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FOREWORD

I’m delighted to be given the opportunity to write the foreword to this new and 
exciting volume of research on the seemingly ever-growing field of theory and 
research on the cognitive unconscious. It’s a bit of cliché, when examining a field 
of study, to refer to the “breadth” and “depth” of the efforts – but I’m going to do 
it anyway, with a twist. Typically, in this way of framing the issue, “depth” refers to 
the extent to which the research has drilled down to more basic, more fundamen-
tal, core issues, principles, and causal links (as, for example, in Cleereman’s aptly 
named chapter where he voyages into the deeper realms of cognitive functioning 
and encounters methodological difficulties at every level) whereas “breadth” takes 
note of how widely the research has spread, how many new domains have come 
under scrutiny, how new applications of findings and principles have spread, how 
much translation research has been carried out.

All this is easily seen in this new volume overseeing the work in implicit learn-
ing but what’s noteworthy is that other meaning of “breadth”: geography. Here 
we encounter researchers in countries and in laboratories that were and still are 
right in the thick of things though very few of us knew about them. And this is a 
good thing. Whenever new scientists with novel ways of viewing issues and differ-
ent takes on theory, methodology, and interpretation emerge in a field it usually 
augurs well. What I found more than a little fascinating was how much research 
on implicit learning and related processes in the cognitive unconscious was carried 
out in Eastern Europe, in particular Russia. Much of the work, which is described 
in chapters that comprise roughly half of the contributions to this volume, was, of 
course, published in Russian and well outside the scholarly sweep of most Western 
cognitive psychologists. Until this volume landed in my inbox, I must admit, I was 
totally unaware of this work – though I am pleased to see that most of the findings 
reported fit within and extend the general theoretical framework we have become 
familiar with. I cannot help but wonder how and in which directions research on 
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these topics might have developed had these publications been more readily avail-
able and had we known about the depth and richness of the work of, for example, 
Viktor Allakhverdov and his colleagues at St. Petersburg University. A round of 
thanks goes out to Cleeremans and his collaborators and co-editors for bringing 
this literature to the attention of what will certainly be a welcoming audience.

The other half of the contributions are reports, reviews, and analyses from 
more familiar, Western laboratories. P. J. Reber and co-authors give us an in-
depth historical overview of the empirical and theoretical work on the cognitive 
unconscious with due attention to the underlying neuro-correlates. San Anton, 
Cleeremans, and Destrebecqz’s chapter reveals what most of us have long sus-
pected, but without much empirical study, that learning to function effectively 
in complex, multi-process domains requires a delicate mix of the implicit and 
the explicit, a combination of top-down, code-breaking strategies and a bottom-
up unconscious extraction of associative patterns. Norman and her co-workers 
explore the limits to strategic control of implicit functions. Kemény and Lukács 
review the extensive literature on whether or not abstract representations underlie 
implicit knowledge. All are most welcome.

But, as is my wont when given the kind of free rein that comes with writing a 
foreword, I have a couple of points to make. I note that in the Introduction and 
several chapters (in particular Moroshkina and colleagues) there are discussions 
of the oft-raised question about whether humans can learn without at least some 
conscious awareness. I suppose this isn’t unreasonable since there are still scientists 
interested in the cognitive unconscious and related issues that hold fast to this 
position. In my way of thinking, however, the studies that show some explicit 
“leakage” or evidence that participants in implicit learning experiments have some 
reportable knowledge say more about methodology than about underlying mecha-
nisms and processes. They aren’t challenges to the ontological status of implicit 
learning for the simplest of reasons: implicit learning is routinely observed in popu-
lations where explicit functions are either not operative or have been degraded by 
circumstance. Children learn language without awareness of either the process of 
acquisition or knowledge of the underlying syntactic, semantic, and paralinguistic 
aspects of what they have learned. We all become socialized in the mores, rules, 
traditions, and practices of the culture we are raised in. Patients with virtually com-
plete anterograde amnesia function essentially normally in implicit learning and 
memory studies. There is compelling evidence for intact implicit functioning in a 
number of special populations including Williams Syndrome children, individuals 
with autism spectrum disorder, patients in psychiatric institutions, and aged indi-
viduals whose explicit cognitive functions have declined.

All these instances of learning take place largely (elderly participants) or com-
pletely (infants) outside awareness of either the processes or products of acquisition. 
Just a moment’s contemplation, a few seconds of recognition of what happens 
during childhood or in these other, special populations, should make it clear that 
implicit learning is real and plays a compelling role in acquiring abstract and com-
plex knowledge about abstract and complex domains. As San Anton and co-authors 
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hint in their chapter, virtually all the interesting things that humans learn to do is a 
blend of implicit and explicit operations and, as P. J. Reber and collaborators note, 
we’re beginning to get a pretty good idea about the underlying neuro-correlates of 
these functions and where and how they operate distinct from those modulated by 
top-down, explicit functions.

I suspect that much of the skepticism seen in some quarters comes from a 
tendency to be dependent on data collected from adult, college and university edu-
cated participants. When these cohorts are the ones in the experimental spotlight 
you’re likely to see top-down functions being engaged. It would be, however, 
an existential error to conclude that the presence of some explicit and reportable 
information challenges the ontological status of the cognitive unconscious.

Along these same lines, I worry about a general failure to take into account 
a distinction made over six decades ago by Michael Polanyi between knowing 
“that” and knowing “what.” We’re often in situations where we know for certain 
that we know something in the absence of knowledge of what is it we know. 
This sentence now you’ve reading be nongrammatical. You spotted that instantly 
and, I’m certain, you did so while being utterly unaware of what syntactic rules 
were violated. You can repair the sentence because, again, you know that certain 
changes need to be made but in the absence of the specific syntactic rules you’re 
using to do so. These kinds of things happen routinely in daily life but are rarely 
encountered in the typical, tightly controlled experiments carried out to examine 
mechanisms and processes expressed by the cognitive unconscious.

But, no matter. These are minor quibbles. This volume marks a significant 
contribution to an area of research that’s now over a half-century old and, with the 
innovative and provocative contributions of the Eastern European laboratories, is 
primed to make even more compelling contributions in the years to come.

Arthur S. Reber
Point Roberts, WA
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INTRODUCTION

Axel Cleeremans, Viktor Allakhverdov,  
and Maria Kuvaldina

Research about implicit learning, that is, broadly defined, learning that takes place 
in the absence of intention to learn and in such a way that the acquired knowledge 
cannot be easily verbalized, was initiated about fifty years ago with the publication, 
in 1967, of Arthur Reber’s article about artificial grammar learning. The first aim 
of this book is to take stock of the state of the field today. Where do we stand inso-
far as the very concept of implicit learning stands? The second goal of this volume 
is to give broader visibility to work carried out in Eastern European countries, in 
particular, Russia, Poland and Hungary, each of which includes an active commu-
nity of cognitive scientists interested in the complex relationships between what 
we can and cannot do without consciousness.

The volume itself originates in a series of informal meetings held since 2012 in 
different spots in Europe. The first such meeting, dubbed the “Implicit Learning 
Seminar”, was organized at the end of August 2012 at the Warsaw School of Social 
Psychology in Sopot (Poland) by Agnieszka Poplawska and colleagues. About 
twenty people, many of whom contributed to this book, attended the meeting, 
which felt like a first of sorts. Indeed, while most of the people involved in the 
Sopot meeting identified themselves with implicit learning, the field itself never 
had a regular meeting of its own. This may have something to do with the fact that 
implicit learning, despite the substantial influence that the concept itself exerted 
on many other domains, was always a comparatively small field. More on this 
later; suffice it to say now that implicit learning research is conceptually complex, 
methodologically arduous and theoretically controversial.

The second Implicit Learning Seminar was organized in Bergen (Norway) by 
Norman and colleagues, at the end of June 2013. A slightly larger group of col-
leagues assembled at the University of Bergen under the long days of the Norwegian 
summer to exchange views about their current research.
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This was followed by the third seminar, which had a decidedly different char-
acter than the first two meetings, for it was much larger. Organized in May 2014 
at the Psychology Department of Saint Petersburg State University (Russia) by 
Viktor Allakhverdov and colleagues, in particular Maria Kuvaldina, the meeting 
assembled over a hundred people and was subtitled “Interactions between con-
sciousness and the unconscious”. During the meeting, three things became clear. 
First, there is a lot to learn about science through comparing approaches and per-
spectives stemming from different research traditions. Second, the Saint Petersburg 
meeting generated so much interest from all parties involved that it became clear 
that this volume was needed. Third, it was also during that meeting that the deci-
sion to continue the seminar series was taken. In 2015, the meeting returned to 
Poland, this time in Krakow under the supervision of Michał Wierzchoń. The 
fifth meeting was again much larger. Organized by Patrick Rebuschat in Lancaster, 
it welcomed not only the small implicit learning group but also the much larger 
community of researchers interested in statistical learning, featuring for instance 
Morten Christiansen and Linda Smith. Statistical learning, since the seminal work 
of Saffran and colleagues in 1996, has become a field of its own, and one that is 
also, in different ways, divorced from the earlier implicit learning community. 
For while the main issue that focused much of the earlier efforts was conscious-
ness and its role in adult learning, the statistical learning community was from the 
start more interested in language acquisition and in its underlying mechanisms. 
Consciousness, per se, remains a side issue for the statistical learning community. 
The meeting in Lancaster highlighted some of these differences in approach and 
proved a fertile ground for interactions between the two groups. The sixth meet-
ing, held in Budapest at ELTE University, was organized by Dezső Németh at the 
end of May 2017. Again a smaller meeting, it involved a slightly different mix of 
researchers, featuring in particular people interested in sleep and in memory con-
solidation. Finally, the seventh meeting was held in Cluj-Napoca (Romania) in the 
psychology department of Babeș-Bolyai University during May 2018. Organized 
by Adrian Opre and colleagues, it was again an outstanding opportunity for the 
group to exchange ideas and find out about ongoing research.

Out of this series of events emerges the sense of a tight-knit community of 
like-minded researchers – some of whom have been active in the field for decades – 
as well as junior scientists who see implicit learning as a way of exploring some of 
the most fundamental questions in cognitive science, amongst which conscious-
ness, but also, centrally, the nature of mental representation. Implicit learning, 
quite uniquely, is a field that stands at the crossroads between these two funda-
mental questions, as the relevant paradigms typically involve incidental learning 
tasks that engage comparatively sophisticated processing (i.e. complex decisions, 
abstract knowledge).

How did the field come about over its short history? There are but a few land-
marks along the way. 1993 stands out, for it is when A. S. Reber published his 
book titled Implicit Learning and Tacit Knowledge: an essay on the cognitive unconscious –  
probably the best rendition of his work over the previous 30 years. Cleeremans’s 
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monograph, also published in 1993, was the first to offer a computational theory 
of implicit learning. This was closely followed by Berry and Dienes’ (1993) vol-
ume, which offered a sensible overview of the field at the time, as well as a tribute 
of sorts to the influence of Donald Broadbent on the development of ideas in 
this domain. The first journal review of implicit learning as a field was published 
by Carol Seger in 1994. In 1996, Saffran and Aslin published their report on 
“Statistical learning by 8-months infants” – a Science article that would veer the 
field in a completely different direction, focused more on cognitive development 
than “traditional” implicit learning research. In 1997 Diane Berry published a col-
lection tellingly titled “How implicit is implicit learning?” The next year saw the 
publication of the first true compendium of implicit learning research in the form 
of Stadler and Frensch’s Handbook of Implicit Learning, as well as that of another 
journal review of the field (Cleeremans et al., 1998). French and Cleeremans’ 
(2002) collection, titled Implicit learning and consciousness, marked the progressive 
merging of the field of implicit learning into the then booming literature dedi-
cated to consciousness itself. Luis Jiménez produced another collection of chapters 
for his 2003 volume titled Attention and Implicit Learning. Patrick Rebuschat edited 
a collection of articles dedicated to Implicit and Explicit Learning of Languages in 
2015, with an interesting mix of authors from the implicit learning and statistical 
learning fields.

Alongside this substantial activity, a number of influential articles also appeared 
in Behavioural and Brain Sciences. Of note here are several articles by David Shanks 
and colleagues (Shanks and St. John, 1994, Shanks and Johnstone, 1998, Newell 
and Shanks, 2014), all of which offered critical overviews of the field, as well as in-
depth treatments of theories of implicit knowledge (Dienes and Perner, Perruchet 
and Vinter).

This is not the place to engage in a detailed history of implicit learning research, 
but it is worth emphasizing that the development of ideas in this domain has fol-
lowed distinct courses in the West and in the East. We briefly overview each in 
the following, noting along the way how some “Western” research findings had 
in fact already been observed in the East well before.

Implicit learning in the West

In Chapter 1, Paul Reber and colleagues offer a cogent historical overview 
of implicit learning research in the West that we will not reiterate here. They 
trace the origin of the field to Arthur’s Reber’s chance encounter with George 
Miller at a time when Chomsky was revolutionizing linguistics. This was also 
the time – the 1960s – when psychology was shifting away from behaviorism to 
embrace theoretical approaches rooted in the idea that the mind contains rich sets 
of abstract representations through which the more complex abilities of human 
beings – foremost, language and abstract thought – can be carried out. And yet, as 
Paul Reber discusses, the problem of how such abilities can come to be remained 
intact, and in fact, seemed rather intractable. Solving this problem is what motivated 
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Arthur Reber to begin exploring simple “language–learning–like” situations in 
the laboratory. Interestingly, Arthur Reber (personal communication) himself 
notes that his work was not so much, if at all, influenced by Freud – to the con-
trary, Reber himself sought to distance himself from anything having to do with 
psychoanalysis, hence the expression “implicit learning” rather than “unconscious 
learning”. The original motivation to explore the mechanisms behind implicit 
learning was thus driven by an attempt to answer the question of how humans are 
able to learn language. But it is fair to say that the main reason why implicit learn-
ing proved so enduring a field is the question of awareness and its role in learning.

The idea that behavior can be driven by contents of which we are not aware 
is an old idea that remains controversial even today. It is of course to Freud and 
some of his predecessors, in particular the oft-ignored Eduard Von Hartmann, that 
one owes the very notion that there exists an “unconscious mind”, that is, that the 
mind itself contains contents of which we remain unaware. This, in and of itself, 
however, says little about what really counts, namely the idea that the choices we 
make can be driven by unconscious determinants. In other words: is it the case that 
perception, action and even learning can take place outside of conscious awareness?

That very possibility is the one claim that elicits the most debate, and it is very 
difficult to state with any certainty that it has been solved. Subliminal perception 
remains controversial. Implicit learning, as explored through its different para-
digms, remains controversial. Behavioral priming, particularly in social psychology, 
remains controversial. All these phenomena continue to elicit lively debate in their 
respective literatures. Why is that the case?

The answer is straightforward: All these phenomena are suggestive that process-
ing can take place without awareness – a fascinating idea in its own right. But by 
the same token, none of these phenomena have been demonstrated with sufficient 
force that skeptics can be laid to rest (e.g., Shanks and St. John, 1994). The greatest 
empirical challenge here is probably that it is impossible to prove the null: absence 
of evidence is not evidence for absence, and hence, finding that some task can be 
carried out in the absence of awareness can often be explained by lack of sensitivity 
in the measures used to assess awareness, in participants’ biases, and so on. Point 
well taken – the methodological issues raised by critics of this literature are real and 
worrisome. But the field has now moved on in substantive ways that make it pos-
sible to address such worries.

This being said, it is undeniable that cognitive systems can exhibit what 
Dennett, in his latest book (Dennett, 2017), has cogently dubbed “competence 
without comprehension”. All sorts of living systems exhibit competence with-
out comprehension. A bacterium argues Dennett, is competent in its own little 
ümwelt, but exhibits neither comprehension of what makes it so capable nor of 
much of anything else. Dennett writes “We know there are bacteria; dogs don’t; 
dolphins don’t; chimpanzees don’t. Even bacteria don’t know there are bacteria” 
(Dennett, 2017, p. 5). Artificial intelligence also perfectly illustrates this point, as 
some algorithms are now capable of learning to achieve superhuman performance 
in restricted domains such as the game of Go or Chess, while remaining not only 
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wholly incapable of explaining their strategy but also completely unaware of their 
own successes and failures, or indeed of their own existence. There is thus no 
doubt that competence can take place without comprehension. The question is 
how, and more specifically, based on what kinds of processes and on what kinds 
of mental representations. One particular conundrum that faces all research on 
implicit cognition in general is the fact that awareness cannot be turned off. Hence, 
in the vast majority of cases, performance will always be driven by a mixture of 
implicit and explicit processes. Here again, implicit learning provides a rich ground 
to explore such fundamental issues. Today, the field is fundamentally connected to 
the core issues that concern the study of consciousness.

Implicit learning in the East

In the East, however, the development of ideas followed a rather different course, 
shaped as it was by Soviet ideology. The study of the phenomena of the conscious 
and the unconscious was nearly impossible during the Soviet era. There was merely 
a brief period, right after the revolution, when the revolutionary euphoria allowed 
new ideas and new people to appear and burst onto the scientific scene. In 1924, 
A. Luria – at the time 22 years old himself and already a secretary at the Institute 
of Psychology in Moscow! – listened to a talk given by the 27-year-old Lev 
Vygotsky “Consciousness as a Subject of the Psychological Study”. Luria had 
invited Vygotsky, a provincial literary and theater critic, to work at his Institute, 
where Vygotsky, despite his short life, would become a world star. Some of 
Vygotsky’s research ideas became a prelude to the study of the implicit learn-
ing. Using a modified version of Asch’s method of artificial concept creation, 
Vygotsky discovered that at a certain age, children are able to categorize objects 
correctly without yet being able to explain how. In 1974, these findings were 
confirmed by Petrenko. Petrenko presented participants with geometric shapes 
that were either congruent or incongruent with the concept set by the experi-
menter. When a geometric shape was congruent with a concept, its presentation 
was reinforced by a slight electric shock. The findings show that even when par-
ticipants had failed to categorize a shape correctly, they would exhibit a defensive 
reaction to it (Petrenko, 1974).

Vygotsky himself did not put much emphasis on the significance of his findings: 
the implicit learning responses. He was more interested in understanding the role that 
consciousness plays in cognitive processes. Overall, all major Soviet psychologists 
were trying to build an integrated, overarching theory of the human mind –  
a task that seemed impossible to accomplish without understanding the role of 
consciousness. Soviet ideology supported this approach based on the main claim 
that consciousness is shaped by society and culture. Therefore, it appeared plausible 
to promulgate a “new consciousness”, based on which a new, better human could 
be shaped – a human that would “build” Communism. Moreover, the dominant 
direction of the entire Soviet scientific endeavor consisted of the building of large-
scale general application theories.
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During tempestuous post-revolutionary times, psychoanalysis became increas-
ingly popular and interest in research on the unconscious grew rapidly. However, 
at the same time Marxism grew into an all-consuming State ideology (in its most 
dogmatic sense). In order to continue research, many attempts were made to com-
bine psychoanalysis and the ideas of Marxism. These attempts proved unsuccessful. 
To make matters worse, Leon Trotsky – then recently proclaimed an ideologi-
cal enemy of the Soviet State – had been sympathetic towards psychoanalysis; 
this resulted in the official declaration of psychoanalysis as a “false bourgeois  
pseudoscience”. Russian works on psychoanalysis started to disappear off the 
shelves, and reading Freud’s works now required special access permission. The 
works of Vygotsky were taken out of print for many years and largely forgotten. 
In this respect, it is ironic that Vygotsky himself was a convinced Marxist, but he 
knew very well that Karl Marx was no psychologist – and that the new Marxist 
psychological theory had yet to be built. Any mention of the “unconscious” in the 
USSR was considered to be a deviation from the “only true teaching”.

There was one exception, however. Far from Moscow, in Tbilisi, Georgia, a 
group of psychologists led by Uznadze studied the role of unconsciousness in per-
ception. Uznadze (1958) had conducted experiments demonstrating that when a 
participant is presented with a pair of objects that noticeably differ in size, and the 
bigger object is always presented on the same side of the visual field, then when 
two objects of the same size are presented, the participant perceives them to be of 
unequal size. Uznadze called this effect a fixed perceptual set. It is important to note 
that the fixed perceptual set is produced even when the participant is not aware 
of the objects’ unequal sizes (for example, when a participant was under a post-
hypnotic suggestion, or when the size difference was not in the focus of attention). 
In other words, as we might say today, the experiment’s participants had learned 
without awareness of what they had learned. Uznadze concluded that there is 
something connecting the physical aspects of the environment and the contents of 
consciousness which is not directly recognized by consciousness, but nevertheless 
has a decisive influence on its macro-contents. It was only in 1978 that Uznadze’s 
followers managed to organize a major conference on the unconscious in Tbilisi, 
thus finally “legalizing” the usage of the term in Soviet psychology.

It must be noted that the fires of discourse on the unconscious were slowly kept 
up within another – and even officially sanctioned – field, namely the (favorite 
Soviet) study of reinforced reflexes initiated by the legendary Pavlov. Humans 
are not aware of the physiological mechanisms of reflexes, but these reflexes are 
somehow linked to conscious processes. It had been established that it took longer 
to develop a conditional reflex in participants who knew that they were being 
conditioned. But what happens when a participant is not aware of the conditioned 
stimulus? A. N. Leontyev (1981), the most renowned Soviet psychologist, studied 
defensive reflexes developed as a response to a green light projected on the palm 
(the red light signal was not reinforced). It turned out that the defensive reflex 
would develop only when the subject knew in advance that she was being condi-
tioned by a signal of which she had otherwise been unaware.
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Anokhin (1968) studied conditional reflexes in dogs. Once, instead of the dried 
powder meat meal (consisting of meat, flour and bones) that was usually used as 
reinforcement, a much more attractive food (real meat) was supplied. Far from 
being excited, the hungry dog – receiving an unexpected stimulus – turned away 
and refused to eat altogether. Anokhin interpreted this behavior as evidence for the 
existence of a predictive reflex of a future situation in dogs (a reflex expected to be 
even larger in humans), which suggests that previously accumulated, but not nec-
essarily conscious, experiences continue to influence behavior. It is worth noting 
that in 1950, during the USSR Academy of Science meeting, Anokhin was taken 
to task for “serious deviations from Pavlovian doctrine”.

Bernstein (1991), one of the brightest Soviet thinkers, managed to approach 
the problem of unconscious influences in the process of motor learning. He had 
realized that motor skills could not be acquired through repetition of the same 
movements because it is impossible to repeat each and every movement precisely. 
Even if it were possible, none of the clumsy movements executed at the begin-
ning of the acquisition could lead to a developed skill. Training, in his opinion, is 
a repetition of a motor task without repeating the actual movement. Bernstein’s 
experiments show an unconscious regulation of the motor task during skill acquisi-
tion. In essence, his position may be interpreted as follows: all learning processes 
involve both conscious and unconscious components; during learning of complex 
movements, conscious control switches from monitoring lower levels to moni-
toring progressively higher levels of movement regulation. Once a motor skill is 
acquired and becomes automatic, conscious control is no longer needed; attempts 
to consciously control a motor skill that has already been developed at lower skill 
levels would lead to deautomatization and disruption of the skill.

Political turnaround after Stalin’s death allowed for fresh new ideas to appear. In 
the 1950s, Ponomarev, continuing Duncker’s work, set to study the value of clues 
in the process of creative problem solving. Ponomarev showed that under some 
circumstances, the completion of a task unrelated to the main problem facilitates 
the solution of the target problem even when participants are unaware of such an 
influence. Based on his research, he posited the existence of a layer of experience 
that is unavailable for conscious recall by the subject. It is only when the participant 
begins acting to solve the problem that this covert experience may be triggered as 
a helping tool for problem solving. To solve the problem, one needs a conscious 
recognition of the target solution; however, the intuitive experience is formed 
beside conscious realization of the target. The contemporary Russian psychologist 
D. V. Ushakov sees Ponomarev’s findings as anticipating modern ideas of implicit 
learning and implicit knowledge. Ushakov goes so far as to claim (Ushakov and 
Valueva, 2006) that Ponomarev had discovered the relevant phenomena 15 years 
before Reber’s introduction of the concept of “implicit learning”.

Ponomarev was not the only Soviet scientist who studied implicit learning. 
In the 1960s, Schechter conducted a series of experiments on visual recognition. 
In his experiments, participants were given a set of general features in order to 
identify whether or not the presented visual stimulus matched the target feature. 
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In the learning phase, however, only one example (one special interpretation) of 
a general feature was presented. For example, the explicit rule would state that 
one line should always be at an angle to another line. In the learning phase, a par-
ticipant would only see lines at an acute angle. Then, in the experimental phase, 
participants would see stimuli containing lines angled at an obtuse angle as rep-
resenting another example of the rule, but not the one he was exposed to in the 
learning phase. Participants would give a fast response that the figure is not con-
gruent with the rule, but then, immediately change their decision, stating that it 
is. Schechter interpreted these results as evidence that the example of the rule was 
learned unconsciously even when a more general explicit rule was given, and then 
applied instead of the explicit rule.

In the early 1970s, V. M. Allakhverdov discovered a group of effects collec-
tively dubbed “unconscious negative learning”: people tend to repeat, without 
noticing that anything is amiss, their own errors when performing trivial iter-
ated sensorimotor, perceptual, mnemonic and arithmetic tasks. Moreover, under 
certain conditions, participants showed a tendency to repeat even their omission 
errors: not to notice, not to recognize, not to recall exactly what had been not 
noticed, recognized nor recalled in previous trials. Allakhverdov coined a term for 
this: the aftereffect of negative choice. In his endeavors to explain this phenom-
enon, Allakhverdov developed his original model of consciousness (which is, in 
part, presented in the current volume).

Implicit learning itself became relevant during the 1970s, when studies of 
unconscious recognition of probabilistic sequences became popular in the USSR. 
I. Feigenberg measured the reaction time when observers saw a sequence of four 
digits (1, 2, 3, 4) presented one by one and were asked to press a corresponding 
key. Digits were presented in a uniform random order: a digit in the first place 
could be any out of four, the digit in the second place could be any of the three 
others left, the digits in the third and fourth places could be only the digits that 
were left. Participants were not aware of this sequence but their reaction time 
reflected the probabilities of the presented digits. The first digit in a sequence elic-
ited the longest reaction time and the last digit in a sequence elicited the shortest 
reaction time. This result did not depend on whether participants were aware of 
the presented sequence or not. Later, Lee (1997) conducted the same experiment 
using a sequence of digits from 1 to 6, and found the same effect (A. Cleeremans 
even refers to it in his articles as the Lee effect).

At the beginning of 1980s cognitive psychology in the USSR was still regarded 
as a “bourgeois science”. Studies of cognition would not resonate with the Marxist 
dogma, and could therefore not develop. By the end of the 1980s, the dogmatic 
labels were done away with; and the time finally came for Russian psychology to 
blossom. In the 1990s, the Russian psychologists finally obtained access to Western 
professional journals to review the studies firsthand and not from reinterpreted and 
inaccurate recounts.

At this time, studies of implicit learning in Russia become goal oriented and sys-
tematic. In Moscow, Ushakov’s laboratory at the Psychology Research Institute of 
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the Academy of Sciences, studies are conducted of the unconscious transfer of the skill 
acquired in one task onto another. This research attempts to combine Ponomarev’s 
findings with Reber’s ideas and findings. In Samara, Agafonov (and others, 2010) 
conducted a series of experiments on the solution priming effect in problem solving. 
Participants performed a lexical decision task with some of the trials being primed 
by items congruent with the solution of the task and some trials being primed by 
items incongruent with the solution of the task. When presented with a subliminal 
congruent priming for several dozens of trials, participants showed a gradual increase 
of the positive priming effect, i.e. they reduced the reaction time in a lexical deci-
sion task. When presented with subliminal incongruent primes for several dozens 
of trials, participants showed a gradual decrease of the priming effect. The positive 
priming effect became less pronounced when a series of subliminal congruent prim-
ing trials was preceded by a series of subliminal incongruent priming trials. Thus, 
when a participant received a series of valid pre-threshold primed cues, she relied 
on them more than when she received a series of the invalid ones. These results 
demonstrate that despite priming being subliminal, participants implicitly estimate 
the validity of the primed cue.

In St. Petersburg, a series of implicit learning studies have been conducted by 
Allakhverdov’s research group. The results of these studies are represented in the 
current volume by two articles: latest experiments on the negative choice aftereffect–
implicit negative learning are discussed by Kuvaldina and others; while Moroshkina 
et al. are concerned with the role of the participant’s chosen strategy (analytic vs. 
holistic) in the acquisition of implicit knowledge, as well as with the factors trig-
gering switches between the relevant strategies.

Outline of the chapters

This volume contains two broad sections. The first is devoted to overviewing the 
theoretical and historical aspects of implicit learning research; the second consists in 
a compendium of experimental studies on implicit learning conducted in Western 
and in Eastern Europe respectively. Together, the two sections offer a snapshot of 
the field as it stands today.

The theoretical section opens with a historical overview by Reber, Batterink, 
Thompson and Reuveni (Chapter 1). The context of the discovery of the phe-
nomenon of implicit learning and some of the theoretical complications that 
ensued are described. Reber and colleagues warn against overlooking the impor-
tance of implicit learning. They contrast laboratory-based approaches to applied 
research, and give a broad overview of the usage of implicit learning principles in 
various research domains. The authors show how the fields of statistical learning, 
decision-making and skill acquisition use theoretical frameworks that presuppose 
the existence of multiple memory systems, and describe implicit learning as a 
central aspect of complex cognition.

In the next two chapters Cleeremans (Chapter 2) and Allakhverdov and col-
leagues (Chapter 3) offer overviews of their respective theoretical frameworks.
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In his chapter, Cleeremans revisits some of the ideas associated with the radical 
plasticity thesis – the proposal that consciousness is something that the brain learns 
to do. The chapter begins with an analysis of the differences between conscious 
and unconscious information processing and continues with a brief overview of 
the core ideas of the radical plasticity thesis, which offers a way of rooting such dif-
ferences in principles derived from Higher-Order Thought Theory. The chapter 
concludes with an overview of the different manners in which information can be 
made subjectively unconscious.

Allakhverdov, Filippova, Gershkovich, Karpinskaia, Scott and Vladykina pro-
vide an overview of the Theory of Consciousness created by Allakhverdov in 
1970s. They put it together as a number of principles aimed at resolving a central 
paradox of learning: why do people, when they perform the same trivial action 
several times in a row, start to perform it better and faster? In a consistent series 
of theoretical claims, the authors defend the view that even before the process of 
learning, a person is implicitly able to do what s/he is learning to do, but is unable 
to explicitly realize this skill. The chapter describes the principles of independent 
verification that occur on several levels of cognition including implicit processing. 
The indirect mediator for verification is the signal of the accuracy of the uncon-
scious decisions. However, this subjective signal is not translated to awareness 
directly. Conscious experience is characterized by avoiding contradictions with 
previous experience, hence, some of the previously rejected signals continue to be 
rejected despite their correctness. Allakhverdov introduces the idea of recurrent 
mistakes, which become possible only with an underlying process of implicit learn-
ing. Some broader implications of this idea are discussed.

The Experimental section of the current volume contains a number of studies 
conducted by the members of the Implicit Learning Seminars group over different 
years. Chapters are written by Russian, Polish, Norwegian and English collabora-
tors and participants of the Implicit Learning Seminar.

The authors of Chapter 4 – Kuvaldina, Chetverikov, Odainic, Filippova and 
Andriyanova – continue the theoretical message of Allakhverdov et al. by present-
ing their research on recurring mistakes. The authors describe the framework of 
“negative choice”, which assumes that we may implicitly learn our own mistakes 
in simple cognitive tasks. In a series of experiments, they demonstrate that recur-
ring mistakes may happen in response to the same stimulus when this stimulus 
is presented several times. Recurring mistakes occur in different cognitive tasks 
involving either retrieval or recognition processes. This type of error leaves traces 
in memory that include information not only about the identity of the item that 
was associated with the erroneous response, but also the information about the 
location of this item and the previous response to this item. Recurring mistakes are 
different from the set of single mistakes: they elicit shorter reaction times than sin-
gle errors. In addition, recurring errors correlate with higher confidence ratings in 
comparison with single errors. The authors compare their findings to a number of 
similar studies and conclude that the learning mechanism that allows for “erroneous” 
(from the experimenter’s point of view) association of response and stimulus that is 
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stored in memory for quite some time could be somewhat similar to the Hebbian 
learning rule and the bidirectional associative memory model.

In Chapter 5, San Anton, Cleeremans and Destrebecqz explore the tension 
between associative and inferential theories of learning. According to inferen-
tial theories, learning is the result of inferences and reasoning on propositional 
representations. As a consequence, awareness of a rule always precedes the corre-
sponding behavioral changes. According to associative theories, however, learning 
involves the gradual updating of the associative strength between mental represen-
tations of the stimuli. On this view, consciousness is not mandatory for learning to 
take place. The authors test contrasted predictions from both theories in a video 
game-based paradigm in a series of two experiments. They conclude that their 
results support evidence of unconscious associative learning and embrace dual-
process theories of learning.

Strategic control in implicit learning tasks is usually used as an indicator of con-
scious knowledge. Chapter 6, authored by Norman, Scott, Price, Jones and Dienes 
carefully disambiguates this statement. First, they show that strategic control does not 
necessarily entail awareness. An approach offered by Dienes and Scott (2005) and 
Scott and Dienes (2008) distinguishes between structural and judgement knowledge, 
i.e. knowledge of the rule and knowledge that this rule exists. Conscious struc-
tural knowledge implies conscious judgement knowledge. However, unconscious 
structural knowledge could be accompanied by either conscious or unconscious 
judgement knowledge, thus allowing for strategic control to be present in the task 
without participants being fully aware of it. With the support of this theoretical 
approach, the authors describe an experiment where they show that participants 
who did not express conscious structural knowledge nevertheless showed some abil-
ity to strategically control the application of two learned grammars on a trial-by-trial 
basis. Strategic control was measured through a “strategic score”, a measure offered 
by Dienes, Altmann, Kwan and Goode (1995) that reflects ability to decide which of 
the two grammars to apply. The authors conclude that strategic control may occur 
even when participants express global unawareness of the nature of the rule that 
governs letter strings and respond on the basis of intuitive feelings, i.e., “implicit” 
decision strategies.

The question of whether implicitly acquired knowledge is abstract or not 
remains one of the most hotly debated issues in implicit learning studies. Kemény 
and Lukács (Chapter 7) look into the role of abstraction in sequence learning. The 
authors discuss different situations in which abstraction may influence the results of 
implicit learning: transfer, learning of category sequences, task complexity-related 
effects and stimulus-dependence. Skill transfer studies are described as an evidence 
in favor of abstraction. Nevertheless, the authors notice that some of the tasks 
used for this aim cannot surmount the shortcomings of a mapping problem, i.e. 
the degree to which pre- and post-transfer stimuli can be linked to each other. 
This problem certainly leaves the question of whether or not abstraction happens 
in implicit learning unsolved. The other variable that might be influenced by the 
level of abstraction is task complexity. The authors argue that due to the various 



12  Axel Cleeremans et al.

degrees of complexity in the tasks used for implicit learning studies its inevitable 
that effects of abstraction will be observed in some of them. Finally, the authors 
point out that in most of the studies of abstraction it is assumed that the learning 
mechanism is modality- and domain-independent. To contrast this widely shared 
opinion Kemény and Lukács describe the studies of Conway and Christiansen 
and their own that presume stimulus-dependent and modality-constrained learning 
mechanisms of abstraction. In conclusion of this review the authors describe task 
requirements as playing a crucial role in determining abstraction of the acquired 
representation. The question about abstraction in implicit learning turns into a 
question about abstraction in specific tasks like Task Sequence Learning and some 
forms of Artificial Grammar Learning (AGL).

Another theoretical question that is imminent with respect to implicit learning 
is the measurement of whether the rule was acquired consciously or unconsciously. 
Moroshkina, Ivanchei, Karpov and Ovchinnikova (Chapter 8) wrote an exten-
sive review of studies addressing this issue. Firstly, they provide a description of 
a variety of rule awareness measurements that include information and sensitivity 
criteria (Shanks and St. John, 1994), reliability and immediacy criteria (Newell 
and Shanks, 2014), exclusiveness and exhaustiveness criteria (Timmermans and 
Cleeremans, 2015), decision strategy attribution test (Dienes and Scott, 2005) and 
others. Secondly, authors argue that most of these approaches and criteria provoke 
verbalization and thus affect learning and application of implicit knowledge. They 
observe evidence for the effect of strategy, the effect of concurrent verbalization 
and the effect of retrospective verbalization that might block the application of 
implicit knowledge in subjects. Moroshkina, Ivanchei and Ovchinnikova claim 
that fade-out of the implicit learning effect that is observed in many studies hap-
pens as soon as subjects transit to conscious rule or regularity search, thus changing 
sensitivity to hidden rules and decision-making criterion accuracy. The authors 
conclude with several statements that appear to address the influence of goal-
directed behavior, verbalization and attention selection on the implicit learning 
more carefully. Recognition of these issues may resolve a lot of contradictions in 
the implicit learning field.

Echoing the message discussed in the previous chapter, Popławska-Boruc, 
Sterczyński and Roczniewska (Chapter 9) address a role of a goal-directed learn-
ing in the AGL task. The authors point out that it is hard to believe that implicit 
learning is totally independent of the cognitive resources and mechanisms of atten-
tional selection which are engaged in it. The testing phase of the AGL task and 
transferral of the tacit knowledge certainly requires cognitive resources as shown by 
a number of experiments described in the chapter. Another important factor that 
modulates results of implicit learning tasks is instruction or relevance of the feature 
to be memorized for the participant. The authors discuss experiments by Eitam and 
colleagues that demonstrated that implicit learning is related only to those features 
of the stimulus which are relevant to the goal of the task. However, in studies 
by Eitam and colleagues, the goals were externally set for participants – they had 
been informed beforehand what to focus on. In three experiments conducted by 
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Popławska-Boruc, Sterczyński and Roczniewska they demonstrated that partici-
pants did not need to be told directly to focus their attention on a particular feature 
to implicitly learn it. Moreover, participants were selective towards the features that 
were guiding their attention, i.e. they were more successful in learning the grammar 
of letters than the grammar of colors. Their results thus point to the resource-
consuming nature of implicit learning, which calls for attention to be allocated to 
certain aspects of objects in the perception field.

Contrary to the conclusion of Popławska-Boruc, Sterczyński and Roczniewska, 
a chapter by Wierzchoń and Derda (Chapter 10) instantiates the opposite claim, 
that is, that attentional resources (attentional load) do not affect implicit learn-
ing. The authors first review the literature on “dual task” in implicit learning to 
clarify the circumstances under which discrepancies in implicit learning studies are 
observed. They conclude that discrepancies in the experimental results could arise 
from a weak manipulation of attention load in a secondary task and insufficient sta-
tistical analysis that doesn’t, in most of the cases, include a test of null hypothesis by 
means of a Bayesian approach. To prove their point, authors present the data from 
four experiments of their own. In these experiments Wierzchoń and Derda vary 
the secondary task – Divided Attention, Random Interval Generation, Random 
Number Generation, Mental Arithmetic tasks – and calculate the probability of 
null hypothesis being true using a Bayesian approach. Two of their experiments 
used AGL as a primary implicit learning task, another two, a serial reaction time 
task. AGL experiments showed that a secondary task applied over an acquisition 
phase did not affect classification accuracy. Bayesian analysis conducted over these 
results presented evidence in favor of null hypothesis. The results observed in 
context of the serial reaction time task were less clear. Despite this, the authors 
conclude that their data adds to evidence supporting the thesis that attentional load 
does not affect implicit learning.

In closing, we very much hope this volume will stand as a snapshot of contem-
porary implicit learning research as it takes place fifty years after its inception, and 
as a unique opportunity for the many actors in this domain to become acquainted 
with work that has so far not been very visible in the West. It is a truism to state 
that science progresses by confronting different perspectives – but sometimes, even 
truisms ring truer than usual. . .

References

Agafonov, A., Kudel’kina, N. and Vorozheikin, I. (2010). Fenomen neosoznavaemoy 
semanticheskoy chuvstvitelnosti: noviye eksperimentalnie facti [The phenomenon of 
the unconscious semantic sensitivity: new experimental facts (article 1).] In Lisicki, K.S 
and Shpuntova, V. V. (eds.) Psychological Studies: Collection of Articles 8, pp. 6–25. Samara: 
“Univers-Group”.

Anokhin, (1968). Biologia i neurofisiologia uslovnogo reflexa [Biology and neurophysiology of 
conditional reflex]. Medicine. Moscow.

Bernstein, N. (1991). O lovkosti i iyie razvitii [On agility and its development]. Physical 
Education and Sports. Moscow.



14  Axel Cleeremans et al.

Berry, D. C. (ed.) (1997). Debates in Psychology: How Implicit Is Implicit Learning? New York, 
NY, US: Oxford University Press.

Berry, D. C. and Dienes, Z. P. (1993). Implicit Learning: Theoretical and Empirical Issues. 
London: Psychology Press.

Cleeremans, A. (1993). Mechanisms of Implicit Learning: Connectionist Models of Sequence 
Processing. Cambridge, MA: MIT Press.

Cleeremans, A., Destrebecqz, A. and Boyer, M. (1998). Implicit learning: news from the 
front. Trends in Cognitive Sciences, 2(10), 406–416.

Dennett, D. C. (2017). From Bacteria to Bach and Back: the Evolution of Minds. New York: 
Norton & Company.

Dienes, Z., Altmann, G., Kwan, L. and Goode, A. (1995). Unconscious knowledge of 
artificial grammars is applied strategically. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 21(5), 1322.

Dienes, Z. and Perner, J. (1999). A theory of implicit and explicit knowledge. Behavioral and 
Brain Sciences, 22(5), 735–808.

Dienes, Z. and Scott, R. (2005). Measuring unconscious knowledge: distinguishing struc-
tural knowledge and judgment knowledge. Psychological Research, 69(5–6), 338–351. 
doi:10.1007/s00426-004-0208-3.

French, R. M. and Cleeremans, A. (2002). Implicit Learning and Consciousness: an Empirical, 
Philosophical, and Computational Consensus in the Making. London: Psychology Press.

Jiménez, L. (ed.) (2003). Attention and Implicit Learning (Vol. 48). Amsterdam, Philadelphia; 
John Benjamins Publishing.

Lee, Y. S. (1997). Learning and awareness in the serial reaction time task. In Proceedings of 
the Nineteenth Annual Conference of the Cognitive Science Society: August 7–10, 1997, Stanford 
University (Vol. 19, p. 424). Mahwah, NJ, London: Lawrence Erlbaum Associates.

Leontyev, A. N. Problemi vozniknovenia ochucheniy [A problem of sensation formation] //  
Problemi Rzvitiya psihiki (pp. 15–218). Moscow, 1981.

Newell, B. R. and Shanks, D. R. (2014). Unconscious influences on decision making: a 
critical review. Behavioral and Brain Sciences, 37(1), 1–19.

Perruchet, P., Vinter, A. and Gallego, J. (1997). Implicit learning shapes new conscious 
percepts and representations. Psychonomic Bulletin & Review, 4(1), 43–48.

Petrenko, V. F. (1974). Dinamika semanticheskogo poiska: Isledovanie rechevih actov 
i mishleniaya [Semantic search dynamic: the study of the speech acts and thinking.] 
Alma-Ata.

Ponomarev, Yu. (1976). Psihologia tvorchestva [Psychology of Creativity]. Moscow.
Reber, A. S. (1993). Implicit Learning and Tacit Knowledge: an Essay on the Cognitive 

Unconscious (Oxford Psychology Series, No 19).
Rebuschat, P. (ed.) (2015). Implicit and Explicit Learning of Languages (Vol. 48). Amsterdam: 

John Benjamins Publishing Company.
Saffran, J. R., Aslin, R. N. and Newport, E. L. (1996). Statistical learning by 8-month-old 

infants. Science, 274(5294), 1926–1928.
Scott, R. B. and Dienes, Z. (2008). The conscious, the unconscious, and familiarity. Journal 

of Experimental Psychology: Learning, Memory, and Cognition, 34(5), 1264–1288. doi: 
10.1037/a0012943.

Seger, C. A. (1994). Implicit learning. Psychological Bulletin, 115(2), 163.
Shanks, D. R. and St. John, M. F. (1994). Characteristics of dissociable human learning 

systems. Behavioral and Brain Sciences, 17(3), 367–395.
Shanks, D. R. and Johnstone, T. (1998). Implicit knowledge in sequential learning tasks. 

In M. A. Stadler and P. A. Frensch (eds.), Handbook of Implicit Learning (pp. 533–572). 
Thousand Oaks, CA, US: Sage Publications, Inc.



Introduction  15

Stadler, M. A. and Frensch, P. A. (1998). Handbook of Implicit Learning. Thousand Oaks, CA, 
US: Sage Publications, Inc.

Timmermans, B. and Cleeremans, A. (2015). How can we measure awareness ? An over-
view of current methods. In M. Overgaard (Ed.), Behavioral Methods in Consciousness 
Research (pp. 21–46). Oxford: Oxford University Press.

Ushakov, D. V. and Valueva, E. A. (2006). Parallelnye otkrytija v otechestvennoj i zarubezh-
noj psihologii: primer intuicii i implicitnogo nauchenija [Parallel findings in Russian 
and international psychology on the example of implicit learning]. In Nauchnye materi-
aly mezhdunarodnogo foruma i shkoly molodyh uchenyh IP RAN/Razdel 1. Obraz rossijskoj 
psihologii za rubezhom [Proceedings of the international forum of the young scientists in IP RAS].

Uznadze, D.N. (1958) Experimentalnieye osnovi psihologii ustanovki [Experimental foundations of 
psychology of set]. Moscow.



