Pelaksanaan Penelitian	20
Gambar 3.2 Atap Pelaksaan Penelitian	20
Gambar 3.3 Air	21
Gambar 3.4 Laptop Lenovo Ideapad 100-14IBD	22
Gambar 3.5 Arduino UNO R3	22
Gambar 3.6 Sensor DS18B20	22
Gambar 3.7 Selenoid Water Valve	23
Gambar 3.8 wadah sebagai alat uji	26
Gambar 4.1 Rancangan Alat Solar Water Heater Dengan Menggunakan	
Kaca Dan Tanpa Menggunakan Kaca	27
Gambar 4.2 Merancang Sensor DS18B20	27
Gambar 4.3 Memeriksa Sensor Yang Telah Dipasang	28
Gambar 4.4 Menghidupkan Pompa Air	28
Gambar 4.5 Menghubungkan Sensor DS18B20 Ke Arduino UNO R3	29
Gambar 4.6 Menghidupkan Laptop	29

Gambar 4.7 Menghubungkan Arduino UNO R3 Ke Laptop	29
Gambar 4.8 Memastikan Sensor Dapat Membaca Data	30
Gambar 4.9 Menunggu Hasil Pengujian	30
Gambar 4.10 Merapikan Kembali Tempat Pengujian	30
Gambar 4.11 Mengembalikan Alat-Alat Pengujian Pada Tempatnya	31
Gambar 4.12 Hasil Pengambilan Data Menggunakan Kaca Dan Tanpa	
Kaca Hari Pertama	32
Gambar 4.13 Hasil pengambilan data menggunakan dan tanpa	
menggunakan kaca hari kedua	32
Gambar 4.14 Hasil pengambilan data menggunakan dan tanpa	
menggunakan kaca hari ketiga	32
Gambar 4.15 Grafik pengaruh temperatur terhadap waktu pada	
saat gerimis	34
Gambar 4.16Grafik pengaruh waktu terhadap temperatur pada	
saat gerimis	35
Gambar 4.17 Grafik pengaruh waktu terhadap temperatur pada	
saat berawan	36
Gambar 4.18 Grafik pengaruh waktu terhadap temperatur	
pada saat berawan	37
Gambar 4.19 Grafik pengaruh waktu terhadap temperatur pada saat cerah	38
Gambar 4.10 Grafik pengaruh waktu terhadap temperatur pada saat cerah	35

DAFTAR NOTASI

Halaman

1.	Q = Jumlah kalor yang dipindahkan	(W)
2.	k = Konduktivitas termal bahan	$(W/m.^{\circ}C)$
3.	A = Luas bidang pemanasan	(m^2)
4.	$\frac{\Delta t}{\Delta x} = \text{Gradien temperatur}$	(°C/m)
5.	L = Tebal bahan	(m)
6.	h = Koefisien perpindahan kalor konveksi	$(W/m.^{\circ}C)$
7.	A = Luas penampang perpindahan kalor secara kony	veksi (m^2)
8.	T_S = Temperatur permukaan	(° <i>C</i>)
9.	$T\infty$ = Temperatur fluida yang terletak jauh dari perm	ukaan (° C)
10.	ε = Emisivitas permukaan	
11.	σ = Konstanta Stefan-Boltzmann	$(5,67.10^{-3}W/m^2.K^4)$
12.	T_1 = Temperatur daerah sekeliling permukaan	(°C)
13.	$\eta_a=$ Efisiensi kolektor	(%)
14.	Qu.a =Energi berguna pada kolektor	(Watt)
15.	Ac =Luas kolektor	(A)
16.	IT = Intensitas cahaya matahari	

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Air merupakan sumber daya alam yang paling banyak digunakan dalam kehidupan sehari-hari.Mandi misalnya, untuk satu kali mandi seseorang sedikitnya menghabiskan 20 liter air bersih.Namun,di sebagian wilayah Indonesia memiliki suhu yang relatif rendah,untuk itu masyarakat memerlukan air hangat untuk mandi.Akan tetapi,untuk memanaskan air masyarakat masih banyak menggunakan api (kompor) dan pemanas listrik.Hal ini tentu menambah angka kebutuhan energy dan memerlukan suatu alternatif baru guna memenuhi kebutuhan tersebut.

Indonesia terletak di iklim khatulistiwa, sinar surya rata-rata harian adalah 4000-5000 Wj/m²,sedangkan rata-rata jumlah jam sinaran antara 4 hingga 8 jam.Indonesia mengalami jumlah hari hujan sekitar 170 hari per tahun,rata-rata suhu udara antara 26°C hingga 32°C dan kelembaban relativ rata-rata 80% hingga 90% dan tidak pernah turun di bawah 60%.(Teknologi Tenaga Surya,2015:21).

Pemanfaatan energi matahari dapat dilakukan dengan mengubah radiasi menjadi panas, ini dikenal sebagai sistem panas matahari.Daerah sekitar khatulistiwa menerima sinar surya rata-rata tahunan sekitar 600-700 W/m²,selama 8 jam sehari.Dalam keadaan tertentu kadang lebih dari 1000 W/m²,tetapi hanya terjadi dalam waktu yang singkat. %.(Teknologi Tenaga Surya,2015:22).

Pemanfaatan energi matahari yang banyak digunakan adalah sebagai penyedia energi panas, seperti untuk memasak, distilasi air laut, pemanas air, dan pengering produk makanan. Pemanfaatan energi matahari tersebut dapat dilakukan dengan konversi panas.

Pemanfaatan energi panas matahari dapat digunakan untuk berbagai peralatan sehari-hari seperti *solar water heater* (SWH). SWH merupakan salah satu solusi penyedia air panas untuk kebutuhan mandi baik dalam skala rumah tangga maupun komersil guna mengurangi penggunaan energi listrik dan bahan bakar fosil.Namun dalam prakteknya, ternyata peralatan ini masih memiliki

kelemahan yakni masih membutuhkan energi pemanas tambahan berupa *electric heater* untuk membantu proses pemanasan air.Dalam hal ini diperlukan upaya dalam meningkatkan panas untuk SWH guna mengurangi penggunaan energi listrik.

Untuk itu penggunaan pipa alumunium yang berbentuk *hexagonal* yang disusun layak nya sararang lebah *(honeycomb)* di yakini mampu memberikan efektifitas dalam penyerapan panas untuk memaksimalkan kinerja dari *solar* water heater (SWH).

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah di uraikan, dapat di rumuskan masalah yang terdapat dalam penelitian ini adalah bagaimana menentukan upaya peningkatan penyerapan energi panas *solar water heater* (SWH) dengan memanfaatkan *honeycomb* sebagai aliran air.

1.3 Ruang Lingkup

Pada penulisan penelitian ini ada beberapa pembatasan masalah agar penelitian ini lebih terarah dan sistematis, antara lain :

- 1. Menggunakan plat alumunium berbentuk *honeycomb* sebagai *kolektor* panas.
- 2. Metode pengambilan data mengguanakan *micro controller Arduino uno R3*.
- 3. Proses pengambilan data dilakukan dalam 3 hari selama 8 jam (pukul 08:00-17:00) guna melihat temperature maksimal.

1.1.1 1.4. Tujuan Penelitian

Adapun tujuan dari penulisan laporan ini adalah:

- 1. Untuk menentukan peningkatan efektifitas kinerja *solar water heater* (SWH) dengan metode *honeycomb* sebagai *kolektor* panas.
- 2. Untuk mengukur efektifitas kinerja *solar water heater* (SWH) dengan menggunakan kaca dan tidak menggunakan kaca penutup.

1.5. Manfaat Penelitian

Manfaat dari penelitian ini antara lain adalah:

- 1. Mengurangi penggunaan bahan bakar fosil yang berdampak pada pencemaran udara.
- 2. Memberikan wawasan tentang pengembangan iptek khususnya dalam bidang konversi energi.
- 3. Mendapatkan gambaran teknologi SWH menggunakan *thermal energy storage* yang memenuhi kriteria sumber energi masa depan yaitu terbarukan.
- 4. Membantu pemerintah dalam menanggulangi isu lingkungan hidup.

BAB 2 TINJAUAN PUSTAKA

2.1. Prinsip Pemanas Air Tenaga Surya (*Solar Water Heater*)

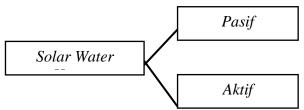
Menurut Sutrisno dan Mustofa (2014) sistem pemanas air tenaga surya pada dasar nya ialah memanfaatkan sinar surya untuk memanaskan air. Ada dua bagian penting dalam system pemanas air tenaga surya yaitu pengumpul surya (kolektor) dan tangki penyimpanan air panas. Pengumpul surya terdiri atas plat penyerap panas dan pipa-pipa yang di dalam nya terdapat air yang akan dipanaskan.

Sinar surya yang menimpa pengumpul surya sebagian diserap oleh plat penyerap dan sebagian lagi dipantulkan kembali,karena adanya kaca penutup maka sinar yang dipantulkan oleh plat penyerap akan dipantulkan kembali ke plat penyerap,sehingga plat menjadi panas.Plat yang panas ini akan memindahkan panas nya kepada air di dalam pipa air.Penyerapan panas ini cukup efisien, sinar surya yang menimpa plat penyerap dapat diserap oleh plat penyerap."Besarnya panas yang di hantarkan secara konduksi melalui suatu dinding adalah berbanding lurus dengan luas permukaan normal [A],berbanding lurus dengan beda suhu kedua permukaan dinding (ΔT),dan berbanding terbalik dengan tebal dinding (x)"(Perpindahan Panas,2015:32).

Parameter-parameter yang berpengaruh terhadap unjuk kerja kolektor diantaranya adalah ketebalan pelat penyerap dan jarak antar pipa-pipa kolektor yang disebut efisiensi sirip kolektor. Hasil penelitian menujukkan semakin tebal pelat penyerap dan semakin kecil jarak antar pipa-pipa kolektor, efisiensi sirip dari kolektor semakin optimum. (Kristanto dan San. 2001)

Dengan pemakaian pelat aluminium dengan ketebalan 0,2 mm yang di bentuk segi enam (*hexagonal*) dengan diameter 30 mm dan disusun berderet layaknya sarang lebah (honeycomb) di harapkan mampu menghantarkan panas ke tiap-tiap pipa dengan baik dan mampu memanaskan air yang berkapasitas 63 liter.

Arah kolektor *solar water heater* juga mempengauhi proses penyerapan energy matahari. Hasil perhitungan efisiensi termal kolektor surya juga menunjukkan bahwa sudut *azimut* 180° (Utara) menunjukkan efisiensi rata-rata paling relatif stabil sepanjang hari dibandingkan dengan arah hadap yang

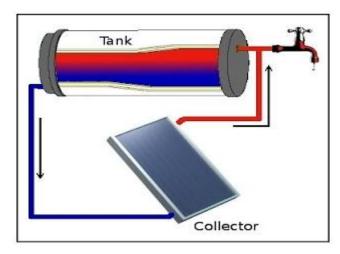

lain.Nilai efisiensi pada arah hadap utara dengan sudut kemiringan 30° mencapai nilai maksimal 64,96% dengan nilai rata-rata 63,93%.(Agam Sulistyo dkk..,2017)

Suhu air yang dihasilkan dipengaruhi oleh intensitas sinar surya,jumlah air yang akan dipanaskan dan efisiensi alat.Oleh karena itu masih banyak pemanas air tenaga surya yang masih dalam penelitian meskipun sudah banyak dipasarkan guna memaksimalkan efisiensi alat.

2.2. Klasifikasi Pemanas Air Tenaga Surya (*Solar Water Heater*)

Berdasarkan pada sistem pengaliran air pada sistem pemanas nya,pemanas air tenaga surya di bagi atas dua macam yakni : *Sistem Pemanas Air Tenaga Surya Pasif* dan *Sistem Pemanas Air Tenaga Surya Aktif*. (Teknologi Tenaga Surya,2015:137).

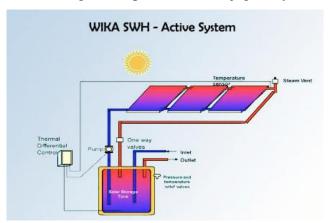
Adapun klasifikasi Pemanas Air Tenaga Surya (Solar Water Heater) dapat dilihat pada gambar 2.1


Gambar 2.1 Klasifikasi Pemanas Air Tenaga Surya (Solar Water Heater)

2.2.1. Solar Water Heater Pasif

Sistem pemanas surya pasif juga dikenal sebagai *sistem termosifon*. Dalam sistem pemanas ini,tidak menggunakan tenaga bantu dalam menghasilkan air panas. Pada sistem pemanas ini,air dalam pengumpul surya mengalir melalui kaedah konveksi bebas yang di sebabkan oleh perbedaan suhu.

Dalam pengaplikasiannya tangki air dipasang lebih tinggi daripada pengumpul surya.Sinar surya yang menimpa pengumpul surya menyebabkan plat penyerap menjadi panas,kemudian panas dipindahkan kepada air di dalam pipapipa air yang dipasang melekat pada plat penyerap hingga air menjadi panas.Air yang suhu nya lebh tinggi mempunyai berat jenis yang lebih kecil,sehingga air mengalir ke atas dan masuk ke dalam tangki penampungan,kemudian air dingin yang ada di dalam tangki otomatis akan turun dan kembali mengisi kekosongan


air di dalam pipa pemanas.Hal ini justru membuat alat ini lebih simple tanpa adanya alat tambahan.

Gambar 2.2 Solar Water Heater Pasif

2.2.2. Solar Water Heater Aktif

Pada sistem pemanas aktif,air mengalir dari pengumpul ke tangki penyimpanan air bukan dengan cara alamiah,akan tetapi dibantu dengan system pompa.Dengan demikian tangki penyimpanan air panas dapat di pasang pada tempat yang lebih rendah daripada pengumpul surya,sehingga tangki dapat dipasang dengan kapasitas yang lebih besar.Untuk memperoleh suhu air yang sesuai,pada system ini perlu di pasang pengatur suhu dan pemanas tambahan.Hal ini justru menambah rancangan komponen alat dan juga biaya.

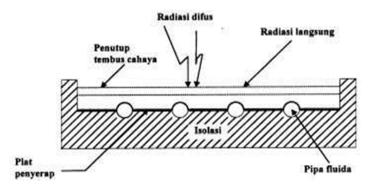
Gambar 2.3 Solar Water Heater Aktif

2.3. Komponen Utama Solar Water Heater (SWH)

Secara sederhana alat ini bekerja dengan cara menangkap radiasi panas matahari dengan *kolektor* panas sebagai medianya,dan digunakan sebagai kompor pemanas air dan kemudian air yang telah dipanaskan akan dialirkan ke tabung penampungan oleh piapa penghantar. Diantara *kolektor* dan pipa penghubung tabung penampungan air,disisipkan katup pembaca temperatur (termostat) agar suhu air panas yang diinginkan dapat bersirkulasi,dengan ini tidak perlu khawatir akan temperatur air yang terlalu tinggi. Adapun komponen utama dari *solar water heater* (SWH) diantaranya.

2.3.1. *Kolektor* Penyerap Panas (Pengumpul Surya)

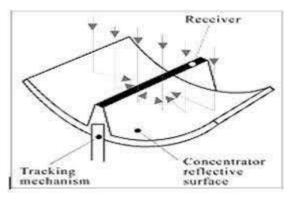
Kolektor penyerap panas yaitu komponen alat yang berfungsi untuk mengumpulkan panas dengan menyerap sinar matahari, alat ini juga terdiri dari beberapa komponen yang sensitif menyerap sinar matahari agar dapat bekerja secara optimal.


Gambar 2.4 Kolektor penyerap panas

Menurut Sutrisno dan Mustofa (2014) Pada kolektor tenaga surya salah satu parameter yang penting adalah efisiensi sirip. Pada *solar water heater* dengan kolektor konvensional kontruksinya menggunakan pipa dan pelat penyerap, pelat penyerap berfungsi untuk menyerap panas dan memindahkan panas secara konduksi kepipa-pipa yang tersambung pada pelat penyerap.

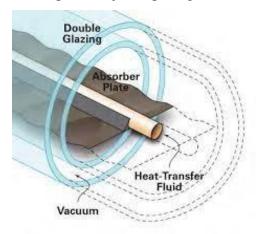
Adapun jenis-jenis kolektor surya antara lain:

1. Kolektor Surya Plat Datar


Kolektor surya plat datar merupakan jenis kolektor yang banyak dipakai dan banyak digunakan untuk pemanas air surya dan pemanas udara surya. kolektor surya plat datar terdiri dari plat penyerap yang mempunyai konduktivitas termal baik yang berhubungan dengan pipa-pipa (saluran) yang mengalirkan cairan pada sistem pemanas air, pentup transparan dan insulasi. Energi radiasi yang datang ditransmisikan melalui penutup transparan dan diubah menjadi panas oleh plat penyerap dimana di bagian dasar plat penyerap diberi insulasi. Skema kolektor surya plat datar dapat ditunjukan pada gambar 2.5:

Gambar 2.5 Skema kolektor surya plat datar

2. Kolektor terkonsentrasi


Kolektor ini mempunyai sistem pencerminan yang lebih besar untuk memfokuskan berkas radiasi sinar matahari pada pipa-pipa yang mengalirkan fluida. Cermin-cermin berfungsi sebagai reflektor dan dihubungkan dengan sistem mekanik, sehingga dapat mengikuti pergerakan matahari sepanjang hari. Kolektor ini mampu menghasilkan panas yang lebih besar dari pada kolektor plat datar, tetapi kolektor ini sangat mahal dan sangat rrumit untuk digunakan. Skema kolektor terkonsentrasi dapat ditunjukan pada gambar 2.6:

Gambar 2.6 Skema kolektor terkonsentrasi

3. Kolektor tabung terevakuasi

Kolektor ini tersusun dari tabung kacayang terevakuasi. Setiap tabung terdiri dari plat penyerap tipis yang melekat pada pipa didalam tabung kaca. Keadaan vakum didalam tabung kaca mencegah kehilangan panas dan temperatur air yang dapat dihasilkan oleh kolektor ini diatas 100°C. Air panas yang dihasilkan dapat digunakan untuk proses industri. Skema kolektor tabung terevakuasi dapat ditunjukan pada gambar 2.7:

Gambar 2.7 Skema kolektor tabung terevakuasi

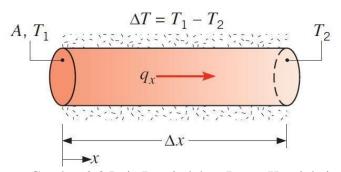
2.3.2. Tangki Penyimpanan

Tangki penyimpanan merupakan wadah yang berfungsi untuk menampung dan menyimpan air yang telah di panaskan dari kolektor. Alat ini memiliki sistem kerja yang sama dengan termos air yang mampu menyimpan panas air. Untuk mengoptimalkan kinerja dari tangki ini, maka bagian tangki dilapisi dengan lapisan isolasi agar panas tidak terbuang. Namun, air juga bisa dialirkan langsung ke bak mandi ataupun wadah penampungan biasa lainnya.

2.4. Perpindahan panas

Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan panas. Kesetimbangan panas terjadi jika panas dari sumber panas sama dengan jumlah panas benda yang di panaskan dengan panas

yang disebarkan oleh benda tersebut ke medium sekitarnya. Proses perpindahan panas ini berlangsung dalam 3 mekanisme, yaitu:


- a. Konduksi
- b. Konveksi
- c. Radiasi

2.4.1. Konduksi

Konduksi adalah proses perpindahan panas dari suatu bagian benda padat atau material ke bagian lainnya. Perpindahan panas secara koduksi dapat berlangsung pada benda padat, umumnya logam, Hubungan dasar untuk perpindahan panas dengan cara konduksi diusulkan oleh ilmuwan perancis, J.B.J. Fourier dalam tahun 1882.

Konduksi dapat dirumuskan sebagai berikut :

$$Q_{kond} = -k \times A \frac{\Delta t}{\Delta x} \tag{2.2}$$

Gambar 2.8 Laju Perpindahan Panas Konduksi

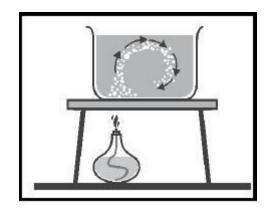
2.4.2 Konduktivitas termal

Konduktivitas thermal dapat didefenisikan sebagai ukuran kemampuan bahan untuk menghantarkan panas. Konduktifitas termal adalah sifat bahan dan menunjukan jumlah panas yang mengalir melintasi satu satuan luas jika gradien suhunya satu. Bahan yang mempunyai konduktifitas termal yang tinggi dinamakan konduktor, sedangkan bahan yang konduktivitas termalnya rendah disebut isolator. Konduktivitas termal berubah dengan suhu, tetapi dalam banyak soal perekayasaan perubahannya cukup kecil untukdiabaikan. Nilai angka konduktivitas termal menunjukan seberapa cepat kalor mengalir dalam bahan tertentu. Makin cepat molekul bergerak, makin cepat pula ia mengangkut energi.

Jadi konduktivitas termal bergantung pada suhu. Pada pengukuran konduktivitas termal mekanisme perpindahannya dengan cara konduksi.