1
IMPLICIT LEARNING

History and applications

Paul J. Reber, Laura J. Batterink,  
Kelsey R. Thompson, and Ben Reuveni

Introduction and history

The term “implicit learning” was first published 50 years ago in a report titled, 
“Implicit learning of artificial grammars” (A. S. Reber, 1967). This paper described 
studies with a novel paradigm aimed to create a laboratory analogue of language 
learning. The new approach was based on using mathematical formalisms for stim-
ulus creation that were similar to ones being developed to help understand human 
language function. Surprisingly, participants exhibited an unusual behavioral pat-
tern in their learning process. They appeared to be learning to be sensitive to the 
statistical structure of the underlying formalism, but seemingly without any aware-
ness that there were any underlying rules. This report established the possibility of 
a dissociation between learning that could only be exhibited through performance 
and more traditional learning and memory that was available to conscious aware-
ness. Over the next several decades a wide variety of additional studies and many 
more novel paradigms were constructed to drive research into understanding the 
phenomenon of implicit learning (A. S. Reber, 1989; P. J. Reber, 2013).

The historical context in which the original report was published provides some 
insight into why this finding had such a widespread, enduring impact and how the 
idea of implicit learning came to be foundational to the modern characterization of 
memory systems theory (Squire, 1992) and the cognitive neuroscience of memory. 
The story of the basis of the original studies (A. S. Reber, personal communication) 
starts with a chance meeting between the author, Arthur S. Reber, and George  
A. Miller in the early 1960s. Miller had fairly recently published the seminal paper 
on “the magic number 7” and working memory (Miller, 1956) which is often cited 
as one of the core reports demarking the shift in the field of psychology away from 
behaviorism and to cognitive psychology, known as the Cognitive Revolution. 
Other notable publications also considered in the same vein include Broadbent 



Implicit learning  17

(1958), Newell, Shaw, and Simon (1958) and a review written by Chomsky (1959) 
highly critical of a book by B. F. Skinner (1957) titled Verbal Behavior.

The Cognitive Revolution was effectively a movement against and away from 
the Behaviorist school that had attempted to put psychology on a robust scien-
tific footing through the use of simple, well-characterized tasks with quantifiable 
measures that allowed for robust, reliable experimental paradigms. In practice, this 
meant using tasks from the tradition of physiologists (e.g., Pavlov’s conditioning 
research) that could also be studied in animal models. However, the extrapolation 
from animal cognition to human cognition has always posed some difficult ques-
tions, in particular when considering complex human cognition and especially the 
process of language, which is effectively unique to humans. Skinner’s suggestion 
(1957) that language could be explained from reinforcement and conditioning 
studies was forcefully rejected by Chomsky (1959), implying that the study of 
human cognition needed a different approach.

The new approach favored by Chomsky led to his seminal work developing 
the field of computational linguistics. Early explorations of this work appeared in 
the Handbook of Mathematical Psychology (Luce, 1963) which includes three chapters 
authored or co-authored by Chomsky outlining how language production and 
comprehension might be modeled with formal grammars. Two of these chapters 
were co-authored with Miller, which provides some context for how Reber, as a 
graduate student at nearby Brown University, came into contact with these for-
malisms through Miller (at Harvard) via their occasional interactions.

While Chomsky’s research program can be seen as characterizing mathematical 
formalisms that would account for human language production and comprehen-
sion, Miller and Reber were considering a separate but related problem. If these 
grammars were how humans accomplished language, how does a human acquire 
them? The formalisms seemingly required to account for language use appeared to 
be exceedingly complex and possibly entirely unlearnable, especially considering 
the cognitive abilities of newborns. One approach was to assume they were not 
learned, necessitating the existence of a pre-wired “universal grammar” embedded 
in the human brain (e.g., genetically endowed). Another approach was to try to 
capture this learning process in the laboratory using simplified “artificial gram-
mars,” which then led to the seminal finding (A. S. Reber, 1967) and observation 
of a novel type of human learning that might solve this “unlearnability” problem 
for language.

Researchers familiar with this history are aware that the idea of implicit learning 
did not immediately revolutionize the study of memory or language. In fact, for 
much of the next several decades, there followed a great deal of debate centered on 
the difficult problem of establishing the “implicit” part of this kind of learning. With a 
definition of implicit learning founded on “not available to consciousness,” establish-
ing even the existence of this phenomenon depends critically on proving a universal 
null, no awareness, which is an essentially intractable problem (Merikle, 1994). 
While experimental techniques and measurement approaches eventually began 
to provide guidelines for tackling this issue (Dienes and Berry, 1997), important 
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support for the concept also emerged from ideas being developed separately and in 
parallel from research in neuropsychology and neuroscience.

Cognitive neuropsychology and systems neuroscience

At around the same time as the several famous publications in cognitive psychol-
ogy that launched the Cognitive Revolution were published, a landmark paper in 
human cognitive neuropsychology was also reported. Scoville and Milner (1957) 
described the famous case of the patient H. M., who exhibited severe and selective 
impairment to his ability to acquire new conscious memories after bilateral medial 
temporal lobe (MTL) removal to treat otherwise intractable epilepsy. While there 
had been a few prior reports of selective cognitive loss following localized brain 
regions (e.g., the patients described by Paul Broca and Karl Wernicke in the 19th 
century) the theoretical model of the time was dominated by Lashley’s (1929) 
theory of equipotentiality that hypothesized that any region of the brain could 
support high-level cognitive function. The case of patient H. M. established that 
memory was dependent on a specific neural region and did not arise from mass 
action of neural changes across the entire brain.

Research over the next 35 years characterized the structure and function of 
the memory circuitry within the MTL (hippocampus and adjacent cortical areas) 
and established that this system was critical for the acquisition and consolidation of 
memories for facts and events (Squire, 1992). Patients with damage similar to H. M.  
are unable to acquire new explicit memories, but are able to retrieve remote epi-
sodic memories of events that occurred prior to the damage to the MTL. More 
recent memories are partially affected by a temporal gradient of retrograde amnesia 
(see Lechner et al., 1999, for a review and history), leading to the development 
of a theory of memory consolidation dependent on a gradual process of memory 
strengthening and reorganization that depends on the MTL after initial learning.

However, detailed neuropsychological assessment of H. M.’s memory capa-
bilities subsequently indicated that not all learning processes in his brain were 
entirely disrupted. Corkin (1968) and Milner, Corkin, and Teuber (1968) docu-
mented improvements in performance in procedural tasks (mirror tracing), maze 
learning, and picture identification from fragments. Shortly after, Weiskrantz and 
Warrington (1970) described a broader phenomenon of intact memory from frag-
mentary information in amnesic patients (priming) that would come to be known 
as “implicit memory” and very widely studied (Schacter, 1987). Together these 
findings indicated that another type of memory existed that did not operate in 
the same manner as memory for new facts and events that depended on the MTL 
memory system.

These findings were foundational to the development of a “memory systems 
framework” that aimed to connect these observations about human memory to 
research going on in parallel on the neuroscience of memory. The field of neuro-
science also progressed remarkably over the course of the 20th century (c.f. Gross, 
1999 for a highly readable overview) with a notable moment in this progression 
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being the founding of the Society for Neuroscience in 1969. With respect to spe-
cifically the neurobiology of learning and memory, an important early paper was 
the work of Kandel and Spencer (1968), who began to characterize the underlying 
biology of synaptic change in the nervous system. It is of note that all three of these 
then independent lines of research on learning and memory saw significant results 
in a similar time frame in the second half of the 1960s. However, integration of the 
related ideas across these research areas did not emerge until somewhat later during 
the development of the interdisciplinary field of cognitive neuroscience.

A great deal of neuroscientific memory research through the subsequent years 
was focused on establishing and characterizing the role of the MTL in explicit, 
declarative memory (facts and events). While observations from patients such as 
H. M. were fascinating, it was understood that it would require the establishment 
of a model system to be able to characterize how MTL damage affected memory 
with experimental control. The roles of the hippocampal formation, the adjacent 
cortical areas (entorhinal, perirhinal, parahippocampal), and the amygdala were all 
studied in detail (Squire, 1992). Systems-level analysis eventually converged on the 
key importance of the hippocampus and the adjacent cortical areas with the amyg-
dala playing largely a modulatory role related to emotional memory. In addition, 
examination of the phenomenon of retrograde amnesia following MTL damage 
led to the characterization of memory consolidation processes as a key feature for 
how the MTL operates to store information.

Evidence for consolidation theory was also accumulating in parallel in research 
on the neurobiology of synaptic change (McGaugh, 2000). Synergy across these 
areas demonstrated how cellular and systems neuroscience could inform each other 
in building a theory of memory (Milner, Squire, and Kandel, 1998). Connections 
to research on psychological phenomena directed at studies of complex cognition 
were not immediately evident. Animal models do not allow for research on pro-
cesses related to language or subjective measures of consciousness. Instead, many 
of the paradigms used to characterize and quantify learning and memory processes 
in these animal model systems were closely related to the tasks developed by the 
Behaviorist researchers (e.g., conditioning models of learning) which were very 
well suited to neuroscientific study of learning and memory.

Implicit learning and the problem of assessing awareness

Studies of implicit learning through two decades following the original descrip-
tion of the AGL task aimed to better characterize this kind of learning (A. S. Reber, 
1989) but struggled with the question of how to firmly establish when learn-
ing was outside awareness. Assessing a lack of awareness depends on an accurate 
model of the information learned by participants to guide assessments of conscious 
knowledge. Dulany, Carlson, and Dewey (1984) and Perruchet and Pacteau 
(1990) found that asking participants about the letter strings used in the AGL 
paradigm specifically elicited some additional knowledge related to determining 
whether the strings followed the grammar rules or did not. This raised the  
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possibility that participants were inferring another type of representation that 
allowed them to make “grammaticality” judgments without being aware of the 
specifics of the formal grammar. However, it was also possible that these assess-
ments were not of the awareness of the knowledge that drove the grammaticality 
judgment, but reflected concomitant explicit memory for the study stimuli (which 
would naturally be acquired by cognitively healthy participants but might not 
contribute to AGL performance).

Similar questions were being raised about studies of implicit memory (e.g., 
Roediger, 1990). To show that this type of memory did not depend on explicit 
memory for previously seen stimuli, it would be necessary to show robust prim-
ing in the absence of conscious memory. In cognitively healthy participants, this 
proved to be extremely difficult as a participant with an intact MTL memory 
system will always have some explicit memory of the study items. The inability 
to show a strong dissociation made it impossible to rule out the hypothesis that 
implicit memory phenomena simply reflected a weaker form of explicit memory 
(similar to familiarity) rather than a separate form of memory entirely.

A new paradigm for studying implicit learning was described by Nissen and 
Bullemer (1987), the Serial Reaction Time (SRT) task that became quite widely 
popular. This task embedded a covert repeating sequence into a simple choice 
reaction time task. Participants were found to increase their speed of responding 
to a practiced sequence compared with unpracticed sequences without seemingly 
being aware of the repetitions. In addition to the dissociation with awareness, 
this paradigm was also shown to exhibit intact learning in memory-impaired 
patients (Korsakoff’s) in the original report. Like with the AGL paradigm, concerns 
emerged over the content of the representation (Reed and Johnson, 1994) which 
led to protocol improvements without changing the basic character of the finding. 
However, the development of increasingly sensitive measures of explicit sequence 
knowledge (Perruchet and Amorim, 1992; Willingham, Greeley, and Bardone, 
1993) started to show the same pattern observed in other tasks used in implicit 
memory research. Participants with intact explicit memory tended to have at least 
some memory for the covertly embedded (implicit) information, even if it was not 
clear that it contributed to task performance.

Memory systems theory

The emergence of an integrated memory systems theory that used an interdis-
ciplinary cognitive neuroscience approach eventually showed how the neural 
basis of memory function in the brain could be used to help understand the 
type of learning observed in implicit learning paradigms. Squire (1992) described 
a taxonomy of memory types within a single major subdivision based on the 
importance of the MTL memory system. Declarative memory referred to infor-
mation that required the MTL memory system to store (and consolidate) and 
produced representations that were generally available to awareness and verbal 
report. Nondeclarative memory described a collection of other phenomena that 
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did not depend on the MTL memory system but were instead supported by synaptic 
change in other circuits.

Applying this framework to phenomena of implicit learning, Knowlton, 
Ramus, and Squire (1992), and Knowlton and Squire (1996) showed that as 
predicted, AGL was intact in patients with severely impaired memory due to  
MTL damage. P. J. Reber and Squire (1994; 1998) established the same paral-
lel finding for the SRT task with techniques in protocol design and awareness 
assessment that had been advanced since Nissen and Bullemer (1987). Research 
on implicit memory with particularly severely memory-impaired patients indi-
cated that it was possible to observe intact priming in the complete absence of 
explicit (declarative) memory for stimuli (Hamann and Squire, 1997; Stark and 
Squire, 2000). In each case, the tasks studied with cognitively healthy participants 
characterized as implicit learning, were the same as those that neuropsychological 
studies showed an important role for nondeclarative memory. P. J. Reber (2013) 
reviewed these areas and described a general framework for memory based on 
the MTL memory system together with general, pervasive neuroplasticity mech-
anisms that shape processing everywhere else in the brain to adaptively improve 
functioning via practice (repetition).

This framework provides a neurocognitive foundation for studies of memory 
that depend on implicit or explicit learning, or a complex interaction between the 
two types of memory. It also allows for a theoretical approach to the small handful 
of exceptions in which memory phenomena that appear implicit with cognitively 
healthy participants appear to depend on the MTL memory system. The contextual 
cuing paradigm (Chun and Jiang, 1998) has been used to study implicit learning 
in attentional search such that improved search performance occurs with repeated 
stimuli, even when the participants are unaware of the repetition. However, this 
type of learning is disrupted with hippocampal damage (Chun and Phelps, 1999). 
The pattern is similar to observations from a paradigm of “priming of new asso-
ciations” (Graf and Schacter, 1985; Shimamura and Squire, 1989) that described 
a type of priming that was not preserved in amnesic patients. However, if the 
mechanism of implicit learning is pervasive throughout the brain, we can expect 
that it would apply even to shaping representations that were initially acquired 
from MTL-based (explicit) memory processes. This type of process would also 
support the statistical effects on explicit memory retrieval processes hypothesized 
by Anderson (Anderson and Milson, 1989) to account for how human memory 
adaptively responds to the observed demands of the environment.

Allowing for this interplay between types of memory allows for a very flexible 
theoretical account of a wide variety of observed human memory phenomena. 
However, it is based on a different approach than the original findings of robust 
dissociations between types of memory and might be criticized as exceedingly 
difficult to falsity. Even though the description is consistent with a very wide 
range of findings across memory systems research, it does not directly rule out 
alternate hypotheses. The primary alternate view of memory has historically been 
that human memory is largely based by a single system with the idea that this 
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more parsimonious approach needs to be ruled out before accepting the more 
complex memory systems framework (Shanks and St. John, 1994; Nosofsky and 
Zaki, 1998). A single system or type of memory is largely inconsistent with neu-
roscientific observations of memory and the many systems demonstrating synaptic 
plasticity. However, a skeptic might suggest that although there is clearly neuro-
plasticity in the brain that operates outside awareness, the cognitively important 
aspects of human cognition depend exclusively on operations of explicit memory. 
Because human implicit learning phenomena have traditionally been studied with 
artificial paradigms aimed to dissociate implicit and explicit memory, it could be 
suggested that implicit learning is merely a vestigial reflex or a trick that can be 
elicited in the psychology or neuroscience laboratory.

To address this concern, it is necessary to examine how implicit learning 
affects cognitive behavior in designs that better capture the demands of memory 
imposed by activities in the world outside the laboratory. The utility of the mem-
ory systems framework needs to be shown as leading to a better understanding 
of complex learning processes and should be driven by a program of research in 
Applied Implicit Learning. This will entail eventually moving past reliance on the 
creative and unusual learning and memory paradigms (e.g., AGL, SRT) that were 
highly effective for isolating types of memory and developing the scientific frame-
work. Among the immediate challenges for this new approach is that a theory 
of memory systems interactions is needed (e.g., Nomura and Reber, 2012) that 
the focus on dissociation has often overlooked (with notable exceptions, such as 
Poldrack et al., 2001).

In the remainder of this review, three research areas will be presented in 
which there is already evidence of influence of the core ideas behind implicit 
learning and memory systems and in which it appears further integration of the 
neurocognitive framework will be valuable. The first of these, “statistical learn-
ing” (Saffran, 2003), reflects a research area very much in the same tradition as 
the original AGL paradigm aimed at understanding the automatic extraction of 
statistical regularities to support language learning. Second, the process of “skill 
learning” and performance also naturally incorporates ideas about separate forms 
of learning from explicit instruction and repetitive practice. The memory systems 
framework captures these descriptions well and can guide theoretical accounts 
of the development of skilled expertise. Third, research on decision making 
(Tversky and Kahneman, 1975) developed in parallel a structurally similar multi-
system approach to differentiate processes for rapid, intuitive decision making 
and slower, deliberate reasoning. This approach maps on fairly well to the mem-
ory systems framework and highlights interesting questions about the interaction 
of systems. This framework has been highly valuable in helping to understand 
certain classes of errors where implicit learning can lead to implicit bias affecting 
judgments. Across these three areas, consideration of the roles and interplay of 
multiple types of memory allows for better characterization and understanding 
of complex, real-world, human learning processes than can be supported by a 
simple, single system theory.
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Statistical learning and language

The original AGL paradigm used to introduce the idea of implicit learning was 
developed in response to the introduction of computational linguistics. If human 
language can be represented in formal structures (finite state machines) that account 
for important aspects of syntax, how are these structures learned? While the AGL 
paradigm explicitly represented the underlying formal grammar structure, a differ-
ent approach to the same idea was taken by Saffran, Aslin, and Newport (1996) 
with a paradigm described as “statistical learning.” This approach used much sim-
pler stimuli but was designed to be used to assess how pre-verbal infants could 
extract statistical structure from auditory speech-like input. The findings that 
emerged from this field of research were strongly influenced by considerations 
of the formal linguistics model of Chomsky (Saffran, 2003), just as the original 
A. S. Reber (1967) paper was. The paradigm developed by Saffran and colleagues 
focused on the statistics embedded in speech that could be used to determine 
word boundaries, rather than the syntactic structure implied by an AGL, and were 
designed to be amenable for developmental studies with pre-verbal infants.

In the statistical learning paradigm, infants (or other participants) listened to 2–3 
minutes of artificial speech (synthesized) that contained an essentially undifferenti-
ated stream of syllables. Statistical structure was covertly embedded by constraining 
the transitional probabilities between syllables in a manner similar to natural speech. 
In natural speech, phonemes within words are highly constrained but phonemes 
at the end of a word (on the boundary) can be followed by the initial phoneme of 
a much wider range of possibilities. After familiarization with artificial phoneme 
streams following this structure, infants exhibit differential preferential looking to 
stimuli that follow or violate this statistical structure. By careful control of the 
underlying frequency and conditional probabilities (Aslin et al., 1998) in a manner 
reminiscent of the controls discovered to be necessary with the SRT task (Reed 
and Johnson, 1994), it was established that these very young infants were essentially 
computing the transitional conditional probabilities among phonemes.

The statistical learning paradigm established a key idea behind the original 
AGL paradigm in that it showed that pre-verbal infants, in the process of natural 
language acquisition, exhibited a sophisticated learning ability that could sup-
port key aspects of language learning. In addition to the findings showing that 
word boundaries could be statistically extracted from continuous auditory input, 
additional findings extended this type of learning to more abstract relational rules 
(Marcus et al., 1999) and to some kinds of non-adjacent dependencies (Newport 
and Aslin, 2004). These paradigms do not attempt the complexity of formal 
linguistic structures necessary to acquire and produce well-formed, syntactic lan-
guage. However, the statistical learning findings do show a core learning ability 
that emerges from experience and shapes processing of auditory input to sup-
port language processing. Of particular note, this implicit learning mechanism is 
available and relatively computationally complex even in young infants who are 
acquiring language.
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Extensions of this line of research further suggested that statistical learning abil-
ity is not restricted to linguistic stimuli, with statistical learning being exhibited by 
infants in the visual domain as well (Fiser and Aslin, 2002; Kirkham et al., 2002). 
Using paradigms that parallel the auditory presentation of covertly embedded statis-
tical information, infants and adults exhibit sensitivity to this structure in sequences 
of visual objects (Fiser and Aslin, 2002; Turk-Browne et al., 2005). These find-
ings suggest that the ability to extract statistical structure are present across sensory 
modalities, generally supporting the idea of widespread neural plasticity supporting 
implicit learning to reshape processing throughout the brain (P. J. Reber, 2013).

Although the statistical learning paradigm was also extended to adults, attempts 
to assess the conscious accessibility of the statistical structure did not immediately 
follow. Since this research area emerged from developmental studies, the tools 
developed to assess awareness of learning were not applied to the adult learning 
paradigms. Even so, the commonalities between implicit and statistical learning 
were noted as likely emerging from the same underlying mechanism (Perruchet 
and Pacton, 2006). Batterink et al. (2015) systematically evaluated contributions 
from both implicit and explicit memory to statistical learning to support the idea 
that even in adults, this form of statistical learning depends on mechanisms that 
support implicit learning.

While statistical learning is able to play an important role in language learning, it 
is clear that not all language processing depends on being or can be learned entirely 
implicitly. Some crucial elements such as reference and word meaning seem to 
depend on the MTL memory system that is better suited to supporting memoriza-
tion of the connection between a vocabulary word and its referent. This observation 
has led to the description of language processing as depending on both kinds of 
memory (Ullman, 2004; Paradis, 2004) contributing materially to different aspects 
of this complex process. Morgan-Short et al. (2010) applied this theory to questions 
of second language acquisition suggesting that a multiple systems model of language 
acquisition can provide valuable insight into how a second language is learned.

As seen across the three areas of “applied implicit learning” considered here, 
connections of implicit learning and memory systems theory to non-laboratory 
applications generally require considering both types of memory and also potential 
interactions between memory systems. Considering learning a second language as 
an example, we would hypothesize that the new syntactic structures to be learned 
might be best acquired by high levels of exposure to speech to allow for statisti-
cal learning to proceed. Memorization of new vocabulary would be facilitated by 
strategies that facilitate explicit learning (e.g., deep semantic encoding). However, 
an unanswered question in this area is how these two types of memory interact 
during the learning process. Do statistical learning and word memorization support 
each other, proceed independently, or even interfere with each other? To date, 
within language studies questions about system interactions have not been thor-
oughly explored. As in many areas within implicit learning, the drive to isolate this 
type of learning has led to the development of tasks aimed at separating memory 
types rather than examining interactions.
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Skill learning

A research area in which the potential importance of interactions among memory 
types has begun to be considered is the acquisition of expert skill. While skills 
are often initially learned with some explicit instruction, the importance of prac-
tice in acquiring expert levels of skilled performance has long been understood. 
What is learned during the process of repetition is not easily available to conscious 
awareness but accrues through experience. Early research in psychology aimed to 
characterize this process of skill learning and improvements in performance due 
to repeated practice (e.g., Fitts, 1964). The course of learning measured as per-
formance improvements from practice has been extensively studied and is often 
described as following a power-law (Newell and Rosenbloom, 1981; or some 
similarly negatively-accelerated curve) that continues over remarkably extended 
periods of time, even up to millions of repetitions (Crossman, 1959). Within this 
field, there are active debates over the role of rote practice, structured deliber-
ate practice (Ericsson et al., 1993) and other factors (such as talent) that predict 
expertise (Campitelli and Gobet, 2011). However, this process is fundamentally a 
memory phenomenon that must be supported by the learning and memory mech-
anisms of the brain.

There is a basic assumption embedded in any approach based on practice that the 
information acquired during practice could not have been acquired by explicit, ver-
bal instruction, which would otherwise be much more efficient. The information 
learned during practice is generally not available to later verbal report, suggesting that 
implicit learning mechanisms are playing an important role. The nonverbal nature 
of this knowledge might alternately be ascribed to the type of representation, i.e., 
“motor learning” might not support verbally accessible representations. However, 
the memory systems framework incorporates this idea by including learning within 
specific neural systems such as motor execution (or perceptual learning) as varieties 
of implicit learning in that they do not depend on the MTL memory system and 
produce knowledge representations that cannot be described.

Many of the tasks examined in the general domain of skill learning are not sim-
ple motor or perceptual learning tasks. Cognitively complex skill such as playing 
chess are initially learned through explicit instruction but expertise only emerges 
after extensive practice (Ericsson et al., 1993). Within music cognition, the differ-
ent roles of explicit memorization and learning from practice are well-understood. 
Chaffin, Logan and Begosh (2009) describe in detail two parallel processes of pre-
paring for expert music performance, one based on building associative chains 
while repeatedly practicing and a separate process of explicitly memorizing the 
written score (as a backup in case of error). The memory systems framework pro-
vides a useful way of characterizing these learning processes. Memorization of the 
music piece depends on explicit memory and the MTL memory system. Practicing 
the piece allows for the pervasive neuroplasticity mechanisms supporting implicit 
learning to hone neural processing to make execution of performance smooth, 
precise, and accurate.
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However, the fact that this framework is consistent with descriptions of skill 
learning does not establish that the account is accurate. One of the challenges 
in studies of complex skill learning is the necessity of both explicit and implicit 
instruction during the learning process. Because these always co-occur, alternate 
hypotheses about skilled knowledge representations need to be considered. One 
possibility is that skill learning produces a functionally integrated representation 
across memory types such that an independent systems model cannot aid our under-
standing of this process. Another possibility is that repeated practice changes the 
character of an initially explicit memory representation such that retrieval becomes 
so rapid, effortless, and automatic that there is no role (or need) for implicit learn-
ing processes. Laboratory research aimed to capture the skill-learning process in 
order to address these alternatives has largely focused on tasks of perceptual-motor 
skill learning such as the SRT task.

The SRT task (Nissen and Bullemer, 1987) is a highly studied task that appears 
to be largely supported by implicit learning. Participants perform a serial 4-alternate  
forced choice response task in which the sequence of cues covertly follows an 
embedded sequence. Faster reaction times when the cues follow a practiced 
sequence compared with conditions where the cues follow an unfamiliar sequence 
are evidence that the practiced sequence has been learned. Establishing that this 
learning is solely implicit would provide robust evidence for the memory systems 
framework in skill learning. This kind of direct implicit learning without initial 
explicit memorization makes it clear that skilled performance does not necessar-
ily depend on either an integrated implicit/explicit knowledge representation or 
automation of initially explicit knowledge.

However, while the first demonstration of learning with the SRT task 
suggested both knowledge outside of awareness and intact learning by memory-
impaired patients (indicating lack of dependence on the MTL memory system), 
debates about the character of knowledge acquired during the SRT task have 
persisted. Thorough investigations of the conscious access of sequence knowledge 
(Perruchet and Amorim, 1992; Willingham, Greely, and Bardone, 1993) sug-
gested that sensitive tests of sequence recognition almost always indicate some 
explicit knowledge in healthy participants. Having some conscious memory of 
the repeating sequence might reflect the concomitant operation of the MTL 
memory system (in cognitively healthy undergraduate participants) or might 
reflect evidence for the alternate hypothesis that skill learning depends on inte-
grated representations. Studies of amnesic patients (Reber and Squire, 1994; 1998) 
showed that reliable learning could be observed in the absence of explicit mem-
ory, but concerns remained about the ability to prove intact learning in patients 
(which necessarily depends on a finding of a null difference between patients and  
controls). Destrebecqz and Cleeremans (2001) reported a strong dissociation 
between implicit and explicit sequence knowledge for a specific variant on the 
SRT design (zero delay in the interval between response and next cue). Overall, 
while the evidence supported the idea that learning was implicit, the difficulty of 
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regularly finding evidence for process-pure implicit learning with the SRT task 
meant questions about representation persisted.

A new variation of the sequence learning paradigm was described by Sanchez, 
Gobel, and Reber (2010) as a Serial Interception Sequence Learning (SISL) task. 
This paradigm changed the basic task performed by the participant. Rather than a 
simple speeded response to the onset of a cue (in one of four locations), cues appear, 
then move vertically down the screen towards a target area, and the participant has 
to time an “interception” response of pressing the correct response key precisely as 
the cue reaches the target area. Just like in the SRT task, the cues follow a repeating 
covertly embedded sequence but the additional cognitive demands of the response 
task appears to reduce the degree to which explicit knowledge is acquired. Sequence 
knowledge is measured by accuracy (a properly timed response is correct, a mis-
timed or incorrect keypress is incorrect) during the repeating sequence compared 
with accuracy during an unfamiliar sequence. Sanchez, Gobel, and Reber (2010) 
showed that learning on the SISL task is solely implicit for a substantial subset of 
cognitively healthy participants in a typical experiment. Showing robust learning 
with zero apparent explicit knowledge in approximately a third of participants pro-
vided strong evidence that the SISL task could be learned in the absence of explicit 
knowledge, arguing against integrated representations. In a follow-up study, Sanchez 
and Reber (2013) found that giving participants full explicit knowledge of the 
embedded sequence did not affect performance on the core task, providing strong 
evidence that implicit learning drives performance and that any explicit knowledge 
obtained by noticing the repeating cues does not materially contribute to accurate 
responding in the SISL task (in contrast to the SRT task where explicit knowledge 
can lead to negative reaction times where participants respond before cue onset). 
Neuroimaging during the SISL task found that learning was associated with greater 
efficiency in neural processing for the practiced, repeated sequence as would be pre-
dicted by adaptive neuroplasticity (Gobel, Parrish and Reber, 2011). Neural changes 
were largely in cortical regions, although increased activity suggested a role for the 
ventral striatum. A neuropsychological study of memory-impaired (amnestic MCI) 
patients and patients with Parkinson’s disease (PD) found impaired learning in the 
PD patients but intact learning in the MCI patients, reinforcing the importance of 
the basal ganglia rather than the MTL for sequence learning (Gobel et al., 2013).

Across each of these studies, knowledge of the embedded repeating sequence 
was found to be extracted implicitly from practice and used to enhance task per-
formance (when the cues follow that sequence). Because this happens without 
initial explicit cue knowledge and independently of the MTL, the memory sys-
tems framework provides the best account of the learning process as based on 
separate neural systems for implicit and explicit sequence knowledge. Theoretical 
accounts based on skilled performance emerging from integrated representations 
or explicit knowledge automated through practice cannot account for these find-
ings. Beyond a consistent description, the memory systems framework also guided 
a series of additional studies seeking to better characterize the implicit learning 
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component of skill learning with a goal of understanding skill training and education 
outside the laboratory.

A key challenge in skill learning is the degree to which learning is inflexible, 
leading to poor performance in novel but related transfer tasks (Adams, 1987) 
which may be due to the role of relatively inflexible implicit learning (Cleeremans, 
Destrebecqz, and Boyer, 1998). Using the SISL task, sequence learning was found 
to be highly specific and inflexible such that small changes in inter-cue timing 
(Gobel, Sanchez, and Reber, 2011) or perceptual characteristics (Sanchez, Yarnik, 
and Reber, 2015) led to nearly complete elimination of the accuracy advantage for 
practiced sequences. This inflexibility may have the practical consequence of mak-
ing implicit knowledge occasionally inaccessible, perhaps explaining the need for 
expert musicians to separately memorize the written score prior to performance (so 
that explicit memory could be used to rescue performance if implicit knowledge 
was unexpectedly unavailable).

In contrast to this constraining aspect of implicit learning, Sanchez and Reber 
(2012) found robust implicit learning for surprisingly long repeating sequences in 
the SISL task (up to 90 items) and that learning appeared to be log-linear with prac-
tice regardless of sequence length, meaning long sequences were learned as rapidly 
as short ones (except that they took longer to complete). The ability to learn very 
long sequences indicates that implicit learning can support the kind of memory 
described by musicians during the “learning” phase of repetitive practice in which 
performance is honed for a piece that will contain large numbers of sequential 
actions. An extension of this kind of long sequence learning into an applied con-
text was described by Bojinov et al. (2012) in which participants implicitly learned 
a long sequence that was then used as part of security authentication as an implicit 
password. A password learned this way has useful security implications as it cannot 
be shared (or coerced) and reflects the use of implicit learning and memory systems 
theory in an attempt to guide non-laboratory applications.

This theoretical framework has also been applied to research examining the 
effect of stress (pressure) on the performance of trained skills (DeCaro et al., 2011). 
Beilock and colleagues described a theory of “choking” under pressure in which 
explicit monitoring of a skill learned implicitly led to decrements in expert per-
formance (Beilock and Carr, 2001). Flegal and Anderson (2008) reported a similar 
phenomenon in skilled performance in experts as verbal overshadowing reflect-
ing competition between memory systems. These types of findings are difficult 
to understand without utilizing the memory systems framework that incorporates 
different types of memory with different operating characteristics and separate neu-
ral mechanisms. Being able to study each system independently has also recently 
revealed that implicit learning and/or performance can be influenced by factors 
such as mental fatigue (ego depletion; Thompson et al., 2014), motivation (Chon 
et al., 2018) or even hypnosis (Németh et al., 2013). As skill learning is founda-
tional to education (cognitive skills), training and the development of expertise, 
implicit learning and the memory systems framework will provide critical guidance 
to basic science research applied to improving learning in skill learning contexts.
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Decision making

A research area in which the roles and interactions among multiple systems has 
a fairly substantial history is the process of decision making. In his remarks upon 
accepting the Nobel Prize in economics, Kahneman (2003) described the frame-
work developed by his work with Amos Tversky as emerging from two cognitive 
systems. Intuitive reasoning depends on System 1, a processing system character-
ized as: rapid, automatic, effortless, associative, slow-learning, and emotional. In 
contrast, System 2 reasoning is deliberate, slow, controlled, effortful, rule-governed, 
and flexible. These system definitions mirror the memory systems model of implicit 
and explicit learning with many of the same descriptive terms applied to features 
of each type of processing. However, this line of research was largely developed 
independently and was primarily applied to research on behavioral economics and 
decision making without direct connection to the role of memory.

Within this line of research, a notable difference is the focus on the speed of 
processing rather than the availability of knowledge to conscious awareness or 
underlying neural systems. Descriptions of decision making within this framework 
typically describe a fast System 1 response that can be then reviewed and potentially 
overridden by a slower System 2 response. This type of interaction across systems 
is different than those considered within skilled expertise (or language processing) 
but might be hypothesized to play a role in those domains as well.

This approach lends itself to research examining the phenomenon of intuition 
(e.g., Klein, 2004), defined as a System 1 process that rapidly identifies an action 
to take that is often subjectively described as based on a “gut hunch” or instinct. 
This type of intuitive decision making (IDM) has been studied for its potential to 
support rapid, expert, accurate decisions that are of great value in complex and/or 
stressful environments. That approach is somewhat different than the early focus of 
Tversky and Kahneman (1974) that focused on erroneous (non-rational) decisions 
driven by biases that could emerge from System 1 processes. Kahneman and Klein 
(2009) contrasted and compared a System 1 and 2 account of this process with 
research obtained through naturalistic decision-making research based on analysis 
of experts making complex, high leverage decisions in the field. They determined 
that their approaches were largely in sync and suggested that prior experience in 
the decision-making context was an effective predictor of the accuracy of intuition. 
This idea was explored and directly supported empirically by Dane, Rockmann, 
and Pratt (2012) by comparing the accuracy of intuition across different levels of 
domain expertise. High domain expertise led to much more accurate intuitive 
judgments, as would be expected if intuition was supported by implicit extraction 
of the statistics of the environment during the acquisition of domain knowledge.

This conclusion fits well with the memory systems model derived from labo-
ratory studies of implicit and explicit memory. Implicit knowledge of a specific 
domain is accumulated as part of the development of expertise based on refining 
and honing processing (as in skill learning) in addition to statistical learning of 
environmental features (as in language learning). The resulting implicit knowledge 
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structures reside outside awareness due to their dependence on plasticity separate 
from the MTL memory system (which will provide episodic memory of specific 
examples and salient events from experience). We can also connect this idea to lab-
oratory studies of implicit learning where participants are asked to make a response, 
e.g., about grammaticality of an unfamiliar letter string, but report they feel as 
though they are just guessing even when their performance is significantly above 
chance (Reber, Beeman, and Paller, 2013).

However, an unanswered question in memory research is the route by which 
this information proceeds through the brain in order to actually guide action selec-
tion. Using laboratory studies of visual category learning in which participants 
are required to learn categories through a process of trial and error as a model, 
Nomura and Reber (2012) described a multi-system model of category learning 
and performance, PINNACLE, that incorporated two separate processing streams 
for information extracted implicitly during learning and memorized knowledge of 
the category stimuli. This model has the structure of a “mixture of experts” model 
at the decision-making level with the response decision (the participant’s response 
about which category the stimulus was thought to belong to) being influenced by 
either implicit knowledge via intuition or explicit knowledge by deliberate appli-
cation of conscious task knowledge.

The PINNACLE model was developed in reference to a well-established labo-
ratory paradigm for studying category learning (Ashby and Alfonso-Reese, 1998; 
Ashby and Maddox 2005) in which known manipulations to the underlying category 
structure could lead participants to rely on an explicit, rule-based (RB) strategy or an 
implicit strategy based on integration information across dimensions (II). In this task, 
participants are shown artificial stimuli that vary in two dimensions, such as sine-wave 
gratings that vary in spatial frequency (line thickness) and tilt. They attempt to learn 
how the stimuli are organized into two underlying categories by trial and error with 
feedback after each response. When the structure is determined by a simple rule, 
participants generally discover the rule, use it to make their category membership 
decisions and verbally report the rule after learning. Complex, multi-dimensional 
rules often drive behavior differently with participants exhibiting gradually increasing 
accuracy at the task but without being able to report the basis of their judgments.

Using neuroimaging, Nomura et al. (2007) showed that neural activity associ-
ated with RB learning occurred within the MTL memory system. In contrast, II 
learning was associated with increased activity in posterior regions of the caudate, 
brain areas often associated with implicit learning plasticity (Seger and Miller, 2010). 
Using the PINNACLE model to probe the neuroimaging data in more detail, 
regions in the prefrontal cortex were identified that were associated with the cogni-
tive process of selecting which strategy to apply on a single decision. The resulting 
model lines up well structurally with the Kahneman (2003) framework with sepa-
rate neural systems contributing to rapid, intuitive decisions and slower, deliberate, 
and explicit decisions. Interactions between the two modes of decision making 
would occur within the dorsolateral prefrontal cortex which would reflect a meta-
level decision such as knowing when to “trust one’s instinct” to guide behavior.
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The PINNACLE model provides a method for translating the laboratory studies 
of multiple brain systems into non-laboratory applications. P. Squire et al. (2014) 
described how research in this direction could be used to study the processes of 
IDM and generate hypotheses about how decision-making expertise could be 
trained more rapidly. A similar approach was used by Dane and Pratt (2007) in 
their analysis of how treating intuitive and non-IDM in managerial contexts could 
be informed by the multiple memory systems model. In a number of these cases, 
attention is also paid to erroneous decision making that can emerge from reliance 
on intuition (Kahneman and Klein, 2009). A balanced model of the value of IDM 
emerges naturally from an implicit learning approach. Implicit learning can only 
reflect experience and the statistical structure of the environment in which it was 
acquired. Thus intuitions may be quite inaccurate in novel contexts where the 
environmental statistics are different than prior experience. In addition, implicit 
learning through practice can just as easily reinforce consistently erroneous deci-
sions, i.e., bad habits can be learned as easily as expert performance.

A research area focused directly on the potential negative consequences of our 
automatic implicit learning is studies of stereotype prejudice that are based on 
“implicit attitudes” (Greenwald et al., 2002). The core idea in these studies is that 
experience in an environment shaped by the existence of stereotypes will tend to 
shape individuals’ cognitive processes to reflect these prejudices. The result of this 
process is that stereotypical information is represented outside awareness, lead-
ing individuals to not even realize that their responses and decisions are being 
influenced by this implicitly acquired bias. This implies a very different model of 
prejudice in which stereotype-driven decisions and responses are not knowingly 
based on dislike of an outgroup but are based on something closer to a negative 
form of intuition. This model fits very well with the initial descriptions of deci-
sion-making biases originally characterized by Tversky and Kahneman (1975) in 
accounts of apparently non-rational decision-making behavior. Thus, statistically-
induced biases in cognition that are acquired via implicit learning can enhance 
decision-making performance, but there is also a potential negative side where 
environmental bias will become reinforced through the same mechanism.

Conclusions

While neuroscientific studies of memory leave little doubt that there are multiple 
mechanisms of synaptic change in different systems across the brain, this observa-
tion does not indicate what roles different types of memory play in complex human 
behavior. Phenomena characterized as implicit learning in laboratory studies have 
shown how prior experience can influence current behavior without awareness 
of the information previously acquired. However, the cognitive consequences of 
this type of memory are most clearly seen when examining applications of mem-
ory systems theory outside the laboratory. Research examining human decision 
making, skill acquisition and language learning have all converged on theoretical 
frameworks that are highly consistent with the basic multiple memory systems 
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model derived from cognitive neuroscience research. Whether these separate pro-
cesses are called System 1 and 2, instruction and practice, or syntax and semantics, 
independent roles are seen for learning from both the statistics of experience and 
also conscious memorization of prior episodes. Thus applied learning and memory 
research is well captured by the memory systems model of P. J. Reber (2013) 
which posits widespread non-MTL neuroplasticity as the basis for implicit learning 
as a separate type of memory than that supported by the MTL.

Applying the memory systems framework to questions of learning in non-
laboratory contexts highlights some gaps in many current programs of memory 
research. In language use, skill learning and decision making, identifying important 
roles for both types of memory immediately indicates a need for hypotheses about 
how these systems interact. Since the main focus in memory systems research to 
date has been focused on isolating memory types, most laboratory paradigms have 
not confronted questions about the interplay among systems. In contrast, in decision-
making research the potential for slower, deliberate processing to override a fast, 
intuitive response is a core hypothesis. In addition, basic questions about how we 
learn to trust and use our intuition are not addressed within the memory systems 
model. Trusting one’s gut instinct appears to imply a meta-cognitive process for 
evaluating the quality of our implicitly held knowledge, which is a counter-intuitive 
construct since the implicit knowledge is theoretically outside of awareness. Within 
skilled performance, the example of expert musicians both learning and memoriz-
ing a piece to be performed indicates a different kind of interaction. Here, the 
implicit, practice-based knowledge is not seen as inaccurate but occasionally and 
unpredictably unavailable, requiring redundant memory representations to support 
performance. Skilled performance can also reveal negative interactions between 
memory systems in a model of “choking” where explicit processing interferes with 
expert implicit processing (Beilock and Carr, 2001). Within the domain of lan-
guage, the role of extracted statistics from prior experience seems as if it must 
function in a much more closely synergistic manner with conscious aspects of lin-
guistic processes in order to communicate, a fundamentally conscious process.

Laboratory studies of phenomena related to implicit learning over the past 50 
years have established tools and paradigms for characterizing and studying these 
phenomena. Applied, non-laboratory research instead leapt ahead, assuming a basic 
implicit/explicit multi-system model and found it provided explanatory power in a 
range of domains. A common framework unifies these approaches and builds on the 
understanding of the cognitive neuroscience of memory mechanisms in the brain. 
Widespread neuroplasticity leads to adaptive rewiring of neural circuitry to improve 
performance and increase neural efficiency. This mechanism leads to knowledge 
embedded in performance structures that is implicit and unavailable to conscious 
report. The MTL memory system supports acquisition and consolidation of episodic 
memory, prior experiences of facts and events, that are retrieved consciously and used 
flexibly and creatively. Both research approaches then point to the need for theoreti-
cal development at the interaction between systems to understand how information 
represented in such different ways can support complex human cognition.
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2
THE MIND IS DEEP

Axel Cleeremans

The central question that drives research on unconscious cognition is rather 
straightforward: can what we do be influenced by unconscious knowledge? As 
simple as it sounds, this question remains largely unanswered today, mostly because 
of the considerable methodological challenges involved in collecting accurate data 
about what people actually know at some point in time and of the epistemologi-
cal challenge of demonstrating absence of knowledge. And yet, we all share the 
compelling intuition that it must be the case that what we do is influenced by factors 
we are not aware of, simply because we seem to experience this all the time. For 
instance, we are not continuously paying attention to whatever it is that we do, but 
attention is necessary for consciousness. Breathing is perhaps the best example, and 
so are countless other bodily actions such as posture, reflexes, aim, eye movements, 
and so on. While such examples are not controversial in and of themselves, critics 
will be quick to point out that are barely cognitive. The kind of knowledge involved 
in driving such habitual behavior is perhaps best described as neural knowledge—it 
does not involve the sorts of representations that we think of as mental representa-
tions, that is, words and images, which have an existence in our minds because we 
can readily experience them as mental objects. It is these sorts of representations 
that the study of unconscious cognition is concerned with, and in such cases, it 
is much less clear whether it can be the case that there exist unconscious mental 
representations capable of causally influencing behavior in the absence of aware-
ness. I will not overview the many continuing controversies that pervade research 
on unconscious cognition here—from unconscious decision-making to subliminal 
perception—but simply note, despite general sentiment to the contrary, that the 
question is overall far from settled (e.g., Balsdon and Clifford, 2018).

Beyond the genuinely hard methodological and epistemological challenges 
associated with demonstrating unconscious cognition, the most significant chal-
lenge is a conceptual one. It is still not clear, in my mind, and, I would surmise, in 
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anyone else’s mind, how exactly we should think of the difference between con-
scious and unconscious cognition. Some authors have argued, and one finds echoes 
of this in Allakhverdov’s chapter (this volume), that there are reasons to consider 
that unconscious and conscious cognition involve radically different systems. Freud 
(1949), but also Kahneman (2011), have in that sense adopted an almost archi-
tectural approach to the mind, with neatly distinct, yet interconnected spaces for 
information and affective processing. Others, most notably Searle (1992), have 
argued for a strong connection between conscious and unconscious processing. 
There is no sense, says Searle, in which we can envision unconscious knowledge if 
it isn’t by assuming that it could be conscious. Some further authors have argued just 
as forcefully for the perspective that unconscious cognition simply does not exist—
one thinks here of authors such as David Shanks (Shanks and St. John, 1994) or 
Pierre Perruchet (Perruchet and Vinter, 2002a), both staunch critics of the field of 
implicit learning and of unconscious cognition in general.

Joining the ranks of the skeptics, Nick Chater also argues forcefully against the 
existence of the unconscious in his book titled The Mind is Flat (Chater, 2018). 
There are no “hidden depths” in our minds, says Chater. The mind is not struc-
tured like the proverbial iceberg, with its bulk sitting unseen under the surface 
of the ocean. Rather, Chater argues, there simply is no iceberg; instead, there is 
only what one can see above the water—a chunk of ice floating on the surface. 
Hence, “The mind is flat—the surface is all there is” (p. 220). Everything mental 
takes place in the moment; each of our thoughts is an improvised creation; we are 
continuously reinventing ourselves as we go.