Konduktivitas termal dapat dirumuskan sebagai berikut:

$$Q_{kond} = kA \frac{\Delta t}{L} \tag{2.2}$$

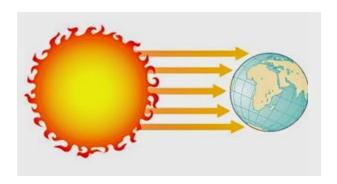

Tabel 2.1 konduktivitas termal (JP. Holman, 2010)

Material	Thermal Conductivity k (W/°C)
Aluminium	204
Timah (<i>Lead</i>)	35
Besi (<i>Iron</i>)	73
Carbon Steel 0.5% C	54
Nickel Steel 20% Ni	19
Chrom Steel 1% Cr	61
Copper	386
Magnesium	171
Molybdenum	123
Nickel	90
Perak	419
Timah	64
Tungsten	163
Seng (Zinc)	112.2

2.4.3 Konveksi

Konveksi adalah perpindahan panas oleh gerakan massa pada fluida dari suatu daerah ruang ke daerah lainnya. Perpindahan panas konveksi merupakan mekanisme perpindahan panas antara permukaan benda padat dengan fluida, laju perpindahan panas dengan cara konveksi antara suatu permukaan dan suatu fluida dapat dihitung dengan hubungan :

$$Q_{kond} = h \times A(T_S - T_f) \tag{2.3}$$



Gambar 2.9 Perpindahan panas konveksi

2.4.4 Radiasi

Radiasi adalah perpindahan panas tanpa memerlukan zat perantara (medium) tetapi dalam bentuk gelombang elektromagnetik. Sebagai contoh, perpindahan panas dari matahari ke bumi. Panas dari matahari tidak dapat mengalir melalui atmosfer bumi secara konduksi karena antara bumi dan matahari adalah hampa udara. Panas matahari tidak dapat sampai ke bumi melalui proses konveksi karena konveksi juga harus melalui pemanasan bumi terlebih dahulu. Jadi walaupun antara bumi dan matahari merupakan ruang hampa, panas mataharitetap sampai ke bumi melalui perpindahan panas secara radiasi. Besarnya laju perpindahan panas secara radiasi adalah:

$$Q_{rad} = \sigma A_1 (T_1^4 - T_1^4)$$
 (2.4)

Gambar 2.10 Perpindahan Panas Radiasi

2.4.5 Energi Yang Berguna

Energi yang berguna dugunakan untuk menghitung seberapa besar panas yang berguna yang dihasilkan oleh kolektor surya.sedangkan efisiensi digunakan untuk menghitung performansi atau unjuk kerja dari kolektor tersebut.

Untuk menghitung energi yang di serap atau energi berguna pada kolektor dapat di gunakan persamaan:

$$Q_{ua} = \mathcal{M}.Cp.\Delta T \tag{2.5}$$

2.4.6 Efisiensi Kolektor

Efisiensi kolektor adalah perbandingan panas yang di serap oleh fluida atau energi berguna dengan intensitas matahari yang mengenai kolektor.Performansi kolektor dapat dinyatakan dengan efisiensi thermal,akan tetapi intensitas matahari berubah terhadap waktu.

Efisiensi kolektor dapat dihitung menggunakan persamaan:

$$\eta = \frac{Q_{ua}}{\Delta_c \times IT} \times 100\% \tag{2.6}$$

2.5 Cara Kerja Pemanas Air Tenaga Surya

Alat pemanas air tenaga surya ini merupakan sebuah alat yang berfungsi meningkatkan temperatur air dengan melibatkan panas matahari. Cara kerjanya; pada saat sinar matahari masuk ke kotak kolektor, kolektornya menyerap energi radiasi yang masuk (energi ini memanaskan plat kolektor, susunan pipa, dan udara yang ada di dalam kotak kolektor sehingga terjadi efek rumah kaca), temperatur dalam kotak menigkat,dan kalor yang ada digunakan untuk memanaskan air yang ada di dalam susunan pipa (yang diletakkan di atas plat kolektornya), selanjutnya air yang panas akan mengalir ke atas masuk ke tangki penampung (karena massa jenisnya lebih rendah dari massa jenis air yang dingin).

2.6 Aluminium

Aluminum adalah logam yang paling banyak terdapat di kerak bumi dan unsur ketiga terbanyak setelah oksigen dan silicon. Aluminium terdapat dikerak

bumi sebanyak kira-kira 8,07% hingga 8,23% dari seluruh massa padat dari kerak bumi, dengan produksi tahunan dunia sekitar 30 juta ton pertahun dalam dalam bentuk bauksit dan bebatuan lain (*corrundum, gibbsite, diaspore, dan lain-lain*). Sulit menemukan aluminium murni dialam karena aluminium merupakan logam yang cukup reaktiif.

Aluminium murni adalah logam yang lunak, tahan lama, ringan, dan dapat ditempa dengan penampilan luar bervariasi antara keperakan higga abu-abu, tergantung kekasaaran permukaan.

Aluminum murni 100% tidak memiliki kandungan unsur apapun selain aluminium itu sendiri, namun aluminium yang dijual di pasaran tidak pernah mengandung 100% aluminium, melainkan selalu ada pengotor yang terkandung di dalamnya. Pengotor yang mungkin berada didalam aluminium murni biasanya adalah gelembung gas di dalam yang masuk akibat proses peleburan dan pendinginan/pengecoran yang tidak sempurna.

Material cetakan akibat kualitas cetakan yang tidak baik, atau pengotor lainnya akibat kualitas bahan baku yang tidak baik (misalnya pada proses daur ulang aluminium). Umumnya, aluminium murini yang dijual dipasaran adalah aluminium murini 99%, misalnya aluminium *foil*.

2.6.1 Sifat-Sifat Aluminium

Sifat-sifat penting yang dimiliki aluminium sehingga banyak digunakan sebagai material teknik adalah sebagai berikut:

1. Berat jenisnya ringan (hanya 2,7 gr/cm³, sedangkan besi 8,1 gr/cm³)

2. Tahan korosi

Sifat bahan korosi dari aluminium diperoleh karena terbentuknya lapisan aluminium oksida (A1₂O₃) pada permukaan aluminium (fenomena pesivasi). Pasivasi adalah pembentukan lapisan tersebut melindungi lapisan dalam logam dari korosi. Lapisan ini membuat A1 tahan korosi tetapi sekaligus sukar dilas, karena perbedaan *Melting Point* (titik lebur).

3. Penghantar listrik dan panas yang baik

Aluminium juga merupakan konduktor panas dan elektrik yang baik. Jika dibandingkan dengan massanya, aluminium memiliki keunggulan

dibandingkan dengan tembaga, yang saat ini logam konduktor panas dan listrik yang cukup baik, namun cukup berat.

4. Mudah dipabrikasikan/ditempa

- Sifat lain yang menguntungakan dari aluminium adalah sangat mudah difabrikasikan, dapat dituang (dicor) dengan cara penuangan apapun. Dapat deforning dengan cara: rolling drawing, forging, extrusi, dan lain-lain. Dan menjadi benttuk yang rumit sekalipun.
- 5. Kekuatan rendah tetapi pemaduan (*alloying*) kekuatannya bisa ditingkatkan Kekuatan dan kekurangan aluminium tidak begitu tinggi dengan pemaduan dan *heat treatment* dapat ditingkatkan kekuatan dan kekerasannya. Kekuatan mekanik meningkat dengan penambahan Cu, Mg, Si, Mn, Zn dan Ni. Sifat elastisnya yang sangat rendah, hampir tidak dapat diperbaiki baik dengan pemaduan maupun dengan *heat treatment*.

Selain sifat yang diatas, aluminium juga memiliki sifat fisika,mekanik yaitu:

a. Sifat Fisika Aluminium, seperti pada tabel dibawah ini:

Tabel 2.2 Sifat Fisik Aluminium (Surdia, 1999)

	Kem	Kemurnian Al (%)			
Sifat-sifat					
	99,996	>99,0			
Massa jenis (20°C)	2,6968	2,71			
Titik cair	660,2	653,657			
Panas Jenis (cal/g°C)(100°C)	0,2226	02297			
Hantaran Listrik (%)	64,94	59			
Koefisien Pemuaian (20	- 23,86 x 10 ⁻⁶	23,5 x 10 ⁻⁶			
100°C)					
Jenis Kristal, konstanta kisi	fcc,a= 4,013	fcc,a= 4,04 Kx			
	Kx				

Tabel 2.2 menunjukan sifat fisik alumunium ketahanan korosi berubah menurut kemurnian, pada umumnya untuk kemurnian 99,0 % atau diatasnya dapat dipergunakan di udara tahan dalam bartahun-tahun. Hantarana listrik A1, kira-kira 65 % dari hantaran listrik tembaga, tetapi masa jenisnya kira-kira sepertiganya sehingga memungkinkan untuk memperluas penampangnya. Oleh karena itu dapat dipergunakan untuk kabel tenaga dan dalam berbagai bentuk umpamanya sebagai lembaran tipis (*foil*). Dalam hal ini dipergunakan A1 dengan kemurnian 99,0% untuk reflektor yang

memerlukan reflektifitas yang tinggi juga untuk kondensor elektronik dipergunakan aluminium dengan kemurnian 99,99% (Serda, 1999).

2.6.2 Karakteristik Aluminium

Aluminium merupakan logam berwarna putih keperakan dengan sifat ringan, kuat, namun mudah dibentuk. Nomor atom aluminium adalah 13 dan diwakili dengan simbol A1. Dalam kerak bumi, aluminium merupakan unsur paling belimpah ketiga setelah oksigen dan silikon.

Aluminium merupakan konduktor panas dan listrik yang sangat baik, bahkan lebih baik dari tembaga. Logam ini merupakan elemen yang sangat reaktif dan membentuk ikatan kimia yang kuat dengan oksigen. Aluminium akan membentuk lapisan sangat tipis oksida aluminium ketika bereaksi dengan udara yang akan melindungi dari karat

2.6.3. Kelebihan Aluminium

- a. Tahan keropos dan tidak akan dimakan rayap. Bahan aluminium yang lebih tahan lama dari pada kayu. Tidak menyusut seperti kayu, dan bentuk tidak akan pernah berubah atau jadi melengkung jika dilanda cuaca ekstrim seperti panas, kemarau, atau dingin dimusim penghujan.
- b. Desainnya dapat dibuat sesuai pesanan. Kekunggulan aluminium adalah karena materialnya kuat namun bobotnya tetap ringan sehingga mudah dipindahkan bahan aluminium juga mudah di rawat.
- c. Ekonomis, dalam pengertian biaya proses pembuatan, pemasangan, dan perawatan aluminium lebih murah dan tahan lama.

2.6.4 Kekurangan Aluminium

- a. Mudah tergores
- b. Lemah terhadap benturan
- c. Kurang flexsibel dalam desain

2.7 Kaca Penutup

Kaca merupakan material padat yang bening,tembus pandang (transparan) dan biasanya rapuh.Kaca banyak ditemukan dalam kehidupan seharihari,misalnya pada perabotan,gedung,dan industri otomotif.Sama hal nya dalam pengujian ini juga memakai kaca sebagai penutup kolektornya.

Kaca yang digunakan dalam penelitian ini adalah kaca bening,yaitu jenis kaca transparan yang tidak berwarna dan tembus akan cahaya.Kaca bening dapat dilihat pada gambar di bawah:

Gambar 2.11 Kaca Bening

2.7.1 Karakteristik Dasar fasa Kaca

Sifat kaca yang penting dipahami adalah sifat pada saat kaca berbentuk fasa cair dan fasa padat. Sifat fasa cair dari kaca digunakan dalam proses pengambangan (floating) dan pembentukan kaca, sedangkan untuk sifat fasa padat dari kaca digunakan didalam penggunaannya. Beberapa sifat fisik dan kimia yang penting dari kaca antara lain.

a. Sifat Mekanik

Tension strength (daya tarik) adalah sifat mekanik utama dari kaca. Tensil strength merupakan tegangan maksimum yang dialami oleh kaca sebelumnya terpisahnya kaca akibat adanya tarikan (fracture). Sumber fracture ini dapat muncul jika kaca mempunyai cacat di permukaan, sehingga teganagan akan terkonsentrasi pada cacat tersebut.

b. Densitas dan Viskositas

Densitas adalah perbandingan antara massa suatu bahan dibagi dengan volumenya. Nilai densitas dari kaca adalah sekitar $2,49g/cm^3$. Densitas dari kaca akan menurun seirinh dengan kenaikan temperatur.

c. Sifat Termal

Konduktifitas panas dan panas ekspansi merupakan sifat termal penting dari kaca. Kedua sifat ini digunakan untuk menghitung besarnya perpindahan panas yang diterima oleh kaca tersebut.

d. Optical Properties

Kaca memiliki sifat memantulkan cahaya yang jatuh pada permukaan kaca tersebut. Sebagian sinar darri kaca yang jath itu akan diserap dan sisanya akan diteruskan. Apabila cahaya dari udara melewati medium padat seperti kaca, maka kecepatan cahaya saat melewati kaca akan menurun.

e. Jenis Jenis Kaca

1. Kaca Rayben

- Sulit diliat dari luar.
- Bisa menahan cahaya.

Gambar 2.12 Kaca Rayben

2. Kaca Es

• Umumnya berwarna netral dan putih.

- Memiliki kemampuan mereduksi silau secara maksimum.
- Berwarna buram dan semi tembus pandang.

Gambar 2.13 Kaca Es

3. Kaca bening

- Tidak memiliki warna.
- Cepat menyerap panas.
- Memberikan bayangan yang sempurna.

Gambar 2.14 Kaca Bening

BAB 3 METODOLOGI

3.1. Tempat dan Waktu

3.1.1. Tempat

Tempat pelaksaan pembuatan penelitian ini dilaksanakan di Tembung Pasar 10 Jalan Pendidikan Bandar Khalipah.

Gambar 3.1 Tempat Pelaksaan Penelitian

Gambar 3.2 Atap Pelaksaan Penelitian

3.1.2. Waktu Penelitian

Waktu pelaksanaan penelitian ini yaitu di mulai tanggal di sah kannya usulan judul penelitian oleh Ketua Program Studi Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Sumatera Utara dan akan di kerjakan selama kurang lebih 6 bulan,dimulai dari November 2019 sampai April 2020

Tabel 3.1 Jadwal Kegiatan Penelitian

No	Uraian Kegiatan	Bulan					
NO		1	2	3	4	5	6
1	Pengajuan Judul						
2	Studi Literatur						
3	Pembuatan alat						
4	Pengujian dan						
4	pengolahan data						
5	Penyelesaian tulisan						
6	Seminar hasil						
7	Sidang						

3.2.Bahan dan Alat Penelitian

3.2.1. Bahan Penelitian

Adapun bahan yang di gunakan dalam pembuatan alat ini adalah sebagai berikut:

Air
 Digunakan untuk bahan uji yang akan di panaskan

Gambar 3.3 Air

3.2.2 Alat-alat penelitian

1. Laptop lenovo ideapad 100-14IBD

Laptop lenovo ideapad 100-14IBD Berfungsi sebagai pengambilan data, Gambar laptop ini dapat dilihat pada gambar dibawah ini.

Gambar 3.4 Laptop lenovo ideapad 100-14IBD

2. Arduino Uno

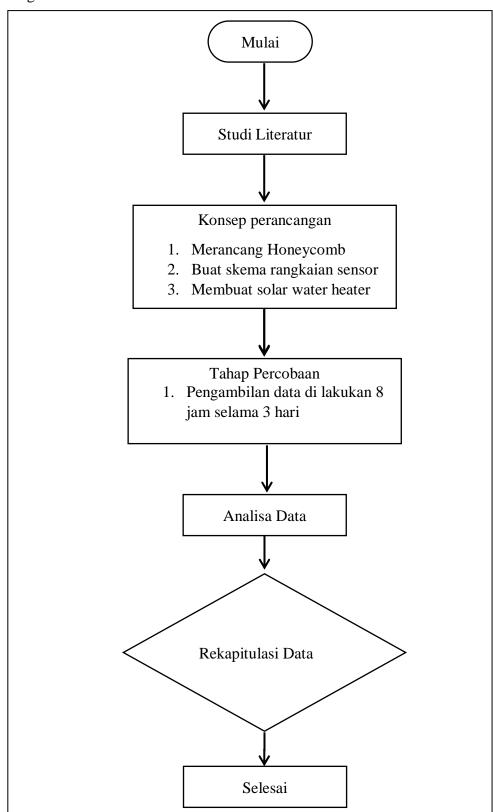
Arduino UNO Berfungsi sebagai pembaca temperatur air, Gambar dimano ini dapat dilihat pada gambar dibawah ini.

Gambar 3.5 Arduino UNO R3

3. Sensor DS18B20

Sensor DS18B20 berfungsi sebagai pembaca temperatur pada air, gambar sensor DS18B20 ini dapat dilihat pada gambar dibawah ini.

Gambar 3.6 Sensor DS18B20


4. Selenoid Valve

Selenoid Water Valve berfungsi sebagai katub otomatis air, gambar Selenoid Water Valve ini dapat dilihat pada gambar dibawah ini.

Gambar 3.7 Selenoid Water Valve

3.3 Bagan Alir Penelitian

3.4 Prosedur Penelitian

Adapun alur penelitian adalah sebagai berikut:

1. Mulai

Penulis mulai menetapkan judul penelitian.

2. Studi Literatur

Pada studi literatur penulis mencari referensi berupa jurnal ataupun buku untuk menjadi acuan penulis dalam menyelesaikan penelitian.

3. Konsep Perancangan

Penulis mulai merancang konsep penelitian yang akan dibuat. Setelah penulis selesai merancang konsep maka akan didapat mekanisme perpindahan panas. Pada mekanisme ini penulis akan mengetahui perubahan suhu dari suhu dingin menjadi suhu panas. Untuk sistem pemantauan yang dipakai juga menggunakan arduino yang telah terhubung ke laptop dan ada beberapa sensor yang akan dipakai.

4. Analisa data

Setelah dilakukan konsep perancangan dan sudah diketahui mekanisme perubahan suhu air, sistem pemantauan dan sensor. Maka penulis melakukan analisa konsep apakah konsep yang sudah dibuat telah layak untuk dioperasikan.

5. Rekapitulasi data

Setelah dilakukannya uji konsep dan hasilnya dinyatakan baik, maka akan dilakukan uji kinerja. Pada uji kinerja ini dilakukan pengujian seberapa lama waktu suhu air dingin menjadi panas, fungsi dari sistem pemantauannya berjalan dengan baik, dan sensor juga berjalan dengan baik.

3.5 Rancangan Alat Penelitian.

Dalam penelitian ini,memerlukan plat aluminium dengan ketebalan 0,2mm yang dibentuk secara *hexagonal* (segi enam) dan di susun secara berderet layaknya sarang lebah (*honeycomb*), untuk membuat komponen utama sebagai pemanas air (*kolektor*). Plat aluminium adalah komponen utama yang berfungsi untuk menangkap atau menyerap panas matahari sebagai upaya pemanasan air.

Plat aluminium ini dibentuk dengan sedemikian rupa, sesuai dengan kebutuhan. Tidak hanya itu, plat aluminium yang telah dibentuk dengan diameter 30 mm dan disusun secara berderet layaknya sarang lebah dengan ukuran panjang 1000 mm x 800 mm mampu menampung air hingga 63 liter.Diujung pipa bagian bawah juga disematkan katub otomatis (*Silenoid valve*) sebagai pengatur suhu air, apabila air telah mencapai suhu yang diinginkan, maka air akan mengalir ke tangki atau wadah penampung air panas. Air yang berada didalam tangki penampungan air panas secara otomatis dialirkan kesetiap bak kamar mandi dan langsung bisa digunakan.

Gambar 3.8 Wadah sebagai alat uji

BAB 4

HASIL DAN PEMBAHASAN

4.1 Hasil Perancangan Alat *Solar Water Heater*

Adapun hasil rancangan alat *solar water heater* (SWH) dengan menggunakan kaca dan tanpa menggunakan kaca seperti gambar di bawah :

Gambar 4.1 Rancangan alat *solar water heater* dengan menggunakan kaca dan tanpa menggunakan kaca

4.2 Proses Pengujian Alat Solar Water Heater (SWH)

Sebelum melakukan penelitian alat *Solar Water Heater* (SWH) terlebih dahulu dilakukan pengujian alat, guna untuk memastikan tiada kebocoran pada alat agar alat dapat bekerja secara efektif. Setelah memastikan tidak adanya kebocoran ,maka alat telah siap untuk penelitian dan pengambilan data. Adapun proses pengujian *solar water heater* (SWH) meliputi:

• Merancang sensor DS18B20 ke solar water heater.

Gambar 4.2 Merancang sensor DS18B20

• Memeriksa kembali sensor yg telah dipasang ke *solar water heater* agar sensor dapat membaca temperatur dengan baik.

Gambar 4.3 Memeriksa sensor yang telah di pasang

• Memasukan air kedalam *solar water heater* hingga penuh dengam menghidupkan pompa air.

Gambar 4.4 menghidupkan pompa air

 Menghubungkan sensor DS18B20 ke arduino UNO R3 yang telah di program agar dapat menampilkan temperatur air saat dilakukannya pengujian.