In defending this argument, Chater appeals to the observation that much of what 
we experience is in fact illusory. We see things that are not there—motion where 
there is none, as in contrast-induced motion illusions; color in the nevertheless 
cone-sparse periphery of our visual field; animal shapes in clouds. We see differ-
ences where there are none, as in the stupefying Adelson illusion, which makes 
two identically colored gray squares appear to be of strikingly different shades. 
But we also fail to see things that are there, as in change blindness or inattentional 
blindness demonstrations. Likewise, memory is also subject to considerable mal-
leability. Not only do we often fail to retrieve information from memory, we can 
also be convinced that something that never actually happened did in fact take 
place (Loftus and Hoffman, 1989). We confabulate reasons for choices we did not 
make (Johansson, Hall, Sikström, and Olsson, 2005). In short, we are subject, says 
Chater, to a neural hoax of sorts. As Seth (2016) wrote, perhaps “We hallucinate 
all the time. It’s just that when we agree about our hallucinations, that’s what we 
call reality.”

This all acts as a strong and justified reminder that perception, rather than being 
a faithful rendering of what is out there in the world, should rather be thought of 
as an active construction, whereby sensory information is continuously integrated 
with our own beliefs and expectations about what will come next—this is, in a 
nutshell, the core of the predictive processing framework (Clark, 2013; Friston, 
2006; Hohwy, 2013). But Chater goes one step further. What if our views on the 
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unconscious were likewise illusory? What if it turned out, in fact, that there was no 
submerged chunk of ice under the surface, that the depth we sense is nothing but 
another illusion? Consider insight, says Chater. You’re thinking hard, over days, 
about a problem. One day the solution presents itself to you. Now, you can have 
two stories about what actually happened over the course of those few days. One 
story assumes that your unconscious mind worked continuously on the problem, 
precisely as you were sitting there hopelessly trying to solve it consciously. The 
other story is simply that there was no unconscious work going on at all—it’s just 
that by rearranging the pieces of the puzzle consciously over and over again, at 
some point, you found an arrangement that you then suddenly recognized as the 
solution. Hence the feeling of “insight”. I vividly experienced this myself. For years 
I drove my daughter Emilie to school, taking the same route everyday at the same 
time. On one such trip, Emilie and I were searching for the name of an actor in a 
movie we had both seen. Neither she nor I could even remember the name of the 
movie, and so the entire drive was spent in silence fruitlessly rummaging through 
our respective minds for any scrap of information that would help us towards the 
solution. I dropped her off, drove back thinking about this some more and then 
soon forgot about it. A few days later, on the way back from school again, the name 
of the actor (which I have now ironically forgotten again) popped to my mind for 
no apparent reason, and I instantly recognized that name as that of the actor we 
were looking for. “How wondrous!” I thought. It truly felt as if some inscrutable 
search process had finally come up with an answer to the query launched days 
before! But then, Chater’s alternative account immediately came to my mind as 
well. Perhaps, I thought, there had not been any unconscious search going on all 
that time. Perhaps I simply thought of that name at that time for reasons that have 
nothing to with the fact that I had been looking for it so intensely a few days ago. 
Perhaps something on the radio made me think that name at that moment. Who 
knows? What made the experience interesting was the instant, conscious, puzzled 
recognition that that was the name I had been looking for.

Fair enough—I find the opposite view that the unconscious is more powerful 
than consciousness (e.g., Dijksterhuis and Nordgren, 2006) just as untenable. But 
is this view that the “mind is flat” defensible? Chater himself expresses doubt when 
he writes:

Over a lifetime, the flow of thought shapes, and is shaped into complex 
patterns: our habits of mind, our mental repertoire. These past patterns of 
thought, and their traces in memory, underpin our remarkable mental abili-
ties, shape how we behave and make each of us unique. So, in a sense, we 
do, after all, possess some inner mental landscape (p. 203).

Developing this line of thought, Chater adopts a hydraulic metaphor which I 
am fond of: each act of thought is like a river that progressively carves its way into 
the landscape, producing “mental channels”. And in turn, that very landscape gives 
the flow of the river its own unique character. But that view is one that is in fact 
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entirely consistent with the idea that what we do is influenced by contents that we 
remain unaware of, just as the flow of the river is constrained by the very channels 
it created through erosion.

What, then, is it that Chater is arguing against here? There is a distinct rendi-
tion of the unconscious that Chater aims to deconstruct, namely the Freudian 
proposal that there exist unconscious mental representations that are structured like 
conscious mental representations and that can be just as causally efficacious. Searle 
(1992) argued in roughly the same direction as Chater, that is, specifically, against 
Freudian ideas that the unconscious has structure and that it works in ways that are 
akin to the mechanisms involved in conscious processing, namely symbol process-
ing. Not so, says Searle; the only way in which we can make sense of unconscious 
representations is by connecting them with conscious representations (this is what 
Searle calls the “connection principle”): “The notion of an unconscious mental 
state implies accessibility to consciousness. We have no notion of the unconscious 
except as that which is potentially conscious” (p. 152). Later on, Searle elaborates 
as follows:

Our naïve, pretheoretical notion of an unconscious mental state is the idea 
of a conscious mental state minus the consciousness. But what exactly does 
that mean? How could one subtract the consciousness from a mental state 
and still have a mental state left over? (p. 152).

Likewise, but in a different direction that is perhaps closest to Chater’s own 
perspective, Perruchet and Vinter (Perruchet and Vinter, 2002a, 2002b) have 
defended the idea that consciousness is “self-organizing”—that is, the idea that the 
conscious representations are, in general, sufficient to account for all of cognition: 
“Accordingly, the most salient feature of the mentalistic framework is the denial of 
the very notion of unconscious representations. The only representations that exist, 
in this view, are those that are embedded in the momentary phenomenal experi-
ence” (p. 299). The mental world, according to Perruchet and Vinter, thus divides 
squarely into two realms: neural information processing on the one hand, and con-
scious processing on the other.

In his article “Styles of mental representation”, Dennett (1982) also attempted 
to clarify the subtle distinctions between explicit, implicit, and tacit representa-
tions. Explicit representation, says Dennett, is:

a physically structured object, a formula or string or tokening of some mem-
bers of a system (or “language”) of elements for which there is a semantics 
or interpretation, and a provision (a mechanism of some sort) for reading or 
parsing the formula” (p. 216).

This definition is a bit long-winded, but two key elements stand out: (1) an explicit 
representation is a symbolic proposition that (2) requires interpretation, which in 
turn requires a mechanism to do so. Implicit representations, for Dennett, are those 
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that are logically implied by something that is stored explicitly. Tacit representa-
tions, finally, are representations that capture the “knowhow” of a cognitive system:

The knowhow has to be built into the system in some fashion that does not 
require it to be represented (explicitly) in the system. People often use the 
word “implicit” to describe such information-holding; what they mean is 
what I mean by “tacit” (p. 218).

This usage of “tacit” is wholly congruent with Reber’s own notion of “tacit 
knowledge” (Reber, 1993).

Finally, in an influential article, Dienes and Perner (1999) also offered a careful 
analysis of the implicit–explicit distinction. According to Dienes and Perner:

a fact is explicitly represented if there is an expression (mental or otherwise) 
whose meaning is just that fact; in other words, if there is an internal state 
whose function it is to indicate that fact. Supporting facts that are not explic-
itly represented but must hold for the explicitly known fact to be known are 
implicitly represented (p. 736).

Dienes and Perner distinguish two “sources of implicitness”. First are linguistic 
presuppositions—when I say “The mind is flat”, I necessarily presuppose that there 
exists something called a “mind”, yet this is not explicitly conveyed. The second 
source of implicitness comes from semantics. Each fact I state explicitly neces-
sarily implies other facts that remain implicit. Thus when I state that someone is 
a bachelor, to use Dienes and Perner’s example, I also state, implicitly, that that 
person is a man and that he is unmarried. In Artificial Intelligence, the problem of 
handling such cases, which are ubiquitous, is known as the frame problem—the 
problem an artificial agent is faced with when it comes to updating its beliefs about 
the world when it acts. The frame problem is in turn connected to the common-
sense problem, which also appeals to vast amounts of implicitly represented facts 
that support explicit reasoning, and which appears simply intractable when all the 
possible consequences and non-consequences of any explicit fact have themselves 
to be represented explicitly.

These different perspectives highlight how complex a problem it is to think of 
such distinctions in a conceptually coherent manner. In Cleeremans (2014), I offered 
my own analysis of this conceptual riddle and suggested that connectionism, contra 
classical approaches, offered a whole new way of rethinking the distinction between 
implicit and explicit knowledge. I remain convinced by these arguments, which I 
reproduce in extenso below for the lack of a better way of conveying it otherwise.

The trouble with classical approaches

In Cleeremans (1997) and also in Cleeremans and Jiménez (2002), I suggest that 
the central reason why we have such a hard time thinking of the unconscious 
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is that the phenomena of implicit cognition cannot be reconciled with classical 
perspectives on information processing. While nobody truly defends such classi-
cal perspectives today, they nevertheless continue to shape our thinking about the 
unconscious and make it hard for us to come to terms with alternative frameworks.

Empirically, the central characteristic of unconscious processing is the observa-
tion that an agent’s behaviour is influenced by knowledge of which it remains 
unaware. In Cleeremans (1997), I define implicit knowledge as follows:

At a given time, knowledge is implicit when it can influence processing 
without possessing in and of itself the properties that would enable it to be 
an object of representation.

Thus, unconscious knowledge is knowledge that is causally efficacious yet unavail-
able to form the contents of conscious experience. Now, consider the manner in 
which knowledge is represented in classical models of cognition. Such models—
roughly speaking, the “Computational Theory of Mind” (Fodor, 1975)—take it 
as a starting point that cognition consists of symbol manipulation. The flow of 
information processing in classical models goes roughly like this: there is a central 
processor that fetches or stores information in knowledge bases, and processes it. 
The processor interacts with the world through input/output systems. Knowledge 
(either “programs” or “data”) is represented symbolically. Bates and Elman 
(1993) dubbed this perspective on cognition “The First Computer Metaphor of 
Cognition”, and characterized it as follows:

At its core, the serial digital computer is a machine that manipulates symbols. 
It takes individual symbols (or strings of symbols) as its input, applies a set 
of stored algorithms (a program) to that input, and produces more symbols 
(or strings of symbols) as its output. These steps are performed one at a time 
(albeit very quickly) by a central processor. Because of this serial constraint, 
problems to be solved by the First Computer Metaphor must be broken 
down into a hierarchical structure that permits the machine to reach solu-
tions with maximum efficiency (e.g., moving down a decision tree until a 
particular subproblem is solved, and then back up again to the next step in 
the program) (p. 630).

In such systems, thus, knowledge always takes the form of symbolic propositions 
stored in a mental database (i.e., production rules or declarative statements). There 
are two important and problematic features about such representations. First, they 
remain causally inert until activated or otherwise accessed by the processor. Second, 
their shape (symbolic propositions) makes their contents immediately accessible by 
the processor. The conjunction of these two features renders the entire approach 
incapable of accounting for unconscious cognition, for it entails that represen-
tations cannot influence processing independently of being accessed (activated, 
manipulated) by the processor. However, this property—causal influence without 
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access—is precisely what one means when one says that knowledge is unconscious. 
A production rule, for instance, cannot influence ongoing processing unless the 
algorithm that drives the entire system has established that the rule’s preconditions 
match current input and that the rule could now be applied. Intuitively, this is akin 
to a human participant who figures out, when confronted with a mathematical 
problem for instance, that an arithmetical expression can be simplified in certain 
ways described by a rule that he has learned. But this process is clearly a conscious 
process. Now consider what happens when a chess expert intuitively decides to 
move a particular chess piece. One could claim that the same process described 
above in the case of the arithmetic problem now takes place: a heuristic rule is iden-
tified as being relevant to the particular situation at hand and applied. However, the 
chess expert claims that he is unable to justify his choice: the move he made is just 
what came to mind. Perhaps he could explain the specific reasons why he chose 
that particular move given sufficient time and effort, but the move itself simply 
appeared to pop in his mind. The difference between the arithmetical problem and 
the chess move is one of consciousness: one seems to have access to the relevant 
knowledge in the first instance, but not in the second.

Now here is the key argument: if one assumes, as do thoroughly classical 
approaches to cognition, that the mechanisms involved in each case always entail 
accessing and activating the relevant rule, then one is left with no principled dif-
ference between cognition with and without awareness, for in both cases, the very 
same mechanisms (specifically: access to the relevant knowledge) are involved.

More formally, the argument could be spelled out in this way:

(1)	 awareness of some knowledge entails access to the relevant representations;
(2)	 in classical models, representations take the form of symbolic propositions;
(3)	 symbolic propositions cannot be causally efficacious unless they are accessed.

Therefore, in classical models, causally efficacious representations are necessarily 
conscious.

Briefly put thus, the argument I introduced in Cleeremans (1997) is this: if you 
believe that cognition consists exclusively of manipulating structured, symbolic, 
propositional representations, then you only have two possibilities of accounting 
for the phenomena of implicit cognition. You can either (1) ascribe them to a 
separate “psychological unconscious” (Kihlstrom, 1987) that is capable of perform-
ing exactly the same sorts of computations as your conscious system is (specifically: 
access to the relevant knowledge), only minus consciousness (Searle, 1992), or 
(2) explain them away by rejecting existing evidence for implicit cognition alto-
gether and claim that all of cognition involves conscious knowledge (Chater, 2018; 
Perruchet and Vinter, 2002a; Shanks and St. John, 1994).

There is also a third possibility, which consists of rejecting the idea that 
unconscious cognition always involves symbol manipulation. This is the “third 
way” that connectionism (McClelland and Rumelhart, 1986; Rumelhart and 
McClelland, 1986b) and other subsymbolic approaches to cognition have made 
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so salient over the past thirty years. While the classical perspective takes it as 
a starting point that information processing involves operations modeled after 
conscious cognition, connectionism turns this perspective on its head and pro-
poses that information processing begins with unconscious cognition. It is worth 
pointing out here that many contemporary approaches rooted in symbolic pro-
cessing (e.g., ACT-R, CLARION) have evolved to the point that they share 
many features more typically associated with connectionist models, such as 
associative processing.

Once we eliminate the idea that all of cognition, be it with or without con-
sciousness, involves symbol manipulation, we can then focus on exploring what 
we can do without symbols. We are then facing the great challenge of figuring 
out how we can get symbols in the game after all, but at least we begin with 
more plausible assumptions. In the next section, I briefly overview how such 
approaches, and connectionism in particular, have changed our understanding of 
unconscious cognition.

What have we learned from connectionism?

Connectionist models have provided genuine insights into how knowledge can 
influence processing without access—a hallmark of unconscious processing—and 
of how change can accrue as a result of mere information processing—a hallmark 
of the phenomena of implicit learning. Numerous models of implicit learning 
based on connectionist models have now been proposed (Cleeremans and Dienes, 
2008), and it is fair to say that such models have been very successful in accounting 
for the mechanisms that subtend performance in a wide range of relevant empirical 
paradigms, from artificial grammar learning (Dienes, 1992) and sequence learning 
(Cleeremans and McClelland, 1991) to process control (Gibson, Fichman, and 
Plaut, 1997) or priming (Mathis and Mozer, 1996).

The first fully implemented connectionist models of implicit learning are found 
in the early efforts of Dienes (1992) and of Cleeremans and McClelland (1991). 
While authors such as Brooks (1978) and Berry and Broadbent (1984) had already 
suggested that performance in implicit learning tasks such as Artificial Grammar 
Learning or Process Control may be based on retrieving exemplar information 
stored in memory arrays, such models have in general been more concerned with 
accounting for performance at retrieval rather than on accounting for learning 
itself. The connectionist approach, by contrast, has been centrally concerned with 
the mechanisms involved during learning since its inception, and therefore con-
stitutes an excellent candidate framework with which to think about the processes 
involved in implicit learning.

My purpose here is not to review these developments in detail, but rather 
to focus on how four fundamental principles that characterize the connectionist 
approach (but also have much wider implications) are relevant to our under-
standing of the differences between conscious and unconscious processing. In the 
following, I discuss each in turn.
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Active representation

As discussed above, this first principle highlights a fundamental difference between 
classical and connectionist representations, namely that the former are inher-
ently passive whereas the latter are continuously active. Indeed, the symbolic, 
propositional representations characteristic of classical models of cognition (i.e., 
production rules and declarative knowledge) are intrinsically passive: they are 
objects (data structures) stored in mental databases and can only influence ongo-
ing processing when an algorithm (i.e., an inference engine) has determined that 
certain trigger conditions are met. Thus, for a classical representation to be caus-
ally efficacious, it first needs to be accessed or otherwise made active in some way. 
But, as discussed above, this necessary link between causal efficacy and access is 
immediately problematic for our conceptualization of the differences between 
information processing with and without awareness. The difficulty stems from 
the (tacitly) assumed equivalence between causal efficacy, access, and conscious-
ness. This equivalence in turn stems from the fact that in classical perspectives on 
cognition, there is a complete separation between representation and processing. 
Connectionism solves this quandary very elegantly by proposing that access is not 
necessary to drive information processing. Nothing “accesses” anything in a con-
nectionist network. Instead, connectionist models assume that all the long-term 
knowledge accrued over experience is embedded in the very same structures that 
support information processing, that is, the connection weights between process-
ing units. Such knowledge therefore does not need to be accessed in any way to 
be causally efficacious; it simply exerts its influence automatically whenever the 
units whose activation propagates through the relevant connections are active. 
Thus, knowledge in connectionist networks is active in and of itself, and funda-
mental phenomena such as priming are accounted for naturally without the need 
to postulate additional mechanisms.

An important consequence of the fact that long-term knowledge in connec-
tionist networks accrues in connection weights as a mandatory consequence of 
information processing is that connectionist models capture, without any further 
assumptions, two of the most important characteristics of implicit learning, namely 
(1) the fact that learning is incidental and mandatory, and (2) the fact that the result-
ing knowledge is difficult to express. A typical connectionist network, indeed, does 
not have direct access to the knowledge stored in connection weights. Instead, 
this knowledge can only be expressed through the influence that it exerts on the 
model’s representations, and such representations may or may not contain readily 
accessible information, that is, information that can be retrieved with no or low 
computational cost (Kirsh, 1991). Arguably, symbolic approaches may capture the 
same distinction through the difference between compiled and interpreted code. 
It would take too long to discuss the finer issues raised by this possibility here, but 
two points are worth mentioning. First, all compiled code necessarily existed as 
interpreted code before compilation took place. This makes the strong prediction, 
under the assumption that compiled code corresponds to unconscious knowledge 
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and that interpreted code corresponds to conscious knowledge, that all unconscious 
knowledge we possess at some point previously existed as conscious knowledge. 
Whether this holds true or not is a matter for empirical investigation, but there is 
evidence that we are sensitive to regularities that were never made explicit (Pacton, 
Perruchet, Fayol, and Cleeremans, 2001). Second, whether compiled or inter-
preted, symbolic computer code always needs a processor to execute it (and hence 
access it) for it to be causally efficacious. This stands in sharp contrast to the patterns 
of connection weights that drive processing in connectionist networks, which exert 
their effects directly, merely as a result of transmitting activation.

Emergent representation

A second principle simply states the following: sensitivity to some regularity does 
not necessarily imply that the regularity is itself represented as an object of rep-
resentation. What I mean by this is the following: it is not because you observe 
that the actions of an agent indicate that it is sensitive to certain regularities (such 
as in implicit learning situations) that you can conclude that these regularities are 
represented in its cognitive system as objects of representation that the agent can 
manipulate intentionally. There are so many examples of the importance of this 
principle that entire books have been written about it—see for instance the nice 
popularized treatment of this issue by Steven Johnson (Johnson, 2002), simply 
titled Emergence. Thus, bees construct complex nests and perfectly regular hex-
agonal cells without any evidence that they even have simple representations of 
the overall structure of the nest. It’s hard not be reminded of behaviorism in this 
context, but this is certainly one thing behaviorism got right: you don’t always 
need internal representations to account for complex behavior. Of course, one 
must always be careful not to throw away the baby with the bathwater, to revisit 
an old cliché: we undeniably entertain systems of complex representations that 
we can access, manipulate, ponder about and so on—just not always, and just not 
for anything.

In cognitive psychology, this principle of “emergent representation” has been 
expressed most clearly through dynamical approaches to Cognitive Science (van 
Gelder, 1998) and through the connectionist approach (McClelland, 2010). To 
illustrate, consider the fact that connectionist networks can be often be described 
as obeying rules without possessing anything like rule-like representations. A very 
well-known example is Rumelhart and McClelland’s (1986a) model of the acqui-
sition of the past tense morphology. In the model, not only are regular verbs 
processed in just the same way as exceptions, but neither are learned through 
anything like processes of rule acquisition.

Another example that attracted considerable attention when it was first reported 
is Hinton’s (1986) “family trees” demonstration that a back-propagation network 
can, through training, become sensitive to the structure of its stimulus environment 
in such a way that this sensitivity is clearly removed from the surface features of 
the stimulus material. In Hinton’s words, “The structure that must be discovered 
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in order to generalize correctly is not present in the pairwise correlations between 
input units and output units” (p. 9). The model thus exhibits sensitivity to func-
tional similarity based on the distributional information present in the input, and, 
as a result, develops abstract knowledge of the relevant dimensions of the domain.

Hinton’s network was a relatively simple back-propagation network trained to 
process linguistic expressions consisting of an agent, a relationship, and a patient, 
such as for instance “Maria is the wife of Roberto”. The stimulus material consisted 
of a series of such expressions, which together described some of the relationships 
that exist in the family trees of an Italian family and of an English family. The 
network was required to produce the patient of each agent-relationship pair it 
was given as input. For instance, the network should produce “Roberto” when 
presented with “Maria” and “wife”. Crucially, each person and each relationship 
was presented to the network by activating a single input unit. Hence there was no 
overlap whatsoever between the input representations of, say, Maria and Victoria. 
Yet, despite this complete absence of surface similarity between training exemplars, 
Hinton showed that after training, the network could, under certain conditions, 
develop internal representations that capture relevant abstract dimensions of the 
domain, such as nationality, sex, or age. Hinton’s point was to demonstrate that 
such networks were capable of learning richly structured internal representations 
as a result of merely being required to process exemplars of the domain. Crucially, 
the structure of the internal representations learned by the network is determined 
by the manner in which different exemplars interact with each other rather than by 
their mere similarity expressed, for instance, in terms of how many features (input 
units) they share—a property that characterizes sensitivity to functional rather than 
physical similarity. Hinton thus provided a striking demonstration of this important 
and often misunderstood aspect of associative learning procedures by showing that 
under some circumstances, specific hidden units of the network had come to act as 
detectors for dimensions of the material that had never been presented explicitly to 
the network. These results truly flesh out the notion that rich knowledge can sim-
ply emerge as a by-product of processing in structured domains. This introduces a 
crucial distinction, one that I will return to later, between sensitivity and awareness.

As a final example, consider also that a Simple Recurrent Network (Elman, 
1990) trained on only some of the strings that may possibly be generated from a 
finite-state grammar will generalize to the infinite set of all possible grammatical 
instances (Cleeremans, Servan-Schreiber, and McClelland, 1989), thus demonstrat-
ing perfect, rule-like generalization based only on the processing of a necessarily 
finite set of exemplars. Interestingly, the representations developed by the network 
when trained on such material exhibited, under certain conditions, the remark-
able property of corresponding almost perfectly with the nodes of the grammar: 
cluster analyses indeed showed that the similarity structure of the learned internal 
representations that the network had developed about the relationships between 
each sequence element and its possible successors reflects the structure of the very 
grammar the network had been trained on. Again, and crucially, such structure 
simply emerges out of exposure to relevant stimuli.
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Graded processing

The third principle states that information processing as carried out by the brain 
(i.e., neural computation) is inherently graded (Munakata, 2001). Note that this is 
not incompatible with the observation of all-or-none outputs. In fact, the logistic 
function that is so central to many neural network models demonstrates how the 
relationship between two quantities can be simultaneously graded and dichoto-
mous, just as continuous variations in the temperature of a body of water can make 
it change state (i.e., freeze) at a critical point. Again, the connectionist literature is 
replete with striking demonstrations of this principle (Elman et al., 1996). One of 
the clearest is perhaps McClelland’s model of the balance scale problem (Schapiro 
and McClelland, 2009), in which continuous, incremental learning nevertheless 
produces both the plateaus and the abrupt, stage-like changes in performance char-
acteristics of many aspects of cognitive development. Another potent illustration of 
how graded representations can nevertheless produce complex patterns of associa-
tions and dissociations between several aspects of behavior is provided by the work 
of Munakata et al. (1997) on object permanence, in which a Simple Recurrent 
Network was used to model children’s ability to keep active representations of 
hidden objects. In both cases, the graded nature of the underlying representations 
is crucial in producing the observed effects; that is, it is precisely by virtue of the 
fact that representations are graded that such models are successful in accounting 
both for the steady-changes characteristic of plateaus and for the abrupt-changes 
characteristic of stage-like transitions. Again, while the implications of graded pro-
cessing are perhaps clearest in the case of development, they are just as relevant for 
our understanding of the differences between conscious and unconscious process-
ing for they highlight the fact that qualitative differences can accrue from purely 
quantitative changes. Whether consciousness is graded or all-or-none is both an 
important empirical debate as well as a challenging conceptual issue, for it is the 
case that graded output can be obtained based on the operation of all-or-none 
computing elements, and that all-or-none output can be obtained based on the 
operation of graded computing elements. Connectionism, in many cases, has given 
us new conceptual tools with which to think about the distinction between graded 
and all-or-none processing.

Mandatory plasticity

This final principle states that learning is a mandatory consequence of informa-
tion processing. Thus, the brain is inherently plastic. Every experience leaves a 
trace in many neural pathways. William James stated that “Every impression which 
impinges on the incoming nerves produces some discharge down the outgoing 
ones, whether we be aware of it or not” (James, 1890). Donald Hebb (Hebb, 
1949) later operationalized this idea in the form of what is now known as the Hebb 
rule, which simply states that activity between two neurons will tend to increase 
whenever they are simultaneously active. The Hebb rule, unlike other learning 
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procedures, actually forms the basis for elementary mechanisms of plasticity in the 
brain, namely long-term potentiation (LTP) and depression (LTD).

O’Reilly and Munakata (2000) proposed an interesting distinction between 
what they called “model learning” (Hebbian learning) and “task learning” (error-
driven learning). Their argument is framed in terms of the different computational 
objectives each of these types of learning process fulfills: capturing the statistical 
structure of the environment so as to develop appropriate models of it on the one 
hand, and learning specific input–output mappings so as to solve specific problems 
(tasks) in accordance with one’s goals on the other hand. There is a very nice map-
ping between this distinction—expressed in terms of the underlying biology and 
a consideration of computational principles—and the distinction between inci-
dental learning and intentional learning on the other hand. Thus, as made clear 
by the manner in which information processing is construed in the connection-
ist framework, (1) representations are dynamical, constantly causally efficacious 
objects, and (2) change occurs as soon as information processing takes place. The 
fact that learning is almost viewed as a by-product of information processing net-
works accounts very naturally (that is, without requiring further assumptions) for a 
host of phenomena associated with unconscious cognition, and in particular with 
implicit learning.

To summarize, these four connectionist principles—active representation, emer-
gent representation, graded processing, and mandatory plasticity—help us recast 
the differences between conscious and unconscious cognition in a manner that is 
strikingly different from thoroughly classical approaches. Instead of assuming that 
representations take the form of inert symbolic propositions that cannot be active 
unless they are somehow accessed, we now have a constantly causally efficacious 
network of subsymbolic computational elements (units, neurons). These features 
make it easy to understand how knowledge can influence behavior in a way that 
does not entail that the relevant representations be accessed as objects of represen-
tation, which is precisely what happens in the many phenomena characteristic of 
implicit cognition, such as priming, implicit learning and implicit memory.

However, we now face the even greater challenge of understanding how such 
systems can also account for consciousness. What are the computational principles 
through which one can characterize the differences between conscious and uncon-
scious representations? This is the question that I attempt to sketch an answer to 
in the next section.

Consciousness

Numerous theories of consciousness have been proposed over the last twenty years 
(Atkinson, Thomas, and Cleeremans, 2000). While it would take an entire book 
to attempt to summarize the state-of-the-art in this respect, it is probably sufficient 
for the purposes of this text to point out that most theories that have achieved 
some form of consensus fall into two camps: Global Workspace theories and 
Higher-Order Thought theories.
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Global Workspace Theory (GWT) (Baars, 1988; Dehaene, Kerszberg, and 
Changeux, 1998) is currently the most consensual account of the functional char-
acteristics of consciousness. According to GWT, conscious representations are 
globally accessible in a manner that unconscious representations are not. Global 
accessibility, that is, the capacity for a given representation to influence processing 
on a global scale (supporting, in particular, a verbal report), is achieved by means 
of “the neural workspace”, a large network of high-level neural “processors” or 
“modules” linked to each other by long-distance cortico-cortical connections 
emanating from layer 5 of the cortex. Thus, while information processing can 
take place without awareness in any given specialized module, once the contents 
processed by that module enter in contact with the neural workspace, “ignition” 
occurs and the contents are “broadcast” to the entire brain, so achieving what 
Dennett (2001) has dubbed “fame in the brain”. In this respect, it is interest-
ing to note that in some ways, early connectionist models such as the Interactive 
Activation Model (McClelland, 1981) already contain the lineaments of GWT.

GWT thus solves the quandary spelled out in the introduction (i.e., which 
computational principles differentiate between conscious and unconscious cog-
nition) by distinguishing between causal efficacy and conscious access through 
architecture: on the one hand, knowledge embedded in peripheral modules can 
bias and influence processing without entering the global workspace, and so remain 
unconscious. On the other hand, knowledge that is sufficiently supported, both by 
bottom-up factors such as stimulus strength and by top-down factors such as atten-
tion, can “mobilize” the neural workspace, resulting in “ignition” and so become 
conscious and available for the global control of action.

Higher-Order Thought (HOT) theories of consciousness (Rosenthal, 1997) 
have a very different flavor. According to HOT, a mental state is conscious when 
the agent entertains, in a non-inferential manner, thoughts to the effect that it 
currently is in that mental state. Importantly, for Rosenthal, it is by virtue of 
occurring HOTs that the target first-order representations become conscious. 
In other words, a particular representation, say, a representation of the printed 
letter “J”, will only be a conscious representation to the extent that there exists 
another (unconscious) representation (in the same brain) that indicates the 
fact that a (first-order) representation of the letter “J” exists at time t. Dienes 
and Perner (1999) have elaborated this idea by analyzing the implicit–explicit 
distinction as reflecting a hierarchy of different manners in which a given repre-
sentation can be explicit. Thus, a representation can explicitly indicate a property 
(e.g., “yellow”), predication to an individual (the flower is yellow), factivity (it  
is a fact and not a belief that the flower is yellow), and attitude (“I know that 
the flower is yellow”). Fully conscious knowledge is thus knowledge that is 
“attitude-explicit”. A conscious state is thus necessarily one that the subject is 
conscious of. While this sounds highly counter-intuitive to some authors (Block, 
2011), it captures the central intuition that it is precisely the fact that I know 
(that I experience the fact, that I feel) that I possess some knowledge that makes 
this knowledge conscious.
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HOT thus solves the problem of distinguishing between conscious and uncon-
scious cognition in a completely different manner, specifically by assuming the 
involvement of specific kinds of representations the function of which it is to denote 
the existence of and to qualify target first-order representations. Such HOTs, or 
metarepresentations, need not be localized in any particular brain region, but of 
course the densely interconnected prefrontal cortex is a good candidate for such 
metarepresentations to play out their functions.

Regardless of whether one takes GWT or HOT to best characterize the 
differences between conscious and unconscious cognition, one question that con-
nectionist thinking about this issue prompts us to ask is: how do we get there? How do 
we build the global workspace? Where do metarepresentations come from?

Considering existing theories of consciousness through a connectionist lens 
offers the tantalizing possibility not only of unifying the two accounts, but also of 
rooting them both in mechanisms of learning. On this view, unconscious repre-
sentations constantly compete with each other to capture the best interpretation 
of the input (Maia and Cleeremans, 2005). This competition is biased by further 
representations that capture the system’s high-level, learned knowledge (its expec-
tations and its goals). The “winning coalitions” come to dominate processing as 
the result of prior learning, and hence afford the global availability claimed to be 
constitutive of consciousness by GWT. Global availability is not sufficient, how-
ever, for one can perfectly imagine all of the aforementioned taking place without 
consciousness (as any interactive neural network readily demonstrates). What I 
surmise to be also necessary, congruently with the assumptions of HOT, is that the 
winning representations be known as objects of representation by the system that pos-
sesses them. In other words, that first-order representations be redescribed by other 
representations in such a way as to make the former be identified or recognized by 
the system as familiar states of knowledge, that is, “attitude-explicit” in the termi-
nology of Dienes and Perner.

In the following, I first attempt to flesh out the main computational principles 
that differentiate GW-like theories from HOT theories of consciousness. Next, I 
describe recent simulation work in which we specifically explore how it may be 
possible to build connectionist models that capture the central intuition of HOT, 
namely that knowledge is conscious when it is appropriately redescribed by means 
of metarepresentations.

The radical plasticity thesis

In other works (Cleeremans, 2008, 2011), I have defended the idea that con-
sciousness is itself the result of learning. From this perspective, agents become 
conscious by virtue of learning to redescribe their own activity to themselves; a 
perspective that finds strong echoes in Allkahverdov’s (this volume) own theory. 
Taking the proposal that consciousness is inherently dynamical seriously opens 
up the mesmerizing possibility that conscious awareness is itself a product of 
plasticity-driven dynamics. In other words, from this perspective, we learn to 
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be conscious. To dispel possible misunderstandings of this proposal right away, 
I am not suggesting that consciousness is something that one learns like one 
would learn about the Hundred Years War, that is, as an academic endeavor, 
but rather that consciousness is the result (vs. the starting point) of continuous 
and extended interaction with the world, with ourselves, and with others. The 
brain, from this perspective, continuously (and unconsciously) learns to antici-
pate the consequences of its own activity on itself, on the environment, and on 
other brains, and it is from the practical knowledge that accrues in such interac-
tions that conscious experience is rooted. This perspective, in short, endorses the 
enactive approach introduced by O’Regan and Noë (2001), but extends it both 
inwards (the brain learning about itself) and further outwards (the brain learn-
ing about other brains), so connecting with the central ideas put forward by the 
predictive coding approach to cognition. In this light, the conscious mind is the 
brain’s (implicit, enacted) theory about itself, expressed in a language that other 
minds can understand.

The theory rests on several assumptions and is articulated over three core ideas. 
A first assumption is that information processing as carried out by neurons is intrin-
sically unconscious. There is nothing in the activity of individual neurons that 
makes it so that their activity should produce conscious experience. Important 
consequences of this assumption are (1) that conscious and unconscious processing 
must be rooted in the same set of representational systems and neural processes, and 
(2) that tasks in general will always involve both conscious and unconscious influ-
ences, for awareness cannot be “turned off” in normal participants.

A second assumption is that information processing as carried out by the brain is 
graded and cascades (McClelland, 1979) in a continuous flow (Eriksen and Schultz, 
1979) over the multiple levels of a heterarchy (Fuster, 2008) extending from pos-
terior to anterior cortex as evidence accumulates during an information processing 
episode. An implication of this assumption is that consciousness takes time.

The third assumption is that plasticity is mandatory: the brain learns all the time, 
whether we intend to or not. Each experience leaves a trace in the brain (Kreiman, 
Fried, and Koch, 2002). With these assumptions in place, the theory is articulated 
around three core ideas that I will now briefly expose.

Quality of representation

The first core idea is that consciousness depends on quality of representation (see 
Figure 2.1). “Quality of representation” (QoR), here, designates graded properties 
of neural representations, specifically their Strength, their Stability in time, and 
their Distinctiveness. QoR depends both on bottom-up factors such as stimulus 
properties and on top-down factors such as attention. QoR determines the extent 
to which a representation is available to (1) influence behaviour, (2) form the con-
tents of awareness, and (3) be the object of cognitive control and other high-level 
processes. Crucially, QoR changes as a function of learning and plasticity over 
different time scales (processing within a single trial, learning, and development), 
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as depicted in Figure 2.1. The first region of the figure, labeled “Weak (implicit)”, 
corresponds to the point at which processing starts in the context of a single trial, 
or to some early stage of development or skill acquisition. This stage is character-
ized by weak, poor-quality representations. Implicit representations are capable of 
influencing behavior, but only weakly so (e.g., through priming).

The second region corresponds to the emergence of higher-quality explicit 
representations, here defined as representations over which one can exert control. 
Such representations are good candidates for redescription and can thus be recoded 
in different ways, e.g., as linguistic propositions (supporting verbal report).

The third region involves what I call automatic representations, that is, rep-
resentations that have become so strong that their influence on behavior can no 
longer be inhibited (e.g., as in the Stroop situation). Such representations exert a 
mandatory influence on processing.

Importantly, however, and unlike the weak representations characteristic of 
implicit cognition, one is (at least potentially) aware of possessing such strong 
representations and of their influence on processing. Thus, both the weak repre-
sentations characteristic of implicit cognition and the very strong representations 
characteristic of automaticity cannot be controlled, but for very different reasons. 
This leaves intermediate-quality (explicit) representations, that is, representations 
that are strong enough that their influence on behavior needs to be monitored 
yet not sufficiently adapted that they can be “trusted”, as those representations 

FIGURE 2.1  The QoR framework.
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that require the most cognitive control. Crucially, this also predicts that inter-
mediate-quality representations are the most susceptible to being influenced by 
other sources of knowledge, as they are the most flexible. One would thus expect 
non-monolithic effects as expertise develops, in different paradigms ranging from 
perception to motor skill learning.

Metarepresentation

The second core idea is that consciousness depends on the involvement of metarep-
resentations. Indeed, QoR cannot be the only factor that shapes availability to 
different aspects of consciousness. Even strong stimuli can fail to enter conscious 
awareness—this is what happens in change blindness (Simons and Levin, 1997), 
in the attentional blink (Shapiro, Arnell, and Raymond, 1997), or in inattentional 
blindness (Mack and Rock, 1998). States of altered consciousness like hypnosis, 
and pathological states such as blindsight (Weiskrantz, 1986) or hemineglect like-
wise suggest that high-quality percepts can fail to be represented in awareness 
while remaining causally efficacious. This suggests that QoR, while necessary for 
conscious awareness, is not sufficient.

One way of understanding what is missing is to appeal to the central hypoth-
esis of the HOT theory of consciousness (Rosenthal, 1997; see also Lau and 
Rosenthal, 2011), namely that a representation is a conscious representation 
when one knows that one is conscious of the representation. This roots con-
scious awareness in a system’s capacity to redescribe its own states to itself, a 
process (“representational redescription”) also viewed as central during cogni-
tive development (Karmiloff-Smith, 1992) and metacognition in general (Nelson 
and Narens, 1990). A system’s ability to redescribe its own knowledge to itself 
depends (1) on the existence of recurrent structures that enable the system to 
access its own states, and (2) on the existence of predictive models (metarepre-
sentations) that make it possible for the system to characterize and anticipate the 
occurrence of first-order states (Bar, 2009; Friston, 2006; Wolpert, Doya, and 
Kawato, 2004). Such redescription is also uniquely facilitated, in humans, by 
language, viewed here as the metarepresentational tool par excellence. A natural 
spot for such metarepresentations to perform their functions is the prefrontal 
cortex (i.e., Crick and Koch’s “the front is looking at the back” principle (Crick 
and Koch, 2003)). Importantly however, here, such metarepresentational models 
(1) may be local and hence occur anywhere in the brain, (2) can be subpersonal, 
and (3) are subject, just like first-order representations, to plasticity and hence 
can themselves become automatic. Metacognition, just like cognition, can thus 
involve implicit, explicit, or automatic metarepresentations.

The theory thus proposes a novel conception of skill acquisition that links 
automaticity with the observation that conscious awareness seems to proceed 
from the top down (i.e., Crick and Koch’s “the high levels first” principle, see 
Crick and Koch, 2003): we become aware of the higher-level aspects (the gist) 
of a scene before becoming aware of its lower-level features. I suggest that this 



56  Axel Cleeremans

stems from the fact that, from a computational point of view, metarepresentations 
implement what one could call cortical reflexes or shortcuts: a system that has 
learned to redescribe the activity of an entire feedforward pathway can now also 
anticipate the consequences of early activity in such a chain on its output faster 
than the pathway itself can compute the output. As a result, adapted metarepre-
sentations (and only adapted metarepresentations) make it possible to bypass the 
first-order pathway altogether. I surmise that this accounts not only for the fact 
that the time course of (expert) perception seems to follow a reverse hierarchy 
(Ahissar and Hochstein, 2004), but also for the fact that automaticity entails loss 
of access to the contents computed along the first-order pathway. By the same 
token, this also opens up the possibility for postdictive effects in conscious experi-
ence, as metarepresentations are shaped by first-order processing. This top-down 
view of automaticity contrasts with extant theories (Chein and Schneider, 2012).

With these ideas in place, we can now ask “When is knowledge uncon-
scious?” Figure 2.2 shows a simple network organized in two different pathways: 
a (horizontal) first-order pathway comprising five layers of units, and a (vertical) 
second-order pathway simplified here to show only a single layer of “metarep-
resentational units” (see Pasquali et  al., 2010, for implemented instantiations of 
such networks). The figure is aimed to distinguish four stages that such networks 
traverse as they learn to carry out a particular task. These four stages correspond to 
four different ways in which knowledge may remain unconscious.

First (Figure 2.2a), knowledge embedded in synapses is assumed not be acces-
sible at all, for such knowledge fails to be instantiated in the form of active patterns 
of neural activity (Koch, 2004), a necessary condition for their contents to be avail-
able to awareness. The provocative idea here is that the brain does not know, e.g., 
that SMA activity consistently precedes M1 activity. To represent this causal link 
to itself, it therefore has to learn to redescribe its own activity so that the causal 
link is now represented explicitly as a metarepresentation. Second, weak represen-
tations (Figure 2.2b), while they can influence behavior, remain unconscious for 
they fail to be sufficiently strong to be the target of metarepresentations. Third, 
when sufficiently strong, first-order representations can begin to be redescribed 
into metarepresentations (Figure 2.2c), yet, other conditions (e.g., lack of atten-
tion induced by distraction, failure to properly redescribe first-order contents) may 
make such redescription impossible or difficult. Fourth, the very strong repre-
sentations characteristic of automaticity (Figure 2.2d) are not necessary anymore 
to drive behavior since the learned metarepresentations now implement a faster 
“shortcut” pathway from input to output. This also accounts for the fact that meta-
cognitive accuracy often lags behind first-order performance initially, but precedes 
first-order performance with expertise (i.e., I know that I know the answer to a 
query before I can actually answer the query).

The distinctions introduced here overlap partially with the distinctions 
introduced by existing theories of consciousness: Dehaene’s conscious–preconscious–
unconscious taxonomy (Dehaene, Changeux, Naccache, Sackur, and Sergent, 2006), 
Lamme’s Stages 1/2/3/4 framework (Lamme, 2006), and Kouider’s partial awareness 
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hypothesis (Kouider, de Gardelle, Sackur, and Dupoux, 2010), but uniquely frame 
the transitions dynamically as resulting from learning.

Theory of mind and self-awareness

The third core idea is that consciousness depends on theory of mind (Schilbach 
et al., 2013; Timmermans, Schilbach, Pasquali, and Cleeremans, 2012). The emer-
gence of an agent’s ability to redescribe its own representations to itself in the way 
sketched above, I argue, critically depends on the agent being embedded in inter-
action with other agents. From this perspective, as Frege pointed out, conscious 
experience cannot be understood independently from the agent who has these 
experiences. Yet, as obvious as this may seem, neuroscientists have approached the 
question as though the differences between conscious and unconscious representa-
tions could be understood independently of the subject, from a purely “objective”, 
third-person point of view. The entire “search for the Neural Correlates of 
Consciousness” is, in this sense at least, misguided. As Donald (2001) put it, “the 
human mind is unlike any other on this planet, not because of its biology, which 
is not qualitatively unique, but because of its ability to generate and assimilate 
culture” (p. xiii). Thus, I build a model of myself not only by developing a non-
conceptual understanding of how my goals are eventually expressed in action, but 
also by understanding how agents similar to me react to actions directed towards 
them. It is thus essential that we strive to understand how interactions with other 
agents shape our own conscious experiences.

Putting the three core ideas together, we end up with the radical plasticity 
thesis (Cleeremans, 2008, 2011), that is, with the idea that consciousness emerges 
in cognitive systems that are capable of learning to redescribe their own activity to 
themselves. In other words, one “learns to be conscious”.

FIGURE 2.2  Implicit, explicit and automatic processing.
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Experimental strategies

The framework outlined above suggests different experimental strategies through 
which to manipulate the extent to which processing is conscious vs. uncon-
scious. To develop this, consider first that HOT theories, much like Nelson and 
Narens’ (1990) metamemory framework, conjure an image of consciousness as a 
monitoring system, a radar of sorts, that continuously sweeps and redescribes our 
own representations, so carrying out what Lau (2008) dubbed “signal detection 
on our mind”.

But the radar analogy only gets us this far, as there is more to consciousness 
than mere monitoring. First, consciousness creates and shapes its own phenomenal 
field. By this I mean that what one experiences changes the very structure of the 
phenomenal space in which those experiences take place. Think of the impact 
that expertise exerts on the contents of consciousness. Expert bird watchers, for 
instance, are capable of recognizing hundreds of species of bird on sight. Contrast 
that with non-expert knowledge of birds, which contains perhaps a dozen broad 
categories of birds at most. Expertise thus enriches conscious experience; the very 
perceptual contents to which we have access are now far more distinctive and 
detailed than they used to be before the relevant skill was acquired. But, strikingly, 
expertise also eliminates contents from conscious experience. Consider reading, for 
instance. Literacy makes us read in a very efficient manner, with fine-tuned eye 
movements that make us skip over function words in such a way that they literally 
fade away from awareness. Likewise, driving a car has a decidedly different charac-
ter when one has become an expert at it than when one is learning to drive—the 
many control movements we perform while driving in the city, for instance, have 
vanished from our phenomenal field to the point that they can simply unfold with-
out the need for conscious monitoring of any kind.