Gambar 4.5 Menghubungkan sensor DS18B20 ke arduino UNO R3

• Menghidupkan laptop.

Gambar 4.6 Menghidupkan Laptop

• Menghubungkan arduino UNO R3 ke laptop dan memastikan semua sensor dapat membaca temperatur.

Gambar 4.7 Menghubungkan arduino UNO R3 ke laptop

Gambar 4.8 Memastikan sensor dapat membaca data

• Menunggu hasil temperatur air yang telah di tentukan selama waktu pengujian.

Gambar 4.9 Menunggu hasil pengujian

• Merapikan kembali tempat pengujian.

Gambar 4.10 Merapikan kembali tempat pengujian

Mengembalikan alat alat pengujian pada tempatnya

Gambar 4.11 Mengembalikan alat alat pengujian pada tempatnya

• Selesai.

4.3 Hasil Pengambilan Data SWH

Pada hasil pengambilan data alat uji *solar water heater* dapat dilihat untuk data pengujian yang menggunakan kaca dan tidak menggunakan kaca.Pengujian yang dilakukan pada hari yang berbeda dengan keadaan cuaca yang berbeda pula.

4.3.1 Hasil pengambilan data SWH menggunakan kaca dan tidak Menggunakan kaca hari pertama

Time	T1	T2	Т3	T4	T5	Т6	Т7	Т8	Suhu Lingkung Kele an(C) ban(
12:40:41 PM	31,75	32,5	30,75	30	31,25	31,375	30	29,125	28	15				
12:40:45 PM	31,6875	32,5	30,8125	30	31,25	31,375	30	29,0625	28	15				
12:40:48 PM	31,75	32,5	30,8125	30	31,25	31,375	30	29,125	28	15				
12:40:52 PM	31,75	32,5	30,8125	30	31,25	31,375	30	29,125	28	15				
12:40:55 PM	31,8125	32,5	30,8125	30	31,25	31,375	30	29,1875	28	15				
12:40:58 PM	31,8125	32,5	30,8125	30	31,3125	31,375	30	29,1875	28	15				
12:41:02 PM	31,8125	32,5	30,8125	30	31,25	31,375	30	29,125	28	15				
12:41:05 PM	31,8125	32,5	30,8125	30	31,25	31,4375	30	29,125	28	15				
12:41:09 PM	31,75	32,5	30,75	30	31,3125	31,375	30	29,1875	28	15				
12:41:12 PM	31,8125	32,5	30,8125	30	31,3125	31,375	30	29,125	28	15				
12:41:16 PM	31,8125	32,5	30,8125	30	31,3125	31,375	30	29,125	28	15				
12:41:19 PM	31,8125	32,5	30,8125	30	31,3125	31,375	30	29,125	28	15				
12:41:23 PM	31,8125	32,5	30,75	30	31,3125	31,375	30	29,125	28	15				
12:41:26 PM	31,8125	32,5	30,8125	30	31,3125	31,375	30	29,1875	28	15				
12:41:30 PM	31,8125	32,5	30,8125	30	31,3125	31,4375	30	29,125	28	15				
12:41:33 PM	31,8125	32,5	30,8125	30	31,25	31,4375	30	29,1875	28	15				
12:41:37 PM	31,8125	32,5	30,8125	30	31,3125	31,375	30	29,125	28	15				
12:41:40 PM	31,75	32	30,8125	30	31,3125	31,4375	30	29,1875	28	15				
12:41:43 PM	31,8125	32,5	30,8125	30	31,3125	31,4375	30	29,125	28	15				
12:41:47 PM	31,8125	32,5	30,8125	30	31,3125	31,4375	30	29,1875	28	15				
40 44 50 000	24 0400	20.5	20.0405	20	24 2405	24 4275	20	00 4075	00	45				_

Gambar 4.12 Hasil pengambilan data menggunakan kaca dan tanpa kaca hari pertama

Gambar 4.12 Adalah penelitian pada *Solar Water Heater* menggunakan kaca dan tanpa menggunakan kaca berdasarkan data cuaca Deli Serdang,

bahwasannya tanggal 27 Oktober 2021 cuaca berawan. Mengakibatkan adanya perubahan suhu/temperatur yang terjadi pada penelitian yang dilakukan, sehingga dari gambar tersebut dapat diperoleh nilai rata-rata perubahan suhu selama pengujian.

4.3.2 Hasil pengambilan data SWH menggunakan kaca dan tanpa menggunakan kaca hari kedua

Time	T1	T2	Т3	T4	Т5	T6	T7	Т8	Suhu Lingkun gan(C)	Kelemba ban(%)				
12:05:48 PM	39,9375	40,5	36,1875	35	37,6875	37,6875	33	32,5625	37	13				
12:05:51 PM	39,9375	40,5	36,1875	35,5	37,6875	37,6875	33	32,5625	37	13				
12:05:55 PM	39,9375	40,5	36,1875	35,5	37,6875	37,75	33	32,625	37	13				
12:05:58 PM	39,9375	40,5	36,125	35,5	37,6875	37,6875	33	32,5625	37	13				
12:06:02 PM	39,875	40,5	36,25	35,5	37,6875	37,6875	33	32,625	37	13				
12:06:05 PM	39,9375	40,5	36,1875	35,5	37,6875	37,6875	33	32,5625	37	13				
12:06:09 PM	39,875	40,5	36,1875	35,5	37,6875	37,6875	33	32,5625	37	13				
12:06:12 PM	39,9375	40,5	36,1875	35,5	37,6875	37,6875	33	32,5625	37	13				
12:06:15 PM	39,875	40,5	36,1875	35,5	37,6875	37,6875	33	32,625	37	13				
12:06:19 PM	39,875	40,5	36,25	35,5	37,6875	37,6875	33	32,625	37	13				
12:06:22 PM	39,9375	40,5	36,1875	35,5	37,625	37,6875	33	32,5625	37	13				
12:06:26 PM	39,9375	40,5	36,25	35,5	37,6875	37,75	33	32,625	37	13				
12:06:29 PM	39,875	40.5	36,25	35,5	37,625	37,6875	33	32,6875	37	13				
12:06:33 PM	39,875	40,5	36,1875	35,5	37,6875	37,6875	33	32,625	37	13				
12:06:36 PM	39,8125	40,5	36,1875	35,5	37,6875	37,6875	33	32,5625	37	13				
12:06:40 PM	39,875	40,5	36,25	35,5	37,6875	37,75	33	32,6875	37	13				
12:06:43 PM	39,875	40,5	36,25	35,5	37,6875	37,6875	33	32,625	37	13				
12:06:47 PM	39,875	40,5	36,25	35,5	37,6875	37,6875	33	32,6875	37	13				
12:06:50 PM	39,875	40,5	36,1875	35,5	37,6875	37,6875	33,5	32,625	37	13				
12:06:53 PM	39,9375	40,5	36,25	35,5	37,6875	37,6875	33	32,625	37	13				
40.00.57.014	20 075	-10.5	20.05	25.5	07.0075	27.027	20	20.000	0.7	40				

Gambar 4.13 Hasil pengambilan data menggunakan dan tanpa menggunakan kaca hari kedua

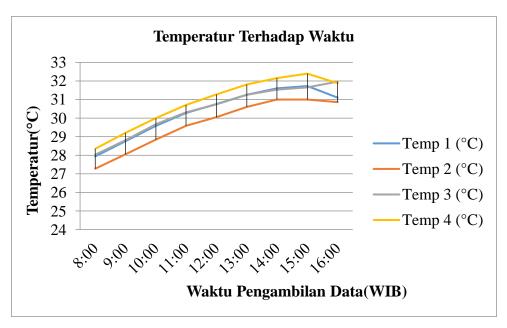
Gambar 4.13 Adalah penelitian pada *Solar Water Heater* menggunakan dan tanpa menggunakan kaca, berdasarkan data cuaca Deli Serdang, bahwasannya tanggal 28 Oktober 2021 cuaca gerimis. Menunjukan adanya perubahan suhu/temperatur yang terjadi pada penelitian yang dilakukan, sehingga dari gambar tersebut dapat diperoleh nilai rata-rata perubahan suhu selama pengujian.

4.3.3 Hasil pengambilan data SWH menggunakan kaca dan tanpa menggunakan kaca hari ketiga

1	T2	T3	T4	T5	T6	T7	T8	Suhu Lingl	Kelembaban(%
2	24.5	24.875	26.1875	26.1875	25.1875	26.5	25.3125	28	15
3	24.5	24.875	26.1875	26.1875	25.125	26.5	25.375	28	15
4	24.5	24.875	26.1875	26.1875	25.1875	26.5	25.375	28	15
5	24.5	24.875	26.1875	26.1875	25.125	26.5	25.3125	28	15
6	24.5	24.875	26.1875	26.1875	25.125	26	25.375	28	15
7	24.5	24.875	26.1875	26.1875	25.125	26.5	25.3125	28	15
8	24.5	24.8125	26.1875	26.1875	25.1875	26.5	25.4375	28	15
9	24.5	24.875	26.1875	26.1875	25.1875	26	25.3125	29	15
10	24.5	24.8125	26.125	26.1875	25.125	26	25.3125	29	15
11	24.5	24.875	26.125	26.1875	25.125	26.5	25.1875	29	15
12	24.5	24.875	26.1875	26.1875	25.125	26	25.4375	29	15
13	24.5	24.875	26.1875	26.1875	25.125	26	25.25	29	15
14	24.5	24.875	26.1875	26.1875	25.1875	26.5	25.3125	29	15
15	24.5	24.875	26.1875	26.1875	25.1875	26	25.3125	29	15
16	24.5	24.875	26.1875	26.1875	25.1875	26.5	25.375	29	15
17	24.5	24.9375	26.125	26.1875	25.25	26.5	25.375	29	15
18	24.5	24.875	26.125	26.1875	25.1875	26.5	25.375	29	15
19	24.5	24.9375	26.1875	26.1875	25.1875	26	25.25	29	15
20	24.5	24.875	26.125	26.1875	25.1875	26.5	25.4375	29	15
21	24.5	24.9375	26.125	26.1875	25.1875	26.5	25.4375	29	15
22	24.5	24.9375	26.125	26.1875	25.1875	26.5	25.25	29	15
23	24.5	24.9375	26.125	26.1875	25.1875	26.5	25.25	29	15
~	24.5	DATA	26 1075	DATA HAR	She	et1 She	25 275	(+)	4.5

Gambar 4.14 Hasil pengambilan data menggunakan dan tanpa menggunakan kaca hari ketiga

Gambar 4.14 Adalah penelitian pada *Solar Water Heater* menggunakan dan tanpa menggunakan kaca, berdasarkan data cuaca Deli Serdang, bahwasannya tanggal 29 Oktober 2021 cuaca cerah. Menunjukan adanya perubahan suhu/temperatur yang terjadi pada penelitian yang dilakukan, sehingga dari gambar tersebut dapat diperoleh nilai rata-rata perubahan suhu selama pengujian.