Second, while actual radars merely continuously sweep the space they are 
monitoring, consciousness can be intentionally directed to scrutinize particular 
regions of it. This, of course, is a metaphorical way of describing attention, the 
association of which to consciousness itself is complex (Lamme, 2006) but empiri-
cally trackable.

Third, unlike radars, human agents have preferences driven by affect. There 
are some parts of their phenomenal space they would rather pay no attention to, 
and there are some parts of their phenomenal space they would be inclined to 
spend a long time looking at. This, of course, is where learning enters the picture, 
but also caring—agents care about some experiences more than about others; this 
is what makes them do certain things rather than others. In this sense, subjective 
experience works almost as a currency of sorts. What would be the point of doing 
anything if the doing wasn’t doing something to you? Beyond mere survival, all 
organisms seek pleasurable states and attempt to avoid unpleasant or dangerous 
ones. But no machine ever does. This is the singular challenge artificial conscious-
ness is facing: how to get artificial agents to have reasons for doing things rather 
than merely doing things for reasons (paraphrasing Dennett). The claim here is thus 
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(1) that subjective experience is what makes it possible for an agent to find its own 
reasons for doing things, and (2) that this is only possible if the agent is able both 
to know about its own internal states and to learn about them in ways that make it 
possible for it to come to care about them.

Fourth, human consciousness, unlike a radar, is able to actively shape its own 
phenomenal space, that is, to control the action systems that make it possible for the 
agent to come to experience certain things rather than others. Controlling action 
to shape perception is of course possible without awareness—a good example is 
perhaps saccadic eye movements—but the key point here is that consciousness 
enables far more sophisticated control driven by the agent’s mental states—its 
intentions, desires, hopes, and so on.

If one accepts this admittedly very rough metaphor and its many qualifications, 
it is interesting to consider what it takes to fool the radar, that is, to escape detec-
tion. There are essentially three strategies, each corresponding to one of three 
regions (implicit, explicit, automatic) depicted in Figure 2.1. One is to be small 
enough to simply fail to register. While a plane will register on an airspace radar, 
for instance, this would not be the case for a bird or a small drone. In cognitive 
psychology, this strategy amounts to weakening the stimulus, that is, reducing its 
energy or its temporal duration, or making it less distinguishable from noise, in 
such a way as to render it phenomenologically unconscious. This is the strategy 
that most experimental designs based on masking or crowding leverage, as in sub-
liminal priming for instance.

The second strategy one could use to fool a radar is to divert its attention, or 
rather, the attention of the radar operator. Here, there is something that has suf-
ficient energy to be detected, yet it fails to be noticed because the radar operator is 
not looking at it or because his attentional resources are otherwise engaged. This is 
precisely what happens in paradigms such as inattentional blindness, change blind-
ness, or the attentional blink, but also in any paradigm that is designed to overload 
working memory capacity. While weakening the stimulus is a bottom-up strategy, 
diverting attention is clearly a top-down strategy. In the first case, one manipulates 
the quality of incoming stimuli in such a way that they are not available to form the 
contents of consciousness even when attention is directed towards them, whereas 
in the other case, a stimulus that has the necessary quality to be available to form 
the contents of awareness fails to become conscious because insufficient attention 
is dedicated to it.

There is a second top-down strategy that is somewhat more unusual: it consists 
of changing the narrative. To return to our radar analogy, this would consist of mak-
ing the radar operator believe not that there is nothing out there, but rather that 
what is there is not what he thinks it is. For instance, one plane may pass itself off as 
another; or a flock of birds might organize itself so as to look like a plane (though 
why birds would do that is open to question). This is connected to the well-known 
issue of misrepresentation in the philosophy literature (Dretske, 1986). In cognitive 
psychology, perhaps the best-known contemporary example is the phenomenon of 
choice blindness (Johansson et al., 2005), whereby participants are made to believe 
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that a photograph of a person they have just not chosen is in fact the one they chose. 
This trick makes a number of them confabulate reasons for their choice, just as in 
Nisbett and Wilson’s (1977) famous “nylon stockings” experiment. But this kind 
of paradigm is just one instance of a wide variety of such manipulations of people’s 
conscious beliefs. One also immediately thinks, for instance, of hypnosis, and of the 
placebo effect. The latter is particularly striking, since it demonstrates that the mere 
belief that a pill contains an active ingredient is sufficient to profoundly modify 
people’s subjective appraisal of their symptoms. Likewise, in hypnosis, people can 
be convinced that their actions are not their own; that their arm is lifting up “on 
its own”. This reduced sense of agency under hypnosis is, according to some (i.e., 
Dienes and Perner, 2007; Lush, Naish, and Dienes, 2016), the defining feature of 
the hypnotic phenomenon. Such high-level manipulations of what people believe 
to be the case can penetrate deeply in the cognitive hierarchy. Raz and collabo-
rators (Raz, Fan, and Posner, 2005), for instance, have shown that a hypnotic 
suggestion that “words would appear as mere gibberish” is sufficient to reduce 
Stroop interference in a color-naming task. We have replicated this finding our-
selves using a placebo-aided non-hypnotic suggestion that color perception would 
either be enhanced or deteriorated by a fake apparatus to which people were con-
nected (Magalhães de Saladanha da Gama et al. 2013).

Each of these three strategies to fool consciousness comes with its own chal-
lenges, which are often thorny and extremely difficult to properly address. 
Subliminal perception, and specifically the claim that a stimulus can be weak 
enough to be available to consciousness yet strong enough that it remains caus-
ally efficacious, such as in its ability to prime subsequent decisions, continues to 
elicit vivid debate today. This should come as no surprise, because it turns out it is 
exceedingly challenging to come up with experimental designs in which a stimu-
lus can, precisely, be weak enough to “fly under the radar” yet strong enough to 
be causally efficacious. This is the quandary that faces all researchers interested in 
demonstrating unconscious cognition. I call it the strength–efficacy dilemma, and it 
is a dilemma that comes up in any paradigm leveraging the strategy of weakening 
the stimulus. This gets complicated by the further challenges involved in properly 
assessing awareness itself. Should we ask participants to rate visibility on each trial, 
or ask them to take part in a visibility test after the main (e.g., priming) task is 
completed? In either case, should we use binary (seen/unseen) measures or graded 
reports such as the Perceptual Awareness Scale (PAS, see Ramsoy and Overgaard, 
2004) or a fully continuous scale (Sergent and Dehaene, 2004)? Crucially, these 
methodological decisions, which at first sight appear to be secondary, are demon-
strably crucial in that they change our conclusions about the extent to which 
processing was indeed unconscious.

To wit, consider the fact that a systematic comparison between different ways of 
collecting subjective judgements about visibility can sometimes yield strikingly dif-
ferent results for each method. Thus, Sandberg et al. (2010) presented participants 
with briefly displayed masked shapes (a square, a circle, a triangle, and a lozenge) 
in a psychophysical paradigm on each trial of which they had to (1) identify the 
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shape by pressing on one of four buttons and (2) express a subjective judgement of 
visibility or confidence, using one of three different scales all involving four points: 
PAS, a confidence judgement, or post-decision wagering (Persaud, McLeod, and 
Cowey, 2007). Briefly put, the study revealed that PAS was the most exhaus-
tive scale: when using PAS, people reported experiencing something (“a brief 
glimpse”) at shorter stimulus durations than they did with the other two scales. 
This finding has obvious implications for our interpretation of dissociation results 
(e.g., between priming and visibility), for they suggest that many such dissociation 
findings may be a mere consequence of lack of sensitivity.

Further, the study also demonstrated that while people tend to use post-decision 
wagering in a binary manner, betting either high or low and mostly refraining from 
using the intermediate scale points, this was not the case with PAS, which showed 
a much more distributed use of the different scale points. This suggests that inter-
mediate or graded states of awareness are possible and that people are quite willing 
to report them when offered the possibility.

In recent research, Windey, Gevers, and Cleeremans (2013) focused specifically 
on this question, that is, whether consciousness should be taken to be an all-or-
none or a graded phenomenon. Using a simple task consisting of judging either the 
magnitude or the color of briefly presented, masked Arabic numerals, we found 
that the shape of the psychophysical functions relating stimulus duration with 
subjective visibility assessed by PAS were influenced by level of processing: such 
functions were more linear when judging color than when judging magnitude, 
which is suggestive that both stimulus features and level of processing modulate the 
extent to which perceptual awareness appears graded or dichotomous. This turns 
out to be important when comparing different studies, for different authors typi-
cally use different stimuli. Lamme and colleagues (see e.g., Fahrenfort, Scholte, and 
Lamme, 2008), for instance, who defend the idea that phenomenal consciousness 
has a graded character, have often used low-level stimuli such as gratings and Gabor 
patches, whereas researchers who defend the idea that consciousness involves a 
sharply non-linear transition (Del Cul, Baillet, and Dehaene, 2007) tend to use 
high-level stimuli such as numbers or words. Further studies in this vein confirmed 
and extended our results (see Anzulewicz et al., 2015; Windey, Vermeiren, Atas, 
and Cleeremans, 2014).

One may think that such measurement issues are only problematic when sub-
jective measures such as visibility or confidence are collected. However, even 
objective measures such as d’ can exhibit substantial variability. Thus, Vermeiren 
and Cleeremans (2012) showed that d’, as measured in a prime visibility test admin-
istered after a priming task involving metaconstrast masked arrows, was influenced 
by different factors such as (1) the delay that elapsed between stimulus presentation 
and response, (2) whether the target (visible) stimulus was neutral or oriented, and 
(3) whether attention was divided between the prime and the target. Observed 
differences in d’ magnitude could be as large as 1.0 in some conditions, thus casting 
doubt on the use of d’ as a neutral and objective measure of visibility, and again 
bearing strong implications for the interpretation of dissociation findings.
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Thus, the general take-home message is that the measure we use to assess 
awareness matters very much, for different measures reveal different dynamics and 
can lead to very different conclusions about the extent to which processing was 
unconscious or not.

The second strategy, namely diverting attention, has challenges of its own. The 
most important challenge presents itself in the form of observer paradox, that is, 
the fact that in cognitive systems, observing a process actually changes that very 
process. Thus, if my goal is to draw people’s attention away from a stimulus, I 
simply cannot ask participants “whether they noticed something”, for doing so 
attracts their attention precisely to what I wish them to remain unaware of. This 
limits possible designs to single-trial experiments, as in Mack and Rock’s (1998) 
well-known inattentional blindness experiments, or forces us to collect subjective 
reports after the entire experiment is over, a method that is problematic in and of 
itself, as is also the case for subliminal perception experiments.

This particular challenge is one of several listed by Newell and Shanks (2014) 
in a recent review of unconscious decision-making. According to the authors, any 
measure of awareness should fulfil the following four criteria. First, the measure 
should be reliable, that is, independent of experimental demands or social desir-
ability. Second, it should be relevant, that is, probe participants about the very same 
knowledge that is involved in subtending performance. Third, it should immediate, 
so as to avoid forgetting and interference. Ideally thus, any measure of awareness 
(e.g., a visibility or a confidence judgement) should be administered on a trial-by-
trial basis rather than after the entire main task is completed. Fourth, the measure 
should sensitive, which is to say based on the same material used to elicit behaviour 
and fine-grained enough that it can be as exclusive and exhaustive as possible 
(Reingold and Merikle, 1988). On the face of it, very few paradigms can claim to 
fulfill all four criteria.

The third strategy—changing the narrative—presents the challenge of being able 
to develop a convincing cover story to describe the situation to participants. It is 
also prone to the “retrospective assessment” problem (Shanks and St. John, 1994), 
as it is impossible to satisfy the immediacy criterion: one cannot test people’s beliefs 
online without undermining such beliefs, the solidity of which is crucial for the 
effects to obtain. Nevertheless, in recent work, we used this strategy in the hope of 
demonstrating implicit learning. Implicit learning (see Cleeremans, Destrebecqz, 
and Boyer, 1998, for a review) is a notoriously challenging domain insofar as dem-
onstrating the involvement of unconscious knowledge is concerned, for it presents 
most of the challenges we have examined so far.

Thus, in a recent series of experiments, Alamia et al. (2016) asked participants 
to detect the direction most of the dots contained in a random-dot kinematogram 
were moving. On some trial blocks, the entire patch of dots was colored either 
green, red, or blue. Two of the colors were predictive of the response and the third 
was neutral. There was thus a very simple way for participants to improve their 
performance in this otherwise very difficult task (difficulty was staircased individu-
ally). Crucially, however, participants were not told about the predictive value of 
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the colors. Instead, they were told that the colors were introduced to make the task 
more difficult, and that they would have to report the color on some of the trials.

We found that people quickly learned to use the colors to improve their per-
formance, albeit most were (1) unable to report noticing the association between 
color and motion direction, (2) unable to carry out generation tasks asking them 
to report the color associated with a particular motion direction, and (3) unable 
to recognize whether a color/motion association was familiar or not. Thus, albeit 
all of these tests of awareness had to be administered after the main experiment 
was over so as to avoid the observer paradox, we are confident that these results 
demonstrate that people were able to unconsciously use available predictive infor-
mation to improve their performance, thus demonstrating implicit learning. The 
central feature that makes this design successful is probably the use of a convincing 
story to characterize the function of the colors. By changing the narrative in this way, 
we made sure people actually pay attention to the relevant stimuli (which is nec-
essary for learning to take place), while at the same time ensuring that they form 
inaccurate metarepresentations about the role that such stimuli play in the task.

Conclusion

From the perspective presented here, the brain is continuously and unconsciously 
learning to anticipate the consequences of action or activity on itself, on the world, 
and on other people. Thus, we have three closely interwoven loops (Figure 2.3) 
all driven by the very same prediction-based mechanisms. A first internal or “inner 
loop” involves the brain redescribing its own representations to itself as a result of 
its continuous unconscious attempts at predicting how activity in one region influ-
ences activity in other regions. In this light, consciousness amounts to the brain 
performing signal detection on its own representations (Lau, 2008), so continuously 
striving to achieve a coherent (prediction-based) understanding of itself. It is impor-
tant to keep in mind that this inner loop in fact involves multiple layers of recurrent 
connectivity, at different scales throughout the brain. A second “perception-action 
loop” results from the agent as a whole predicting the consequences of its actions 
on the world. The third loop is the “self-other loop”, and links the agent with 
other agents, again using the exact same set of mechanisms as involved in the other 
two loops. The existence of this third loop is constitutive of conscious experience, 
I argue, for it is by virtue of the fact that as an agent I am constantly attempting to 
model other minds that I am able to develop an understanding of myself.

In the absence of such a “mind loop”, the system can never bootstrap itself into 
developing the implicit, embodied, transparent (Metzinger, 2003) model of itself 
that forms the basis, through HOT theory, of conscious experience. The process-
ing carried out by the inner loop is thus causally dependent on the existence of 
both the perception–action loop and the self–other loop, with the entire system 
thus forming a “tangled hierarchy” (e.g., Hofstadter’s concept of a “strange loop”, 
see Hofstadter, 2007) of predictive internal models (Pacherie, 2008; Wolpert, 
Doya, and Kawato, 2004).
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To conclude, I would thus like to defend the following claim (see also Cleere
mans, 2014): conscious experience occurs if and only if an information processing 
system has learned about its own representations of the world. Consciousness, in 
this light, is thus the brain’s implicit, embodied theory about itself, gained through 
experience interacting with itself, with the world, and with other people. It is sub-
tended by continuously operating prediction-driven learning mechanisms applied 
to all levels of a representational hierarchy that make it possible for cognitive 
agents to know themselves—something that first-order systems are simply inca-
pable of achieving. Unconscious processing and representations thus leverage the  
same mechanisms as those involved in conscious processing, with a crucial 
difference brought about by the involvement of specific kinds of learned metarep-
resentations geared towards redescribing first-order knowledge in increasingly 
informative ways.

So, the mind is deep after all—its depth, just like the depth of canyons, is the 
result of entire lifetimes of experience progressively carving out a mental landscape 
that exerts greater and greater influence on the way our conscious mental states 
express themselves (something Chater calls “traditions”). Exploring this complex, 
dynamical relationship between conscious and unconscious processing mandates 

FIGURE 2.3  Tangled loops.



The mind is deep  65

using paradigms that make it possible to document the ebbs and flows of each—a 
challenge that implicit learning paradigms are uniquely positioned to address. As 
Pierre Perruchet wrote, “Learning shapes conscious experience; conscious experi-
ence shapes learning”. So, it begins and ends with consciousness rather than with 
the unconscious indeed—but it is the unconscious that ultimately gives conscious 
experience its subjective character, just as its own shape is carved out by the 
conscious acts we engage in. That loop is deep indeed. . .
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1. Epistemological introduction

The process of learning is enigmatic. As a result of training, the simplest sensory 
and motor tasks performance improves: e.g. sensory thresholds decrease, stimulus 
discrimination improves, reaction time response to a light flash decreases, the time 
it takes to add single digit numbers decreases as well, the movements become 
more precise, and so on. Gottlieb and colleagues (1988) summarized these obser-
vations: “. . . there is no human movement too simple to be improved through 
practice” (p. 439). One of the authors of this article, for instance, completed a 
simple sensory–motor task (playing a game similar to “Tetris”) over several years: 
even after a hundred and ten thousand trials, he kept observing improvements. In 
figure skating, athletes learn to distinguish micro changes of the skate angle with 
the sole of the foot (in measurements of several millimetres – known as “the feel-
ing of the skate edge”). This skill usually develops within seven and a half years of 
daily practice. In all of the learning scenarios, people are unable to explain either 
what exactly leads to the enhancement of results or what they do for the improve-
ment to occur.

The key question for the theory of learning is: why do people performing the 
same trivial action several times in a row start to perform it better and faster? Why 
are we able to do something at the end of the learning process that we had no idea 
how to do before, without any realization of what it is that we have done to learn 
it? Mere repetition of actions should not improve the efficacy of action because 
on the one hand, if we repeat non-effective actions they remain non-efficient, 
and on the other, if the action changes from one performance to another, then it 
is not a repetition of the same action. (This reminds us of a well-known paradox of 
scientific knowledge acquisition from the times of antiquity: if a scientist knows 
what s/he is looking for, then this knowledge cannot be new, and if s/he does not 
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know what s/he is looking for, then what is it that s/he is looking for?) Another 
question is: why can a person attain a result that appears randomly high in the 
process of learning only to see this result becoming not attainable during many 
subsequent repetitions?

There exists a myriad of theories that attempt to answer how learning is pos-
sible. These theories use hypothetical physiological mechanisms that start to work 
faster and with more precision as a result of training. Each of such theories has its 
helpful insights, but each one has flaws, as well. Thus, a widely accepted theory of 
learning does not exist. Consider the Tetris example from above: sometimes a once 
obtained high result was impossible to repeat even after 2000 following trials, and 
then, in the process of learning, this once obtained high result becomes rather aver-
age. This most likely means that the physiological mechanisms already know how 
to act accurately and fast. If this is true, why does one need a thousand repetitions 
to reach such a result consistently? Moreover, in extreme situations and in altered 
states of consciousness, a person is able to achieve results that are usually obtained 
with long and tedious training without any learning at all (e.g. a person is able to 
walk the wire without losing balance in a somnambulistic state).

Let us try to posit the problem differently. We will start with the statement 
that even before any learning starts a person is able to do what s/he needs to learn 
to do. Then, the question is not how and why a person learns but why a person 
does not exhibit the skills without prior learning. The reverse formulation of a 
question can be fruitful, as we know from the history of physics. Before Galileo, 
physicists attempted to understand reasons behind movements of bodies and the 
forces that made bodies move. Galileo’s principle of inertia turned the question 
upside down: bodies always move when no force is applied. He stated that it is 
necessary to explain why bodies stop moving, not why and how they move. This 
was possible when Galileo had to revert to an idealization: an ideal non-existent 
construct: he had to introduce a material point (bodies do not have measurements: 
size and weight) and a zero force (no forces are applied to the body). Idealization 
allowed him to disregard all chance outcomes that muddle and refract the essence 
of the event. Every idealization is a priori an incorrect description of the reality, 
but without them no theory can be built in natural sciences.

We are going to follow this example. Here we introduce an idealization: human 
cognitive abilities have no limits except for those that are limited by the logics of 
cognition. It is given that cognitive abilities are restricted by certain physical and 
physiological limitations. Nevertheless, while building a psychological theory, we 
can neglect them because limitations observable in experiences far exceed them. 
(Thus the speed of light and speed of the nervous impulse are limited, but these 
limitations do not define the speed of reading a book.) It is the logics of cognition 
that determine a complex architecture of brain transformations.

The process of learning is exceptionally complex. On the one hand, some of the 
algorithms of cognition (and learning as a part of cognition) have to precede the 
process of cognition, otherwise neither cognition nor learning would ever start. 
On the other hand, there is no universal algorithm that can optimally resolve all the 
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cognitive problems. It is also impossible to prove this thesis strictly due to the lack 
of an operational definition of the term “cognition”. Most attempts to formalize 
even some of the aspects of the process lead to the abyss of insolubility. Gödel’s 
incompleteness theorems demonstrate that any formal system in which natural 
numbers can be defined is always incomplete for it contains statements, truth values 
of which cannot be determined within the same formal system. That is to say that 
if we use arithmetic in our system (what system does not use it?!), we will come 
across problems that we cannot solve. Church and Turing’s theorem demonstrates 
that we cannot predict which problems we would be unable to solve. The uni-
versal algorithm to maximally compress the incoming information does not exist 
either (computation of the complexity of information using Kolmogorov’s index is 
also impossible, it depends on the algorithm used). The list can go on.

Essentially, the problem is that no cognitive system has access to reality in its 
entirety. Only partial description of reality is possible. Therefore, such description 
can be erroneous. In the process of cognition, one should store the correct knowl-
edge and modify the incorrect one. If one knew what should come as a result of 
cognitive action, then one would know what to store and what to modify. But the 
cognizer cannot match today’s knowledge with future knowledge, for the latter 
is not yet known to him. There is always a choice: either to protect the existing 
knowledge, or to happily reject it. And there is no means of evaluating the choice 
in advance.

The goal of cognition is to give a correct description of reality in the known 
language. But the result itself does not only depend on reality but also on the 
means of cognition (non-universal), and on the language of the description that 
has to be chosen before one knows whether it is appropriate to the goal. That is 
why all obtained results have to be meticulously verified. How does that happen? 
The philosophy of science postulates several crucial ways of verifying scientific 
constructs. First, all results should be checked using a different way from the way 
by which they were obtained (the principle of independent verification). Secondly, 
conclusions made by one person should be confirmed by another person (inter-
subjective verification method). Third, all data should be checked for consistency. 
We believe that such methods of verification should be used by humans within all 
cognitive processes (after all, science is the best model of cognitive actions). The 
brain builds psyche and consciousness exactly for the purpose of such verifications. 
Within the introduced idealization, the brain immediately processes all the incom-
ing information (this statement is consistent with the data obtained in implicit 
learning experiments), performs the most complex computations, catches patterns, 
creates hypotheses, manipulates motor commands, and much more. But a person 
starts to act only after consciousness verifies all these automatic constructs, confirms 
or corrects them, and only after that would sanction an action. So using Baars’ 
metaphor, consciousness is the brain’s project manager.

Thus, mental and conscious acts are determined by the tasks of verification, 
and physiological mechanisms just ensure the fulfilment of these tasks. Such an 
approach allows us to resolve the learning paradox postulated earlier. It is not the 
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brain or an organism that learns, but consciousness learns to manage the brain (the 
organism) in order to use their abilities. In this chapter, we show how such an 
approach works using empirical data support.

2. Learning: problem definition

If we take a closer look at the process of learning, we see that it is paradoxical. For 
instance, sensory–motor learning is commonly described in the following way: a 
person completes the task better by repeating the same action over and over again. 
But this is absurd! How can one increase the efficiency of an action by merely 
repeating the same action over and over again? If actions are not effective to begin 
with their repetition would not make them effective, and if actions are modified, 
then, they are not merely a repetition. Perhaps, one improves and perfects each 
action rather than just repeats it. Then, the question arises: how do we know 
that one ineffective action is better than the next one? And if we do know this, 
then, why do we start by performing an ineffective action? In order to perform an 
action, a person needs to apply a conscious effort but sensory–motor learning suc-
ceeds because sensory–motor actions are automatic (happening without conscious 
awareness). In this chapter, we put forward an explanation of the logics behind the 
process of learning and show that our explanation is barren without understanding 
of the mechanisms of consciousness.

If a person is able to respond faster, why is s/he not able to do so right away? 
And if s/he was able to do so by implicit learning, why cannot s/he use this learn-
ing explicitly? Why is it that after a warm-up period the actual learning curve (not 
the averaged and fitted curve shown in textbooks) does not show either a smooth 
change (as it is shown in behavioristic models), or an abrupt increase in effective-
ness (as described in Gestalt models) but rather a series of ups and downs?

The process of memorization that is in many ways similar to the process of 
learning is no less mysterious. Ebbinghaus (1913 [1885]) established that we store 
much more information than we can recall. Modern studies claim exceptional 
capacities of the visual long-term memory. For example, Brady, Konkle, Alvarez, 
and Oliva (2008) have shown that participants were able to memorize more than 
2,500 images of objects after just one exposure. And this is not the limit! If this is 
true, then why is it necessary to learn and memorize information of smaller vol-
umes so it can be recalled? Why do mnemonic devices (e.g. method of loci) that 
require more memorization facilitate recall?

Let us turn to the studies of implicit learning that demonstrate that participants 
are able to find rather complex patterns in the stimuli unconsciously that they can-
not report on consciously. Moreover, they determine these patterns between some 
features of the stimuli that they do not consider valid or noticeable consciously (see 
Moroshkina et al. in the current volume).

This leads to even more questions: why does behavior connected with stimulus 
pattern change even when participants are not aware of the pattern? What pre-
vents them from becoming aware of it? We strongly believe that giving merely an 



Consciousness, learning, and control   75

isolated description of the nature of the implicit learning in order to describe the 
nature of these paradoxes would be futile. The key to answering these questions 
lies in the theories that explain the most central and most mysterious psychological 
phenomenon – consciousness. As it is consciousness that makes the most critical 
decisions but it is unclear how it does it. To explain means to take something 
unclear and unknown and make it something well defined and familiar. When 
talking about consciousness it is challenging to establish well defined and familiar. 
Different schools proposed theories of how consciousness works but did not come 
to an agreement on how to explain consciousness.

In order to talk about the nature of implicit learning, we have to start with the 
functioning of consciousness. Here, we put forward a model of consciousness pro-
posed by Allakhverdov (1993, 2000) and further developed by his followers at the 
department of psychology at the State University of Saint Petersburg, Russia. In 
this model, consciousness is regarded as a pivotal verification tool for actions during 
the process of cognition. We are convinced that without any learning occurring, a 
human is able to press a button almost momentarily and perform complex actions, 
and that our brain is able to perform complex computations. Our research shows 
that participants can transform dates into the days of the week almost momentarily 
without performing any conscious calculations (Allakhverdov, 1993) and to distin-
guish between correct and incorrect responses (Naumenko, 2010). But at the same 
time humans are not robots who process stimuli and not just calculators that perform 
complex computations. Any task uses consciousness, and it impacts the performance 
of this task. Using a metaphor, we can say that consciousness is the brain’s general 
manager that controls the actions of all the departments that report to it. Not all 
information reaches this general manager but without its resolution no decision is 
made. We assume: learning does not happen by the organism or the brain but rather 
it is consciousness that learns to manage both of them so that they can improve per-
formance and act more efficiently.

In the following sections, we discuss these theoretical statements in order to 
formulate the pathway to understanding the nature of implicit learning, using the 
logics of how cognition functions introduced above. We believe that enveloping 
the mechanisms of cognition allows us to understand the nature of consciousness. 
The theory of learning we consider to be a case of cognition that heavily relies 
on the theory of consciousness. Thus, here we envelop the understanding of how 
consciousness operates in order to provide a sound theory of learning.

3. Humans as ideal cognitive systems

3.1. Theoretical statement

Allakhverdov (1993) proposed an idealization that considers humans as ideal cog-
nitive systems with no cognition ability limitations. The brain (as well as the rest 
of the body) should be considered as perfect (with no limits on the amount of 
input: speed of its processing, time of its storage, and so on). This, of course, is not 
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entirely true; both the human brain and body have certain limitations. However, 
accepting such an idealization only means that cognitive limitations that we are 
faced with in empirical studies come first and foremost from the logics of cognition 
and are not the result of physical, biological, physiological, or sociological restric-
tions. This idealization allows us to pose a crucial question: why does a flawless 
cognitive system require the existence of special mechanisms, namely, the mind 
and consciousness?

3.2. Discussion

Any idealization is useful because it allows us to consider the actual process in 
its “pure” form without scattering our attention to some irrelevant and muddled 
details. And even though an idealization is not true a priori, it permits us to cre-
ate logical conclusions that can be confirmed empirically. This is exactly why any 
theory is always an abstract model that describes behavior of imaginary non-
existent ideal objects. Examples can be taken from science: physics uses ideal gasses, 
a mathematical pendulum, a black body, the center of mass that has no dimensions; 
biology refers to idealized population, and social sciences use Weber’s pure types, 
abstract works of Karl Marx, etc. . . .

Idealizations are sometimes used in psychology, for instance the theory of 
the brain’s radical plasticity (Cleeremans, 2008), or the idea that the brain is the 
“Bayesian ideal observer” (Geisler and Diehl, 2003; Frith, 2007). Many research-
ers claimed that information, once received, is stored in memory forever – this 
is, of course, an idealization (Ebbinghaus, Korsakoff, Janet, Freud, Leontyev, 
and Penfield among many others). Baars (1997) supposes that limitations of the 
observable possibilities of consciousness with practically unlimited possibilities of 
the brain should be explained functionally, in other words, by the logic of how 
the entire cognitive system works. This idea is similar to our theoretical approach. 
It is that our idealization includes all of the other idealizations.

3.3. Empirical evidence

While idealization cannot be empirically established, its existence is consistent 
with the results of many studies. Research strongly confirms that people pro-
cess information much faster and more precisely unconsciously, and are able to 
react to a stimulus that is presented with a speed at which sometimes they are 
not even sure if anything was presented. Even actions that are traditionally con-
sidered the prerogative of the work of consciousness (complex decision making, 
semantic transformations, goal setting, social and moral judgments, among others) 
are very likely to happen unconsciously first and only later become consciously 
available (for more discussion see: Moreland and Zajonc, 1982; Kihlstrom, 1990; 
Lewicki, Hill, and Czyzewska, 1992; Allakhverdov, 1993; Murphy and Zajonc, 
1993; Winkielman, Berridge, and Wilbrager, 2005; Allakhverdov et  al., 2006; 
Pessiglione et al., 2007; Hebart, Schriever, Donner, and Haynes, 2014).
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In one the studies, Karpinskaia and Agafonov asked participants to solve ana-
grams after presenting participants with single-image random-dot stereograms 
(SIRDS) – specifically organized images that look like a random distribution of 
dots but actually constitute to a 3-D image if looked at under a special angle and re-
focusing of the gaze (Karpinskaia and Agafonov, 2010). Before an anagram would 
appear participants were primed by either (a) a correct answer, (b) SIRDS with the 
correct answer, (c) SIRDS with information irrelevant to the anagram solution, or 
(d) an empty field. The results indicated that anagrams that were primed with the 
correct answer (a) were solved the fastest; anagrams that were primed with SIRDS 
with the correct answer (b) demonstrated second-fastest reaction times results. It 
took the longest to solve an anagram when participants were primed with SIRDS 
with irrelevant information (c). In all cases, participants were not aware of what 
SIRDS represented because they did not know that they could have contained 
answers, or that one’s visual focus had to be changed to decipher the SIRDS.

How is it possible that participants perceive the covert image? It is rather 
unlikely that they “see” a stereo image unconsciously. However, it is possible to 
figure out what the image is by the distribution of separate dots (their local den-
sity), which allows us to create an envelope curve. Mathematics solves this problem 
by one of two methods: Gaussian filter and wavelet compression with Gabor’s 
elements (Karpinskaia and Shelepin, 2010). The results of this experiment confirm 
that participants can perform complex transformations which can be described 
with such mathematical methods quickly and unconsciously. Sklar et  al. (2012) 
claim that there is evidence that even very complex math operations could be per-
formed unconsciously. There are, however, skeptics of such possibilities (Moors 
and Hesselmann, 2017).

4. The impact of the mode of cognition on the result  
of cognition

4.1. Theoretical statement

The mode of cognition precedes the process of cognition. Many methods (in 
other words, possible algorithms) of cognition exist, but the one and only correct 
one, conceivably, does not exist. In any case, whichever method of cognition we 
choose, it is impossible to prove that it is the best one for the unique criterion of 
effectiveness of cognition does not exist. The result of cognition, then, depends 
not only on what is being learned but on the chosen method of learning.

In genuine science, it is advisable to eliminate the impact of the method of cog-
nizing of the result. We propose to rely on three means of knowledge verification. 
First, all statements should be confirmed in a way different from the way they were 
obtained (independent verification). Secondly, all knowledge should be checked 
for non-contradiction (consistency). And lastly, scientific models proposed by some 
people should be checked by other people (intersubjective verification). Since such 
means of theory confirmation are used in science, it would be logical to assume 
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that human beings as ideal cognitive systems should use similar ways of checking 
the input. We claim that mind and consciousness are essential for these operations.

4.2. Discussion

Not only was every attempt to formalize a perfect method of cognition futile but 
it also proved that such a method does not exist. The idea of proof, in truth, usu-
ally is based on some kind of a logical trick. It is assumed, for example, that the 
most perfect algorithm of cognition is able to complete any task and resolve any 
problem. But if this is true, then, it should be able to solve the following problem: 
to create a problem that is impossible to solve. Whether or not such an unsolvable 
problem can be created, there must be a problem that cognitive algorithm cannot 
solve, and thus would be imperfect. Gödel, the genius of mathematics, provided 
such a logical trick using the language of arithmetic. He demonstrated that one 
could use the language of arithmetic to create problems that cannot be solved using 
the methods of arithmetic.

A conceptual problem lies within this logical dead end. In the process of cogni-
tion one acquires both correct and erroneous knowledge. The correct knowledge 
needs to be stored, while the inaccurate knowledge needs to be either corrected 
or modified. If one would know the result of cognition at onset, then, one would 
know what knowledge to store and what knowledge to modify. And only then 
would it be possible to evaluate the success of the cognition process. But the result 
of the cognitive process is not known beforehand. There is always a choice: to 
continue to correct one’s notions protecting them from rejection, or on the con-
trary, to continue rejecting them. In each case, there is no logical means of defining 
which choice is a better one. One cannot give an unambiguous evaluation of the 
accuracy of the cognition process results.

The philosophers of the Enlightenment formulated this problem from a dif-
ferent angle (Locke among others). The philosophical premise was that the final 
results of cognition are already given to consciousness. However, one cannot eval-
uate the accuracy of these results because one cannot compare notions existing in 
consciousness with the existing reality since consciousness has only notions but not 
the reality itself. For instance, how can a person compare his/her understanding 
of him/herself with him/herself? One only knows what one thinks of him/herself 
but not who s/he really is. “It is impossible”, philosophers exclaimed in despair, 
“to match an image of an object with an object itself!” Thus, one cannot compare 
something that is present in consciousness with something that is not.

4.3. Empirical evidence

The historians of science assert that a scientific theory contributes to the scientific 
progress if (a) it felicitously describes data and (b) prompts new studies and predicts 
new phenomena. But these are two different criteria that do not allow for evalua-
tion of the success of the theory at the moment of its inception. Therefore, some 
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theories that are actually descriptive of the data are worse than some other theo-
ries that become more promising for different reasons. For example, Copernicus 
strived to describe the motion of planets around the Sun as circular (not what data 
was suggesting). That led to serious deviations from the elliptical orbits. Earlier 
theory of Ptolemy’s described the movement of the Sun and the planets around 
the Earth as epicycles which was very approximate but seemed much more data-
based. Nevertheless, it was Copernicus’ theory that was heuristic and led to the 
establishment of physics as a science. Yet, during Copernicus’ times, how could 
one evaluate his theory? Nobody realized how brilliant it was.

5. Independent cognition schemas: the basic level

5.1. Theoretical statement

There are at least two independent schemas of cognition that lie at the core of 
cognition. They act in parallel receiving different inputs, utilizing different algo-
rithms of processing, having different feedback channels, and verifying the results 
of each of these schema processing. We consider this level of cognition as basic and 
exclusively physiological.

Let us imagine that one of the schemas receives extraceptive input (from out-
side stimulation); using its own algorithms it determines all possible patterns of the 
input, predicts new inputs, and performs verification of the adequacy of the obser-
vations to the subsequent observations. Let us say that this schema uses inductive 
processing. Now imagine that the second schema builds hypotheses (guesses) 
about the outside world and attempts to check whether somatic changes or motor 
actions compatible with the hypotheses are possible. Thus, it only receives pro-
prioceptive and intraceptive information. Let us say that this schema is using 
deductive processing. Even though the proposed schemas seem very probable, 
they are only used here as an illustration of the key idea: a possibility of existence 
of two independent schemas of a perfect idealized cognitive system (Allakhverdov 
and Gershkovich, 2010).

If results of cognition obtained through two independent sources are compat-
ible with each other, then there is hope that these results depend on reality and 
not on the chosen method of cognition (although even Kant understood that it 
cannot be a certainty). The independent compatibility check is necessary but is 
not enough.

5.2. Discussion

Different authors expressed the idea that independent systems of input process-
ing exist. Fodor (1983) insisted that the architecture of cognition consists of a 
myriad of parallel independent processes that are “cognitively impermeable”, and 
therefore, other systems cannot influence their functioning. Baars (1991) described 
cognitive architecture as a multitude of relatively independent specialized processes 
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that carry out specific processes. We consider differently organized independent 
schemas of cognition as non-specialized and available to perform any task.

The proposed approach of two different schemas of cognition opposes approaches 
that connect sensory cognition and activity regulation into a sequential chain. 
Following Sechenov, many physiologists and psychologists believed that cognition 
starts from stimuli, and they thought that the objective is to describe the architec-
ture of the stimulus transformation on the route from a sensory input to a motor 
output. These ideas were sustained by the fact that the life-support system has a 
program of innate reactions to certain stimuli. And, of course, it is methodologi-
cally convenient to observe an organism’s response to stimuli. Is it the only possible 
route of cognition? A number of researchers (Dewey, Piaget, and others) claimed 
the opposite: in the beginning was an action. There are many proponents of this 
approach. In our proposal we combine both approaches: the process of creating 
sensory models and hypotheses about the world are checked both simultaneously 
and independently; cognition starts both from reacting to stimuli and by creating 
hypotheses from these observations.

Pavlov found out that any connections between stimuli could be built within 
the “organism activity units”. He considered this to be his main discovery (Pavlov, 
1927). This would have been impossible if sensory processes and motor processes had 
been connected from the beginning. Only by assuming the independence of sensory 
and motor processes on the basic level can one explain the arbitrariness of the major-
ity of the higher level sensory–motor connections. A specialist in child psychology 
Averin (1998) backs our hypothesis of the duality of the sensory and motor systems 
at the basic level. He notes that in the process of ontogenesis, motor and sensory 
development happen in parallel and gradually create sensory–motor coordination.

When two different cognitive schemas receive two confirmed results, these 
results need to be matched against each other. But what is the mechanism behind 
the matching process?

Below, we show how we resolve this issue.

6. Subjectively experienced signal

6.1. Theoretical statement

Cognitive results are obtained by separate means on the basis of different input, in 
other words, they are expressed in different languages, and no rules should exist 
for translating the language of one source into the language of another (other-
wise, we cannot talk about their independence). On the one hand, independent 
schemas of cognition at the basic level should not receive any messages about 
successful matching of the fragments of one system with the fragments of another 
system; otherwise if the information is interpretable between different systems, 
the systems lose their independence. On the other hand, if these systems do not 
receive any feedback about the results of matching, independent checking is 
senseless; and therefore, nothing can be modified or corrected.
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We assume that the qualitative signal is generated in the higher block working 
on the matching task, in other words, if the results of the two cognitive mecha-
nisms matched the criteria, the signal of success is sent. The signal, however, does 
not give information about the results themselves but about how the basic-level 
system is functioning in general. None of the quantitative evaluations can be trans-
ferred to the basic level (for instance, what outcomes should be modified and how 
they should be modified). If the signal is affirmative, the work of the basic level 
continues; if the signal is negative, the system will be modified. Modifications can 
happen in different ways because the signal does not carry any information on what 
exactly should be modified.

We prefer to equate this qualitative signal with emotion. No matter how one 
understands emotion, everyone agrees that it plays an evaluative role and is expe-
rienced subjectively. Today, no one can answer the question: “how can anything 
be experienced subjectively?” We, at least, try to narrow this explicatory gap by 
addressing the question of the origin of a subjectively experienced emotional eval-
uation, and by stating that it is important to acknowledge that such a signal is 
necessary for an ideal cognitive system. This should give us a possibility and hope 
of extrapolating all the richness of the subjective phenomena: the origin of con-
scious thoughts, the diversity of desires, and our moral principles.

Let us dub the level of cognition where the matching of results from differ-
ent schemas of the basic level takes place as the “mental level”. The subjectively 
experienced signals emerge at this level. (Our label is conditional here because 
mentality and consciousness have such diverse and contradictory meanings 
that any label cannot possibly reflect all meanings.) The results received at the 
basic level are merged at the mental level. We call the results of such a merger 
“mental constructs”.

6.2. Discussion

In our view, the dilemma of how the results obtained in different schemas that 
are not interlegible can be checked for compatibility does not have a successful 
solution either in the modular theories or in the Baars framework of concept of 
consciousness.

The signaling system that we are proposing considers these signals as not spe-
cialized and not task-specific. The system merely sends notifications about the 
accuracy of the process in general because the process would take place no matter 
what. In some sense, it can be construed along the lines of the ideas of humanistic 
psychologists who believe that humans are destined to realize their capabilities. 
But how do they know that any action is aimed to reach its target? According to 
Maslow (1970), people rely on the “internal impulse” motivating them to perform 
an action. According to Rogers (1961), a person experiences a specific “organismic 
feeling” informing him/her of the accuracy of the actions. Thus, it is assumed that 
a person should evaluate his/her actions’ accuracy without any awareness, and only 
the final assessment would enter consciousness.
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6.3. Empirical evidence

A signal informs us that a mental construct is available at the mental level, in other 
words, that a certain problem has been solved. This means that every time a par-
ticipant finds a solution to the problem (completes the task), a subjective signal 
“the problem has been solved” is received. Without such a signal participants 
would not know that the problem was solved or a task was completed. This signal 
precedes the solution itself. Tikhomirov (1969) demonstrated this effect in his 
studies. Chess masters were solving complex chess problems discussing the steps 
out loud. The electrodermal activity (EDA) was measured to identify emotional 
changes that participants experienced during the creative process. He found out 
that dermal resistance dropped several seconds prior to the announcement of the 
final solution. Bechara, Damasio, Tranel and Damasio (1997) discovered a similar 
phenomenon. Several other authors claim that a change in emotional state is an 
indicator of the problem solving process, and a person is not aware of the cause 
of that emotional state change (Forgas, 1995; Schwarz, 1990). Negative emotions 
reflect dissatisfaction with the solution while positive ones send a signal that 
everything is fine and on track.

Our claim that such a signal is non-specialized is confirmed empirically (for 
more discussion and support, see Allakhverdov and colleagues, 2015). It is impor-
tant to note that the existence of such a signal is described by other researchers but 
due to the requirements of the experimental logistics, participants usually report 
on the experiences verbally (e.g. feeling of familiarity reported Jacoby and Dallas, 
1981; preferences reported in Chetverikov, 2014; and confidence by Koriat, 2012; 
among others). For us it is crucial to note that participants are not able to report 
or explain the feeling for the signal we are talking about is not realized and is not 
specific, and thus can be used in the performance of different tasks (see Mealor, 
Dienes, and Scott, 2014).

There are situations in which the signal of the solution of one problem can be 
accepted as a signal of the solution of another problem. It appears that in such cases 
the other problem will be solved faster because there is no need to wait for the “the 
problem had been solved” signal.

In one of her experiments, Naumenko (2010) presented participants with two 
three-digit numbers to multiply for two seconds. The presentations were primed 
for 30 ms. The primes were either a correct answer, an incorrect answer, or no 
answer at all. So when the presentations were primed with the correct answer the 
reaction time decreased even if the responses were incorrect. We explain these 
results in the following way: a participant momentarily unconsciously completes 
the calculation; then, the presentation of the correct prime creates the “problem 
solved” signal. However, because the participant is not aware of the completed 
calculations, s/he chooses the answer randomly, but the received signal of the solu-
tion confirms it, and therefore, decreases the time of response.

Filippova (2009) asked participants to perform two simultaneous tasks presented 
on a split screen. Participants had to follow changes in the imagery on the left 
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side of the screen while solving simple cognitive tasks (lexical decision, anagrams, 
masked object recognition) on the right side of the screen. The images presented 
on the left were ambiguous. Participants were not informed that the images were 
ambiguous and the majority of them did not become aware of that. First, partici-
pants had to identify which meaning they perceived; based on the response the 
computer program would change the image gradually toward the meaning that 
was not realized. Filippova compared the response time for the solution of the 
cognitive tasks before and after participants had become aware of the second mean-
ing (when it appeared on the left). Results showed that as soon as the participant 
has become aware of the second meaning the solution time for all cognitive prob-
lems (related and not related to the ambiguous image) decreased compared to the 
response times before the second meaning had become known). The explanation 
of the results unfolds from the idea that when a non-realized meaning is found, 
consciousness receives a “the problem is solved” signal that allows participants to 
skip an accuracy check of the task at hand, and this leads to faster response times. 
This would only be possible if the signal “the problem is solved” is non-specific 
and is not problem- or task-specific. Sometimes though, the unconscious signal 
occurs during the performance of consciously attended-to transformations, thus, it 
might be ignored or vice versa can erroneously support as a reinforcement of the 
accuracy of the transformations (Mealor, Dienes, and Scott, 2014).