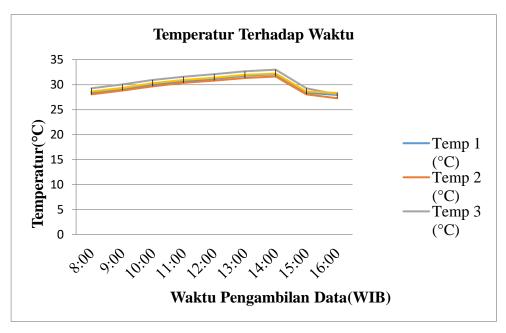

4.4 Hasil Pengujian Temperatur Terhadap Waktu

Pada pengujian temperatur terhadap waktu dapat dilihat,untuk temperatur dari air sangat berpengaruh terhadap lama waktu pengambilan data dan suhu dari lingkungan, karena semakin lama waktu dan semakin tinggi suhu lingkungan maka temperatur air juga akan meningkat, begitu juga sebaliknya.Dapat dilihat pada tabel dibawah ini :

Tabel 4.1 Pengaruh waktu terhadap temperatur *solar water heater* dengan menggunakan kaca pada saat gerimis

Waktu	Temp 1	Temp 2	Temp 3	Temp 4	keterangan
(Jam)	(°C)	(°C)	(°C)	(°C)	Keterangan
8:00	27,93903	27,27971	28,03226	28,35105	
9:00	28,75255	28,05994	28,81453	29,20976	
10:00	29,58797	28,85231	29,68153	30,00017	
11:00	30,28178	29,58626	30,30623	30,71352	
12:00	30,76451	30,05072	30,74217	31,27526	GERIMIS
13:00	31,25619	30,6029	31,25151	31,81782	
14:00	31,59708	31	31,54099	32,14849	
15:00	31,72556	31	31,65503	32,39471	
16:00	31,10264	30,85546	31,96618	31,8777	

Dari tabel diatas dapat kita simpulkan bahwa waktu dan keadaan cuaca dapat berpengaruh terhadap temperatur air saat pengambilan data. Dan dapat dilihat seperti grafik dibawah ini:

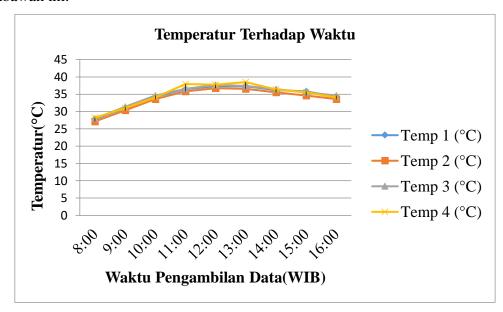

Gambar 4.15 Grafik pengaruh temperatur terhadap waktu pada saat gerimis

Gambar 4.15 Merupakan grafik perubahan suhu/temperatur terhadap pengaruh waktu. Pada grafik tersebut menunjukan adanya pengaruh yang dihasikan pada saat cuaca gerimis yakni temperature yang di hasilkan tidak terlalu tinggi,ini dikarenakan intensitas panas yang rendah.

Tabel 4.2 Pengaruh waktu terhadap temperatur *solar water heater* tanpa menggunakan kaca pada saat gerimis

Waktu	Temp 1	Temp 2	Temp 3	Temp 4	Izotonongon
(Jam)	(° C)	(°C)	(° C)	(° C)	keterangan
8:00	28,35931	28,04529	29,28406	28,60824	
9:00	29,18148	28,85153	30,05409	29,35736	
10:00	29,95166	29,69369	30,95704	30,29771	
11:00	30,65246	30,36275	31,57161	30,91754	
12:00	31,21438	30,82376	32,08986	31,39044	GERIMIS
13:00	31,76771	31,31291	32,66092	31,98572	
14:00	32,08399	31,63099	33	32,22687	
15:00	28,35931	28,04529	29,28406	28,60824	
16:00	27,93903	27,27971	28,03226	28,35105	

Dari tabel diatas dapat kita simpulkan bahwa waktu dan suhu lingkungan sangat berpengaruh terhadap temperatur air. Dan dapat dilihat seperti grafik dibawah ini:

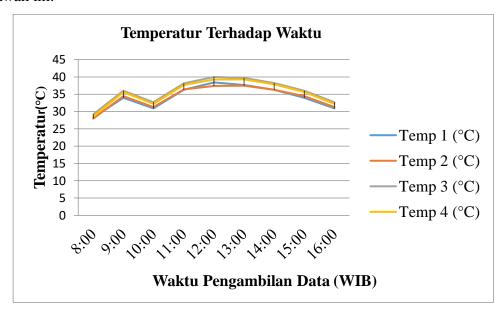


Gambar 4.16 Grafik pengaruh waktu terhadap temperatur pada saat gerimis Gambar 4.16 Merupakan grafik perubahan suhu/temperatur pada *solar water heater* tanpa menggunakan kaca saat gerimis.Suhu yang di hasilkan sedikit lebih tinggi di bandingkan dengan SWH yang menggunakan kaca .Namun,penurunan suhu yang terjadi lebih tinggi di bandingkan dengan yang menggunakan kaca.

Tabel 4.3 Pengaruh waktu terhadap temperatur *solar water heater* dengan kaca pada saat berawan

Waktu	Temp 1	Temp 2	Temp 3	Temp 4	keterangan
(Jam)	(° C)	(°C)	(° C)	(° C)	Keterangan
8:00	27,82513	27,13881	27,92605	28,20022	
9:00	31,0284	30,36189	31,36467	30,9984	
10:00	34,2026	33,56935	34,57632	34,07239	
11:00	36,45633	35,80398	36,5294	37,9626	
12:00	37,27398	36,71076	37,67078	37,69949	BERAWAN
13:00	37,28007	36,55959	37,39662	38,47602	
14:00	36,13017	35,52726	36,47265	36,36556	
15:00	35,80398	34,57632	35,5653	35,52726	
16:00	34,2026	33,56935	34,57632	34,07239	

Dari tabel diatas dapat kita simpulkan bahwa waktu,suhu lingkungan dan cuaca sangat berpengaruh terhadap temperatur air. Dan dapat dilihat seperti grafik dibawah ini:

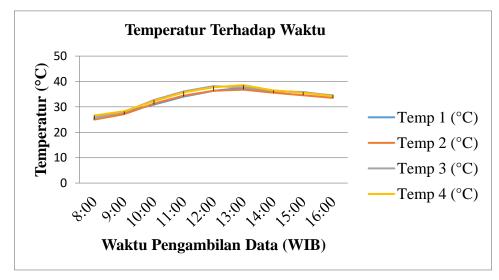

Gambar 4.17 Grafik pengaruh waktu terhadap temperatur pada saat berawan

Gambar 4.17 Merupakan grafik perubahan suhu/temperatur terhadap pengaruh waktu. Pada grafik tersebut menunjukan adanya pengaruh waktu pengujian yang cukup signifikan.Suhu/temperature tertinggi yang berhasil di capai ialah berkisar antara pukul 11:00 hingga pukul 13:00 WIB.Namun, di jam berikut nya terjadi penurunan suhu yang di karenakan perubahan cuaca,yakni berawan.

Tabel 4.4 Pengaruh waktu terhadap temperatur *solar water heater* tanpa menggunakan kaca pada saat berawan

Waktu (Jam)	Temp 1 (°C)	Temp 2 (°C)	Temp 3 (°C)	Temp 4 (°C)	keterangan
8:00	28,23392	27,94867	29,16715	28,49273	
9:00	33,96526	34,41846	36,00301	35,65128	
10:00	30,91473	31,23697	32,67185	32,18471	
11:00	36,28001	36,35499	38,1106	37,674	
12:00	38,37691	37,33421	39,95058	39,22384	BERAWAN
13:00	37,63626	37,43859	39,67006	39,26163	
14:00	36,27486	36,30212	38,2239	37,81296	
15:00	33,96526	34,41846	36,00301	35,65128	
16:00	30,91473	31,23697	32,67185	32,18471	

Dari tabel diatas dapat kita simpulkan bahwa waktu dan suhu lingkungan sangat berpengaruh terhadap temperatur air. Dan dapat dilihat seperti grafik dibawah ini:

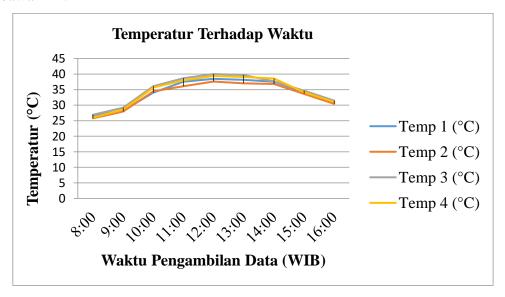

Gambar 4.18 Grafik pengaruh waktu terhadap temperatur pada saat berawan

Gambar 4.18 Merupakan grafik perubahan suhu/temperatur terhadap pengaruh waktu. Pada grafik tersebut menunjukan adanya perubahan suhu yang terjadi akibat perubahan cuaca saat pengambilan data.terjadi penurunan suhu di antara pukul 09:00 hingga pukul 10:00 WIB.Namun,suhu tertiggi yang berhasil di capai yaitu antara pukul 11:00 hingga pukul 13:00 WIB.Kemudian suhu kembali mengalami penurunan dikarenakan peubahan cuaca pada saat pengambilan data.

Tabel 4.5 Pengaruh waktu terhadap temperatur *solar water heater* dengan kaca pada saat cerah.

Waktu (Jam)	Temp 1 (°C)	Temp 2 (°C)	Temp 3 (°C)	Temp 4 (°C)	keterangan
8:00	25,70129	25,01234	25,57193	26,60187	
9:00	27,87245	27,18049	27,97798	28,23945	
10:00	30,96711	31,2976	32,73183	32,25091	
11:00	34,02238	34,4718	36,05531	35,70597	
12:00	36,32679	36,39089	38,15786	37,72527	CERAH
13:00	37,51908	36,79433	37,66034	38,56986	
14:00	36,21241	35,60929	36,51339	36,42241	
15:00	35,80398	34,57632	35,5653	35,52726	
16:00	34,25801	33,62518	34,62855	34,12991	

Dari tabel diatas dapat dilihat bahwa waktu dan perubahan suhu lingkungan sangat berpengaruh terhadap temperatur air. Dan dapat dilihat seperti grafik dibawah ini:


Gambar 4.19 Grafik pengaruh waktu terhadap temperatur pada saat cerah

Gambar 4.19 Merupakan grafik perubahan suhu/temperatur terhadap pengaruh waktu. Pada grafik tersebut menunjukan adanya pengaruh waktu yang menghasilkan suhu/temperatur.Suhu/temperatur tertinggi yang berhasil di capai terjadi antara pukul 11:00 hingga pukul 14:00 WIB.Namun pada jam berikut nya juga mengalami penurunan suhu yang tidak terlalu drastis,ini dikarenakan kaca penutup yang di pasangkan mampu menahan panas di dalam kolektor.