7. The mental level of cognition

7.1. Theoretical statement

During the process of matching results at the mental level, only constant unchang-
ing results can be compared. The key methods of processing the information 
received from the basic level at the mental level are the division of information into 
the discrete units (fragments) and an attempt to distinguish fragments received from 
different schemas. We postulate independent schemas are involved in the result 
matching. But it is important to understand that verification and matching can only 
happen between non-changing pieces; changing values cannot be matched or veri-
fied. And as any dynamic process with feedback, it would always be iterative and in 
discrete portions – test > operation, test > operation, and so on. It is highly likely 
that numerous options of how this happens are at work here: from the simplest one 
proposed by Gestaltists – to look for isomorphic relationship between fragments 
of two languages with the following verification that they remain isomorphic in 
the future events – to the more complex mathematical transformations. We are 
not going to hypothesize how this happens. The mechanism of the processes is, of 
course, important. But resolving logical problems that arise here is more critical.

Mental constructs can be checked for compatibility independently. Let us call 
the cognitive level where such verification happens the “level of consciousness”. 
Mental constructs that are compatible to the ones selected previously can enter 
at this level (more on this in the following sections). The effectiveness of mental 
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level work is evaluated against the demands of the mental constructs required by 
consciousness. If consciousness does not accept any of the new constructs, it sends a 
signal to the mind that all the results are incorrect (and consequently of the inaccu-
racy of the results to the basic level). The mind stops generating positive emotional 
signals. Conversely, if consciousness persistently selects just one mental construct, this 
construct stops coinciding with the emotional signal, and thus becomes unconscious.

To create mental constructs is to equate the non-identical: some result S (in one 
language) is identical to some result P in another: thus, S is P. But we know that S 
should be S, and not P. For instance, consider two statements: (1) Sigmund Freud 
(S) is the founder of psychoanalysis (P). (2) Sigmund Freud (S) is Sigmund Freud (S). 
The first statement (1) refers to the history of psychology, while the second (2) is 
different from the first and is simply a tautology. Therefore, “Sigmund Freud” and “the 
founder of psychoanalysis” point to the same result but have different meanings (in other 
words, S is P and simultaneously S is not P). Russell (1905) clarifies this thought: a 
statement that “Walter Scott is the author of Waverley is different from a statement 
that “Walter Scott is Walter Scott”.

In order to avoid a contradiction, we would say that S and P at a given moment 
belong to the same class (or have the same meaning). This also presumes that both 
S and P necessarily belong to different classes. Therefore, the psyche/mentality 
(and consciousness) is able not only to equate the non-identical, but to distinguish 
the indistinguishable. Vekker (1974) noted that a solitary object is always real-
ized as a representative of a class, and calls this a phenomenon of generalizing. 
Volume, speed, and threshold limitations on the input, storage, and processing of 
the information that we observe in experiments are defined by the class to which 
certain mental constructs belong and were selected by consciousness as belonging 
to that class.

In the most general form this can be formalized as the following: all constructs 
that enter from the mental level into consciousness: (1) are necessarily realized 
as belonging to a certain class (have an assigned meaning); (2) are matched with 
other members of the class, and no class can have only one member, that is to say 
each meaning has synonyms; (3) can be assigned to different classes simultaneously, 
namely every item has a homonym.

7.2. Discussion

If every symbol only had one meaning different from all other symbols, then all 
definitions should be considered false, reasoning would be impossible, and logics 
would be paralyzed – this was noticed by Frege (1975) in Logical Investigations. 
(Consider arithmetic: if “2” would only mean “2”, then no transformations 
would be possible. Arithmetic exists because 2 = 1+1, 2 = 3-1, and 2 = 22:11 and 
many others.)

A symbol cannot be its meaning. The last requirement allows us to avoid para-
doxes of self-circulation. Wartofsky (1979) puts forward an analogous requirement: 
“anything can be taken as a model of anything else if and only if we can sort out the 
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relevant aspect in which one entity is like another, the relevant properties which 
both have in common” (p.6).

If different statements denote the same meaning, they do not cease being dif-
ferent statements. Linguists formulated a law: potentially any linguistic symbol is 
simultaneously a homonym and a synonym (Kartsevski, 1965, p. 85). Vygotsky 
(1986) stated, “The same thought can be expressed in different phrases, the same 
way as one phrase can serve as an expression of different thoughts.” Miller and 
Johnson-Laird (1976) found that without synonyms a language could not exist as a 
structure. Gadamer (1986) made an identical statement about homonyms: the core 
of language, it seems, is created by an ability of words despite their definite mean-
ings to be open to interpretation, that is to say that every word can be interpreted 
in an array of ways, and this flexibility allows for such enterprise as speech.

7.3. Empirical evidence

Things that we become consciously aware of belong to a certain class. Back in 
the 19th century, James Cattell (1886) discovered the word-superiority effect: a letter 
presented within a word is recognized faster and with more accuracy than the same 
letter presented in a random sequence of the same letters. Therefore, perception of 
a letter depends on which class it belongs to: to a class of letters or to a class of letters 
that constitutes a word. Almost a hundred years later Weisstein and Harris (1974) 
discovered an object-superiority effect: visual detection of line segments increases if 
these lines create a three-dimensional object. People memorize about seven items 
of the class (chunks, in Miller’s terms), but not symbols; for example, seven letters 
versus seven words (five-letter words would contain 35 letters, respectively). Our 
experiments show that even sensory thresholds change due solely to the illusory 
change of the size of the stimulus, that is to say by assigning the same stimulus to 
different classes (Karpinskaia, 2010).

We cease to become aware of the constant unchangeable contents. The con-
tents of consciousness in the words of James (1983 [1890]), is a constant flow. 
It is impossible to be thinking of the same thing for a long time. Many known 
phenomena confirm the idea that we stop being aware of content that does not 
change. Participants stop reacting to imagery constant in brightness and color 
within 1–3 seconds of exposure to it. A constant audio or a constant tactile stimu-
lus of medium intensity ceases to be noticed very quickly. A color background 
loses its color after a prolonged fixed gaze and becomes gray (the phenomenon 
of color adaption). Multiple repetition of the same word leads to the loss of 
its meaning (the phenomenon of semantic satiation). Multiply repeated actions 
become automatic and are performed without awareness. If you put participants 
into a situation of sensory deprivation, they would either fall asleep or start hal-
lucinating. If you present participants with a number of symbols and request them 
to keep them in mind – very quickly some of these symbols would be forgot-
ten: would leave consciousness. (The last example does not explain the nature 
of forgetting but leads to the idea that in order to talk about forgetting, it is not 
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required to introduce non-testable hypotheses along the lines of broken traces, 
memory fragility, and so on.)

8. The conscious level of cognition

8.1. Theoretical statement

The main function of consciousness is to eliminate contradictions within conscious 
experience (cf. Baars 1988, p. 82: “conscious content is internally consistent”). 
In order to perform this function, consciousness uses a logical apparatus since the 
requirement for non-contradiction is the requirement of logics. Consciousness 
connects a mental construct from the mental level to a uniform case that does not 
contain any contradictions by using elementary logical operators (“and”, “or”, 
“not”, “if. . . then. . .”). If these new mental constructs are not in agreement with 
the situation (are contrary to it, or are not compatible with expectations); then, 
consciousness can: (a) try to resolve contradictions using logical operations so that 
new contradictions would not surface; (b) reject these new constructs (suppress 
them), which would give a signal about errors in the mental constructs for the 
given situation and would request new constructs to be created; (c) choose another 
situation (quantization for a different situation is a function of the mental level). 
Thus, at this conscious level it is impossible to find oneself in contradictory situa-
tions, although it is normal that situations themselves can be contradictory.

One can purge a contradiction only in a constant situation. This means that 
while consciousness is working on resolving a contradiction, it does not work with 
any newly incoming constructs. It can track new contradictions only if it resolves 
them one at a time, that is to say that consciousness functions successively. A situ-
ation can be considered non-contradictory if it can be presented as consequences 
inferred from several non-contradicting axioms that would explain the origin of 
all incoming mental constructs; in other words, it is able to create a determinate 
description of the situation.

Logical connections of the mental constructs built by consciousness enter the 
mental level to undergo an independent verification of their compatibility at the 
basic level. If no contradictions occur, the mental level sends an emotional confirma-
tion signal (and vice versa, if they are not compatible, a negative emotional response 
is sent). In order to maintain independence between the mental level and conscious-
ness, this signal is not bound to specific results of verification; it does not differ from 
other signals about the success of cognition. This signal can differ in intensity but it 
merely informs of the completion of the task and does not clarify which task exactly 
is completed (from numerous tasks that are being solved at the mental level).

8.2. Discussion

Psychological texts are full of maxims, such as: “we only see things that we understand”, 
“the world in our consciousness is distorted unrecognizably”. Many psychologists 
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admit that a conscious being has a need to operate in a rational (non-contradictory) 
world (see, for instance, Poduska, 1980). Since ancient times philosophers note an 
inescapable desire to describe a world where everything is interrelated and defined. 
Hume (1748) called this desire a natural instinct that cannot be generated or sup-
pressed by reasoning. This need is clearly manifested in the thinking of primitive 
people and children. Levy-Bruhl (1978) assures that primitive people believe that 
everything is interrelated: that there is a reason for raining and successful or unsuc-
cessful hunting and fishing. According to Piaget (1959), a child needs a reason for 
everything, “no matter what it is worth”. Entire schools of research (reasoning attri-
bution, probability prognosis, and so on) empirically prove that people tend to look 
for and find reasons to relate events that happen by absolute coincidence.

8.3. Empirical evidence

When input is not consistent with the mental constructs accepted by conscious-
ness, it is often pushed out of consciousness or is unconsciously smoothed. A good 
example for this statement can be found in Hock (2012): inhabitants of a small 
mountain village remote from civilization never saw planes that were taking off 
from a nearby airport. They did not even hear the sound of engines because it could 
not fit into their worldview. Freud used many examples where contradictions 
and unconscious ambiguities could be suppressed from consciousness (though, we 
should probably not take his interpretations of these examples seriously). People 
perceive multiple meanings when looking at ambiguous images or reading poly-
semantic texts unconsciously but they are aware of only one of these meanings at 
any given moment. Festinger (1957) and his followers conducted a series of experi-
ments to show the tenacious eagerness of participants to resolve a contradiction 
(inconsistency) of two “facts” about themselves or a situation without realizing 
that such a contradiction existed. Logical inconsistency of information, its discrep-
ancy with previous knowledge, urges people to reduce the dissonance (a term that 
Festinger coined as “cognitive dissonance”).

Let consider examples from our studies. Participants (all were college students) 
were presented with an excerpt from Lermontov’s (1840) poem “The Novice” 
(Duff, 1919) that is well known to any Russian high school student. In it, the pro-
tagonist fought a snow leopard that suddenly appeared. The snow leopard (called 
“the waste’s eternal guest”) behaved either like a wild cat or like no cat would ever 
behave at all: “howling, pawing and furrowing up” the sand with his paw in anger, 
standing on his rear paws (“reared right up as people stand”), tenderly wagging his 
tail (“thumping his tail in friendliest wise”), and so on. Lermontov built his depic-
tion in such a way that no one would notice a contradiction in patterns of this 
animal’s behavior. So, when asked to recall the plot of the poem, most partici-
pants suppressed the contradiction and described snow leopard’s behavior in terms 
consistent with a cat’s behavior: they would easily remember fragments that are 
consistent with cat’s behavior: only 21% stated that the leopard was standing on his 
hind paws; . . . . but most suppressed the oxymoron “the eternal guest” (recalled 
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only by 8%), and only 12% recalled it as a locale “the eternal guest of wastes” 
(Allakhverdov, 2000).

We can provoke participants to make errors. If we ask participants to solve a 
series of problems simultaneously making confusing statements: “A three gallon jar 
can fit more than 17 maple leaves. How many leaves can one fit into a three gal-
lon jar?” they tend to respond with the numbers matching the given number no 
matter how ridiculous this number might be. Then, we compare the answers of 
these participants with those of the control group that was only asked “How many 
leaves can one fit into a three gallon jar?” These participants give various answers 
not related to the number 17, of course (Tversky and Kahneman, 1974; Strach and 
Mussweiler, 1997 among many others). When we repeat the procedure after three 
weeks, the experimental group participants’ responses match the previously given 
numbers even more apparently, and they report much higher confidence in their 
responses (a tendency known when resolving cognitive dissonance).

We observe the same effect when participants make their own spontaneous 
errors. Once an error is made and a person is unaware of this error, s/he tends to 
repeat this error. These recurrent errors are made faster and with more confidence 
than the ones that do not reoccur. Three well-educated but not too experienced 
typists (in the era of typewriters) were asked to type a text “as fast as possible with-
out paying attention to the quality”. In the sixteen thousand typed words errors 
constituted 3%. The probability of an error appearing in the same words over again 
was six times higher (Allakhverdov, 1993). In other words, the errors were consist-
ent and protected by an earlier mark of correctness. In another study, Vladykina 
(2008, 2010) asked participants to differentiate visual and audio stimuli in the inter-
val of uncertainty, where all stimuli seemed practically identical, and participants 
could only distinguish them by chance. Nevertheless, they were able to distinguish 
them without even being aware of that. When stimuli were presented to them 
again participants identified them with the same rate of errors (this is only possible 
when participants unconsciously distinguish identical and non-identical stimuli).

We observe recurrent errors in everyday experiences. At school in the arithme-
tic class, we learned that when adding multi-digit numbers we are prone to making 
errors. Thus, it is important to check the steps, and moreover, the checking should 
happen in another manner. So for instance, if we were moving from top to bot-
tom, we should reverse the action. But why did we have to do so? Because this 
is considered an obvious way to detect errors. However, what it means is that if 
a student added 2 plus 3 and got 6, and did not notice this error, s/he will repeat 
this error in the same spot. (For more on the subject of recurrent errors, read 
Kuvaldina’s chapter in the current volume.)

9. Positive and negative choice

9.1. Theoretical statement

Identification of a class assumes the existence of class boundaries. A boundary 
can only be drawn when one knows what lies on both sides of that boundary. 
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Therefore, a class can be equally determined by members that belong to that 
class and by the ones that remained outside the boundary, the rejected ones. 
Consciousness strives not only to confirm existing knowledge but also to con-
tinuously reject things that were rejected in the same situation. Let us label what 
consciousness chose to be aware of (accept) a “positive choice”, and use the term 
“negative choice” for things that are rejected, things that we decided not to be 
aware of.

Both the positive and the negative choice have aftereffects. Things that were 
selected to enter consciousness are activated and have a tendency to be processed 
faster. Things that were rejected by consciousness (or pushed out of consciousness) 
are also in the state of activation but have different indexation and are marked as 
things not to be aware of in a given context. When context changes, indexation 
changes; the things that remained unconscious have a higher than chance likeli-
hood to enter consciousness.

Positively chosen items are unstable, because the contents of consciousness can-
not remain constant and stable (this point is at length discussed above). Linguists 
would say that any meaning is intangible. Content is displaced moving along logical 
transitions from one member of the class to another. Within the same context only 
negatively chosen items (the rejected ones) remain constant. Therefore, we would say 
that the negatively chosen (rejected) meanings define the meaning of a given context.

9.2. Discussion

Readiness to repeat a previously performed action or use of an existing solution 
is characteristic of any cognitive device. It is not specific only to consciousness. 
We can observe an effect of predictive coding even in neurons. It is particularly 
imperative in the process of signification: a connection between a sign and a mean-
ing that has been once created has an aftereffect; otherwise, this connection would 
cease to exist.

Readiness to reject (not choose) an action or a solution repeatedly is, in all likeli-
hood, a feature specific to consciousness’ functioning. This readiness is closely linked 
to the process of signification. A person understands meaning only in opposition 
to any other meaning. James (1983 [1890]) introduced the law of dissociation by 
changing the accompanying elements: consciousness first identifies those qualities 
of an object that distinguish it from similar elements accompanying its presentation. 
Linguists entertain similar ideas. Things and events are named when they are viewed 
in opposition to other things and phenomena; when, as linguistics would say, they 
become elements of the contrastive set. The term “acoustic guitar” appeared only 
after an electric guitar was created, and WWI received its ordinal number only after 
the start of the second one, WWII (Fillmore, 1985). We say: the choice to realize a 
certain meaning of a symbol requires an unconscious rejection of some other mean-
ings, or in other words, it performs an operation that we are calling the negative choice.

Within this framework, we are able to describe creative processes as well. A 
scientist who diligently searches for a solution to a problem and cannot find it 
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would provide us with a good illustration of the logics put forward here. Let us 
assume that at some point at the mental level a mental construct is being formed 
that is the solution to the problem. However, this mental construct is not ready 
to be accepted for a number of reasons, e.g. construct is in contradiction with 
previous knowledge, or in contradiction with certain norms and ideals (Ptolemy’s 
vs. Copernicus’ theory example above). The mental level indexes this negatively 
chosen solution as an erroneous one in the given context. The more the scien-
tist spends time on the solution of the problem (continues to exist in the same 
context), the harder it is to overcome the aftereffect of the negative choice (the 
rejection of this solution). When the context changes, the solution enters con-
sciousness with ease. This process allows for an explanation of the incubation phase 
and the phenomenon of insight.

Let us turn to one popular illustration of these phenomena. In the 19th century, 
chemists did not realize the existence of cyclic molecules (a molecule of benzene, 
for instance). As one of the legends has it, once Kekulé, a chemist, went for a 
walk while thinking of the composition of benzene (incubation phase) and saw 
monkeys on their way to the circus. The monkeys were in a circle and in order 
not to fall they were holding on to each other. “Aha!” – atoms in benzene are con-
nected into a ring – came an insight. We assume that Kekulé already had a mental 
construct that was consistent with the empirical data: the molecule of benzene is 
structured as a ring but the construct was rejected as inconsistent with the concepts 
accepted in chemistry at that time. The more he tried to solve the problem, the 
harder it was for him to accept a solution that was once rejected in accordance with 
the aftereffect of the negative choice phenomenon. As soon as he stopped solving 
the problem and started walking and looking around, the context had changed 
but the mental construct: “composition – ring” was already active and was ready 
to enter consciousness. When he looked at the monkeys, this mental construct 
quickly entered consciousness. It also received a strong confirmation signal that 
“the problem is solved”. The scientist smacked his lips in agitation experiencing 
a powerful emotional lift but he did not know yet what problem he had solved. 
But since the problem of benzene composition was of current interest to him, he 
quickly came to the solution. Such an approach to the creative processes explains 
the results of experiments conducted by Ponomarev (1967) (see Allakhverdov 
et  al., 2015). His participants had to connect four dots (corners of a square)  
with three straight continuous lines without taking their pencil off the paper and 
so that the pencil would return to the original spot. Many participants failed to 
complete the task in the given time limit. Then, Ponomarev introduced a task 
that served as a hint to the solution. He, first, taught the participants a simplified 
checkers game: four pieces were placed on the board. Participants had to capture 
pieces by starting in one of the corners. In order to do so, they used the exact 
movement necessary for the solution of the drawing problem. Then, a sheet of 
tracing paper was placed on top of the same board, and four dots were drawn in 
place of the pieces. This hint worked only if it followed the attempt at the main 
drawing problem. A hint, thus, works only if it is given in the process of the solution 
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of the main problem. The construct for the solution must be activated in order 
for the hint to work. Monkeys holding paws in a circle would not lead Kekulé to 
the composition of benzene if he were not already working on a solution to that 
problem (but the solution was negatively chosen).

Following this interpretation of the creative process, Allakhverdov (2001) con-
strues an emotional impact of art. Artworks, according to him, are constructed as 
follows: an artist creates a purposefully masked contradiction that one cannot be 
aware of (recall Lermontov’s description of the snow leopard). At the same there 
is a way offered to resolve this contradiction (Lermontov’s protagonist is fight-
ing for his freedom not with a particular animal but with a terrible monster that 
incorporated characteristics of a variety of animals). As soon as the contradiction 
is resolved, an emotional signal that “the problem is solved” is received. But we 
do not know which problem is solved because we were not aware of the contra-
diction initially. Hence, a scientific discovery provides a single emotional arousal, 
while the works of art provide multiple emotional reactions.

9.3. Empirical evidence

Bardin (1969) demonstrated the impact of accompanying elements on sensory 
thresholds. He illustrated that a class is defined by those members that belong to it 
as well as by the elements of information that were rejected. Participants looked at 
horizontal lines and lines that were inclined to .5, 1, 2, and 3 degrees in the first 
series of trials, and to 1, 4, 5, and 10 degrees in the second series of trials. In the 
first series of trials, participants identified a line that was inclined at 1 degree as 
inclined and the line inclined to .5 degrees as horizontal, and in the second series 
they identified a line inclined at 1 degree as horizontal.

Allakhverdov first discovered the aftereffects of the negative choice in 1974. He 
asked three professional musicians with perfect pitch to identify and name six notes 
played simultaneously in an atonal chord. The notes that were not recognized in 
one chord had a tendency to remain unrecognized in the following chords if they 
were presented in the chord immediately following the one in which they were not  
identified. In contrast, these notes were named erroneously when they were  
not presented in the chord immediately following the one in which they were not 
identified but in the later chords (because they were already activated but nega-
tively chosen). Allakhverdov (1993) discovered that when a participant memorized 
a list of words containing homonyms but was aware only of one meaning of the 
word (negatively chose the other meaning), then, the probability of recall of these 
words was lower compared to unambiguous words. In a series of elegant studies by 
Filippova, it was shown that unawareness of one of the interpretations of an ambig-
uous figure impairs the completion of the cognitive tasks semantically related to that 
rejected interpretation (Filippova, 2009; Filippova, 2011; Filippova and Chernov, 
2013). The result obtained in these experiments resembles the phenomenon of 
negative priming (Milliken et al, 1998; Tipper, 2001; Frings, Schneider, and Fox, 
2015). It also corresponds to ideas of the necessity to make an unconscious decision. 
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Tal and Bar (2014) consider the negative priming effect as a marker of the hypoth-
esis about an object. This approach is close to the approach we are postulating here. 
However, we understand the reasoning behind negative inhibition differently. Tal 
and Bar (2014) claim that the decision is inhibited not to create interference with 
the selected solution, while we claim that inhibition is consistent with suppression 
of the solution not chosen earlier and maintaining the chosen one because when 
context is changed this can lead to errors. This allows us to give a simple interpre-
tation of the relationship between positive and negative priming (Dehaene et al., 
1998; Ortells et al., 2016; Brocher, Koenig, 2016). If a participant receives a rather 
simple task (lexical decision, recognition, or trivial arithmetic operations), then a 
prime presented for a brief time would decrease reaction time in the case of cor-
respondence of the prime to the solution (positive priming) and would increase 
reaction time when the prime does not correspond to the solution (negative 
priming). We interpret this effect as follows: if a participant solves the problem 
after the decision about the prime was made (to ignore it – negative priming), and 
if the problem is resolved before then a positive priming effect would occur (see 
Kostina and Allakhverdov, 2017 for empirical evidence).

10. Highest levels of consciousness

10.1. Theoretical statement

Since consciousness works on self-confirmation, the constructs accepted by it 
must be additionally verified. Let us introduce one type of such verification – 
intersubjective: the consciousness checks its constructions against those of other 
people. Let us call this level of cognition “a social level”. And once again, we 
immediately run into a logical problem. Such verification would be already needed 
at the dawn of humanity when language did not yet exist. We need to interact 
with another person and evaluate whether his/her behavior is in accordance with 
our assumptions. But if a partner in response behaves in strict compliance with the 
laws of physics (he was pushed > he falls, etc. . . .) or in compliance with physi-
ological needs (he got food > he eats, etc. . . .), then, such behavior allows only 
for checking hypotheses about the laws of physics or physiological needs. Such 
behaviors say very little about a person’s inner world. On the one hand, when 
people verify their hypotheses, they should behave in a way that would not physi-
cally influence behaviors of another person; and on another hand, they have to 
initiate actions that would trigger the feedback of the others.

However, any partner not only is an object but also is an agent in a cognitive 
process. Partners have to mutually verify hypotheses about the inner world of each 
other. And they should choose to act in such a way that would not influence their 
partner’s actions. Imagine the following scenario: two people simultaneously start 
verifying hypotheses about each other and perform some bizarre actions that do 
not require any response from the other (for instance, start making some non-
sense sounds). Since the consciousness of each of them looks for a reason for any 
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action they would think that the absurdity of the partner’s behavior is triggered by 
their own actions. This hypothesis about the reasons is erroneous but as soon as 
it emerges it becomes true because both persons form the same hypothesis about 
the relationship of actions, and each one of them would try to confirm it. So, one 
of them continues his/her bizarre actions so that s/he can confirm the hypothesis 
about the relationship between the actions while the other one would continue 
his/her bizarre actions. This, of course, does not give the participants any insights 
into understanding each other. When these related actions become more sophis-
ticated, we end up with social patterns, e.g. rituals, social norms, and last but not 
least languages, cultures, and the entire human history.

Confirmation of one’s constructs about the world with the constructs of other 
people happens within and by the virtue of the work of consciousness. Assumptions 
about other people’s worldview must be distinct from other conscious hypotheses 
(have different indexation).

The emergence of language opens new and very powerful capabilities for veri-
fication of one’s own hypotheses. Language structures help consciousness to create 
new descriptions of the world and self and to attempt to create linguistic hypoth-
eses about oneself in the surrounding world. The concept of oneself (self-concept) 
presupposes a uniform consistent representation. (Naturally, “self” behaves differ-
ently in different contexts, but it is the same constant “self” nevertheless.) All of 
these constructs must be independently verified as well. The final validation of the 
accuracy of these constructions is a comparison of these language descriptions with 
one’s own behavior and decisions. Thus emerge the highest level of consciousness 
functioning – the personal level. Ancient sages referred to this level as the pinnacle 
of cognition – the cognition of self, resulting in self-knowledge.

10.2. Discussion

Social stimuli are processed differently from other stimuli. Likely, mirror neurons 
play a role here. Koffka (1928) brought attention to the fact that an infant rec-
ognizes his/her mother’s face at the age of 2 months but is unable to distinguish 
colors. Meltzoff and Moore (1977) demonstrated that infants at 12–21 days old are 
able to imitate facial and manual movements of adults (for example, they are able 
to stick out their tongues in response to an adult sticking their tongue out). At the 
same time, it is believed that they are unable to distinguish between objects.

If others participate in a cognitive process of problem solving, it impacts all 
cognitive processes because other people’s opinions influence our perception, 
memory, and thinking. There are many examples in psychological literature that 
our sensory impressions can be distorted based on the opinions of other people 
(Moscovici, 1985; Geen, 1989; Chartrand and Bargh, 1999; Nihei et al., 2002).

The personal level is manifested during cognitive problem solving in conscious 
usage of different strategies, metacognitive techniques, level of ambition, and in 
the prognosis of the effectiveness of the solution (both in terms of speed and accu-
racy) as well as in the desire to prove this prediction of efficacy. The prognosis of 
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performance defines the system of quantification of the speed and accuracy that 
consciousness is selecting from the prepared mental constructs. The prognosis itself 
is not realized in a quantitative measure (it happens on the mental level, but the 
expectations for success or failure are realized). The personal level of control is 
also manifested when participants unconsciously set the error rate for their perfor-
mance, and thus will have to confirm it in the process of problem solving (see more 
discussion of this issue in the current volume).

In one of our studies that we described above (Naumenko, 2010), we asked 
participants to multiply two three-digit numbers in two seconds, and then, choose 
the correct answer among three answer choices. Participants chose the correct 
answer in 30% of cases, guessing by chance. However, when the same examples 
were given with the answer options, participants tended to repeat the choice of 
the correct answer even though they thought that they were still guessing. Thus 
the results indicated that participants unconsciously were able to distinguish a 
correct answer from an incorrect one. Why did they act as if they were guessing 
the answers? All of them knew that they could not really perform such com-
plex calculations (they were not aware of it). So as soon as consciousness would 
choose the correct answer, it would lead to contradicting their prediction on 
their ability of performance, and thus would create a signal for error. As a result, 
when participants choose from three answer options, the probability of choosing 
the correct one returns to one of three (probability of chance in a three-option 
answer choice is .33).

In experimental situations during completion of tasks, participants’ personal 
level of control is manifested in different behaviors: by using jokes (for instance, 
“it is not enough to know how to solve problems, one has to love it, too”), by 
refusal to continue working on the task (“I am tired”, “I am bored”, “let’s take a 
break”, etc.), by introducing additional self-instruction (“let me try to solve this 
problem faster or in an unexpected way”), by requests to the experimenter to 
compare their performance with the performance of others, and so on. Sometimes 
it can lead to critical failures in the performance of the task at hand. We observed 
cases where it would suddenly take adult educated participants 6–7 seconds to add 
“2+3”, and even give an incorrect answer to such a trivial problem. No one knows 
what exactly participants are thinking about during these moments. Customarily, 
in real empirical settings psychologists consider such behaviors as statistical noise 
of the data.

10.3. Empirical evidence

When reporting empirical results, one should keep in mind that any participant 
specifically controls whether his/her behavior conforms to the experimenter’s 
expectations. Filjaeva and Korovkin (2015) report that when participants solve 
cognitive tasks involving direct communication with an experimenter, they 
demonstrate communicative behavioral patterns, using communicative gestures 
and facial expressions more often than when such communication is absent.  
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More importantly – the solutions of the cognitive tasks can vary. Vladykina (2010) 
showed that performance effectiveness in visual sensory tasks increases when an 
experimenter provides feedback (“correct” – “incorrect”) after each answer com-
pared to the situation where the same feedback is given on a computer screen. In 
her experiment, the task was to compare lines of different lengths to the standard 
and choose the one that matches the length of the standard. The experimenter 
was performing a technical task of recording answers and just informing the par-
ticipants whether their answer was correct or incorrect. However, interaction 
with a real person (even if it was non-involved) increased not only the proportion 
of correct answers but also boosted the aftereffect manifestations.

When solving simple cognitive tasks, participants evaluate the effectiveness of 
their performance beforehand. If one makes a decision to make errors, then errors 
will be made. To validate the idea that at the personal level of control participants 
perform tasks in accordance with their pre-set error rate level, consider the fol-
lowing empirical example. Participants that were briefly exposed to a reading on a 
pointer instrument made a decision on which readings they were going to identify 
erroneously beforehand. As a result, the reaction time of the very first response on 
a specific reading indicated how many errors on this particular reading would be 
made: if a decision was made to identify this reading erroneously through the fol-
lowing trials, the reaction time of the very first response increased (Allakhverdov, 
1993; Andrijanova, 2014).

11. Learning and cognitive control

11.1. Theoretical statement

Instructions to a problem always create a contradiction between what is given (the 
initial state) and what result should be obtained (the solution). There are four types 
of control that allow moving from the initial state of the problem to the solution. 
After certain actions/operations are performed on the lower levels, consciousness 
checks for consistency of the result of these operations with the ones that already 
exist – operational control. Then it checks whether the obtained result is in fact the 
solution to the given problem – task control. This is followed by the verification 
of consistency of the result to the expectations of the experimenter and/or other 
people – social control. And finally, it checks whether the solution is reached with 
the level of effectiveness that participants set beforehand – personal control. Each 
type of control happens involuntarily, and only one type of control functions at 
any given moment (consciousness works successively), and we are aware only of 
the results of these controls.

11.2. Discussion

Operational control is the slowest of all: there can be many operations. Each opera-
tion is successively compared with the result of every completed operation. In case 
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of success, the signal “the problem is solved” occurs. In the absence of that signal, 
consciousness cannot guarantee accuracy of the solution. We confirm that such 
comparison does happen by demonstrating that participants tend to reproduce not 
only the correct answers but their errors as well, without even being aware that 
errors were made. If operational control confirms the accuracy of a decision, we 
start using it less often, and possibly do not need to use it at all: as we observe in 
cases of phenomenal calculations (savant-like) or memorizing ability (also referred 
to as eidetic memory). In the 1960s, Soviet psychologists were amazed by the chess 
grandmaster Tolush. He was asked to memorize the position of chess pieces on 
the board after a brief tachistoscopic exposure. After such exposure Tolush stated 
that it was absolutely futile to ask him to indicate where pieces were and even how 
many there were but he was absolutely confident that White were winning in the 
current position (in our terminology, he knew it without any operational control) 
(Bekhtereva, 1978 citing Nebylitsyn).

The signal that “a problem is solved” is not problem-specific; and therefore, 
periodically it is important to control which problem is being solved. This control 
happens beyond participants’ control. If a problem is being multiply solved during 
a certain period of time participants stop being aware of that problem (for constant 
material exits consciousness); and consequently, control over that problems hap-
pens more and more infrequently which leads to a decrease in the time needed to 
reach a solution. (This problem would come back to consciousness from time to 
time for the control itself does not stop existing). Ach (in Liper, 1963) asked par-
ticipants to perform a simple adding operation. Participants prone to introspection 
reported that at the beginning of the experiment they were very aware of what 
their task was, and the more they did it the less they were aware of what exactly 
they were doing but they continued to perform the adding task with a consistent 
degree of accuracy.

If we ask participants to perform a task that should not be performed (for 
example, “not to think of Paris”), its completion without errors is unequivo-
cally impossible. As soon as one starts controlling whether the task is carried out 
correctly (“what is it that I am not thinking about?” and “Is it what I am not 
thinking about?”); the thought of Paris, the capital of France, enters consciousness 
(task control). Now let us ask our participants to perform two tasks simultane-
ously: something to think about and something not to think about (to ignore). For 
instance, “Please, think about a monkey and do not think about Paris”. The more 
complex the main task, the higher is the involvement of the operational control. 
Since movement from one type of control to another is successive, then more 
infrequently the other type of control would take over (task control). Thus the 
more complex the thought process about the problem in hand, the less thought 
would go to the things that should be ignored.

A sound example of what role social control plays is a change in how a prob-
lem is being solved under a hypnotic suggestion. It appears that under hypnosis 
it is possible to reduce all types of control except for the social one. As a result 
participants are able to act automatically without controlling operations and tasks, 
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and therefore, they are able to calculate, memorize, and even play chess better (see 
Rajkov’s 1976 discussion, for instance).

The personal control checks the effectiveness of task completion against the 
level that consciousness is ready to provide based on the first trials or previous 
experience. Confirmation of prognosis is only possible for the series of actions. 
Since the content of consciousness constantly changes, compatibility check results 
cannot remain constant. If a participant accidentally performs considerably better 
than the pre-set effectiveness level, consciousness is forced to go over several failed 
probes in order to match its own prognosis. Learning curves support these ideas. 
Gradual accumulation of successful probes allows consciousness to confirm that a 
higher level of performance is possible and adjust the performance prognosis. A 
change in prognosis allows people to act more effectively.

11.3. Empirical evidence

In our view, the phenomenon of interference illustrates that task control is invol-
untary. Let us consider the Stroop’s effect phenomenon. Participants had to name 
colors of the font (the main task) without reading the color word itself (a task 
of ignoring): when the word “red” was presented printed in “blue”, participants’ 
response should have been “blue”. The difficulties in performing this task are usu-
ally attributed to the fact that a strong automatic reading skill resource dominates a 
weaker skill of color naming. This explanation does not hold though. Protopapas, 
Archonti, and Skaloumbakas (2007) reported that children that hardly know how 
to read experience more difficulties with this task than adults. These difficulties, as 
we see it, come from a different source: task control. Participants spontaneously 
verify what task they are performing (“I am not reading the color word ‘red’, am 
I?”). According to this logic, the more complex the task at hand the more it would 
take to control the result and less frequently would task control happen. Thus 
interference should weaken. In our experiments, the increase of complexity of the 
main task (e.g. when participants have to state shapes or color tinges, and thus work 
on an additional task along with the main task), interference does not strengthen 
but on the contrary weakens (strengthening would follow from all the accounts of 
the divided resource usage) (Allakhverdov and Allakhverdov, 2015).

Complicating the task control process leads to a less frequent operational con-
trol and leads to a more successful learning. Moroshkina (2010) in an experiment 
using the switch-task paradigm asked participants to alternate addition and subtrac-
tion of consecutively presented pairs of one digit numbers (1 to 9). Each number 
pair would appear without a respective sign of an operation to be performed (either 
adding or subtracting) so that participants had to keep it in mind. One group of 
participants (simple operation alternation group) had to add the first pair of num-
bers, and then subtract a smaller number from a bigger number in the following 
presented pair, then repeat the addition, then the subtraction. The second group 
(with complex operation alternation) had to add the first and the second presented pair 
of numbers, and then subtract a smaller number from a bigger number in three  
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following presentations, then again add twice and subtract three times consecu-
tively. Evidently, in the group with a complex operation alternation, task control on 
what task is being performed occurred more frequently. As a result, participants of 
this group (where there is less time for operational control) learned faster and were 
more effective than participants from the simple operation alternation group.

If we modify a certain parameter that is not related to the learning process or 
to the material to be learned during learning in a predictable regular manner, these 
predictable modifications register at the basic level and are supported by a positive 
“a problem is solved” signal. This leads to checking what task is being completed 
(performing task control) more frequently. This, in turn, leads to a lesser frequency 
of operational control. In order to confirm this statement, we conducted studies on 
how modifications to irrelevant predictable patterns affect control processes during 
completion of the main task.

Tukhtieva (2014) formed problem solving sets (Einstellung) but modified irrel-
evant parameters (e.g. changed colors while forming Einstellung for the size of 
Uznadze’s circles, and modified presentation method in the Luchin’s jar problem 
by using numbers, texts, drawn jars, and even cartoon effects). She found out that 
regular modifications to irrelevant parameters reduce the Einstellung effect. In our 
interpretation that would mean a decrease in operational control that is required 
to check on solutions that were already found. She also discovered that irregular 
modification to these irrelevant parameters strengthens the set effect.

In the series of experiments, we have demonstrated that changes in param-
eters irrelevant to the main learning task have an effect on memorization 
(Allakhverdov et al., 2006). We found out that regular modifications to param-
eters that were not asked to be recalled (e.g. changes in the color of presented 
numbers, changes in dashes between numbers, and so on) facilitated memoriza-
tion of items, and irregular changes resulted in decline in recall. Gershkovich 
(2010) showed that regular changes to the background on which stimuli for 
memorization were presented resulted in a smaller number of attempts needed 
to memorize stimulus items compared to memorization of items that were pre-
sented on a non-changing background.

12. Conclusions

Our position is that even before the process of learning, a person implicitly is 
able to do what s/he is learning to do but is unable to explicitly realize this skill. 
The proposed paradigm uses an idealization according to which a person’s brain 
momentarily can make complex computations and recognize patterns in the 
incoming information but does not always realize it and sometimes does not even 
use these abilities. This idealization supposes that the limitations of cognition that 
we come across in experiments are not due to physiological or psychological rea-
sons but exclusively to the logics of cognition.

Introduction of such idealization allows us to pose a crucial question: why 
does an ideal cognitive system require special mechanisms such as psyche and  
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consciousness? We propose that consciousness performs the functions of control 
of the verification operations and as a result of them sanctions of action. In order to 
describe independent verification processes, we introduced two independent cog-
nitive schemas. One is sensory and the other one is regulatory, one of which only 
receives extraceptive information that uses information received from the environ-
ment and uses induction; the other receives only intraceptive information and uses 
deduction. Here, it is important to accept the existence of the two independent 
systems rather than figure out their workings. Thus, such systems cannot be paral-
leled to the largely accepted top-down and bottom-up processing. We concentrate 
on the fact that the systems are not talking to each other but rather provide a set 
of independent verification results. Moreover, here we talk about a very early 
process of matching that we call “the basic” level of verification. Such an approach 
is not identical to O’Regan and Noё’s (2001) sensory–motor approach to percep-
tion, who state that perception relies on mastery of sensory–motor dependencies. 
On the contrary, we propose a strictly independent sensory system of formulating 
hypotheses about the world verified by actions. Thus, sensory and motor schemas 
are built simultaneously and independently from each other. We consider these 
differently organized systems of cognition to function in parallel and independently 
in performing all tasks and not only in visual perception.

The level of cognition where the basic verification takes place, we called the 
“psychic” level because subjectively realized signals are being created at this level.

Ideas that higher levels of information processing are slower and more discrete 
acting under “all or nothing” principles, and that the lower levels are faster and 
probabilistic, can be found in other contemporary works (see Charles et al., 2013, 
Tal and Bar 2014, among others). Dennett (1991), for instance, mentions discrete-
ness of consciousness in its seemingly continuous actions.

The next step of working with the information is verification for consist-
ency that happens after the basic verification level is complete. We use the term 
“conscious” level of verification. The mental constructs that do not contradict 
previously selected ones are at work on this level. Here, we can find parallels 
with other theories that state that cognition happens as a result of stating hypoth-
eses and/or predictions (see Bartlett, 1932; Bruner 1957, Enns and Lleras, 2008; 
Gregory, 1997; Hohwy, Roepstorff, and Friston, 2008; Hohwy, 2013; Neisser 
and Becklen, 1975; and Panichello, Cheung, and Bar, 2013). According to Friston 
(2012), only contradictory information moves to the next level, such contradic-
tory information is referred to as “erroneous predictions”. Thus, it is required 
so that the inconsistencies are explained. Our approach is similar in this sense. If 
the construct is selected, it stops receiving emotional indexing and thus stops  
being realized.

In our approach, not only does consciousness strive to confirm the existing 
knowledge but also to reject the knowledge that was once rejected in the same 
circumstances. The positive choice is coined for items accepted by consciousness, 
and the negative choice is everything that has been rejected. The logics behind the 
latter are the following: choosing a class supposes boundaries of the class to exist. 
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The boundary can only be determined by stating what lies on both sides of it: thus 
the boundary is defined by everything that belongs to the class as well as by every-
thing that does not (in some sense the process of inhibition can be used as a parallel 
here). This view is somewhat similar to Dehaene and Changeux (2011) and Tal and 
Bar (2014), who consider consciousness as a mechanism of focusing on the most 
appropriate interpretation of reality obtained after multiple computations. They also 
connect inhibition to the single interpretation of the conscious experience.

The highest levels of cognition in our approach are social and personal. On 
the social level the created constructs of reality are matched to the constructs of 
others. We suppose that understanding of how others perceive the world has a 
different marking compared to other hypotheses about the world. And the last 
key verification happens on the personal level where verification is based on the 
matching of created descriptions about the world with the understanding of oneself 
and compared to one’s behavior. Such verification happens on the highest level 
of cognition.

Thus consciousness relies on different levels of controls that perform level-
specific operations and, in turn, uses the positive and negative choice to keep 
information in check and assign meanings, and learn about the world around us. 
In multiple theories that explain the work of consciousness, the conclusions are 
similar. The main difference with the current approach is to present the logics 
of the appearance of the signal of the correct vs. incorrect result of information 
processing at the unconscious level, and the necessity of marking such a signal in 
a special way to move it into the conscious level. Baars (2011) not only justifies 
the necessity of functional explanation of limitations observed during conscious 
work with the information but also the idea that consciousness works on elimi-
nating contradictions. He also concludes that information from consciousness can 
be spread among all structures. But why conscious decision is necessary remains 
unclear. Baars asserts that a state is realized if it can globally impact memory or 
other cognitive activity. We postulate something different: information that is sup-
ported by the positive emotional signal becomes available to consciousness, and 
after that consciousness verifies the information for consistency and contradictions, 
and performs intersubjective verification. Cleeremans (2008, 2011) and Pasquali 
et  al. (2010) using Rosenthal’s (2004) model use the first level neural network 
mechanism that explains the unconscious cognition well. Cleeremans considers 
consciousness as a second level neural network that studies and describes the work 
of the first level network. We find this idea to be profound but the question still 
remains: where does awareness in the second level network come from? Let us 
assume that a person knows something but also is aware of how and why this 
knowledge is available. The key idea, in our view, is that of an independent veri-
fication by means of which knowledge is acquired autonomously of the means of 
cognition. Therefore, where Cleeremans considers that one first level learning 
loop is sufficient, we are postulating the existence and necessity of two loops. We 
are convinced that the question of the role of consciousness and awareness is key 
to explaining the phenomenon of implicit learning.
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13. Consequences of the proposed model for implicit learning

	 I	 All the patterns and rules of the stimuli, i.e. grammar rules, structures, sequences, 
are detected on the basic level. The idealization converts the question of “why 
does implicit learning occur?” to the question: “why are there cases where we 
do not observe it?” We assume that implicit learning does not occur when 
conscious control interferes with the work of unconscious processes.

	 II	 Patterns that are determined on the basic level can generate a mental construct 
that leads to the “problem is solved” signal sent to consciousness.

	III	 When participants have to become aware of patterns at the social level, the 
patterns are often perceived as undistinguishable, thus effectiveness of the com-
pletion of the task is set relatively low.

	IV	 Consciousness tries to guess what mental construct is compatible with the 
problem’s solution (since signals are not problem-specific); however, it is not 
able to perform operational control (unless it finds a solution obtained earlier, 
which it can compare this mental construct with).

	 V	 By performing a time-consuming gradual search, consciousness can find logi-
cal relationships and patterns but due to the personal level-set limitations 
and instructions to a problem, consciousness forms random connections and 
relies on them heavily rather than relying on the emotional signal about the 
solution.

	VI	 The more a given situation requires verbalizations and explanations of con-
sciousness’ decisions, the more consciousness would rely on its formations 
rather than rely on the “problem is solved” signal. (See a more detailed discus-
sion of this issue in the current volume by Moroshkina and others.)

	VII	 To see the functioning of consciousness in the process of implicit learning 
we have to base our findings not on the subjective criteria of awareness but 
to show the effects of the negative choice. As it was demonstrated above, the 
manifestations of these effects are distinctive of consciousness.

Therefore, the model of consciousness proposed here states that explanation of the 
function of consciousness is detrimental to understanding the nature of implicit 
learning. Thus, coming from the ideas expressed here, implicit learning itself 
should not be surprising or mysterious. This type of learning is called “implicit” 
because we are unaware of the fact that learning is happening – and this fact is sur-
prising. An explanation of the learning effects is first and foremost an explanation 
about the role of consciousness. According to the approach introduced here, it is 
not the brain or the organism that is learning, but consciousness. Consciousness 
learns to manage the brain and the organism in order to extract the information 
generated by them. This statement should not be interpreted as suggesting that 
consciousness is an obstacle to cognition and learning. Quite the opposite is true. 
It is only due to consciousness that participants are able to solve problems, perform 
tasks, and react to stimuli. Otherwise, they would be staring at the screen with a 
nonsense sequence of symbols, would not press buttons in response to the flash of 
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light, would not state their confidence of the accuracy of the solution to the prob-
lem, and so on. And since consciousness sanctions the solution of the given tasks, 
it uses the full power of its control.
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4
IMPLICIT LEARNING FROM  
ONE’S MISTAKES

The negative choice aftereffect

Maria Kuvaldina, Andrey A. Chetverikov,  
Alexandr S. Odainic, Margarita G. Filippova,  
and Natalia V. Andriyanova

Introduction

Imagine you are writing an e-mail to your friend and typing very quickly. While 
you are checking for the overall meaning of the message you probably become 
less attentive to the grammar and make a couple of mistakes. They are corrected 
automatically by the text editor and you might not notice the correction. Next 
time you type similar words you might notice that you are repeating the same 
mistake: for example, typing “spychology” instead of “psychology”. You smile, 
correct yourself and forget about it. To your great surprise you might find yourself 
repeating the “spychology” mistake long after you thought you initially caught 
it, which makes it a recurring error. Somehow a certain stimulus and a certain 
erroneous response to this stimulus stick together and prevent us from correcting 
the error. How does this situation come to be? Does it depend on overall per-
formance, that is, do recurring mistakes happen only when we perform poorly in 
the task, or is it possible for such errors to continue to occur even when overall 
performance is good?

Dunlap (according to Yates, 1959) described three models that could be used to 
explain the occurrence of recurring mistakes even in the presence of correct answers. 
The “Alpha” model states that a response to a given stimulus pattern increases the 
probability that on the recurrence of the same stimulus pattern, the same response 
will occur. The “Beta” model states that there is no connection between the prob-
ability of stimulus occurrence and the response to it. The “Gamma” model, in 
contrast to the Alpha model, states that certain responses decrease the probability 
of future co-occurrence of the stimulus–response association (Peak, 1941; Yates, 
1959). If we consider these three models in an attempt to account for recurring 
mistakes, then the Gamma model tells us that every time we make a mistake, we 
are trying to correct our behavior and switch to the other response. In this case 
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no recurring mistakes are possible. The Beta model disconnects the stimulus from 
the response, so any type of co-occurrence might be coincidental. Taking this into 
account, the proportion of recurring mistakes must be equivalent to the proportion 
of non-recurring mistakes in the task. The Alpha model describes a situation where 
a correct response, once given, will be repeated. At the same time, a mistake, once 
made, will also tend to be repeated, as shown in the example above. The Alpha 
model essentially states that we memorize not only correct responses, but also erro-
neous responses. The mandatory association of both errors and correct responses to 
a given stimulus allows for a high level of performance together with a certain level 
of recurring errors in the same task. For example, the Alpha model makes it pos-
sible to explain why one would persistently misspell some word like “psychology” 
over and over again even though one is otherwise proficient at writing. This is the 
perspective we will use in this chapter.

With the Alpha model in mind, we suggest that recurring mistakes happen 
because we learn to make them. One might consistently misspell “spychology” for 
“psychology”1 because one has probably learned a certain manner of typing, or 
an irrelevant representation of the task, an “undesirable pattern of response” 
(Yates, 1959), or a “nonrepresentative rule” (Reber, 1989). Reber points out 
that “if subjects emerge from the learning phase with rules (either explicit or 
implicit) that are not accurate reflections of the grammar, this knowledge base 
will consistently lead them to misclassify particular items” (Reber, 1989, p.227). 
Recurring errors result from explicit or, which is more plausible, implicit learn-
ing of irrelevant or distracting information that might either be present or not in 
the stimulus sequence.

This is, while somewhat paradoxical or ironic, overall not surprising. There 
are many examples showing that people automatically memorize distracting or 
irrelevant information. For example, in a visual search, observers remember the 
features of distracting stimuli (Chetverikov, Campana, and Kristjánsson, 2016; 
Kristjánsson and Campana, 2010; Maljkovic and Nakayama, 1996) resulting in 
changes in search efficiency. Importantly, the repetition of task-irrelevant features 
also affects future trials (Huang, Holcombe, and Pashler, 2004; Burnham, 2015), 
and repetition effects are moderated by task context (Thomson and Milliken, 
2013). These results indicate that even when people do not have to learn some 
aspects of the task, they nevertheless do it, even if it harms future performance. 
Such automatic learning could exist in parallel to more controlled or explicit 
learning (Maljkovic and Nakayama, 1996; 2000; Perruchet, 1985; 2015) and 
become a source of recurring errors.

On the other hand, the erroneous response pattern may not seem erroneous 
or irrelevant from a subjective perspective. “Error”, as a term, is always relative to 
a particular frame of reference. The action that is considered a mistake from the 
experimenter’s point of view could be a correct behavior from the subject’s view-
point. Recurring errors often appear in experimental designs that do not provide 
any feedback to a subject (Reber, 1989). Thus, a subject who has made a mistake 
might be quite confident that she is doing everything right and keep her behavior 
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consistent. Dienes and Scott (2005) illustrated that consistency of errors might be 
associated with conscious efforts to do the task. In their experiment, the partici-
pants were asked to report on the source of their decisions in an artificial grammar 
learning task. Judgments of responses to be based on “guess” and on “intuition” 
did not correlate with high level of recurring errors (“consistent errors” in the 
authors’ terms). It is only when subjects attributed their decisions to “rules” or 
“memory”, i.e. made a special effort to control the task performance, that the 
proportion of recurring errors in comparison to non-recurring errors increased.

To summarize briefly described evidence, recurring errors may appear (1) when 
we make a conscious effort, (2) repeat the task several times and (3) fail to receive 
feedback about the accuracy of our previous judgments. Even so, some ques-
tions arise. If we consider the Alpha model, we need to consider the fact that our 
memory stores correct and incorrect responses together. How do we differenti-
ate between an actually correct response and a response that seems to be correct? 
If recurring mistakes are stored in memory together with correct responses they 
might have an origin different from non-recurring mistakes. Is it so?

The “negative choice” framework

V. M. Allakhverdov, working in the former Soviet Union in 1974, not only 
developed a framework that accounts for the differences between correct and 
erroneous responses, but also described recurring errors as a consequence of a 
purported “negative choice” mechanism. In this chapter, we will first describe this 
approach and the main findings obtained. We will then compare studies carried 
out by V. M. Allakhverdov’s group to similar effects observed in a variety of studies 
conducted elsewhere.

“Negative choice” is a hypothetical mechanism based on the idea of sustained 
unawareness. Allakhverdov (1993, 2000) reasoned that, just as is the case for all 
human information processing, the selection of information available for responses is 
subject to learning. Hence, it is possible that the “choice” to ignore some information 
might be implicitly remembered and later negatively affect the likelihood of the same 
information being used on the next encounters (see description of the theoretical 
context in Chapter 3 of this volume). This mechanism was used to explain a number 
of effects, such as recurring errors, the inability to recognize the second meaning of a 
reversible figure or difficulties in the retrieval of well-known information.

Crucially for the present treatment of recurring errors, the information neces-
sary for a correct decision can be “negatively chosen”. Allakhverdov (1993, 2000) 
states that, for example, if we fail to retrieve some information in a memory task, 
we still remember it, but with a tag stating “not to be retrieved”. This tag keeps 
the information in memory, although it prevents us from reporting it until the 
context of the task is changed and predictions about the stimulus pattern and 
response are changed as well. This “negative choice” framework explains the 
Alpha model (Peak, 1941) discussed above: a response to a given stimulus pattern 
increases the probability that on the recurrence of the same stimulus pattern, the 
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same response will occur because it is stored in memory with an extra information 
about its previous usage.

Thus, according to the “negative choice” hypothesis, our memory stores pre-
viously chosen and non-chosen responses to the stimulus together with their 
identification as “to be retrieved” or “not to be retrieved” or, if we take a wider 
approach, with an identification as “to be aware” or “not to be aware”. This label 
or tag makes recurring mistakes different from non-recurring mistakes because it 
assumes that the element is activated in memory together with its tag.

Allakhverdov (1993) further suggested that a pattern of responses is kept 
unchanged only as long as the context of the cognitive task or the task itself 
remains the same. Once the context changes, the tag/label structure of stimulus–
response associations also changes. Moreover, the tag “not to be retrieved” is 
not applied anymore and the stimulus remains activated in memory. That is why 
the information that is now stored without a tag starts to pop up in your mind 
and may become a source of reminiscence-like effects as well as a source of non-
recurring mistakes.

Let us consider our example about misspelling the word “psychology” again. 
According to the idea of “negative choice”, when we first encounter the task of 
spelling the word, we implicitly form an association between the representation of 
the word and our particular response. The first spelling mistake may occur because 
of some external/internal factors. Once it is made, however, the erroneous response 
is stored in memory together with the representation of the word. The correct 
response is also stored in memory, but with the tag “not to be retrieved” or “not 
to be used”. Because the association is formed between the erroneous response and 
a representation of the word, we tend to repeat this erroneous response each time 
we encounter the word “psychology” (as in the Alpha model). We also tend to 
“negatively choose” the correct spelling. It is important to mention that “negative 
choice” is a result of unconscious implicit learning and does not imply conscious 
control over task performance. We can continuously make the same mistake until 
the task or the context changes, and this change breaks the former association of a 
word representation and the erroneous response. We may also correct the mistake 
once feedback gives us an opportunity to become aware of such an association.

In summary, the “negative choice” framework proposes two main statements 
about recurring mistakes:

1)	 A previously “negatively chosen” item can become continuously “negatively 
chosen”, i.e. every mistake can become a recurring mistake if the task includes 
repetitive actions with the same set of stimuli.2 Due to the fact that the recur-
ring mistake is stored in memory it elicits faster responses and higher levels of 
confidence ratings in comparison with non-recurring mistakes.

2)	 A continuously “negatively chosen” item may lose its tag “not to be retrieved” 
when the task or the context of the task changes. After that, information about 
the “negatively chosen” item starts to pop up in mind in the form of a non-
recurring mistake or reminiscence-like association.
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These two statements were coined as the “negative choice aftereffect” (Allakh
verdov, 1993).

Further in this chapter we present experimental evidence of this phenomenon.

Experiments on “negative choice aftereffect”

How to measure a “negative choice aftereffect”

The very first experiments on the “negative choice aftereffect” were conducted 
in 1974 as a part of doctoral dissertation by V. M. Allakhverdov (1974). Here we 
present some of the data from a 1977 study that was later partially described in a 
book (Allakhverdov, 1993).

On each trial (out of 700), participants were briefly shown a semicircle scale 
that looks like a speedometer (Figure 4.1) with an arrow that points in a certain 
position. This scale ranged from 0.1 to 5.0 and was divided into fifty increments. 
The time of presentation ranged around 300 msec. After presentation participants 
tried to manually match the position of the arrow with the one they had previously 
seen. For example, when the arrow pointed to 3.4, participants had to position a 
test arrow into the same location. The error was calculated as the absolute devia-
tion of the response as compared to the original position. The task required a lot 
of practice and only three subjects carried out all 700 trials.

The goal of the study was to test whether any given response of the subject is 
dependent on the previous responses that were associated with this very stimulus. 
In other words if I made a mistake when trying to position an arrow into the “3.4” 
location, will I tend to make the same mistake again when I am presented with the 
same position a second time? If yes, then this will be a recurring mistake.

FIGURE 4.1  �Semicircle scale that was used in the 1977 experiment of V. M. 
Allakhverdov in the study of the negative choice aftereffect.
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In this experiment, the probability of a mistake across the subjects was 0.29.
The probability of making a mistake the next time the same stimulus was shown 

was found to be 0.43.3 This result was confirmed when recalculated per each 
subject independently. The probability of a recurring mistake was calculated as 
the quotient of the number of recurring mistakes for this stimulus and the sum 
of recurring and non-recurring mistakes for the same stimulus. Table 4.1 presents 
a piece of raw data from the experiment where “0” stands for a correct response 
and any other number stands for an error measured as a deviation from the cor-
rect response. On the first trial, as we can see, the probability of a mistake is 0.5  
(6 mistakes out of 12 presented arrow locations). On the second trial the probabil-
ity of making a mistake is 0.6 (8 mistakes out of 12 presented arrow locations) but 
the probability of a recurring mistake is 0.5 (4 recurring mistakes out of 8 mistakes 
of all kinds). The third trial shows an increase of the recurring mistakes probability. 
Now it is 0.85 (6 recurring mistakes out of seven mistakes of all kinds) whereas the 
probability of any mistake becomes smaller (0.58).

A skeptical reader may consider such a result an artifact. Reading a set of briefly 
presented numbers on a semicircle scale can be quite hard. Subjects tend to make 
most of their mistakes on certain positions, i.e. close to the end of the scale, 
whereas the center of the scale and increments marked with numbers are usually 

TABLE 4.1  �Deviations from the reading on the scale pooled for subject and type of stimuli. 
“x” shows that the protocol marked the response as an incorrect but didn’t 
specify the deviation from the reading on the scale.

Marks on 
the scale

0.1 0.2 1.7 1.7 1.7 2.4 3.1 3.3 3.7 4.4 4.6 4.6

Subjects’ 
ID Trial 
number

1 2 3 1 2 3 1 2 3 1 2 3

  1 0 0 0 0 0 0 -1 -1 -1 -1 +1 +2
  2 +1 0 x +1 +1 +1 -1 -1 0 +1 -1 0
  3 +1 0 +1 +1 +1 +1 -1 0 0 -4 0 0
  4 +1 +1 +1 0 x +1 0 0 0 +2 0 0
  5 +1 +2 1 +1 0 0 -1 -1 0 +2 0 +2
  6 +1 +1 +1 +1 0 +1 0 -1 +1 -1 0 +2
  7 +1 +1 0 +1 0 0 0 -1 0 +2 +2 0
  8 +1 +1 0 0 0 0 0 0 0 +2 +2 +2
  9 +2 +1 0 0 x 0 -1 -1 -1 -1 0 +2
10 +1 +1 0 0 0 0 0 -1 -1 +3 +2 0
11 +1 +1 0 0 0 0 -1 -1 0 0 0 0
12 0 +1 0 +1 +1 -1 0 0 0 +1 x 0
13 0 0 x +1 +1 -1 -1 -1 0 0 x +1
14 0 0 0 +1 0 0 0 -1 +1 0 x 0
15 0 0 0 0 0 0 x 0 -2 0 x +1
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remembered better. Thus we might suspect that errors recur only in locations 
where lots of mistakes are made and do not recur when the task is easy.

If this assumption were true, we should observe a tendency to repeat one’s own 
mistakes as a result of a systematic bias rather than any other reason. Then if we 
take cases with overall poor performance, we might find more recurring errors 
there. To check for this assumption, only the cases (locations of the arrow pointer) 
with more than 50% of incorrect responses were analyzed.

If a skeptical point of view is correct, then these cases should show an increased 
probability of making a recurring mistake in comparison with a probability of 
making a non-recurring mistake. The probability of making a mistake in low per-
formance cases was 0.61, while the probability of making a recurring mistake was 
0.58. We do not see an increase of recurring mistakes in this case. On the other 
hand, if we take only the cases in which performance accuracy varies from 50% 
to 80% of correct responses, we can observe a different picture. The probability 
of making a mistake in high performance cases was 0.37, while the probability of 
making a recurring mistake was 0.53. Thus this comparison showed that we cannot 
associate a recurring mistake’s effect with poor quality of task performance.

We can also consider the amplitude of mistakes, i.e. the deviation from the 
reading on the scale. Most of the time a subject’s response deviates not more than 
a couple of units (increments). Table 4.1 shows these response deviations pooled 
for subjects and stimuli. This table illustrates that mistakes go together in some pat-
tern of a similar deviation. One can assume that an observed pattern is a result of a 
systematic shift. If a subject tends to make a mistake of a certain type (for example 
a deviation is always larger than the reading on the scale) then a recurring mistake 
should be of the same type. Table 4.1 shows that the most common deviation for 
all three subjects is an increase in the reading on the scale.

To test this we can take only the pairs of mistakes that deviate from the correct 
response by one unit (those marked by + 1 in Table 4.1). For example, Subject 1 in 
the second and third trials made the same mistake by recognizing “0.1” reading on 
the scale as “0.2”. Such mistakes were pretty common; they amount to more than 
80% of all mistakes. At first, we calculated a theoretical and empirical probability 
of making two mistakes in a row with the same deviation. Then we calculated 
the probability of two mistakes with the same deviation but with some number of 
correct responses between them. The result can be seen in Table 4.2. When the 
same stimulus is shown, there is a strong tendency to repeat one’s own mistakes. 
This tendency is clear for the very next presentation of the stimulus and becomes 
less clear for subsequent presentations. Thus we can conclude that a systematic 
shift, if any, happens for certain stimuli and depends on the previous response to 
the stimuli. It’s important to mention that this systematic shift is not caused by 
overall poor performance on the task but rather happens when the overall accuracy 
is above 50%.

The data presented so far serve the purpose of illustration of the first statement 
of V. M. Allakhverdov’s framework, i.e. that i.e. every mistake can become a 
recurring mistake if the task includes repetitive actions with the same set of stimuli.  
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This statement assumes that recurring mistakes unlike single non-recurring mis-
takes are stored in memory for a longer period of time. If they are stored in 
memory we might find some evidence of it, for example, facilitated reactions to 
mistakes that repeat over several trials.

Negative choice aftereffect processing: analysis of reaction times 
and confidence ratings of recurring mistakes

Erroneous responses are often accompanied by uncertainty and failures of control 
over the task. In general, mistakes increase response time as compared to correct 
answers, although results for the tasks with the time pressure seem to be different 
(see Pleskac and Busemeyer, 2010).

If the subject hesitates to respond then the hesitation may increase the time of 
processing and the probability of producing a mistake. The change in response 
time might also correlate with overall response frequency. In simple cognitive 
tasks, correct responses outnumber mistakes and hence become a more frequent 
type of answer, which elicits shorter response times (RTs) (Notebaert et. al., 2009; 
Nunez Castellar et. al., 2010). For example, Rabbitt and Rodgers (1977) showed 
that post-error slowing is not observed when subjects are making the same type 
of response which they should have made on a previous trial. This means that the 
more frequent the error is, the shorter the response latency can be.

In the 1977 experiment, V. M. Allakhverdov noticed that the response latency 
in the case of a correct response was much shorter than in the case of a single 
mistake. But this was not the case with recurring mistakes. If the subject repeated 
her/his own mistake, the response latency decreased in 52% of cases out of all 
recurring error cases.

Another example of a change in response latencies was shown in one of the 
experiments of V. M. Allakhverdov’s students – N. Andriyanova – conducted in 
2015. We will present a more formal description of her experiment here.

TABLE 4.2  �Probability of making a mistake when it happens right after the first mistake 
or with some gap. All mistakes are calculated for the same stimulus. The last 
column represents data pooled across three subjects.

Subject 1 Subject 2 Subject 3 Across subjects

Empirical probability of a 
mistake

0.56 0.54 0.51 0.54

Empirical probability of two 
mistakes in a row

0.84 0.85 0.79 0.83

Empirical probability when 
two mistakes are separated 
by some number of 
correct responses

0.63 0.67 0.6 0.63
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Clock faces experiment

Participants

Sixty observers (43 females, 18–28 years old) at Saint Petersburg State University 
voluntarily participated in the experiment. They were not paid for participation. 
All reported normal or corrected-to-normal visual acuity.

Procedure and design

A number of analogue clock faces were presented (Figure 4.2). All stimuli were 
shown on the 19-inch computer screen using PsychoPy (Peirce, 2007). Every 
clock face appeared on a screen for 200 ms. The task was to memorize the time 
shown and write a response in a response box once the stimulus had disappeared. A 
total of 120 trials were grouped into 10 blocks. In each series, the same 12 stimuli 
were presented in a different order. During the course of the tasks, responses and 
response latencies were recorded. A recurring mistake was considered to be a mis-
take made in response to the same stimulus. For example, a case when a subject 
saw 1:30 p.m. on a clock face and repeatedly mistook the reading for something 
else was considered a recurring mistake.
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FIGURE 4.2  �Analogue clock faces that were presented one per trial in the experiment 
of N. Andriyanova.
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We hypothesized that error latencies might decrease over the course of learning 
the association between a certain stimulus and response in the task. Thus, reaction 
latency to a single error (which will become a recurring error) at the beginning of 
the task should be longer than the average reaction latency to a recurring error.

In our analysis we compared (i) latencies of correct responses, (ii) latencies of 
single errors, (iii) latencies of single errors (which will become recurring errors) and 
(iv) latencies of recurring errors. Half of the participants in each experiment were 
required to estimate confidence in their answers after each trial. We used a one to 
five confidence rating scale (“one” identified the least confident response and “five” 
identified the highest level of confidence in a given response).

Results

Mean RTs for different types of answers are presented in Table 4.3. Our data 
showed that RTs for single errors (M = 7077 ms, SD = 1872) were significantly 
longer than for correct answers (M = 5298 ms, SD = 1378) and for recurring errors 
(M = 5564 ms, SD = 1448), t(49) = 9.506. p < .01. Surprisingly, there was no sig-
nificant difference between RTs for correct answers and recurring errors, t(49) = 
1.148; p > .1 assuming that there is probably no post-error adjustment in recurring 
errors (as in Danielmeier and Ullsperger, 2011) (Table 4.3).

RT for a single error (which will become a recurring error) (M = 6092 ms, SD = 
1794) was significantly longer than for a repeated mistake, t(49) = 2.95; p < .05, 
but significantly shorter when compared to a single error reaction, t(49) = 7.202; 
p < .01.

The analysis of the confidence data showed statistically significant differences 
in evaluation of correct and incorrect responses, Wilcoxon V(29) = 450; p < .01, 
i.e. participants were more confident in their correct answers, than they were in 
the incorrect ones. Confidence levels for repeated errors were nevertheless higher 
than for single errors, V(29) = 400; p < .01 (Table 4.4) which might be evidence 
of recurring errors being processed differently from single ones.

RTs correlated with confidence of the response: RTs were significantly shorter 
for the confident answers, t(27) = 4.759; p < .01. However, even when responses 
were the least confident (from one to three on a scale) we still observed the dif-
ference between repeated errors (M = 6134 ms, SD = 2254) and single errors  
(M = 7746 ms, SD = 2038), t(27) = 4.007; p < .01.

TABLE 4.3  Mean response times (SD in parenthesis).

Type of answer Mean response times (ms)

Correct response 5298 (1378)
Recurring error 5564 (1448)
Single error (that will become a recurring error) 6092 (1794)
Single error 7077 (1872)
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Discussion

The experiment described above shows that recurring errors might elicit shorter 
reaction latencies as well as higher confidence ratings. This result can be interpreted 
in terms of learning an association between the stimulus and response. When the 
association is not established (when a mistake is made for the first time) the reac-
tion time reflects an error processing/procedural control operations. When the 
same stimulus elicits the same erroneous response multiple times the established 
association between a stimulus and response makes the time of processing shorter 
and comparable to correct responses. On the other hand the absence of a visible 
post-error adjustment in recurring mistakes indicates that subjectively they are not 
perceived as errors.

The status of a single mistake that will become a recurring error is vague. Our 
data shows that it is processed faster than the single mistake which could be an 
artifact result. To interpret this we need to assume that the association between 
the particular stimulus and particular response might be established at the very first 
presentation of the stimulus. This association might distinguish recurring errors 
from the single ones and lead to impaired procedural control over former responses 
and shorten the time of processing.

According to V. M. Allakhverdov, response latency depends on the diversity 
of the responses (Allakhverdov, 1993). This effect reminds one of the Hick’s law 
(Hyman, 1953) that states that response latency depends on the number and diversity 
of the signal. Thus, predominant correct responses should elicit the shortest reaction 
and single errors as the more rare response should elicit longer reaction (Notebaert 
et. al., 2009; Nunez Castellar et. al., 2010). Recurring errors as a more frequent 
type of error then should be somewhat between correct responses and single error 
responses. This is exactly what was confirmed in the experiment of N. Andriyanova.

Robustness of negative choice aftereffect with time and  
context

As was stated before, the negative choice aftereffect manifests itself in two forms:

1.	 Every mistake may become a recurring mistake if the task includes repetitive 
actions with the same set of stimuli.

TABLE 4.4  Medians of confidence ratings (range in parentheses).

Type of response Medians of confidence ratings

Correct response 4.3 (1.9)
Recurring error 4 (2.3)
Single error (which will become a 

recurring error)
3.8 (2.5)

Single error 3.5 (2.3)



Negative choice aftereffect  119

2.	 A mistake may cease to be recurring mistakes when the task itself or the con-
text of the task changes. After that the previously stored information starts to 
pop up in mind in a form of a non-recurring mistake (Allakhverdov, 2000).

Experiments described above illustrated the first statement. Here we want to present 
two experiments that illustrate the second statement. The first study was conducted 
by one of the members of V. M. Allakhverdov’s research group – M. Filippova. 
Her experiment aimed at testing robustness of recurring mistakes with time. The 
second study was conducted by one of the students of V. M. Allakhverdov –  
A. Odainic. His experiment was aimed at testing the robustness of recurring 
mistakes with change of task context.

Toy car experiment

Participants

Eighteen observers (11 females, 18–56 years old, age Mdn = 29) at Saint Petersburg 
State University voluntarily participated in the experiment. They were not paid for 
participation. All reported normal or corrected-to-normal visual acuity. Group 1 
(immediate recognition) consisted of 7 participants (5 females); Group 2 (recogni-
tion with delay of one day) – 11 participants (6 females).

Procedure and design

For the purpose of the experiment, we used toy cars no larger than 7 cm each. 
These toy cars were presented in a row of 14 items (Figure 4.3). Each trial con-
sisted of a different set of 14 toy cars. Subjects were presented with 84 different toy 
cars throughout the experiment.

In the first part of the experiment, subjects were presented with a “retention 
set #1”, which consisted of 14 toy cars for 15 sec. After a pause, a recognition set 
consisting of 14 just presented and 14 new toy cars was shown. The recognition 
task was limited to 25 sec. This procedure was repeated three times, each time with 
the same set presented for memorization.

Then a new “retention set #2”, also consisting of 14 toy cars, was presented 
for 15 sec. Its recognition was either delayed for one day (Group 2), or followed 
immediately the first part of the experiment (Group 1). This recognition proce-
dure comprised the second part of the experiment. The recognition set (28 toy 
cars) for the second part of the experiment, aside from cars from “retention set 
#2”, also contained the items from “retention set #1”. These items were either 
recognized correctly or not recognized by an individual participant during all three 
trials in the first part of the experiment. On average, subjects were able to correctly 
recognize about three items.

Altogether 84 model toys cars were used, 2 sets of 14 items used for retention 
and 4 sets of 14 items used for recognition. New items that were presented for 
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recognition were not presented anywhere else. We hypothesized that the first part 
of the experiment could create a possibility for repeated mistakes to occur. After 
that we would be able to test the robustness of recurring mistakes in another task. 
Immediate presentation of the other task (“retention set #2”), in our opinion, 
could not override the memory tag “not to be retrieved” for the recurring mistakes 
that appeared in “retention set #1”. On the other hand a delay for a day could 
have affected the memory traces and loosened the connections between certain 
stimuli and responses. If recurring mistakes were dependent on a current memory 
for stimulus–response association then we might find former recurring mistakes as 
false alarm mistakes in a different task.

Results

At first, we tested whether any of the toy cars in the subsets was salient enough to 
be recognized better or worse than any other item. We did not find any differences 
between the recognized and unrecognized set of items in terms of their stimuli 
specificity (χ2(13) = 12.214, p = .510). Thus, the stimuli set happened to be more 
or less homogenous and recognition effects could be attributed to some reason 
other than the saliency of the items.

Then, we compared frequencies of recurring and non-recurring responses. If 
the item wasn’t recognized in three consecutive trials it was considered to be a 

FIGURE 4.3  �An example of a set of the toy cars used in the experiment of  
M. Filippova.
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recurring mistake. Otherwise recognition in at least one trial made a response a 
non-recurring mistake. This procedure is slightly different from the one that was 
offered by V. M. Allakhverdov and described above. It was chosen to guarantee 
that the subject had some consistency in her/his responses.

Altogether the number of recurring (34) and non-recurring (16) mistakes 
was 22% of all possible recognitions on the last trial (14 items to recognize per 
18 subjects). Table 4.5 represents the frequency of different types of response 
measured as a proportion of these answers to the overall amount of items to be 
recognized (252).

The number of recurring mistakes was significantly different from that of non-
recurring mistakes (χ2(1) = 6.480, p < .05).

The previously described procedure included only one possible response (correct 
or incorrect) per trial. In the current experiment, the number of participants’ answers 
in each recognition test was not restricted and varied from 7 to 15. When given such 
a possibility, subjects can chose a strategy to “recognize” as many or as few items as 
possible. When the subject chooses a large number of responses, such responses have 
a higher chance of having all correct responses than the choice of a small number of 
responses. In other words, if I chose 14 out of 28 toy cars, the chance that I picked 
up correct items is 0.5. If I chose 7 out of 28 toy cars, the chance that I picked up 
the correct items is 0.4.

The generalized linear mixed model was used (see summary statistics table, 
Table 4.6) to examine the predictors of the number of responses together with 
the previous history of erroneous recognitions. The history of previous errone-
ous recognitions was calculated as a cumulative sum of the number of mistakes 
made before the current trial. We assumed that the more recurring mistakes a sub-
ject made before, the higher is the probability of making such a mistake again. A 
dependent variable was a response in the current trial which could be either correct 
recognition (“0”) or incorrect recognition (“1”).

As can be seen from Table 4.6 the erroneous recognition in the current trial is 
dependent on the history of previous erroneous recognitions although the number 
of responses can become a confound.

The second part of the experiment consisted of one recognition trial of “reten-
tion set #2”. Items that the subject worked with during the first part (previously 
recognized or not recognized) became fillers for the second part. Thus participants 
didn’t have to report on them and once recognized the stimuli were considered to 
be false alarm mistakes (Table 4.7). If recurring mistakes are kept in the memory 
then they will pop up in the mind during the second part of the experiment in the 
form of false alarm mistakes.

TABLE 4.5  Probability of different response types in first part of experiment (N = 18).

All types of mistakes Recurring mistakes Non-recurring mistakes

0.22 0.15 0.07
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Mean accuracy for recognition in Group 1 where the second part was presented 
immediately after the first one was 54%. Most responses were correct rejections 
and not false alarms. Subjects still remembered items from the previous “retention 
set #1” and tried not to retrieve them.

Mean accuracy for recognition in Group 2 where the second part was delayed 
for 24 hours was 37%. Previously unrecognized items were chosen with a similar 
frequency as previously recognized (χ2(1) = .578, p = .81) and numerically more 
often than previously not presented items (χ2(1) = 2.8, p = .09).

TABLE 4.6  Generalized linear mixed model summary for the experiment of M. Filippova.

Erroneous response

Odds Ratio CI p

Fixed Parts
(Intercept) 0.25 0.00 – 17.55 .525
Previous recurring errors 11776.31 283.14 – 489796.19 <.001
Number of responses 0.73 0.45 – 1.16 .181
Previous recurring errors: 

Number of responses
0.57 0.41 – 0.79 <.001

Random Parts
t

00. Subject
1.063

t
00. Stimulus

0.000
N

Subject
17

N
Stimulus

7
ICC

Subject
0.244

ICC
Stimulus

0.000

Observations 325
Tjur’s D .690
AIC 179.652
Deviance 143.255

TABLE 4.7  �Possible responses for the stimuli in the second part of the experiment based  
on the first part of the experiment.

Responses in the first part 
of the experiment

Responses in the second part 
of the experiment

Item is presented in 
the first part of the 
experiment

miss false alarm
correct rejection

hit false alarm
correct rejection

Item is presented in 
the second part of 
the experiment

miss
hit
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With a time delay (Group 2) items from “retention set #1” became more salient 
and were retrieved in the second part as if they were the actual stimuli (Table 4.8).

Discussion

This experiment was aimed at illustrating robustness of recurring mistakes with 
time. The difference between the first and the second part of the experiment 
showed that a 24-hour delay is enough to break the association between the stimuli 
and a hypothetical tag “not to be retrieved”. According to V. M. Allakhverdov’s 
approach the stimulus stays activated in the memory even when this tag disappears. 
That is why items that were not correctly recognized in the first part of the experi-
ment started to appear in the second part of the experiment in a form of false alarm 
mistakes. It’s important to notice that the false alarm rate for the items that were 
previously correctly and incorrectly recognized was similar. This evidence supports 
an idea of equal memory storage for correct responses and recurring mistakes.

Another type of context change was investigated in the study of A. Odainic. 
His experiment was aimed at testing the robustness of recurring mistakes with a 
change of task context.

Matrices experiment

Participants

Sixty observers (38 females, 16–30 years old, age mdn = 19) at Saint Petersburg 
State University voluntarily participated in the experiment. They were not paid for 
participation. All reported normal or corrected-to-normal visual acuity. Participants 
were randomly allocated to one of two conditions (see design).

Procedure and design

Observers memorized a series of matrices. Each element of the matrix consisted 
of a single digit number and a capital letter of the Roman alphabet (for example 
“8Q”). The following letters – B, C, D, F, G, H, J, K, L, M, N, P, Q, R, S, T, 
V, W, Y, Z – and digits – from 1 to 9 – were used. There were five trials; each 
consisted of the presentation of two matrices. Each matrix consisted of 16 elements 

TABLE 4.8  �Probability of recognition in the second part of the experiment based on the 
history of responses in the first part of the experiment.

First part of Experiment Recurring misses Recurring hits Item is not presented in 
the first part

Second part of experiment False alarm mistakes Misses

0.39 0.42 0.19
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(four by four size). All elements were generated through an automatic randomiza-
tion procedure. Four elements out of 16 were repeated, so that each subject on 
each trial observed a matrix with 12 new and 4 old elements. The trial began with 
a matrix presentation for 20 sec. The task was to memorize all the elements and to 
recognize those that were shown again on the second matrix, which was presented 
immediately after the 20-sec presentation of the first matrix. No time limit was 
established for the recognition task, which participants carried out by clicking on 
the items they thought were repetitions. No feedback was provided. The proce-
dure was repeated three times with short time intervals between repetitions. The 
entire experiment consisted of two conditions randomized between subjects. In 
the “different place” condition, repeated elements kept their identity, but not the 
location where they were presented (Figure 4.4).

In the “same place” condition, repeated elements were presented at the same 
locations they had been shown before. Thus, we checked for the influence of the 
factor of location in the recognition of the repeated elements. The manipulation 
aimed to test whether memory for recurring errors contains information about 
location together with information about identity. We expected that recurring 
errors would show up in the “same place” condition more frequently than in the 
“different place” condition. Response in the current trial, i.e. the number of rec-
ognized items, could vary from 1 to 16 (there were 16 elements in a matrix). A 
participant could prefer different strategies of answer: she could decide to trust her 
memory, be more confident about her response and try to name as many items as 
possible, or she could decide to distrust her memory and name only the items that 

FIGURE 4.4  �Design of one trial in the “different location” condition. On the left 
panel there is a set of elements to remember. The set is presented for  
20 sec. On the right panel there is a recognition set. Elements that were 
repeated from the previous set are highlighted. Repeated elements keep 
their identity but not their place. In the “same location” condition 
repeated elements keep their place as well as their identity.
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she was sure about. Such reduced response strategy could influence the calculation 
of recurring mistakes. For example, out of 16 elements presented in every trial, a 
participant could choose to name only two in every recognition trial. In this case 
there is a 50% chance level that two elements out of four will be missed and will 
be treated as a recurring mistake.

Results

We used the same approach to the analysis of mistakes as in the previous experiment.
The generalized linear mixed model was used (see summary Table 4.9) to 

examine the predictors of number of responses together with the previous history 
of erroneous recognitions. The history of previous erroneous recognitions was 
calculated as a cumulative sum of the number of mistakes made before the cur-
rent trial. We assumed that the more recurring mistakes a subject made before, the 
higher is the probability of making such a mistake again. A dependent variable was 

TABLE 4.9  Generalized linear mixed model summary for the experiment of A. Odainic.

Erroneous response in the current trial

Estimate CI SE p

Fixed Parts
(Intercept) 2.54 1.35 – 3.72 0.61 .040
Previous recurring errors 5.55 3.99 – 7.11 0.80 <.001
Number of responses -1.45 -1.83 – -1.08 0.19 <.001
Location 0.22 0.01 – 0.43 0.11 .042
Previous recurring errors: Number 

of responses
0.21 -1.73 – 2.15 0.99 .834

Previous recurring errors: Location 1.25 0.24 – 2.27 0.52 .016
Number of responses: Location 0.64 0.16 – 1.12 0.24 .009
Previous recurring errors:Number 

of responses:Location
2.26 -0.28 – 4.80 1.30 .082

Random Parts
s2 0.428
t

00, Subject
0.025

t
00, Stimulus

0.097
t

00, Repetition
0.990

N
Subject

26
N

 Stimulus
4

N
 Repetition

3
ICC

Subject
0.016

ICC
 Stimulus

0.063
ICC

 Repetition
0.643

Observations 345
R2 / Ω

0
2 .599 / .599

AIC 743.371
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a response in the current trial i.e. the amount of repeated elements misses (ranging 
from 0 to 4).

As can be seen from the results the erroneous response is dependent on the his-
tory of previous erroneous recognitions, number of responses and location of the 
elements, and, partially, on their interactions. Placing elements onto the same posi-
tions over the course of trials results in more mistakes in comparison with placing 
elements on randomized positions (“Random places group”–”Same places group” 
contrast estimate = – 0.3 (0.15), df = 76.36, t-ratio = –.207, p = 0.04)

Discussion of experiments of A. Odainic and M. Filippova

Both experiments presented above tested the idea of the relevant robustness of 
the recurring mistakes effect. We hypothesized that a recurring mistake is more 
likely to happen in presence of the same context, i.e. when the binding between 
identity of the item and its location is kept the same throughout trials. If the loca-
tion changes, then the recurring mistake loses its location-identity binding and, 
possibly, also loses the stimulus–response association in memory.

Both experiments showed that the previous history of recurring errors, i.e. the 
cumulative sum of the omissions per item, influences the current response. This 
happened only when the place of the element was not changed throughout the 
trials (in the experiment of A. Odainic) and when there was a time delay between 
the retention and recognition procedures (in the experiment of M. Filippova). 
When the place of the element is changing from trial to trial a factor of previous 
erroneous responses doesn’t influence the current response. We can conclude that 
binding of location and identity plays an important role in the recurring mistakes 
effect. If context doesn’t change then we are more likely to find recurring mistakes 
in the sequence of trials.

In both experiments we also see the influence of the subject’s number of responses, 
which goes along with our predictions. The strategy to report a smaller number of 
elements increases the occurrence of repeated mistakes. Such strategy works because 
both experiments used free recognition procedure instead of forced-choice recogni-
tion. Free recognition allows us to vary the amount of items recognized in particular 
trial and may depend not only on a subject’s memory but also on a subject’s choice 
to respond to more/less items. If these experiments had used a forced-choice pro-
cedure, we could have expected no influence of a “number of responses” factor.

Conclusions

Summary of the “negative choice aftereffect” findings

Several experiments described above show that mistakes tend to be repeated. This 
effect was dubbed the “negative choice aftereffect”. It was shown that recur-
ring mistakes may happen in response to the same stimulus when this stimulus 
is presented several times. Recurring mistakes occur in different cognitive tasks 
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involving either retrieval or recognition processes. This type of error leaves traces 
in memory that include information not only about the identity of the item that 
was associated with the erroneous response but also information about the location 
of and the previous response to this item. Recurring mistakes are different from 
the set of single mistakes: they elicit shorter reaction times than single errors. There 
seems to be no post-error adjustment after recurring errors. In addition, recurring 
errors correlate with higher confidence ratings in comparison with single errors. 
These results taken together with the ones obtained in implicit learning studies 
(Reber, 1989; Dienes and Scott, 2005) describe a stable “erroneous” (from the 
experimenter’s point of view) association of response and stimulus that is stored 
in memory for quite some time. Integrating over the results of the experiments 
discussed above, those of the experiments by Allakhverdov (1993), and those of 
the experiments of Dienes and Scott (2005) and Reber (1989), we can list some 
conditions in which recurring mistakes are more likely to be found:

•• The stimulus set must be homogenous, that is, stimuli should have similar 
features, although they also should be easily named and identified.

•• There should be no feedback on accuracy of performance in the task.
•• Efficiency of the performance should vary from 50% to 80% of correct responses.
•• The location of the item in the presentation set should be constant.
•• The item should be repeated several times in a row to elicit a possible recur-

ring mistake response.
•• The memory test should not be delayed. If the delay is substantial (for example, 

more than 24 hours) then recurring mistakes lose the strength of stimulus–
response association in the memory and very likely will pop up in the mind.

•• Subjects should make an effort to perform well on the task.

“Negative choice aftereffect” in other studies

As we stated it in the beginning of the chapter, recurring errors result from explicit 
or, more probably, from implicit learning of irrelevant or distracting information. 
Other examples of “erroneous” association of response and stimulus can be found 
in a variety of experiments (VanRullen and Koch, 2003; Warriner and Humphreys, 
2008; D’Angelo and Humphreys, 2015; Hajcak and Simons, 2008; Neill, 2007).

For example, VanRullen and Koch (2003) presented several different tasks in 
the study of competition and selection in visual processing. They used free recog-
nition, forced-choice recognition and priming picture-word matching tasks to test 
how many items a subject can remember after being briefly presented with a natu-
ral scene that contained these items. They showed that items not reported during 
the free recognition task and subsequently missed in the forced-choice recognition 
task showed a significant negative priming effect, that is, elicited longer responses 
and were more associated with errors than novel items. The authors concluded 
that “the negative priming effect suggests that these objects were in fact repre-
sented in the visual system, but that this representation was eventually suppressed” 
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(VanRullen and Koch, 2003, p.80). We suggest that the effect VanRullen and 
Koch (2003) observed is related to recurring errors. There is a succession of tasks 
that use the same stimuli; there are items that are missed in both the first (free rec-
ognition) and second tasks (forced-choice recognition); these twice-missed items 
then elicit more errors in the picture-word naming task. All these features match 
our description of recurring mistakes.

In a study of the tip-of-the-tongue (TOT) state, Humphreys and colleagues 
(Warriner and Humphreys, 2008; D’Angelo and Humphreys, 2015) found that 
making an error once increases the chances that it will be repeated. They presented 
definitions of words that participants then had to name. If participants were unable 
to remember the word but felt that it was likely to be remembered (i.e., partici-
pants experienced a TOT state), they read the same definition once again but after 
a time delay. The delay was either 10 or 30 sec. In the latter case, (when the delay 
was longer) subjects showed difficulty in recalling the same words again the second 
time when the procedure was repeated. Authors concluded that speakers tend to 
repeat TOT states for individual words. This case, although very different from 
that described in VanRullen and Koch (2003), also exhibits some similarities with 
the “negative choice aftereffect”. When we described the hypothetical mechanism 
of recurring mistakes, we assumed that a correct response for the task would be 
remembered together with the representation of the task, but with a tag “not to be 
retrieved”. This tag prevents the correct response from being used when we carry 
out the same task after we made an initial mistake. The TOT state is a good exam-
ple of how such a “not to be retrieved” tag could be experienced subjectively.

The described experiments share one feature: the items that elicit a recurring 
mistake response are shown to be processed differently from the novel items that 
do not have an erroneous association between the stimulus and response.

Hypothetical mechanisms of recurring mistakes

Humphreys and colleagues (Warriner and Humphreys, 2008), in their research on 
repeated TOT states, suggest that implicit learning of the incorrect activation pat-
tern (particularly the co-activation of a word’s lemma and phonology) is a cause 
for repeated errors. Implicit learning of a TOT state happens when the participant 
tries to produce the word. Unresolved TOT states (the correct answer was not 
found and the word remained forgotten) are stored in memory together with the 
incorrect link to the phonology of the word. This extra information increases 
the likelihood of the TOT state repetition (Warriner and Humphreys, 2008,  
p. 540). Similarly to the previous explanation, Allakhverdov (2000) suggests that if 
we continuously do not retrieve the very same words as before, we still remember 
them but with extra information – a “not to be retrieved” tag. This tag keeps the 
words in memory although preventing us from reporting them until the context 
of the task is changed and predictions about the stimulus pattern and response are 
changed as well. Neill and Valdes (1992) used similar terms when they described 
the mechanism of the negative priming effect. In their opinion, task performance 
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is mediated by the retrieval of past instances of the current stimuli. If the retrieved 
episode indicates that the current stimulus was recently ignored, responding is 
impaired which is called “inappropriate transfer”. Analyses of this effect support 
the idea that a stimulus and response are associated within a given task/context and 
their association might alter the performance (Neill, 2007).

Here, we followed the Alpha model perspective on stimulus–response associa-
tion, assuming that a response to a given stimulus pattern increases the probability 
that the same response will occur on the recurrence of the same stimulus pattern. 
According to the Alpha model, simple associative learning might happen after a 
first few iterations of a stimulus–response co-occurrence and continue throughout 
an experiment. Does it then mean that all possible responses for all stimuli are 
stored? The hypothesis of “negative choice aftereffect” leans towards this assump-
tion. Supportive evidence comes from the neural network field. It was shown that 
a Bidirectional Associative Memory model (based on a Hebbian learning rule) 
with a Quick Learning algorithm can reproduce a human pattern of recurring 
mistakes when a participant learns and then repeats a hand movement trajectory 
(Lyahovetskiy et. al., 2013). According to its authors, the Quick Learning algo-
rithm greatly reduces learning epochs, guarantees the recall of all training pairs and 
increases memory capacity (Hattori, Hagiwara and Nakagawa, 1994). Interestingly, 
McClelland emphasizes that Hebbian learning mechanisms that were utilized in 
Quick Learning for the Bidirectional Associative Memory algorithm tend to 
strengthen the pattern of neural responses that are highly correlated with each 
other. In his opinion, the Hebbian approach may even strengthen response when it 
is incorrect or when there is no feedback given (McClelland, 2006). Thus, a model 
that assumes a storage of all stimulus–response associations also assumes a possibility 
of recurring errors.