Tabel 4.6 Pengaruh waktu terhadap temperatur *Solar Water Heater* tanpa menggunakan kaca pada saat cerah.

Waktu	Temp 1	Temp 2	Temp 3	Temp 4	keterangan
(Jam)	(°C)	(°C)	(°C)	(° C)	Keterangan
8:00	26,6299	25,77304	26,90929	26,01143	
9:00	28,27102	27,99745	29,21761	28,54676	
10:00	34,02238	34,4718	36,05531	35,70597	
11:00	37,56128	36,04919	38,68848	37,9325	
12:00	38,46157	37,58739	39,98837	39,37909	CERAH
13:00	38,16984	37,00841	39,72929	39,03994	
14:00	37,51908	36,79433	37,66034	38,56986	
15:00	34,25801	33,62518	34,62855	34,12991	
16:00	31,08666	30,42151	31,42624	31,05214	

Dari tabel diatas dapat kita simpulkan bahwa waktu dan suhu lingkungan sangat berpengaruh terhadap temperatur air. Dan dapat dilihat seperti grafik dibawah ini:

Gambar 4.20 Grafik pengaruh waktu terhadap temperatur pada saat cerah.

Gambar 4.20 Merupakan grafik perubahan suhu/temperatur terhadap pengaruh waktu. Pada grafik tersebut menunjukan adanya pengaruh waktu yang menghasilkan suhu/temperatur.Suhu/temperature tertinggi yang berhasil di capai yakni pada pukul 12:00 WIB.Temperatur yang berhasil di capai lebih tinggi di bandingkan dengan yang menggunakan kaca.Namun,penurunan suhu kembali terjadi akibat cuaca saat pengambilan data.Penurunan suhu juga lebih tinggi ,akibat tanpa adanya kaca penutup.

4.5 Efektivitas SWH Menggunakan Kaca Dan Tanpa Menggunakan Kaca

Pada pengambilan data *Solar Water Heater* menggunakan kaca dan tanpa menggunakan kaca dapat dilihat pada setiap waktu terjadi perubahan suhu yang tidak terlalu signifikan dan selalu berubah-ubah.Suhu/temperatur tertinggi yang berhasil di capai ialah pada pukul 12:00WIB yakni posisi matahari tepat berada di atas.Cuaca yang berubah-ubah juga mempengaruhi kinerja *solar water heater* saat dilakukannya pengambilan data.

Penyerapan panas pada *Solar Water Heater* tanpa menggunakan kaca lebih efektif dikarenakan penyerapan panasnya tidak terhalangi oleh adanya kaca penutup.Akan tetapi tanpa adanya kaca penutup,pelepasan panas yg terjadi juga

sangat cepat, di karenakan panas yang telah terserap akan terlepas bebas karena tidak dihalangi oleh kaca penutup dan perbedaan suhu lingkungan.

Sedangkan untuk *Solar Water Heater* menggunakan kaca penyerapan panas yang terjadi tidak seefektif dengan SWH tanpa menggunakan kaca, penyerapan panas yang tejadi juga sedikit lambat bila di bandingkan dengan SWH tanpa menggunakan kaca. Akan tetapi pelepasan panas yang terjadi pada alat tersebut tidak terlalu cepat bila dibandingkan dengan yang tidak menggunakan kaca. Kaca penutup yang telah dipasangkan membantu alat ini untuk mempertahankan panas lebih lama.

4.6 Perhitungan penyerapan energi panas dan efisiensi kolektor

4.6.1 Perhitungan kolektor dengan menggunakan kaca

Tabel 4.7 Data rata-rata pengujian Perhari kolektor dengan kaca penutup

	\dot{m}		T_{in}	T_{out}	
	_	Cp			IT
	(m/s)	(J/kg.K)	(°C)	(°C)	
Hari	Laju	Panas	Temperatur	Temperatur	Intensitas
	Kecepatan	jenis	Air	Air	Matahari
	Fluida/udara	fluida	Masuk	Keluar	
Pertama	4.464	4.1793	25,71	31,887	242,78
Kedua	4.261	4.1793	27,138	34,667	247,41
Ketiga	4.345	4.1793	27,129	39,342	252,44

a) Perhitungan hari pertama

• Perhitungan energi yang diserap kolektor

$$Q_{ua} = M.Cp.\Delta T$$

= 4,464 × 4,1793 × 6,177
= 115,24 Watt

Maka energi yang diserap oleh kolektor di hari pertama sebesar 115,24 Watt.

• Perhitungan efisiensi kolektor

Dimana luas penampang kaca adalah 1m²

$$\eta = \frac{Q_{ua}}{A_{kaca} \times IT} \times 100 \%$$

$$= \frac{115,24}{1 \times 242,78} \times 100 \%$$

$$= \frac{115,24}{242,78} \times 100 \%$$

$$= 0,474\%$$

Maka efisiensi kolektor dihari pertama sebesar 0,474%

- **b**) Perhitungan hari kedua
 - Perhitungan energi yang diserap kolektor

$$Q_{ua} = M.Cp.\Delta T$$

= 4,261 × 4,1793 × 7,529
= 134,076 Watt

Maka energi yang diserap oleh kolektor di hari pertama sebesar 134,076 Watt.

• Perhitungan efisiensi kolektor

Dimana luas penampang kaca adalah 1m²

$$\eta = \frac{Q_{ua}}{A_{kaca} \times IT} \times 100 \%$$

$$= \frac{134,076}{1 \times 247,41} \times 100 \%$$

$$= \frac{134,076}{247,41} \times 100 \%$$

$$= 0,541 \%$$

Maka efisiensi kolektor I dihari pertama sebesar 0,541%

c) Perhitungan hari ketiga

• Perhitungan energi yang diserap kolektor

$$Q_{ua} = \mathbf{m} \cdot Cp.\Delta T$$

= 4,345 × 4,1793 × 14,177
= 257,440 Watt

Maka energi yang diserap oleh kolektor di hari pertama sebesar 257,440 Watt.

Perhitungan efisiensi kolektor
 Dimana luas penampang kaca adalah 1m²

$$\eta = \frac{Q_{ua}}{A_{kaca} \times IT} \times 100 \%$$

$$= \frac{257,440}{1 \times 252,44} \times 100 \%$$

$$= \frac{257,440}{252,44} \times 100 \%$$

$$= 1,021 \%$$

Maka efisiensi kolektor I dihari pertama sebesar 1,021%

4.6.2 Perhitungan kolektor tanpa menggunakan kaca penutup

Tabel 4.8 Data rata-rata pengujian perhari kolektor tanpa kaca

	ṁ		T_{in}	T_{out}	
		Ср			IT
	(m/s)	(J/kg.K)	(°C)	(°C)	
Hari	Laju	Panas	Temperatur	Temperatur	Intensitas
	Kecepatan	jenis	Air	Air	Matahari
_	Fluida	fluida	Masuk	Keluar	
Pertama	4.464	4.1793	26,08	38,36	242,78
Kedua	4.261	4.1793	27,93	37,278	247,41
Ketiga	4.345	4.1793	26,786	40,44	252,44

- a) Perhitungan hari pertama
 - Perhitungan energi yang diserap kolektor

$$Q_{ua} = m.Cp.\Delta T$$

= 4,464 × 4,1793 × 10,28
= 191,787 Watt

Maka hasil dari energi yang diserap dengan kolektor di hari pertama sebesar 191,787 Watt.

• Efisiensi kolektor

Dimana luas penampang dari kolektor yang terpapar sinar matahari adalah $0.8m^2$

$$\eta = \frac{Q_{ua}}{\Delta_c \times IT} \times 100 \%$$

$$= \frac{191,787}{0,8 \times 242,78} \times 100 \%$$

$$= \frac{191,787}{194,224} \times 100 \%$$

$$= 0,987\%$$

Maka efisiensi kolektor dihari pertama sebesar 0,98%

- **b)** Perhitungan hari kedua
 - Perhitungan energi yang diserap kolektor

$$Q_{ua} = M.Cp.\Delta T$$

= 4,261×4,1793×11,198
= 199,413 Watt

Maka hasil dari energi yang diserap dengan kolektor di hari kedua sebesar 199,413 Watt.

• Efisiensi kolektor

Dimana luas penampang dari kolektor yang terpapar sinar matahari adalah 0,8m²

$$\eta = \frac{Q_{ua}}{\Delta_c \times IT} \times 100 \%$$

$$= \frac{199,413}{0,8 \times 247,41} \times 100 \%$$

$$= \frac{199,413}{197,928} \times 100 \%$$

$$= 1,007\%$$

Maka efisiensi kolektor dihari kedua sebesar 1,007 %

c) Perhitungan hari ketiga

• Perhitungan energi yang diserap kolektor

$$Q_{ua} = M.Cp.\Delta T$$

= 4,345 × 4,1793 × 13,654
= 247,943 Watt

Maka hasil dari energi yang diserap dengan kolektor di hari ketiga sebesar 247,943 Watt.

• Efisiensi kolektor

Dimana luas penampang dari kolektor yang terpapar sinar matahari adalah 0,8m²

$$\eta = \frac{Q_{ua}}{\Delta_c \times IT} \times 100\%$$

$$= \frac{247,943}{0,8 \times 252,44} \times 100\%$$

$$= \frac{247,943}{201,952} \times 100\%$$

$$= 1,227\%$$

Maka efisiensi kolektor dihari ketiga sebesar 1,227%

BAB 5 KESIMPULAN DAN SARAN

5.1 Kesimpulan

Adapun kesimpulan dari hasil penelitian *solar water heater* dengan dan tanpa menggunakan kaca adalah sebagai berikut :

- Dari hasil penelitian terbukti bahwa solar water heater tanpa menggunakan kaca dapat memanaskan air lebih cepat daripada solar water heater dengan menggunakan kaca.
- 2. Dari hasil penelitian dapat di lihat bahwa *solar water heater* tanpa menggunakan kaca memiliki penyerapan panas yang lebih baik dan memiliki rata-rata suhu yang lebih tinggi.
- 3. Dari hasil penelitian juga menunjukkan bahwa *solar water heater* tanpa menggunakan kaca juga mengalami penurunan suhu yang lebih cepat di banding *solar water heater dengan menggunakan* kaca.
- 4. Dari hasil penelitian juga menunjukkan bahwa kaca penutup mampu menahan panas dan mampu membantu kolektor menyimpan panas.
- 5. Penyerapan panas pada *solar water heater* dengan menggunakan kaca sedikit lebih rendah dan lebih lambat bila di bandingkan dengan SWH tanpa menggunakan kaca penutup.
- 6. Upaya yang dapat dilakukan untuk meningkatkan penyerapan energi panas pada *solar water heater* adalah tanpa menggunakan kaca penutup.