If the Alpha model implies that our memory stores correct and incorrect 
responses together, then it should also imply some separation of these responses. 
Ideas of “incorrect activation pattern” (Warriner and Humphreys, 2008), “nega-
tive choice aftereffect” (Allakhverdov, 1993, 2000) and “inappropriate transfer” 
(Neill and Valdes, 1992) all try to explain how incorrect responses could be distin-
guished from correct and from incorrect but non-repeating responses. Recurring 
mistakes are different from the non-recurring errors in the way they are stored in 
memory. The extra information (the tag “not to be retrieved”) that is linked to 
correct answers makes it clearly distinguishable from other types of responses and 
prevents it from being used in the task.

Does this mean that the representations that are not retrieved are suppressed 
as VanRullen and Koch (2003) suggested? “Negative choice aftereffect” and 
recurring mistakes may happen because the correct response is not only stored 
in memory with a tag “not to be retrieved” but also is actively suppressed from 
further processing. To confirm that the suppression mechanism is active, we need 
to infer the consequences of such suppression. Usually, the suppressed elements 
elicit longer reaction times than non-suppressed elements. In line with this, in 
VanRullen and Koch’s (2003) study the items that elicited more errors in the 
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priming picture-word matching task also elicited longer reaction times, i.e. a 
negative priming effect. On the contrary, the results of Allakhverdov’s group 
experiments described above did not show any negative priming effect. Thus, we 
cannot confirm the suppression hypothesis of recurring mistakes.

The recurring mistakes effect can be shown in a variety of tasks. It implies 
that the cognitive system stores excessive information about the stimulus–response 
association. This stimulus–response association can be implicitly learnt as an unde-
sirable pattern of response (Yates, 1959) but still will be stored in memory. We 
began this chapter with an example of a repeated misspelling (“spychology” instead 
of “psychology”). Based on our current knowledge, we can conclude that it will 
be quite hard to get rid of this mistake. Firstly, the mistake recurrence will be sup-
ported by the increased probability that on the recurrence of the same stimulus 
pattern, the same response will occur. Secondly, this stimulus–response associa-
tion will be stored in memory until the context of the task is not changed. Is it 
possible to get rid of the recurring mistake? In terms of Allakhverdov’s approach, 
one should try to change the context of the task or the task itself. Dunlap (1942) 
offered instead to make it so that the information we were unaware of is brought 
to awareness. This approach involves a technique known as “negative practice”. 
According to this method, one should try to repeat an error explicitly several times 
to correct it (Dunlap, 1942). Likewise, McClelland suggested increasing the con-
trast and exaggerating the differences between otherwise undistinguishable stimuli 
that previously elicited recurring mistakes (McClelland, 2006). Sure enough, this 
method helps to get rid of spelling and pronunciation errors. However, it is not 
known whether it works for the recurring mistakes that occur in other situations.
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Notes

1	 We would like to thank our colleague Y. Ledovaya for this example of a negative choice 
mistake.

2	 It’s important to notice that we assume that each stimulus in a set is more or less independ-
ent of any other and does not form a semantically connected string.

3	 These results were obtained in 1974. Unfortunately, raw data files were not stored until 
2017. We put here numbers in accordance with results published as a Doctoral dissertation 
(see Allakhverdov, 1993).
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CAN WE PLAY SPACE  
INVADERS UNCONSCIOUSLY?  
(A: PROBABLY NOT)

Estibaliz San Anton, Axel Cleeremans, and  
Arnaud Destrebecqz

Introduction

As shown by a large number of studies, both human and nonhuman animals are 
able to learn the contingencies between stimuli (Rescorla, 1968; Shanks, 1995). 
While this ability is crucial for the survival of organisms, the precise nature of 
the learning mechanism remains unclear. Indeed, two radically different views 
have been defended in the literature: associative strength theories, and propo-
sitional theories.

Proponents of the former argue that learning is based on the acquisition of 
simple associations between events, through the gradual updating of the asso-
ciative strength between the mental representations of the stimuli (see Bouton, 
2007; Pearce and Bouton, 2001; Shanks, 2005; Shanks and Dickinson, 1987, for 
reviews). The most influential associative learning model, the Rescorla–Wagner 
model (Rescorla and Wagner, 1972), assumes that learning is bottom-up and auto-
matic. On this view, conscious awareness of the to-be-learned association is not a 
necessary condition for learning to occur because the behavioral changes induced 
by learning take place through low-level mechanisms of neural plasticity that have 
causal influence regardless of the intentions of the learner.

In contrast, supporters of the latter, propositional, view claim that learning is 
the result of active inference and reasoning deployed over propositional repre-
sentations (e.g., Mitchell, De Houwer, and Lovibond, 2009). Learning would 
therefore result from “the formation and truth evaluation of propositions about rela-
tions in the world” (De Houwer, 2014). This model takes into account not only 
the relationship between the stimuli (i.e., their co-occurrence) but also the type 
of relationship between events (e.g., a causal relation; Lagnado, Waldmann, 
Hagmayer, and Sloman, 2007). Even though some discrepancies can be found 
in specific theoretical accounts (see De Houwer, 2014), such inferential models 
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assume that learning is a non-automatic process that requires conscious, effortful, 
and top-down thinking.

Inferential theorists have further argued that the proponents of associative theo-
ries actually advocate a dual-process theory (Sternberg and McClelland, 2012) in 
which knowledge is expressed as a combination of associative and higher-order 
knowledge. However, higher-order knowledge is not the focus of associative 
theories, in which it is rather viewed as the basis of reasoning than as a man-
datory component of the learning processes. As a case in point, for associative 
models (Miller and Matzel, 1988), or algorithmic statistical models (Meltz, Cheng, 
Holyoak, and Waldmann, 1993), cue-interaction effects (such as blocking) do not 
occur during the learning phase but at test, when participants are asked to reason 
about what happened during learning. Such a view supports a dual-process theory 
that involves both associative and propositional processes. Mitchell et al. (2009), 
however, have argued that inferential accounts should be preferred based on parsi-
mony, as propositional processes can account for the entire pattern of results.

In the context of this ongoing debate, we focus here on a central difference 
between the two theoretical frameworks. According to inferential theories, learn-
ing is akin to rule learning, such as when one learns if/then relations between 
stimuli (see e.g., Beckers, De Houwer, Pineño, and Miller, 2005). As a matter of 
fact, participants who have learned such rules can report them when asked to do 
so (and both types of theory agree on this point). The central question, however, 
is the following: does learning always reflect initial rule acquisition, or does it 
build up gradually through repeated exposure to the two related events? According 
to this latter associative view, this gradual updating process does not necessarily 
depend on the ability to verbally express the relationship between events, while 
not excluding that it may eventually result in such conscious representations. 
According to inferential models, however, learning occurs because of the ability to 
form a conscious representation of the relationship (see De Houwer, 2014, for a 
critical overview). In other words, the question amounts to an ordering problem: 
do changes in behavior reflect the gradual strengthening of the associative link 
between two represented events that may later be expressed as a propositional 
rule (associative view) or is it the very existence of a propositional rule that causes 
changes in behavior in the first place (inferential view)?

Addressing this question requires exploring the dynamics of learning. For 
instance, we can measure two aspects of the newly acquired knowledge: its 
influence on behavior, and its availability to consciousness. Learning without 
awareness is already documented. For instance, in implicit learning tasks, par-
ticipants are typically able to learn incidentally about the relationships between 
stimuli, but exhibit little or no ability to verbalize what has been learned (e.g., 
Destrebecqz and Cleeremans, 2001; Fiser and Aslin, 2001; for a review see 
Cleeremans, Destrebecqz, and Boyer, 1998). In some cases, changes in behavior 
can be measured before conscious knowledge can be reported. In the case of the 
Iowa Gambling task for instance, participants’ ability to choose the advantageous 
decks amongst four improves before their being able to explicitly identify which 
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decks are actually advantageous (Bechara, Damasio, Tranel, and Damasio, 1997, 
but see Maia and McClelland, 2004).

There is substantial and continuing debate in the literature between researchers 
who believe that associative learning can occur implicitly (Schultz and Helmstetter, 
2010, Alamia et al. 2016) and those who claim that human learning is necessarily 
conscious (Lovibond and Shanks, 2002). Many studies have used subliminal stim-
uli that are inaccessible to awareness, for example using subliminal instrumental 
conditioning (Pessiglione et al., 2008), subliminal sequence learning (Atas, Faivre, 
Timmermans, Cleeremans, and Kouider, 2014), or fear-conditioning paradigms 
(Baeyens, Eelen, and van den Bergh, 1990; Schultz and Helmstetter, 2010). Some 
studies have used both procedures at the same time (Raio, Carmel, Carrasco, and 
Phelps, 2012; Tabbert, Stark, Kirsch, and Vaitl, 2006). Studies have also shown that 
the conscious or unconscious nature of the learning process may vary according to 
the training procedures. For example, delay conditioning might be independent 
from awareness, while trace conditioning would rely on explicitly noticing the 
to-be-learned association (e.g., in eyeblink conditioning, Clark and Squire, 1998, 
1999; fear conditioning, Asli and Flaten, 2012).

In tasks that use neutral or non-emotional stimuli, the possibility of learning 
unconsciously has generally been put into question based on follow-up experiments 
using more sensitive measures of conscious knowledge (Lovibond and Shanks, 
2002; Maia and McClelland, 2004, 2005). One possibility is that attentional factors 
also play a role, such as in neutral tasks using non-emotional stimuli. Thus, it may 
be the case that the amount of attentional resources available to perform the task is 
so reduced that participants do not learn the association between the paired stimuli 
at all. As a consequence, only those participants who consciously notice the asso-
ciation actually learn and show performance improvement. To address this issue 
and to increase the amount of attentional resources dedicated to the task, we used 
a more engaging experimental situation involving a video game that resembles 
the well-known “Space Invaders” arcade game. We reasoned that the increased 
attention resulting from engagement would result in better learning, and therefore 
manipulated instructions so as to improve attention.

Specific predictions can also be derived from Cleeremans’ model of the rela-
tionships between consciousness and control during the course of learning. In 
his theoretical framework, Cleeremans (2008) argues that the quality of the 
representations acquired during a learning episode determines (1) the extent to 
which they influence behavior, (2) their ability to support cognitive control, and  
(3) their availability to awareness (see Figure 5.1). As a consequence, changes 
in the quality of a representation modify its influence on behavior, as well as its 
availability to cognitive control and to access consciousness. An important fea-
ture of Cleeremans’ model is that these three features of representational quality 
change in different ways over the course of learning, resulting in different pat-
terns of association or dissociation. For example, when representations are weak 
in the initial stages of learning, they cannot be the basis of conscious, controlled 
behavior but they may nevertheless exert (weak) effects on behavior. By contrast, 
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after intensive training, high quality representations exert a strong influence on 
behavior, but this influence is now automatic in the sense that conscious con-
trol is not required anymore for successful performance. Such representations 
are available to conscious inspection, but their automatic character renders such 
access optional rather than mandatory. Over intermediate stages of learning, rep-
resentations are both consciously accessible and susceptible to cognitive control, 
and thus correspond to “explicit” representations. Following Cleeremans (2008), 
we hypothesized that behavior and availability to consciousness evolve differ-
ently as the quality of the underlying representations improves during training. 
Such a hypothesis thus predicts the possibility of dissociations at certain points 
during learning.

Crucially, associative and inferential theories make different predictions within 
this framework. According to inferential theories, learning can only occur when 
we are able to consciously make inferences regarding the regularities present in 
the environment. As a consequence, these models predict that the acquired 
knowledge is always conscious. From the associative perspective, learning occurs 
gradually, with the quality of the representation pairing two events being strength-
ened through the repeated presentation of the association (see e.g., Rescorla and 
Wagner, 1972). This knowledge may then influence behavior right from the start. 
By contrast, the propositional representation of the association will reach awareness 
only once it has accrued sufficient quality. Such knowledge should then not be able 

FIGURE 5.1  The Quality of Representation framework.
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to influence behavior before it can be expressed. Therefore, it should be possible 
to find a dissociation between a representation’s influence on behavior and explicit 
learning in the early stages of training, but we expect this dissociation to fade away 
as learning progresses.

In the present experiments, we used an adaptation of the Martians task (Franssen, 
Clarysse, Beckers, van Vooren, and Baeyens, 2010) to dissociate both verbal and 
behavioral measures of associative learning. In the Martians task, participants are 
asked to prevent Martians from landing on Earth. They have to press the space-
bar almost continuously in order to destroy incoming Martian invaders, but the 
Martians may activate a protective shield. If participants press the spacebar when 
the shield is on, their shots are returned to them so that human resistance is neu-
tralized and Martians can invade the Earth. It is therefore crucial to learn to predict 
the occurrence of the shield in order to be able to stop shooting before its onset. 
Unknown to participants, visual or auditory cues (unintelligible words written in 
the Martian alphabet or sounds symbolizing the Martian language) are predictive 
of the onset of the shield: in Experiment 1, a first cue, C+, predicted the shield 
in 100% of the cases and a second one, C±, preceded the shield in 50% of the 
cases. Finally, a third cue, C-, was never followed by the shield. In Experiment 2, 
only C+ and C- were presented. If participants learn the relationship between 
the occurrence of the cues and the onset of the shield, they should show differ-
ent bar-pressing patterns for each cue: they should refrain from bar-pressing upon 
presentation of the perfect predictor of the shield C+, continue bar-pressing during 
the safe cue, C- (which is never followed by the shield), and they should show an 
intermediate behavior when the C± is presented.

This situation makes it possible to contrast associative and inferential theories 
based on the relationship between our continuous measure of performance (bar-
pressing) and verbal reports. If participants learn the relation between the cues 
and the shield implicitly, we would expect a dissociation between behavior and 
conscious knowledge. That is, we should observe a decrease in bar-pressing rate 
when the perfect predictor is presented even before participants are able to verbal-
ize the association. Further, this dissociation should fade away with training, as 
the quality of the representation increases and it progressively becomes available 
to consciousness. Inferential theories, on the other hand, because they assume that 
explicit knowledge is mandatory for learning to take place, would predict that 
changes in response rate should only take place after participants became able to 
report the rule.

In these studies, we manipulated the probability of occurrence of the shield after 
the preparatory signal. The discrimination between C+ and C- is easier to learn 
than the difference between C+ and C± as, in this latter case, the shield always 
follows C+ but the shield only follows C± in 50% of the cases. The shield, by 
contrast, never follows C-. If learning can take place unconsciously and depends 
on the strength of the representation, we should observe learning of the C+/shield 
and C-/no-shield association before learning of the C±/shield association (as C± 
is less frequently reinforced by the occurrence of the shield than C+).
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Experiment 1

Method

Participants

Eighteen students of the first year of psychology in the Université Libre de Bruxelles 
(11 females, 7 males) took part in the experiment. They received course credits for 
their participation, and were randomly assigned to one of the two experimental 
groups (N = 9 in each group). None of them was informed of the purpose of the 
experiment and none of them had previous experience with the task. All partici-
pants reported normal or corrected-to-normal vision.

Apparatus and stimuli

The experiment was programmed in Martians V2 software (Franssen et al., 2010) 
and ran on a Mac Os X 2.6 GHz Intel Core i7. Participants viewed the screen 
from a distance of 70 cm. Responses were collected through the keyboard. The 
Unconditioned Stimulus (US) was composed of a metallic sound and the simulta-
neous presentation of a 0.5 white flashing screen.

FIGURE 5.2  �Example of one C, groups of three shapes composing a cue appearing 
during the task in Experiment 1.
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Experimental groups differed in the specific stimuli used as Conditioned Stimuli 
(C): in half of the participants, stimuli were sounds, whereas in the other half they 
were sequences of symbols appearing in white on a blue background (Figure 5.2).

Procedure

The experiment lasted about 40 minutes and comprised three parts: a pre-training 
phase, a US-only phase, and a learning phase.

Pre-training: the experiment was described as a game. Participants were asked to 
prevent Martians from landing on Earth. Martians appeared on the screen, one by one, 
every 250ms in rows from the left to the right and from top to bottom. Participants 
had to press the spacebar to fire a laser gun just before a Martian appeared. Success 
was indicated by a picture of an explosion instead of the Martian icon. Participants’ 
goal was to destroy as many Martians as possible. During the pre-training phase, 
participants had the opportunity to learn to produce a regular bar-pressing rate for a 
period of around 25s, which was used as a baseline in the subsequent phases of the 
experiment. No C or US were presented during this stage.

US-only phase: in this phase, participants were informed about the protective 
shield (the US). Participants were told that Martians had developed an anti-laser 
shield that could appear at unpredictable intervals. The anti-laser shield (i.e., the 
US) was operationalized as a white flashing screen accompanied by a metallic 
sound. Within this context, when the shield was active (i.e., during sound and 
flashes) participants had to stop pressing the spacebar. If participants failed to stop 
pressing, the laser shot came back at them and a Martian invasion was triggered. 
In this latter case, invincible Martians (i.e., Martians that were impervious to the 
laser) appeared on the screen every 50ms (instead of every 250ms) over a period 
of 5s. However, if participants stopped responding at the shield onset, there was 
no invasion, but four Martians landed on Earth. During the US-only phase, the 
shield was presented four times; its onset was not signalled by any other visual or 
auditory stimulus.

Learning phase: in this phase, the instructions about the US were identical to 
those in the previous phase. Three different Cs were also presented. Participants 
were instructed that during the battle, the control station might intercept signals 
encoded in the Martian language. Participants were told that even though these 
signals could not be deciphered, they might contain useful information. The par-
ticipants’ goal remained the same in this phase: to prevent Martians from landing 
on Earth by shooting at them through pressing the spacebar, while avoiding shoot-
ing at the shield when it was deployed. The first category of C predicted the shield 
100% of the time (C+), the second preceded the shield 50% of the time (C±), and 
the third was never followed by the shield (C-). The learning phase was divided 
into 10 blocks, each block consisting of 12 trials (4 trials for each C). Each trial 
lasted 4, 5, or 10s depending on the C and on participants’ performance. After 
2s, during which a baseline of bar-pressing was recorded, one of the three Cs was 
selected and presented during 2s. Depending on the C, the shield then appeared 
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for 1s and, depending on participants’ performance, an invasion was triggered for a 
period of 5s (see Figure 5.3). To prevent participants from predicting the onset of 
the next C, the inter-trial interval varied randomly between 5 and 10s.

After each block of 12 trials, participants also had to indicate whether or not 
they believed their performance had improved as compared to the previous block. 
In addition, if participants claimed that their performance had indeed improved, 
they were also asked to give a subjective written report explaining how they 
thought they had managed to do better.

Results

Behavioral data

Since the first two phases (pre-training phase and a US-only phase) were only 
intended to familiarize participants with the task, these data will not be considered 
for further analysis. In the following, we focus on the learning phase data. To 
evaluate people’s performance, we computed the “suppression ratio” (Arcediano, 
Ortega, Matute, 1996), that is, the number of presses on the spacebar during the 
2s of C presentation divided by the sum of the number of presses during both the 
C presentation and the 2s immediately before the C presentation (see Figure 5.3).

Suppression Ratio
C and befor

=
=

Responses during C

Responses during ee C 	 (1)

During the experiment, participants could learn the C/US relationship but also the 
duration of the C (i.e., inhibition of delay, Escobar, Suits, Rahn, and Arcediano, 
2015; Pavlov 1927; Rescorla, 1967). If they were able to learn how long the stimu-
lus was presented, they could also learn to develop a strategy consisting in pressing 
the spacebar to hit Martians as long as the C was displayed. In similar previous 
experiments, learning was measured through test trials in which the duration of 
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FIGURE 5.3  Schema of the temporal flow of a trial.
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the C was increased. In this case, since we measured learning over time, it was not 
possible to change the duration of presentation of the C. Instead of using the typi-
cal suppression ratio described above, we used a more sensitive measure calculated 
by taking into account the number of key presses during the last 500ms of the C 
and during the 500ms that preceded C presentation. All Inferential analyses were 
performed on SPSS Statistics 20 and Bayesian analyses were performed on JASP- 
software ( JASP Team, 2017).

A mixed ANOVA with Group (C sound and C images) as between-subjects 
factors and Block (Block 1 to 10) and Type of trial (C+, C± and C-) as within-
subjects factors was conducted on suppression ratios, yielding a main effect of 
Type of trial, F

(2,
 
32)

 = 5.859, p<.01, partial η2 = .27. A priori comparisons showed 
that C- (.31 ± .04) differed from C+ (.21 ± .04; p = .018; Cohen’s d = -.62) 
and C± (.095; p = .029; Cohen’s d = -.56). However, no difference was found 
between C+ and C± (p = .12; Cohen’s d = -.39). In order to confirm or discon-
firm this result, a Bayesian paired samples t-test was conducted. A BF

01
 of 1.33 

was obtained, providing anecdotal evidence for the absence of difference between 
C- and C±. Analyses failed to show any significant main effect of Group or any 
interaction involving this factor (all ps>.05). A Block × Type of trial interaction 
was also found, F

(18, 288)
 = 2.671; p<.001, partial η2 = .143. Bonferroni-adjusted 

comparisons revealed that C- trials differed from C+ from the third block until 
the end of the experiment (all ps<.05), with the exception of Blocks 4 and 7. 
However, the difference between C± and the other two types of trials (C+ and C-) 
was not consistent (C± vs C- was significant in Blocks 3, 5 8, and 10; and  
C± vs C+ was significant in Block 9; see Figure 5.4 and Table 5.1 for the descrip-
tive statistics). It seems that participants essentially learned the difference between 
the two informative types of trials.

Furthermore, a measure of learning can be obtained by comparing C+ trials, 
in which participants should stop responding, and C- trials, in which participants 
should continue bar-pressing. Amongst the 18 participants, the learning measure 
was inconclusive for 6 of them. On the one hand, three of these participants never 
stopped responding: when any of the three cues were presented, they continued 
to press the spacebar at the risk of an invasion. On the other hand, the other three 
participants stopped responding after the presentation of any cue. Hence nothing 
indicates that these latter participants had learned the difference between the cues 
(even though they noticed the relationship between a cue onset and the shield 
appearance) or that they tried to improve their performance.

In the following analysis, we used response rates during the last 500ms of the C 
as the dependent variable (Figure 5.5). A mixed ANOVA with Block (Blocks 1 to 
10) and Type of trial (C+, C± and C-) as within factors was conducted on response 
rates, yielding a main effect of Type of trial, F

(2,
 
34)

 = 6.11, p = .006, partial η2 = .28, 
and a Block × Type of trial interaction, F

(18,306)
 = 2.35; p = .002, partial η2 = .128. 

A priori comparisons showed that C- (1.272 ± .183) differed from C+ (.842 ± .17;  
p = .024; Cohen’s d = -.59) and C± (.092; p = .17; Cohen’s d = -.616). However, 
no difference was found between C+ and C± (p = .144; Cohen’s d = -.36). In order 
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FIGURE 5.4  �Mean suppression ratio for each type of C over the course of learning in 
Experiment 1.

TABLE 5.1  �Descriptive statistics of the cues’ suppression ratio (means and standard errors) 
over the blocks in Experiment 1.

C+ C- C±

Block 1 .314 ± .53 .295 ± .048 .323 ± .045
Block 2 .261 ± .05 .295 ± .048 .260 ± .053
Block 3 .212 ± .051 .305 ± .051 .225 ± .051
Block 4 .209 ± .045 .291 ± .048 .212 ± .044
Block 5 .185 ± .052 .328 ± .050 .217 ± .051
Block 6 .179 ± .048 .317 ± .049 .231 ± .048
Block 7 .211 ± .05 .303 ± .049 .233 ± .041
Block 8 .184 ± .044 .328 ± .049 .225 ± .051
Block 9 .174 ± .047 .301 ± .051 .216 ± .048
Block 10 .173 ± .047 .333 ± .049 .178 ± .04

to confirm or disconfirm this result, a Bayesian paired samples t-test was conducted. 
A BF

01
 of 1.531 was obtained, providing anecdotal evidence for the absence of dif-

ference between C- and C±. Analyses failed to show any significant main effect of 
Group or any interaction involving this factor (all ps>.05).
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Response rates were also analyzed throughout the C presentation: the dura-
tion of the CS was divided into four slices of 500ms and mean response rates 
were computed for each slice. A mixed ANOVA with Slice (4 levels) and Type 
of trial (C+, C± and C-) as within-subject factors was conducted on response 
rate. We obtained a main effect of Slice, F

(3,
 
51)

 = 26.365, p<.001, partial η2 = .61. 
Bonferroni-adjusted comparisons revealed that Slices 1 (1.91 ± .069) and 2 
(1.7 ± .146) differed from Slices 3 (1.42 ± .181; p = .01 and p = .034 respectively) 
and 4 (.94 ± .163; all ps<.001). In addition, participants stopped to respond often 
on Slice 4 than on Slice 3 (p = .004). Furthermore a main effect of the Type of 
trial was obtained, F

(2,
 

34)
 = 7.64, p<.002, partial η2 = .31. A priori comparisons 

revealed that C- (1.68 ± .14) differed from C+ (1.38 ± .13; p = .009; Cohen’s 
d = -.696) and C± (1.41 ± .14; p = .006; Cohen’s d = -.74). Again, C+ and C± 
failed to differ from each other (p=.55; Cohen’s d = -.14). A Bayesian paired 
samples t-test was conducted and revealed moderate evidence for the absence 
of difference between C- and C± (BF

01
 = 3.5). Finally, a Slice × Type of trial 

interaction was found, F
(6,102)

 = 4.56, p<.001, partial η2 = .21. Bonferroni-adjusted 
comparisons revealed that the type of trial did not significantly differ during the 
two first slices (all ps>.05, see Figure 5.6). However, in the third slice only cue C+ 
differs from C-, p< .05; participants continued to respond more when C- than 
when C+ was present. In Slice 4, C- differed from the other two types of trials, 

FIGURE 5.5  �Mean response rate for each type of C over the course of learning in 
Experiment 1.
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C+ (p = .014) and C± (p = .01; see Figure 5.6 and Table 5.2). Overall, this sug-
gests that participants continue to respond in the presence of C- more than when 
C+ or C± where presented.

Altogether, these results show that participants learned the duration and the 
identity of the stimulus, as differences between the different stimuli are found 
from Slice 3. In addition, the data also indicate that even with the secure cue, C-, 
participants decreased their response rate. This suggests that participants used con-
servative strategies at cues’ onset: whatever the identity of the cue, they tended to 
decrease their response rate.

FIGURE 5.6  �Mean response rate for each type of C over the slices of 500ms during 
the presentation of the Cs in Experiment 1.

TABLE 5.2  �Descriptive statistics of cues’ response rates (means and standard errors) over 
the slices in Experiment 1.

C+ C- C±

Slices 1 1.91 ± .05 1.98 ± .09 1.84 ± .09
Slices 2 1.66 ± .17 1.76 ± .13 1.69 ± .17
Slices 3 1.25 ± 1.19 1.64 ± .2 1.36 ± .21
Slices 4   .69 ± .19 1.36 ± .21   .76 ± .17
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Measures of subjective awareness

Participants’ verbal responses were analyzed qualitatively (see Table 5.3). Among 
the eighteen participants, seven did not show any knowledge about the cues– 
outcome relationship. Three of these participants failed to express any learning on 
the behavioral measure (i.e., they did not stop responding after the presentation of 
the C); their suppression ratios were .5, whatever the identity of the cue. Results 
of the others four participants did not indicate a significant difference between C+ 
and C-. Only one participant showed a clear difference in response ratios for the 
different cues: for C+ (.125), for C- (.5), and for C± (.083). This single partici-
pant learned the cue–outcome relationship even if he did not exhibit any explicit 
knowledge of these contingencies.

Concerning the eleven participants who verbally expressed relevant knowl-
edge of the cues, seven said, starting from the first block, that the cues were 
useful in helping them improve their performance. Two of them became aware 
of the relevance of the cues in Block 2, one in Block 5, and one in Block 7. 

TABLE 5.3  Description of subjective awareness in Experiment 1.

Subject SR C- SR C+ Learning? Verbal Report

  1 0.5 0.5 No /
  2 0.167 0 Yes Strategy: better not respond when a cue is 

presented
  3 0.29 0.33 No Cues do something, it is random
  4 0 0 No Cues do something
  5 0 0 No Cues do something

Strategy: better not respond when a cue is 
presented

  6 0.475 0 Yes Cues do something and there are different 
cues

  7 0.5 0.08 Yes Strategy: better not respond when a cue is 
presented

There are different cues
  8 0.54 0 Yes Cues do something
  9 0.475 0.5 No /
10 0.525 0.375 Yes Strategy: better not respond when a cue is 

presented
There are different cues

11 0.5 0.125 Yes /
12 0 0.1 No Strategy
13 0.5 0.5 No /
14 0.08 0 No /
15 0.38 0.29 Yes Strategy
16 0.25 0.08 Yes /
17 0.5 0 Yes Cues do something

There are different cues
18 0.31 0.225 Yes /
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Nevertheless, only three participants specifically indicated that each cue was dif-
ferent, i.e., that not all the cues predicted a similar outcome. Interestingly, ten of 
the participants explained their explicit strategies used to perform the task. First, 
some said that they preferred to stop responding when a cue appeared, whatever 
the cue identity. Others argued that they tried to finish off bar-pressing until the 
cue disappeared to destroy as many Martians as possible. Finally, four participants 
developed superstitions such as “before an invasion the scenery becomes darker”; 
“After one out of two the shield arrives”.

Discussion

The results of Experiment 1 suggest that, on average, participants learn gradually 
over blocks. Behavioral data cannot determine whether there was an acquisition 
of complex learning. While participants discriminated between C- vs C+ cues 
and C- vs C± cues, they seemed to fail to discriminate between C+ and C±. 
Even if some participants learned that the cues were important in the task, they 
did not necessarily learn to differentiate between C+ and C±. Another potential 
explanation would be that participants decided to not respond whenever C± was 
presented. In other words, a decision made about C± (i.e., predicting the outcome 
only 50% of the time) would yield more uncertainty than a decision made about 
C+ or C- (i.e., always predicting the presence or absence of the outcome). The 
latter two are much more informative in a pre-asymptotic situation. This uncer-
tainty may disappear if participants treated the cue C± as C+. The problem is that 
if participants decided to take the risk by responding when C± was present, two 
effects could have occurred: either the outcome did not appear or it did. In the first 
case, participants continued to respond and kill all the Martians, so they improved 
their performance. In the latter case, the outcome appears and the losses are much 
greater than if they had not reacted. Such a conservative strategy is part of the error 
management theory (Haselton and Buss, 2000; Haselton and Nettle, 2006). To 
illustrate this point, we need to imagine what happens when someone in a forest 
sees a large and elongated object hidden in a bush. It could either be a branch or a 
snake. In such a situation, it is safer to think that it is a snake and run away, even 
if it is merely a branch. However, to opt for the branch hypothesis implies taking 
the risk of being bitten if it is in fact a snake. Consequently, for all these reasons, 
we are unable to discriminate between a failure of discrimination of the cues or an 
adaptive strategy that appears through learning.

In this study, the use of a verbal report task at different points during the 
learning phase could influence learning. As this procedure requires participants 
to reflect about what has happened in the task so far, it cannot be considered as 
a purely incidental learning task. Each request for participants to report drives 
attention, and potentially awareness, to the relevant knowledge. In addition, 
when participants responded to the first question, it is possible that they did not 
have any knowledge about the relationship between the cue and the outcome 
during the task itself. However, once the question was asked, they could reason  
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a posteriori about the task during the preceding block. Furthermore, as the cues 
were very salient, the first question would direct the participants’ attention towards 
them in the rest of the experiment. These results are also in line with the artificial 
grammar literature (Reber, 1989). After a learning phase of complex structures, 
participants performed more poorly when explicit instructions rather than neutral 
instructions were presented. Looking for complex rules, i.e., rules participants are 
not likely to find, produces a lower quality of learning (Reber, 1976). Moreover, 
participants invented rules trying to explain the underlying structures that  
were presented. In this study, analysis of verbal reports also indicates that while 
some participants used explicit strategies, others indicated using superstition and 
other irrational beliefs (such as those used by sportsmen in the context of sport 
competitions; see Albas and Albas, 1989 for a review). For example, one par-
ticipant developed the misconception that the shield appeared after every second 
sound and only when the second sound was the identical with or higher-pitched 
than the previous sound.

In Experiment 2, our goal was to minimize the influence of an ambiguous but 
salient cue (C±) and of the requirement to provide verbal reports in the course 
of the learning phase. Firstly, only relevant cues (C+ and C-) were presented in 
order to avoid uncertainty, complexity and the induction of explicit strategies such 
as breaking off responding when any cue was presented. Likewise, during the 
learning phase, subjective measures of consciousness were included in the form 
of a predictive question (asked by the control tower according to the cover story) 
concerning the possible appearance of the shield. We also asked participants to 
indicate their confidence in their prediction. In addition, the relevant cues (C+ and 
C-) were only auditorily presented but, in order to make them less salient, con-
tinuous music simulating Martian speech was presented during all the experimental 
phases. Finally, to test the potential influence of attention to the cues, we included 
an incidental group, who were not given any specific information about the cues, 
and an intentional group who were informed that there were some relevant but 
undeciphered signals encoded into the Martian speech stream. As the relevant cues 
were totally predictive of the outcome or the absence of it, instructions should 
focus subjects’ attention and it should accelerate learning (Reber, 1976).

Experiment 2

Method

Participants

Twenty-eight participants (8 females, 20 males, mean age 22.75 ± 2.9) voluntarily 
took part in the experiment. None was informed of the purpose of the experiment 
and none had previous experience with the task. All participants reported normal 
or corrected-to-normal vision. Participants were divided into two groups depend-
ing on the instructions (14 participants in the incidental and intentional group).
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Apparatus and stimuli

The apparatus was identical to that used in Experiment 1. The Conditioned Stimuli 
were two sounds (246 Hz and 320 Hz) counterbalanced as C+ and C-. During the 
entire experiment a musical piece composed of a random presentation of sounds 
between 130Hz and 523Hz was played.

Procedure

The experiment consisted of five phases: a pre-training phase, a US-only phase, 
a control tower phase, an instruction phase and a learning phase. The music was 
presented throughout the entire experiment. The pre-training and US-only phases 
were strictly identical to those used in Experiment 1 and will thus not be described 
again here.

Control tower phase: participants were instructed that on some occasions during 
the Martian attack, one of the staff in the control tower may be needing assistance. 
On such occasions, the control tower asked the participant whether or not he/she 
believed that the shield would appear. Participants were first required to indicate 
whether or not they believed the shield would appear next, and then whether or not 
they were confident in their response. To introduce this phase to the participants, 
Martians were displayed for a period of 25s, and the questions were then presented.

Instruction phase: the participants’ goal remained the same in this phase: to 
prevent Martians from landing on Earth while refraining from shooting when the 
shield was active. Half of the participants (the intentional group) was instructed 
that the control station might receive undeciphered, but potentially informative, 
audio signals encoded in Martian language. The other half (the incidental group) 
did not receive any instructions concerning these audio signals.

Learning phase: in this phase, two types of C were embedded in the music. 
One was a perfect predictor of the shield (C+). The second was never followed by 
the shield (C-). The learning phase comprised 2 types of randomly sequenced tri-
als: 70 learning trials (35 C+ and 35 C- trials) and 30 control tower trials (10 C+, 
10 C- and 10 no C). In each of these 30 control tower trials participants had to 
indicate whether they expected the shield to occur following either the C+ or the 
C-, or neither of these two stimuli. This phase was divided into a learning and a 
stabilization phase, each one composed of 17 trials for each cue.

During any learning trial, we recorded the bar-pressing rate for 2s before pre-
senting C+ or C- for 2s, during which the bar-pressing rate was also recorded. As 
in Experiment 1, shooting at the shield would cause an alien invasion for 5s. A 
varying delay between 5 and 10s elapsed between any two trials.

In control tower trials, a question was presented centrally on the screen follow-
ing either one of the two Cs or none of them. “Do you think the shield will appear 
now?” Participants had to respond “yes” or “no”. Participants were also asked to 
tell whether they were confident or not in their response. After they responded to 
the second question, the next trial began.
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Results

Behavioral data

As in Experiment 1, we computed the suppression ratio by dividing (a) the num-
ber of key presses during the last 500ms of the C by the sum of (a) and (b), the 
number of key presses during the final 500ms before the onset of the C. We first 
report results for the learning trials. In order to study the dynamics of performance, 
the learning phase was divided into two parts in the analysis: a first, learning, phase 
and a second, stabilization, phase. The first trial was discarded for all participants. 
All Inferential analyses were performed with SPSS Statistics 20. Bayesian analyses 
were carried out with JASP- software (JASP Team, 2017).

A mixed ANOVA with Group (intentional vs incidental) as a between factor 
and Block (learning vs stabilization) and Type of trial (C+ and C-) as within fac-
tors was conducted on suppression ratios, yielding a main effect of Type of trial, 
F

(1,26)
 = 25.909, p<.001, partial η2 = .499. When C- (.359 ± .027) was presented 

participants pressed the spacebar more often than when C+ (1.8 ± .029) was 
presented. The interaction Type of trial × Block, F

(1,26)
 = 16.483, p<.001, partial 

η2 = .388 was significant. Bonferroni-adjusted comparisons showed that partici-
pants learned to stop responding when C+ was presented during learning (learning 
phase: .22 ±.03; stabilization phase: .143; p = .006). Nevertheless, participants 
responded similarly to C- during the learning phase (.35± .03) as during the sta-
bilization phase (.37 ± .03; p = .572); BF

01
 = 4.39 providing moderate evidence 

for the absence of difference. Finally, the triple Type of trial × Block × Group 
interaction was significant F

(1,26)
 = 4.283, p<.05, partial η2 = .141. Bonferroni-

adjusted comparisons revealed that the difference between the types of trials (C+ 
and C-) was significant in the two phases in the intentional group (all ps<.001). In 
contrast, there was no difference in suppression ratios between C+ and C- in the 
first learning phase (p = .211; BF

01
 = 3.61) in the incidental group. This difference 

only reached significance in the stabilization phase (p<.005; Figure 5.7).

Measures of subjective awareness

In order to find out whether there was a response bias (i.e., whether participants 
systematically preferred one option above the other, “guess” or “remember”), 
we computed the C statistic, developed based on the Signal Detection Theory 
(Macmillan and Creelman, 1990). This index amounts to the total (standardized) 
number of trials where participants claimed to remember (hits and false alarms) 
divided by two (Paredes-Olay, Moreno-Fernández, Rosas, and Ramos-Álvarez, 
2010). Values below zero indicate a liberal bias (i.e., participants claimed to remem-
ber more often than they claimed to guess), while values above zero indicate a 
conservative bias (i.e., preference for claiming to guess rather than claiming to 
remember). To assess the extent to which participants were aware of the acquired 
knowledge, we focused on three indexes: the guessing criterion (Cheesman and 
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Merikle, 1984), Type-II d’ scores (Macmillan and Creelman, 2005) and the zero 
correlation criterion (Dienes, Altmann, Kwan, and Goode, 1995). The guessing 
criterion (Cheesman and Merikle, 1984) is met when participants perform above 
chance level while they claim to guess. To compute the criterion, we calculated 
the proportion of correct responses when participants reported to guess. A positive 
result would suggest that learning was at least partly unconscious.

The Type-II d’ score (Macmillan and Creelman, 2005) and the zero correlation 
criterion (Dienes, Altmann, Kwan, and Goode, 1995) are measures of the relation 
between confidence and accuracy. The Type-II d’ score is based on the Signal 
Detection Theory. In the context of our study, a “hit” corresponds to a correct 
response given with confidence, and a “false alarm” corresponds to a confident 
error. A Type 2 d’ that represents the difference between these two (standardized) 
scores may then be computed. Positive values indicate a match between accuracy 
and confidence and suggest that performance was based on conscious knowledge. 
The zero correlation criterion (Dienes, Altmann, Kwan, and Goode, 1995) is the 
difference between the numbers of hits and false alarms. A difference reliably above 
chance level would indicate at least partly conscious learning.

In the learning phase, the C statistic was significantly different from 0 in the 
intentional group for no C (M = -2.41, SD = 1.40, t

(13)
 = -3.75, p<.01, Cohen’s 

d = 1), and marginal for C+ (M = -1.62, SD = 2.89, t
(13)

 = -2.1, p = .056,  

FIGURE 5.7  �Mean suppression ratio for each group and for each type of C over the 
course of learning in Experiment 2.
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Cohen’s d = .56), indicating that participants exhibited a liberal bias (i.e., pref-
erence for claiming to remember rather than claiming to guess). However, a 
Bayesian one sample t-test revealed anecdotal evidence for the absence of bias 
for C- (BF

01
 = 2.4).

Intentional participants were more confident in their correct responses than in 
their errors. This effect was significant for both C+ (t

(13)
 = 3.99, p<.01, Cohen’s  

d = 1.066) and no C (t
(13)

 = 4.58, p<.001, Cohen’s d = 1.225). For C-, a Bayesian 
paired samples t-test provided anecdotal evidence for the absence of participants’ 
confidence in correct responses vs their errors (BF

01
 = 1.29). Similar results were 

observed with the Type-II scores (C+, t
(13)

 = 3.864, p<.005, Cohen’s d = 1.03; no C, 
t
(13)

 = 4.02, p<.001, Cohen’s d = 1.07; C-, BF
01

 = 1.25). However, in the learning 
phase, performance and confidence were not related to each other in the inci-
dental group (all ps>.05; C-, BF

01
 = 3.7; no C, BF

01
 = 3.59; but C+, BF

01
 =0.88). In  

addition, in our incidental group, the C statistics were not significantly different 
from 0, (all ps>.05; C+, BF

01
 = 2.02; C-, BF

01
 = 3.7; no C, BF

01
 = 3.69), indicat-

ing the absence of any response bias. Regarding the Guessing criterion, participants 
in both groups were not above chance level (.5) when claiming to guess during 
the learning phase, whatever the identity of the preceding cue (for the ps and BF  
see Table 5.4).

In the stabilization phase, the C statistic was significantly different from 0 in the 
intentional group for all types of cues (no C: M = -2.42, SD = 3.47, t

(13)
 = -2.618, 

p<.05, Cohen’s d = .7; for C+ : M = -3.07, SD = 2.16, t
(13)

 = -5.32, p<.001, 
Cohen’s d = 1.29; and C- : M = -2.44, SD = 3.1, t

(13)
 = -2.94, p<.05, Cohen’s d 

= 1.16) indicating that participants had a liberal bias. Intentional participants were 
also more confident in their correct than in their incorrect responses, both after 
C+ and no C (t

(13)
 = 5.99, p<.001, Cohen’s d = 1.6 and t

(13)
 = 2.52, p<.05, Cohen’s  

d = .67, respectively). Furthermore, in that latter phase, the intentional group 
was also able to recognize that C- predicted the absence of the shield (t

(13)
 = 2.59, 

p<.05, Cohen’s d = .69). These results were corroborated by the Type-II scores 
(no C, t

(13)
 = 2.543, p<.05, Cohen’s d = .68; C+, t

(13)
 = 5.949, p<.001, Cohen’s  

d = 1.59; C-, t
(13)

 = 2.619, p<.05, Cohen’s d = .7).

TABLE 5.4  �Description of p values and BF of the comparison of guessing criterion in 
Experiment 2.

Group
Intentional

Phase C+ C- No C
Learning p 945 1 .959

BF
01

8.5 14.61 9.09
Stabilization p .694 .997 .987

BF
01

5.19 11.67 10.62
Incidental Learning p .605 .97 .291

BF
01

4.47 9.34 2.31
Stabilization p .976 .812 .989

BF
01

9.64 6.37 10.53
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In the incidental group, the C statistic was significantly different from 0 for no 
C (M = -2.27, SD = 2.65, t

(13)
 = -3.21, p<.01, Cohen’s d = .86), and marginal 

for C+ (M = -1.9, SD = 3.43, t
(13)

 = -2.07, p = .059, Cohen’s d = .63), indicating 
that participants had a liberal bias. However, a Bayesian one sample t-test provided 
anecdotal evidence for the absence of bias on C- (BF

01
 = 2.11). In the inciden-

tal group, participants became more confident in their correct responses than in 
their errors in the stabilization phase; both after C+ and no C (t

(13)
 = 2.355, p<.05, 

Cohen’s d = .63 and t
(13)

 = 2.882, p<.05, Cohen’s d = .77, respectively) but not 
after C- (BF

01
 = 1.94). The same results were obtained using the Type-II scores 

(no C, t
(13)

 = 2.984, p<.05, Cohen’s d = .8; C+, t
(13)

 = 2.374, p<.05; Cohen’s d = .63; 
C- , t

(13)
 = 1.112, p = .09, Cohen’s d = .29; BF

01
 = 2.2). Concerning the guess-

ing criterion, participants were at chance in both groups when claiming to guess 
whether or not the shield would appear next whatever the identity of the preced-
ing cue (for the ps and BF see Table 5.4).

Discussion

The results of Experiment 2 suggest that learning is gradual. However, some fur-
ther factors also influence the dynamics of learning, such as instructions and the 
inherent complexity of the association, which in turn influences metaknowledge. 
In particular, we observed differences between the intentional and the incidental 
groups. During the learning phase, the intentional group exhibited a clear behav-
ioral difference between their sensitivity to C+ and C- conditions: participants 
kept pressing the spacebar more often when C- was presented than when C+ was 
presented, thus reflecting their understanding that when the cue was absent (no C), 
nothing happened. However, when a cue was displayed, they only seemed to have 
conscious knowledge about the relationship between the occurrence of C+ and the 
onset of the shield. Nevertheless, they were able to express some metaknowledge 
about C- and the absence of the shield in the second phase of learning.

Interestingly, the incidental group showed a delayed pattern of behavior in 
comparison with the intentional group. Without instructions, participants failed to 
show any behavioral, explicit, or implicit learning in the first phase. In the stabiliza-
tion phase, they were able to differentiate between the different cues, but they only 
expressed explicit knowledge about the absence of any outcome in the absence of 
a cue, and about the relationship between C+ and the appearance of the shield.