5.2 Saran

Peneliti berharap perancangan dan pembuatan *solar waterheater* (SWH) ini dapat dikembangkan dan dikaji ulang dengan lebih efektif dan lebih efisien digenerasi selanjutnya dengan rancangan dan sistem yang lebih baik lagi.

Peneliti juga berharap di penelitian selanjutnya *solar water heater* ini dapat di bandingkan dengan alat yang sudah ada di pasaran.

DAFTAR PUSTAKA

- Agam Sulistyo.,Arrad Ghani Safitra.,Radiana Anggun Nurisma (2017).Optimalisasi Penyerapan Radiasi MatahariPada Solar Water Heater Menggunakan Variasi Sudut Kemiringan.,Politeknik Elektronika Negeri Surabaya.
- Bakar Abu. (2016). Analisis ekonomi solar water heater (SWH) pada bangunan gedung studi kasus : Hotel dangau kecamatan sungai raya kabupaten kubu. Politeknik negeri, Pontianak.Ekha Vol.8.
- C. A. Siregar, (2018). "Pengaruh jarak kaca terhadap efisiensi alat destilasi air laut yang memanfaatkan energi matahari di kota medan, "J. Mech. Eng. Manuf. Mater. ENERGY. Vol.2,PP. SI-SS.
- C. A. Siregar and A. M. Siregar, (2019). "StudI Eksperimental Pengaruh Kemiringan Sudut Terhadap Destilasi Air Laut Memanfaatkan Energi Matahari, "J. Rekayasa Mater. Manufaktur dan Energi. Vol.2, no.2, PP. 165-170.
- C.A Siregar, Munawar A Siregar and Sudirman Lubis, (2018). Pengaruh Jarak Kaca Terhadap Efisiensi Alat Destilasi Air Laut Yang Memanfaatkan Energi Matahari di Kota Medan. *Journal Of Mechanical Engineering, Manufactures, Materials And Energy*, Vol 2. p-ISSN: 2549-6220 e-ISSN: 2549-6239.
- Frank Kreith., Arko Prijono M.Sc. (2012). Prinsip-prinsip Perpindahan panas. Erlangga:Edisi ketiga.36-02-012-1.
- Haryanto Agus. (2015). Perpindahan Panas. Innosain: Edisi pertama.
- Kristanto p.dan San Y.K.,(2001),Pengaruh Tebal Pelat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Pelat Datar,Jurnal Teknik Mesin,Universitas Kristen Petra.
- Prof.Dr.Ir.H.Supranto,S.U. (2004). Teknologi Tenaga Surya. Global Pustaka Utama.

- Rianda., Nurrahman., Hablinur A. (2017). Analisis thermal kolektor surya tipe plat datar dengan fluida kerja etanol 96% pada sistem *solar water heater*. Universitas ibn khaldun bogor.
- Sutrisno., Mustafa. (2014). Analisis kolektor sederhana bergelombang dengan penambahan reflektor terhadap kinerja *solar water heater*. Universitas Merdeka Madiun.
- Tangkemanda Abraham., Susanto Triagus. (2017). Optimalisasi kinerja solar water heater dengan pemilihan material kolektor surya pelat datar. Politeknik negeri ujung pandang, makasar. 978-602-60766-3-2.

<u>http://sanfordlegenda.blogspot.com/2012/09/Solar-Water-Heater-Pemanas-air-tenaga-surya.html</u>

http://sanfordlegenda.blogspot.com/2012/09/Solar-Water-Heater-Pemanas-airtenaga-surya.html

LAMPIRAN

LEMBAR ASISTENSI TUGAS AKHIR

Upaya peningkatan penyerapan energi panas solar water heater (SWH) dengan memanfaatkan honeycomb sebagai aliran air

Nama : Abdi Kurniawan NPM : 1607230138

Dosen Pembimbing : Chandra A Siregar, S.T., M.T

No	Hari/Tanggal	Kegiatan			Paraf
		Perbailir L	eals (4
		Purbaili purbaili	bab 1) Steems	alu	9
		me ser	nbio		1
	22/9-2021.	talular Suradop	efeletiftas	SWH	> A
	5/10-2021	per su			op.

MAJELIS PENDIDIKAN TINGGI PENELITIAN & PENGEMBANGAN PIMPINAN PUSAT MUHAMMADIYAH

UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA FAKULTAS TEKNIK

Nomor Lamp

Hal

1017 / II.3-AÜ/ UMSU-07/ F/2021

Medan

03 Rabiul Awal 1443 H 14 Oktober 2021 M

ıp

: Undangan Sidang Tugas Akhir

Jurusan Teknik Mesin Kepada : Yth.Sdr.

1.Ahmad Marabdi Siregar.S.T.M.T

2 Sudirman Lubis.S.T.M.T

(Dosen Penguji-II) (Dosen Penguji-II)

3.. Chandra A Siregar.S.T.M.T

(Dosen Penguji Pendamping-I)

di-

Medan.

Bismillahirrahmanirrahim. Assalamu'alaikum Wr.Wb

Dengan hormat, sesuai dengan Rekomendasi Ka. Prodi Teknik Mesin Tanggal 15 Oktober 2021 tentang dosen Pembimbing Tugas Akhir maka melalui surat ini kami mengundang Saudara untuk menghadiri Sidang Tugas Akhir, Fakultas Teknik, Jurusan Teknik Mesin, Universitas Muhammadiyah Sumatera Utara atas nama mahasiswa yang tersebut di bawah ini:

Nama : Abdi Kurniawan NPM : 1607230138 Jurusan : Teknik Mesin

Judul Tugas Akhir : Upaya Peningkatan Penyerapan Energi Water Heater (Swh) Dengan Me-

Manfaatkan Honeycomb Sebagai Aliran Air.

InsyaAllah akan dilaksanakan pada:

Hari / tanggal : Kamis / 21 Oktober 2021 Waktu : 10.00 Wib S/D Selesai Tempat : Fakultas Teknik UMSU

Jalan Muktar Basri No.: 03 Medan.

Demikian undangan ini kami sampaikan atas perhatian saudara kami ucapkan terima kasih. Akhirnya selamat dan sejahteralah kita semua Amin.

Munawar Alfansury Siregar.S.T.M.T NIDN: 0101017202

Wassalam, Dekan,

DAFTAR HADIR SEMINAR TUGAS AKHIR TEKNIK MESIN FAKULTAS TEKNIK – UMSU TAHUN AKADEMIK 2020 – 2021

peserta seminar

Nama : Abdi Kurniawan : 1607230138

Judul Tugas Akhir : Upaya Peningkatan Penyerapan Energi Panas Solar Water Heater (SWH)

Dengan Memanfaatkan Honeycomb Sebagai Aliran Air

DAFTAR HADIR TANDA TANGAN

Pembimbing - I : Chandra A Siregar.S.T.M.T :

Pembimbing - II : :.....

Pembanding - I : Ahmad Marabdi.Srg.S.T.M.T :

Pembanding – II : Sudirman Lubis.S.T.M.T :

No	NPM	Nama Mahasiswa	Tanda Tangan
1	1607230168	ZULFARNAIN	well
2	1607230014	ARIMUDDIN	AMY
3	1607230090	ARI GUNAWAN	4ms.
4			
5			
6			
7			
8			
9			
10			

Medan, 04 Rab. Awal 1443 H 12 Oktober 2021 M

Ketua Prodi. T Mesin

Chandra A Siregar S.T.M.T

DAFTAR EVALUASI SEMINAR FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA

	: Abdi Kurniawan : 1607230138	
Jama JPM Judul Tugas Akhir	: Upaya Peningkatan Penye	erapan Energi Panas Solar Water Heater (SWH) Joneycomb Sebagai Aliran Air
osen Pembimbing – osen Pembimbing – osen Pembanding – osen Pembanding –	- I : Ahmad Marabdi Srg	g.S.T.M.T
	KEPUTUSAN	
antara lain leng leng	iterima ke sidang sarjana (dikuti sidang sarjana (collogi far prosedur kas hasil dang tak hasil talbu gikuti seminar kembali	Medan, 04 Rab. Awal 1443H 12 Oktober 2021 M
Diketah Ketua Prodi	i. T. Mesin	Dosen Pembanding- I Ahmad Marabdi.Srg.S.T.M.T

DAFTAR EVALUASI SEMINAR FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA UTARA

Nama	: Abdi Kurniawan : 1607230138	
NPM Judul Tugas Akhir	: Upaya Peningkatan Pe Dengan Memanfaatka	enyerapan Energi Panas <i>Solar Water Heater</i> (SWH an <i>Honeycomb</i> Sebagai Aliran Air
_{Josen} Pembimbing — Josen Pembimbing — Josen Pembanding — Josen Pembanding —	I : Ahmad Marabdi.	.Srg.S.T.M.T
	KEPUTUSAN	1
2. Dapat mengik antara lain :	erima ke sidang sarjana cuti sidang sarjana (colle pendanki que cuti seminar kembali	Medan, 04 Rab.Awal 1443H 12 Oktober 2021 M
Diketahui Ketua Prodi. T	Mesin	Dosen Pembanding- II Sudirman Lubis.S.T.M.T

DAFTAR RIWAYAT HIDUP

A. DATA PRIBADI

1. Nama : Abdi Kurniawan

2. Tempat dan Tanggal Lahir : Laut Tawar / 18 - Agustus -1995

3. Jenis Kelamin : Laki-Laki4. Agama : Islam

5. Status Pernikahan : Belum Menikah

6. Warga Negara : Indonesia

7. Alamat KTP : Afd I Bah Birung Ulu

8. Nomor Telepon / HP : 082167446095

9. E-mail : abdik6550@gmail.com

B. RIWAYAT PENDIDIKAN

SD NEGERI 091419 : Tahun 2002 - 2008
 SMP SWASTA ISLAM : Tahun 2008 – 2011

BAH BIRUNG ULU

3. SMK SWASTA YAPIM MABAR
 4. UNIVERSITAS MUHAMMADIYAH
 5. Tahun 2011 - 2014
 6. Tahun 2016 - 2021

SUMATERA UTARA