Overall, our data suggest that it was easier for participants to represent the 
link between a cue and an outcome than between a cue and the absence of this 
outcome. This result could be explained by associative theories, which predict 
learning only when the two linked events, a cue and an outcome, are actually 
presented. For example, in the Rescorla and Wagner (1972) model, the more an 
outcome is unpredictable, the more learning can occur. In this model, the two 
stimuli are needed to reinforce the association between them (but see Van Hamme 
and Wasserman, 1994). In our experiment, participants failed to exhibit explicit 
learning about C- and the absence of the outcome. This is congruent with the 
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predictions of associative theories, since it is not possible to learn when no event 
is present. However, participants were able to learn and to express explicit knowl-
edge about the circumstances when no cue was presented and nothing would 
happen, indicating that participants used rules or inferences to perform correctly. 
Such ruled-based learning is influenced by the amount of learning (one’s expertise; 
Shanks and Darby, 1998). One possible explanation of our results could be that 
participants had sufficient practice to learn about the fact that only when a cue 
was present would the outcome appear. Nevertheless, more training is required to 
develop rules about C- conditions. If learning was driven only by inference and 
by a rule-based process, participants should not experience difficulties discerning 
between C+ and C-. In other words, once a participant realized that cues were 
informative and that in the absence of a cue the shield never appeared, he/she 
should be able to reason about cues. Thus, the participant could consciously detect 
that C- is never followed by the shield at the same time that he/she identified that 
C+ was followed by the shield. This pattern of data fits well with a dual-process 
theory in which two learning processes influence behavior and consciousness.

The intentional group exhibited improvement in behavior faster than the 
incidental group, which needed more evidence to learn. This suggests that instruc-
tions also modulate the speed of behavioral and conscious learning. Likewise, the 
intentional group seemed to achieve metaknowledge of the relationship between 
cues quicker than the non-instructed group, who only demonstrated some explicit 
knowledge in the stabilization phase. These results are in line with earlier obser-
vations showing that instructions influence learning (Lovibond, Been, Mitchell, 
Bouton, and Frohardt, 2003; Mertens, Kuhn, Raes, Kalisch, De Houwer, and 
Lonsdorf, 2016; Mitchell and Lovibond, 2002; Raes, De Houwer, De Schryver, 
Brass, and Kalisch, 2014; Sternberg and McClelland, 2012; Waldmann and 
Holyoak, 1992, 1997). In addition, our behavioral and consciousness results fit well 
with the statistical learning literature, showing that instructions affect the amount 
of participants’ knowledge and metaknowledge of a structure. In intentional con-
ditions, participants could use explicit strategies to learn the contingencies of the 
material, and they acquired more knowledge and more metaknowledge than par-
ticipants in incidental conditions (Arciuli, Torkildsen, Stevens, and Simpson, 2014; 
Bertels, Destrebecqz, and Franco, 2015; Turk-Browne, Junge, and Scholl, 2005). 
Explicit instructions were sufficient to modify participants’ behavior (Mitchell and 
Lovibond, 2002), which represents a challenge to associative learning theories: if 
learning is only driven by the cumulative presentation of contingencies, we should 
not observe differences between intentional and incidental groups.

Nevertheless, interpretations of the results of the measures of consciousness need 
to be taken with caution. During the control tower trials, participants were first 
required to indicate whether or not they believed the shield would appear next, 
and then whether or not they were confident in their response. The confidence 
measures refer to the judgment they had just provided and not about the cause of 
the appearance of the shield. It is still possible that participants remained unaware 
about the relation between the cue and the outcome, even if our criteria provided 
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evidence of metaknowledge. For example, a participant could know that the shield 
would appear and he could be certain of this while remaining unable to explain 
the reason why he responded he was sure that the shield would appear (Dienes and 
Scott, 2005). Further experiments are needed to disentangle the dynamics of learn-
ing and consciousness in these situations.

General discussion

Across the two experiments, the dynamics of learning was measured to address the 
question of whether learning always depends on rule acquisition, or whether it 
can take place gradually through repeated exposure to the paired events. A dual-
process theory, where the two processes of learning, associative and inferential, is 
consistent with the results of our two experiments. Learning initially seems to be 
gradual and to some extent unconscious. This associative learning process drives 
behavioral changes that participants end up noticing with training. Noticing the 
association results in further changes in behavior that are accompanied by con-
scious awareness. However, this associative process could not explain all the results. 
Behavior was also influenced by top-down information. For instance, instructions 
and participants’ awareness of the task influenced learning. This evidence predis-
poses participants’ attention to the relevant cues, inducing faster learning. This 
result suggests that procedural and declarative representations develop in parallel 
and interact with each other during learning (Shanks, 2007). Humans have the 
ability to learn on a trial-by-trial error-correction basis and, at the same time, they 
are able to reason about the situation, so creating expectancies about the process 
underlying the task.

In addition, in our experiment, participants were asked to produce a predictive 
judgment that could be biased by reasoning. Participants could correctly encode 
the relationship between the cues and the shield, as they were sensitive to the 
contingencies between them. However, when they were asked to produce a pre-
dictive judgment, it is possible that they expressed not only the relevant knowledge 
they had acquired, but they could also manifest a biased reasoning about the task. 
Actually, participants could track and extract contingencies even if they are also 
biased when they are asked to express judgments (Allan, Siegel, and Tangen, 2005; 
Ratliff and Nosek, 2010; Vadillo, Blanco, Yarritu, and Matute, 2016). This pos-
sible explanation matched with a dual-process theory. Interestingly, in our studies, 
dissociations between behavior and explicit learning were found. These dissocia-
tions could also constitute evidence for the coexistence of two learning processes 
(McLaren et al., 2014; McLaren, Green, and Mackintosh, 1994).

Dissociations between behavior and reasoning are already documented in other 
forms of learning. For instance, it is possible to dissociate the distinct influences of 
automatic associative learning and conscious expectancies on behavior (Perruchet, 
1985). In addition, in the implicit learning literature, it is well known that partici-
pants can learn gradually while remaining unable to verbalize the rules underlying 
the task (for instance, in Serial Reaction Time tasks, Destrebecqz and Cleeremans, 
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2001; or in associative learning paradigms, Alamia et al. 2016). To sum up, learn-
ing in this task seems to be driven by the interactive relationships of automatically 
learned associations between events and declarative knowledge. Further experi-
ments are needed to measure the separate contributions of each process during 
learning and to explore the relation between the two processes.
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CAN UNCONSCIOUS STRUCTURAL 
KNOWLEDGE BE STRATEGICALLY 
CONTROLLED?

Elisabeth Norman, Ryan B. Scott, Mark C. Price,  
Emma Jones, and Zoltan Dienes

Introduction

Strategic control refers to the ability to apply knowledge flexibly in an intentional 
manner according to current situational demands. If knowledge is under strate-
gic control, this has traditionally been taken as evidence that the knowledge in 
question is consciously available. Examples include Jacoby (1991), who views stra-
tegic control as a criterion of consciousness, and Baars’ (1988) Global Workspace 
Model, according to which conscious information is both controllable and avail-
able to higher order thought. However, there are also theories that do not regard 
strategic control as indicative of consciousness. Higher Order Thought theories do 
not make claims about the relationship between control and consciousness (Lau 
and Rosenthal, 2011; Rosenthal, 2005), and the “cold control theory” of hyp-
nosis regards unconscious executive control as characteristic of hypnosis (Dienes 
and Perner, 2007). In addition, there is now a relatively large body of empirical 
evidence supporting the hypothesis that strategic control may occur for cogni-
tive content that it is itself not available to consciousness. For example, Lau and 
Passingham (2007) found that unconsciously perceived stimuli interfered with 
tasks traditionally thought to require conscious control. Similarly, several stud-
ies have reported findings indicating that the go-no go network can be activated 
unconsciously (Hepler and Albarracin, 2013; Van Gaal, Ridderinkhof, Scholte, 
and Lamme, 2010), and a study by Schmidt, Crump, Cheesman, and Besner 
(2007) showed that participants were able to strategically control the application 
of learned contingencies between colour-unrelated words and colours in a con-
tingency learning paradigm. The focus of the current chapter is on whether the 
application of unconscious knowledge, acquired through implicit learning, may 
also be strategically controlled.
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Procedures for measuring strategic control in implicit learning

A number of experimental procedures have been developed for measuring stra-
tegic control in implicit learning, both within the serial reaction time task (SRT; 
Nissen and Bullemer, 1987) and within artificial grammar learning (AGL; Reber, 
1967). Most of these are based on the logic of Jacoby’s (1991) Process Dissociation 
Procedure, which compares performance under conditions where a person “tries 
to” versus “tries not to” engage in some act, and where a comparison of per-
formance under the two conditions is seen as indicating the relative influence of 
conscious and unconscious knowledge.

We here give a brief overview of the most important methods for assessing stra-
tegic control in SRT and AGL learning (see Norman, 2015, for a more complete 
overview).

In the SRT task, participants are presented with a visual target that moves 
between positions on a computer screen according to a complex, pre-defined 
sequence. The instruction is to make fast key-press responses to indicate the 
position of the moving target, and reaction time differences between target 
movements that either follow or violate this sequence are taken to indicate learn-
ing. In this paradigm, strategic control refers to participants’ ability to control 
their application of sequence knowledge according to task instructions. The most 
common measurement of this ability is the generation exclusion task, in which par-
ticipants are instructed to generate a sequence that is different from the sequence 
on which they have been trained (Destrebecqz and Cleeremans, 2001; Fu, Fu, 
and Dienes, 2008; Goschke, 1998). Strategic control can be assessed by compar-
ing performance under these instructions and under conditions when participants 
try to generate the trained sequence (i.e., inclusion instructions). Two varieties 
of the inclusion/exclusion generation task are free generation, in which the partic-
ipants freely generate an n-element sequence (e.g., Destrebecqz and Cleeremans, 
2001), and cued generation, where each trial involves generating a continuation 
response to a short sequence of, e.g., 3–5 sequence elements. An alternative 
procedure is the generation rotation task (Norman, Price, Duff, and Mentzoni, 
2007). This is designed to avoid the possibility that successful exclusion perfor-
mance could be influenced by a global inhibition of the influence of acquired 
knowledge, rather than by a moment-to-moment monitoring of this knowledge. 
During training and generation, stimuli are presented in a square layout. In a 
cued generation task, participants are instructed to predict the next target posi-
tion. However, the stimulus–response mapping varies between individual trials. 
More specifically, participants are told to rotate their response, clockwise or 
anticlockwise, in accordance with a randomly varying cue (-1, +1, -2) indicated 
on screen. Yet another procedure is the inclusion/exclusion recognition task (Mong, 
McCabe, and Clegg, 2012), where participants are first trained on two different 
sequences, and then have to classify a series of unseen sequences according to 
familiarity. Under inclusion instructions, items are to be classified as “old” if they 
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follow either regularity. Under exclusion instructions, items are to be classified as 
“old” if they follow their target sequence, and as “new” if not.

In AGL, participants are exposed to a series of non-word letter strings that are con-
structed from a complex, finite-state grammar (Reber, 1967). Learning is measured 
as the ability to classify unseen letter strings according to grammaticality, and strategic 
control refers to the ability to apply or withhold grammar knowledge according to 
instructions. Most methodological procedures for estimating strategic control involve 
exposure to two different grammars (A vs. B; Dienes, Altmann, Kwan, and Goode, 
1995) in two separate training phases. On each trial of a subsequent test phase, par-
ticipants are presented with letter strings that either follow one of these two grammars 
or are ungrammatical and follow neither. Participants may be instructed to classify 
whether new letter strings follow one specified target grammar throughout the test 
block (Dienes et al., 1995), which can be referred to as a pure-block procedure (Norman, 
Price, and Jones, 2011). Alternatively, one may instruct participants to alternate their 
classification between the two grammars on a trial-by-trial basis (Norman et al., 2011), 
referred to as a mixed-block procedure; this can be seen as a more demanding test of stra-
tegic control in that it requires a moment-by-moment monitoring of both grammars. 
An alternative procedure developed by Higham, Vokey, and Pritchard (2000) also 
involves exposure to two grammars. The test phase contains two types of instruction. 
In-concert instructions ask participants to identify strings that are consistent with either 
grammar as “grammatical”, whereas opposition instructions ask them to identify only 
those strings that are consistent with one of the grammars. The assumption here is that 
opposition, but not in-concert instruction, requires strategic control. The in-concert 
condition is largely similar to Dienes et al.’s procedure. A final example is from the 
neighbouring area of statistical learning. Franco, Cleeremans, and Destrebecqz (2011) 
presented participants with two speech streams generated from two “artificial lan-
guages” (L1 and L2). In a discrimination task participants were presented with words 
from L1, L2, or neither. They either received inclusion instructions, which asked them 
to say “yes” if the word was from either language, or exclusion instructions, which asked 
them to say “yes” if it was from their target language (L1 or L2).

Strategic control and consciousness in implicit learning: 
theoretical positions

We will here address some theoretical positions on the relationship between stra-
tegic control and consciousness in implicit learning.

Strategic control indicates conscious knowledge. Some would regard strategic control 
as an indicator of conscious knowledge. In line with the theoretical frameworks 
of Jacoby (1991) and Baars (1988), measures of strategic control in implicit learn-
ing experiments have often been argued to show that control increases with  
consciousness – i.e. with the extent to which learning can be considered con-
scious rather than unconscious. For example, Destrebecqz and Cleeremans (2001) 
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used strategic control during the SRT exclusion task to argue that knowledge was 
less conscious at lower response–stimulus intervals (RSIs), and more conscious 
when the interval was higher. Similarly, Wilkinson and Shanks (2004) argued that 
acquired knowledge was conscious when RSI was set to zero (i.e., RSI-0) on the 
basis of successful exclusion performance in this condition. Thus, they concluded 
that sequence learning was explicit rather than implicit. Higham et al. (2000) also 
included their measure of strategic control with the aim of separating between 
conscious/controlled influences, on the one hand, and unconscious/automatic 
influences on the other. However, there is also a handful of studies which specifi-
cally address whether knowledge that is not fully conscious can nevertheless be 
strategically controlled. These have been respectively inspired by the distinction 
between judgement/structural knowledge and the fringe consciousness framework.

Strategic control can occur with unconscious structural knowledge. A position which sees 
strategic control as compatible with unconscious knowledge, builds on a distinc-
tion between two types of knowledge hypothesised to result from implicit learning. 
These are judgement knowledge of whether nor not a certain stimulus complies with 
the acquired rules, and knowledge of the structure of these rules, i.e., structural 
knowledge (Dienes and Scott, 2005; Scott and Dienes, 2008, 2010). The assumption 
is that either of these varieties of knowledge could be conscious or unconscious. 
If structural knowledge is conscious, this will lead to conscious judgement knowl-
edge. However, unconscious structural knowledge could be associated with either 
conscious or unconscious judgement knowledge. One example is the state of 
knowing that a sentence of one’s native language is grammatical but without know-
ing why it is grammatical (Dienes and Scott, 2005). To assess the conscious status of 
each of the two types of knowledge in an implicit learning experiment, one may 
ask participants which decision strategy they used when making their classification 
response. Suggested response alternatives include “random choice”, “intuition”, 
“familiarity”, “memory” or “rules” (Scott and Dienes, 2008). “Random choice”, 
“intuition”, and “familiarity” are assumed to reflect unconscious structural knowl-
edge and therefore defined as “implicit” decision strategies, whereas “memory” 
and “rules” are commonly referred to as “explicit” decision strategies that are 
assumed to reflect conscious structural knowledge. The difference between “ran-
dom choice”, on the one hand, and “intuition” and “familiarity” on the other, is 
that the former is also associated with unconscious judgement knowledge whereas 
the latter two are associated with conscious judgement knowledge. In both AGL 
and SRT experiments, strategic control has been reported even when structural 
knowledge is unconscious. For example, Wan, Dienes, and Fu (2008) found that 
participants were able to strategically control the application of two grammars even 
when they reported using feelings, intuition, or random choice to arrive at their 
decision. Similarly, Fu, Dienes, and Fu (2010) found successful exclusion ability in 
an SRT task, even for trials attributed to intuition.

Along similar lines, Norman et al. (2007, 2011) have addressed whether implicit, 
unconscious knowledge may give rise to intuitive “fringe” feelings that may be 
strategically controlled. Using the terminology of Dienes and Scott (2005), this 
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would refer to a situation of conscious judgement knowledge without conscious 
structural knowledge. These experiments have focused on whether participants 
who hold incorrect explicit beliefs about the nature/structure of acquired knowl-
edge, thus indicating that structural knowledge is unconscious, can nevertheless 
strategically control the application of that knowledge. The implicit learning task 
must then be set up in a way that allows the participant to develop incorrect beliefs 
about the rules. This can be done by, e.g., introducing additional random vari-
ation in colour and shape of target stimuli, and target position indicators, in an 
SRT task (Norman et al., 2007). Similarly, random variation can be introduced 
into the colours and fonts of string elements in AGL (Norman et al., 2011). In an 
SRT task, Norman et al. (2007) found that even participants who misattributed the 
nature of the target sequence to irrelevant stimulus properties still showed strategic 
control over the application of sequence knowledge on a generation rotation task. 
Similarly, Norman et  al. (2011) found that even participants who misattributed 
the nature of AGL letter regularities to irrelevant string elements showed strategic 
control over the application of two grammars in a mixed-block classification task.

Taken together, there is already evidence to show that the application of 
implicitly learned knowledge can be strategically controlled, even when it can be 
demonstrated that structural knowledge is unconscious.

Combining measurement procedures to study strategic control 
over the application of unconscious structural knowledge

Different studies have applied different measurement procedures for estimating 
whether structural knowledge of artificial grammars is conscious or unconscious. 
Some studies have measured strategic control among subsets of participants who 
claim unawareness of the learned rules (Norman et al., 2007, 2011), whereas oth-
ers have measured it on subsets of trials on which participants report having used 
decision strategies involving unconscious structural knowledge (Dienes and Scott, 
2008; Fu et al., 2010; Wan et al., 2008). Both forms of measurement assess par-
ticipants’ awareness of structural knowledge. However, whereas post-experimental 
questions about the nature of sequence or grammar rules ask about participants’ 
representation of the contents of rule knowledge, decision strategy judgements can 
be seen to mainly reflect participants’ understanding of the extent to which their 
response involved the application of conscious structural knowledge, without assess-
ing the content itself (Norman, Scott, Price, and Dienes, 2016). Even though it 
is reasonable to assume that the two measures would most often converge, there 
might also be exceptions, e.g., when someone reported that they responded on 
the basis of a conscious rule related to irrelevant stimulus properties. Used in com-
bination the two measures could be seen as a conservative measure of whether 
conscious structural knowledge is conscious.

One exception is a recent AGL experiment in which we asked participants, in a 
combined two-step judgement for each classification trial, to indicate (a) their decision 
strategy (random choice, feelings of intuition/familiarity, or explicit rules/memories) 
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and (b) the relevant stimulus dimension (letter, colour, font) (Norman, et  al., 
2016). The rationale for combining the procedures was to provide a robust test 
of whether unconscious knowledge can be strategically controlled. If strategic 
control could be demonstrated in cases where participants both claimed that con-
scious structural knowledge was not involved, and also attributed their responses 
to irrelevant stimulus dimensions, this would go against the traditional view of 
strategic control being indicative of consciousness. However, we did not find 
strong evidence of strategic control on trials where feelings of intuition/familiarity 
were attributed to incorrect stimulus dimensions – the data were not sensitive 
enough to distinguish reliably between possible presence of strategic control and 
the null hypothesis of no control. Stronger evidence of strategic control was found 
on trials where the correct stimulus dimension was reported. We therefore specu-
lated that strategic control may require at least global awareness of the nature 
of the rules, i.e., which stimulus dimension was relevant to the grammaticality 
judgement. However, a concern is that trial-by-trial ratings of stimulus dimension 
may increase participants’ conscious hypothesis-testing and prompt their atten-
tion toward the correct nature of the rule. Moreover, this procedure may also not 
necessarily distinguish precisely between attention to certain stimulus properties 
and awareness of their importance to the rule. Therefore, these results need to be 
supplemented by a study in which decision strategies are measured on a trial-by-
trial basis (cf. Dienes and Scott, 2005), but where rule awareness is assessed at the 
end of the experiment (cf. Norman et al., 2011). We now present an experiment 
that was designed for this purpose.

Method

Participants were 72 Norwegian students (36 females, 36 males) aged 18–33  
(M = 21.7, SD = 3.2). All participants took part in two training phases, in each of 
which they were presented with letter strings from a different finite-state grammar 
(grammar A versus B, order counterbalanced across participants). Grammars and 
letter strings were taken from Dienes et al. (1995, see Figure 6.1). The AGL task 
was programmed in E-prime 2.0 (Schneider, Eschman, and Zuccolotto, 2002a, 
2002b) and displayed by a 19” monitor. In each of the two training phases, each of 
32 letter strings was presented three times, one at a time, in random order.

Strings consisted of 5–9 letters (X, V, M, R, T), with each letter written on one 
of five coloured backgrounds (red, purple, blue, green, or black) and in one of five 
different fonts (bold, italics, normal, outline, underline). The colour and font of each 
letter varied randomly between letter strings (see Figure 6.2). The instructions were 
to examine each string closely during its 7500 ms display period. To ensure partici-
pants attended all 3 stimulus dimensions, a post-trial cue was given on 24 randomly 
selected trials in each training phase, asking participants to report either the letter  
(8 trials), colour (8 trials), or font (8 trials) of a randomly chosen string element.

When both training phases were completed, participants were informed that let-
ter strings had been governed by a different complex rule in each phase. They then 
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proceeded to the test phase, which consisted of 60 classification trials. On each trial, 
three novel letter strings were presented simultaneously in a vertical column – one 
grammar A string, one grammar B string, and one ungrammatical string. Each string 
type occurred equally often in each screen position. Following the procedure by 
Norman et al. (2011), the classification rule, i.e., whether to select the grammar A 
or grammar B item, varied randomly between individual trials and was indicated 
by a written cue (“Rule 1?”/”Rule 2?”) displayed above the letter strings (where 
“Rule 1” referred to the grammar (A or B) that had governed strings during the first 
training phase, and “Rule 2” to the second grammar (A or B)).

After each classification judgement participants rated their decision confidence 
on a three-point scale, but these data are not reported. Finally, using the mouse to 
select from an on-screen list, they indicated whether their response had been based 
on random choice, intuition, familiarity, rules, or memory (Scott and Dienes, 
2008). The “implicit” decision strategies of “random choice, intuition, and famili-
arity” represent claims by participants that they were unaware of the structural 
aspects of the stimuli that motivated their decision (i.e., there was unconscious 
structural knowledge). Trials attributed to intuition or familiarity differ from those 
attributed to random choice because, in the former case, the participant claims 
to be aware of knowing whether they categorized correctly, even if they do not 
know why (i.e., judgement knowledge is conscious in the former but not latter 
case). The “explicit” decision strategies of “rules and memory” represent claims by 
participants that they were aware of relevant structural properties and indicate that 
both judgement knowledge and structural knowledge are conscious. (See Dienes, 
2008, 2012 for further explication of structural and judgement knowledge.)

After the test phase, participants received a questionnaire where they allocated 
12 points between the three stimulus dimensions (letter, colour, font) to reflect 
the extent to which they thought each dimension had contributed to the grammar 
rules. Conservatively, only participants who allocated 0 points to “letter” were 
classified as unaware of the nature of the rule, and all others were classified as 
potentially aware. The frequencies with which participants allocated the distribu-
tion of points are presented in Table 6.1.

Results

Each participant’s degree of strategic control was expressed as a strategic score 
(Dienes et al., 1995), defined as the proportion of consistent strings chosen out of 

TABLE 6.1  �Frequencies with which participants allocated 0–12 points to the letter 
dimension.

Number of points allocated to “letters”

  0 1 2 3 4 5 6 7 8 9 10 11 12
N 16 0 0 1 5 0 0 0 5 1   2   0 22
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FIGURE 6.1  �The two finite-state grammars used in the experiments, grammar A (top), 
and grammar B (bottom).

all consistent and inconsistent strings. A consistent string is one that follows the tar-
get grammar and an inconsistent string is one that follows the non-target grammar.

As analysis of strategic control over grammar knowledge is only meaningful if 
there is any learning at all, analyses of strategic control only included the 52/72 of 
participants who chose ungrammatical strings on less than a third of trials. (Note 
this filter is orthogonal to, and therefore does not artifactually bias, the comparison 
of the two grammars.) Of these participants, 36 were classified as aware and 16 as 
unaware of the nature of the rule.

The relationship between strategic control and awareness of the correct rule 
dimension was examined by comparing strategic scores to a chance level of .5. This 
was done separately for participants who expressed awareness of the relevance of 
the letter modality on the post-experimental questionnaire, versus for those who 
did not. It was also done separately for trials attributed to implicit versus explicit 
decision strategies. This yielded four conditions.We report effect sizes and Bayes 
factors in addition to NHST p-values, so that the reader can assess both the strength 
of evidence and conventional significance levels for any effects (Cumming, 2012; 
Dienes, 2014, 2015). B

H[0,.10]
 refers to a Bayes factor used to test the hypothesis that 

strategic scores are above chance level of .5, represented as a half-normal with a SD 
of .10 above chance level, against the H

0
, the hypothesis of chance performance. 
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The estimated SD of .10 was chosen based on data from a comparable previous 
study (Norman et al., 2011). A B of 3 or above indicates substantial evidence for 
the alternative above the null hypothesis, a B of 1/3 or below indicates substantial 
evidence for the null above the alternative hypothesis, and a B between 1/3 and 
3 indicates data insensitivity for distinguishing between the alternative and null 
hypotheses (Dienes, 2014, 2015). Results are presented in Table 6.2.

Among participants who correctly attributed grammar rules to the letter 
dimension (i.e., “aware” participants), the Bayes factor was always above 3, and 
effect sizes were medium, regardless of whether decision strategy was explicit or 
implicit. This indicates substantial evidence for the alternative hypothesis above 
the null hypothesis (Dienes, 2014, 2015), in this case that strategic control was 
present. T-tests comparing performance to a chance level of .5 also showed that 
strategic scores were significantly above chance both for trials attributed to implicit 
and explicit decision strategies. Among participants who did not attribute gram-
mar rules to the letter dimension (i.e., “unaware” participants), the Bayes factor 
was above 3 and the effect size was medium for implicit decision strategies, sup-
porting the presence of strategic control despite a borderline conventional p-value 

FIGURE 6.2  �Three different examples of how the letter string «XXRVTM» (grammar A, 
Dienes et al., 1995) may appear with random variation in colour and font. 
The colours of the five elements of each letter string (from left to right) are: 
black, blue, red, red, blue, purple (top string); red, red, green, purple, black, 
blue (middle string); green, blue, green, red, purple, blue (bottom string).



168  Elisabeth Norman et al. 

in a t-test. For explicit decision strategies, the Bayes factor was between 1/3 and 
3 and the effect size was small, which indicates insensitivity for distinguishing 
between the alternative and the null hypothesis on these trials.1

Discussion

The key finding of the current experiment was that participants who did not express 
conscious structural knowledge of two learned grammars nevertheless showed some 
ability to strategically control the application of those grammars on a trial-by-trial 
basis. More specifically, strategic control was found on trials where participants 
claimed to respond on the basis of intuitive feelings, i.e., “implicit” decision strate-
gies. This was the case even among participants who, after the experiment, expressed 
no awareness of the general nature of the grammars. Instead, they indicated that rules 
governing strings were related to irrelevant stimulus dimensions. The data therefore 
support the hypothesis that strategic control may be possible even when structural 
knowledge is not fully conscious. Our experiment applied two criteria for identifying 
cases of unconscious structural knowledge, i.e., that participants were not reporting 
the use of explicit decision strategies to arrive at their classification decisions, and that 
they expressed unawareness of the general nature of the acquired rules measured by a 
global rating after the experiment. Even under the combination of these two criteria, 
participants chose the target grammar more often than the non-target grammar.

Compared to the studies of Dienes et al., (1995) and Wan et al. (2008), our 
measure of strategic control was very stringent. Participants had to vary the clas-
sification rule between trials, which has been argued to require a higher degree 
of flexible control than if it is only varied between blocks of trials (Norman et al., 
2011) because participants need to monitor both grammars on a moment-by-
moment basis. Moreover, our criterion for including participants in the “unaware” 

TABLE 6.2  �Means and statistics for implicit versus explicit response strategies, reported 
separately for aware versus unaware participants.

N* Strategic  
score  
M(SD)  
B

H[0,.10]

t-test compared to 
chance (.5)  
t(df)  
p(2-tailed)

Cohen’s 
effect size  
d

Aware + implicit 
strategy

36 .59 (.16)
92.40

3.28 (35)
.002

.56

Aware + explicit 
strategy

29 .61 (.28)
273.98

2.17 (28)
.04

.39

Unaware + implicit 
strategy

16 .55 (.10)
3.10

2.08 (15)
.055

.50

Unaware + explicit 
strategy

12 .51 (.16)
.49

.14 (11)

.89
.06

* Note: N differs between cells according to how many participants had responses within response 
category in question.
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subgroup was also very conservative, with only those participants who allocated 
zero points to the correct stimulus dimension being classified as unaware. Even 
though this implies that the “aware” subgroup may also contain participants who 
were less than fully aware that the rule was related to letters alone, it importantly 
reduces the possibility that the “unaware” subgroup contained participants who 
believed that the rules were related to letters. It is parsminonious to assume that 
participants would allocate at least some points to letters if they had even some 
slight conscious knowledge of the learned rules. Failure to report the stimulus 
dimension on which the rule was based can therefore be considered a strong indi-
cator that conscious structural knowledge was present.

In sum, our data can be seen to question Jacoby’s (1991) general view that stra-
tegic control over knowledge requires conscious knowledge, and to also address 
the more general long-standing debate over whether implicit learning is dependent 
on conscious awareness of rule fragments (Johnstone and Shanks, 2001; Perruchet 
and Pacteau, 1990; Redington and Chater, 1996). Even awareness of rule frag-
ments would seem to necessitate awareness of which stimulus dimension mediates 
the rule. Given that we found grammar knowledge to be expressed without iden-
tifying the correct stimulus dimension, it seems implausible that conscious rule 
fragments can entirely account for AGL.

There is nevertheless a concern that participants who were classified as 
unaware on the post-experiment measure may have been guided by fleet-
ing awareness of letter rules during some trials of the test phase. It could be 
argued that the reliability of our self-report measure of rule awareness would 
be improved if measured on a trial-by-trial basis, and that stronger evidence of 
strategic control over unconscious structural knowledge would be provided if 
strategic control were found on individual trials that were both rated as implicit 
and claimed to be specifically related to irrelevant stimulus properties. The 
only attempt to date at identifying strategic control over unconscious structural 
knowledge using such a procedure did not find robust evidence for strategic con-
trol on individual trials where participants denied the involvement of the relevant 
dimension. However, care is needed in comparing across studies. Differences in 
measured awareness across studies that apply different measurement procedures 
cannot straightforwardly be interpreted in terms of one measure being more 
sensitive to changes in conscious awareness than another. Certain measurement 
procedures could potentially also alter what participants are aware of. As pointed 
out above, measuring rule awareness on a trial-by-trial basis may for instance 
increase the likelihood that participants explicitly search for rules and become 
aware of the general nature of the rule. Future studies in this area will have to 
develop trial-by-trial measurement procedures that are less likely to interfere with 
people’s hypothesis-testing, and that more adequately distinguish between attention 
to certain stimulus properties and awareness of their involvement in the rule, which 
is another limitation with this procedure.

Our current procedure did use a trial-by-trial measure, namely the structural 
knowledge attributions. Even with a trial-by-trial measure, noise will produce 
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some misclassification. However, the percentage of trials classified as involving 
unconscious structural knowledge was 68.80 for participants aware of the relevant 
stimulus dimension, and 85.93 for participants unaware of the relevant stimulus 
dimension. It is unlikely that measurement noise, or biased responding by partici-
pants, could explain such a large proportion of responses, involving a similar level 
of strategic knowledge as for responses classified as involving conscious strategic 
knowledge (both .58).

Although the current data supported the hypothesis that strategic control does 
not require conscious structural knowledge, more studies are needed to specifically 
address whether strategic control may require conscious judgement knowledge, 
i.e., conscious knowledge of whether or not a certain letter string is grammatical 
(Dienes and Scott, 2005). This kind of knowledge in which people are aware 
that a stimulus belongs to a given category, without having conscious access to 
the antecedents of the knowledge, has also been referred to as intuitive cognitive 
feelings (Price and Norman, 2008, 2009) or fringe consciousness (Norman, Price, 
and Duff, 2006, 2010; Norman et al., 2007). Since, for statistical reasons, the three 
implicit response categories (“random choice”, “intuition”, and “familiarity”)  
were combined in the current experiment, this question cannot be addressed from 
the current data.

As expected, participants who were aware that the rules were related to letters 
showed strategic control on trials where they claimed to apply “explicit” strate-
gies. This is consistent with previous findings showing that knowledge which 
is consciously accessible and attributed to the correct source can be strategically 
controlled (Jacoby, 1991). Strategic control was also found when these partici-
pants classified their responses as related to the correct stimulus dimension but 
as nevertheless based on “implicit” decisions. Strategic control was not found 
when participants who were generally unaware of the correct stimulus dimen-
sion rated their classification decision as “explicit”. This is expected if participants 
based their responses on incorrect, explicit hypotheses related to irrelevant stimu-
lus properties, and therefore supports the validity of the self-report ratings of  
decision strategy.

Rünger and Frensch (2010) have argued that verbal reports are sensitive 
measures of consciousness in implicit learning, but only for measures reflect-
ing the content of learning (e.g., our ratings of relevant stimulus dimension) 
and not metacognitive judgements (e.g., our ratings of explicit versus implicit 
decision strategy) which they argue are less sensitive and less informative. The 
current study shows the usefulness of both forms of verbal report measure and 
exemplifies how the two types of measurements may complement each other in  
AGL experiments.

Author note
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Note

1	 An ANOVA comparing strategic scores for implicit vs. explicit decision strategies 
between aware vs. unaware participants showed no significant main effect of aware-
ness [F(1,39) = 1.91, p = .28, η

p
2 = .03], no significant main effect of decision strategy 

[F(1,39) = .11, p = .75, η
p
2 = .002], and no significant interaction between decision 

strategy and awareness [F(1,39) = 1.31, p = .26, η
p
2 = .03].
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7
ABSTRACTION IN SEQUENCE 
LEARNING

Ferenc Kemény and Ágnes Lukács

Introduction

“Not everything is as seems” says Mr. Miyagi to Daniel in the film The Karate 
Kid when Daniel articulates his complaints on Mr. Miyagi treating him as a slave, 
making him wash and wax his cars, paint his house, etc. Soon it turns out that 
the clockwise movements required for applying the wax on the car and the counter- 
clockwise movements for removing it can also be used for blocking others’ offen-
sive actions. It is also revealed that the core point was not only to make Daniel 
wash the cars and paint the house, but to make him practice movement sequences 
that can be utilized during martial arts. Despite the great success depicted in the 
film, it is not obvious whether human skill learning behaves in such a way, that 
is, whether skills are really so independent from the source stimuli. The current 
chapter reviews the role of abstraction in an important aspect of skill learning: 
sequence learning.

Sequence learning is a fundamental ability of individuals to adapt to the envi-
ronment by identifying repeating patterns and using the acquired representations 
to predict and prepare for future events. The environmental requirements in this 
case can involve a specific required movement by a sportsperson or a yet unknown 
combination of notes a cellist has to play. It has been subject to debate whether 
sequence learning is in fact based on surface cues or abstract information. That 
is, whether participants learn changes of light intensity reflecting from the paper 
(surface physical features of letter strings), or a sequence of superordinate catego-
ries from the presentation of individual items (abstract features, see discussion by 
Redington and Chater, 1996). The current review focuses on four aspects of the 
distinction between abstract versus feature-specific sequence learning: 1) transfer, 
2) abstract sequence learning in the absence of transfer, 3) the effect of task com-
plexity in sequence learning and 4) modality-dependence of sequence learning.
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Intramodal and crossmodal transfer in sequence learning

When transfer is observed, it is taken as evidence of abstraction. That is, if learning 
with one set of stimuli affects learning with another set, it indicates learning beyond 
the level of specific items. In sequence learning, the order of the stimuli, as well as 
the stimuli themselves, provide information. If the identity of the stimuli is altered, 
but the underlying transitions are preserved, we expect a positive transfer. Transfer 
effects of this kind suggest that the underlying structure is learned independent of 
the specific stimuli. First, transfer results from Artificial Grammar Learning experi-
ments are introduced, then we focus on studies of the Serial Reaction Time Task.

The longstanding debate on the abstractness of sequence learning dates back to 
the first publication on implicit sequence learning. Reber (1967) used the proto-
type of Artificial Grammar Learning (AGL) tasks, in which participants viewed a 
set of letter strings, and were asked to copy them. Unknown to the participants, 
the strings were generated by a finite state grammar: a mini grammar defining the 
possible order of the elements. Participants only learned about the presence of an 
underlying grammar after the “copy-phase”, which served as a learning period. 
In the second phase, participants were exposed to previously unseen sequences 
that either followed the rules of the same grammar, or violated them. Reber 
also tested whether the learned grammar representation is truly independent of 
the source stimuli, and used an entirely different set of letters in the test phase. 
Results showed that participants could discriminate grammatical and agrammati-
cal sequences even for strings with the new set of letters. Thus, he concluded that 
solving this task requires and relies on the abstraction of the underlying grammar.

The same assumption inspired a further study that tested not only intradimen-
sional (from one set of letters to another), but also interdimensional and intermodal 
transfer. Altmann, Dienes and Goode (1995) tested crossmodal transfer in AGL. 
Four experiments were conducted, in which training and test stimuli differed. 
The following stimulus sets were used throughout the four experiments: audi-
tory verbal, auditory non-verbal and visual nonsense stimuli. Results showed that 
performance was best if stimulus sets were the same in the training and test phases. 
Test performance was, however, still above chance after training in another modal-
ity or dimension. That is, in spite of differences in the efficiency of transfer across 
conditions, results showed a significant positive transfer between different sets of 
stimuli using the same grammar.

While the above data might appear convincing, Tunney and Altmann (1999) 
argued that these results are not due to transfer of structural knowledge, but to 
the recognition of a specific cue. This specific cue is the illegal starting element 
of ungrammatical sequences. Tunney and Altmann replicated the experimental 
design of Altmann, Dienes and Goode (1995) with identical results. In a second 
experiment illegal (low frequency) starters were excluded from the ungrammati-
cal sequences, so that the detection of ungrammaticality could only be based on 
recognizing illicit sequences within letter strings, i.e. on implicit knowledge of the 
grammar. This manipulation resulted in the lack of positive transfer in Experiment 2. 
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The result argued against abstract grammatical information as a basis of transfer 
from one set of stimuli to the other in Altmann, Dienes and Goode’s experiment. 
Another study by Gómez (1997) also highlighted the importance of sequence-
initial clusters in transfer.

The possibility of reliance on sequence-initial clusters is not the only meth-
odological shortcoming of AGL transfer studies. Most transfer experiments also 
neglect the important issue of how participants can link pre- and post-transfer 
stimuli. Considering the previously discussed positive transfer in Altmann, Dienes 
and Goode (1995), it is not evident why transfer is expected to take place at all. In 
their Experiment 1, Altmann, Dienes and Goode (1995) trained participants with 
sequences composed of 5 letters, and tested them on sequences of 5 tones. The 
underlying grammar was identical. It was up to the participants how they mapped 
the pre- and post-transfer stimuli on each other. A set of 5 letters can be mapped 
onto a set of 5 tones in 5! = 120 ways; however, only one of these combinations is 
relevant from the perspective of the task. It is very unlikely, though, that partici-
pants can find the correct mapping in a test session of 50 items, especially if there 
are sequences with no repetitions (e.g. “hes sog pel jix” is grammatical, while the 
“hes kav jix pes” sequence is agrammatical in Experiment 3 of Altmann, Dienes 
and Goode, 1995, p. 912). Overall, it is not clear whether transfer takes place at all 
in the AGL task. The lack of transfer in such studies can be caused by the failure to 
develop the abstract regularities of the artificial grammar, or by the methodological 
problems with the applied techniques for testing transfer. We argue for the latter, 
and provide possible solutions below.

There are at least two possible solutions to link pre- and post-transfer stimuli. 
One is to use meaningful stimuli with the same semantic content: e.g. words and 
pictures of the same item (a sequence of the words “cat dog goat duck” can be linked 
to the similar sequence of images of the same animals through meaning, i.e. via 
an abstract conceptual level). The other option is to explicitly create associations 
between meaningless pre- and post-transfer stimuli. A previous study (Kemény and 
Lukács, 2011) used the former method. Participants were trained with an AGL 
task. In the training phase, sequences of auditory verbal category names (e.g. “fur-
niture, fruit, mammal, tool”) were presented; the test phase, however introduced 
category members of the same categories (e.g. “table, apple, giraffe, hammer”). These 
sequences of category members or tokens were either auditorily presented words, 
or visually presented colour pictures. That is, all participants were expected to trans-
fer structural knowledge (serial order of categories) from a set of categorical stimuli 
to a set of tokens from the same categories (serial order of members of the same 
category). Half of the participants had to transfer their knowledge within modal-
ity, and the other half between modalities. Participants showed evidence of both 
intramodal and crossmodal transfer: grammaticality judgement accuracy of partici-
pants with preceding auditory training was significantly higher both for the visual 
and the auditory tests than the performance of participants who only faced the test 
phase without training. The experiment yielded further interesting results: although 
performance in both transfer conditions was significantly above-chance level, the 
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crossmodal transfer condition showed significantly higher performance than the 
intramodal transfer condition. A possible explanation for lower performance in the 
intramodal condition is within-modality interference. Superordinate categories, like 
“fruit” or “furniture” have verbal labels, but do not have visual representation. 
There is no such thing as the image of a general fruit, we only have images of an 
orange or an apple. Hence category-level training might interfere with token-level 
testing if both are presented in the auditory modality. Most importantly, however, 
results show that participants were able to learn sequences of auditorily presented 
categories, and transferred their structural knowledge onto visual sequences of 
tokens. While this study was not designed to differentiate between structural and 
non-structural cues, it provided evidence in favour of abstract learning.

As described above, the other possibility to overcome the mapping problem is 
to couple pre- and post-transfer stimuli using a pairwise association method. An 
experiment by Lukics and Kemény (2016) exposed participants to pairwise asso-
ciations of visual and auditory stimuli. In a categorization task, participants were 
trained to associate meaningless visual stimuli to meaningless auditory stimuli. This 
way the mapping between the stimuli of the later training and test phases were 
already set. Then participants were asked to repeat visual sequences by pressing cor-
responding response keys in a limited amount of time (a method based on Conway, 
Bauernschmidt, Huang and Pisoni, 2010). Unknown to the participants, the visual 
sequences were structured. In the test phase, participants faced structured and random 
auditory sequences. Despite previous mapping of visual and auditory elements, no 
difference was found between response rates for structured and random sequences. 
This pattern of results might be due to the fact that the expression of procedural 
learning is deficient if participants have to transcode a sequence of auditory elements 
into visual items. However, no evidence was obtained that elements were abstracted.

The method of this latter study resembles another well-known sequence learn-
ing paradigm, the Serial Reaction Time Task (SRTT, Nissen and Bullemer, 1987). 
In this task, a target stimulus appears at one of four possible locations. The aim 
of the participants is to press the response key that corresponds to the stimulus 
location. Participants are asked to be as quick and as accurate with their responses 
as possible. Upon pressing the correct response key, the location of the target 
stimulus changes. Unknown to the participants, the location follows a predeter-
mined sequence. Reaction times (RTs) decrease with practice. After some time, 
the repeating sequence is replaced by a random pattern, and RTs immediately 
increase (Destrebecqz and Cleeremans, 2003).

The central aim of testing transfer in the SRTT is different from AGL stud-
ies, as these studies focus more on the basic constituents of sequence learning. 
There is a widespread debate on the basis of sequence learning. The perceptual 
learning hypothesis suggests that learning is based on the prediction of the next 
stimulus (Remillard, 2003), hence the learned sequence is composed of associations 
between stimuli. Response theory suggests that participants learn to predict the next 
response location (Willingham, Wells, Farrell, and Stemwedel, 2000). In this case, 
learning is to some extent goal oriented, as a special representation of response goals 
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is required (for related discussion of the AGL task, see Chapter 9 by Popławska-
Boruc, Sterczyński and Roczniewska, current volume). The last possibility is pure 
effector-based motor learning (Deroost, Zeeuws and Soetens, 2006). This suggests 
that specific “organs”, like fingers or muscles, learn the given motor sequence.

Previous transfer studies of the SRTT were interested in identifying what the 
crucial component of sequence learning is. If the central aspect of sequence learn-
ing is the acquisition of the response pattern, then performance is expected to be 
higher if the response pattern is maintained and all other aspects of the task are 
modified. Similarly, the stimulus (Remillard, 2003) or effector-based sequences 
(Deroost, Zeeuws and Soetens, 2006) can be selectively maintained from pre- 
to post-transfer phases. These studies showed a positive transfer from one hand 
to the other (Japikse, Negash, Howard and Howard, 2003), as well as from fin-
ger responses to arm responses, or between manual and verbal responses (Keele, 
Jennings, Jones, Caulton and Cohen, 1995).

As in the AGL task, transfer studies of the SRTT also focus on an overlap 
between pre- and post-transfer phases. While stimuli and structure are easily dis-
sociated in the AGL task, SRTT has several different layers, like response-based, 
stimulus-based or effector-based information. In contrast to the AGL task, if only 
the stimuli are altered, the response and effector-based information is still main-
tained. The maintained information (e.g. the response sequence) helps mapping 
the pre-transfer stimuli and the post-transfer stimuli. The only possible mapping is 
clear from any single post-transfer sequence chunk. This is not the case with the 
AGL task. Mapping between pre- and post-transfer stimuli is only supported by the 
abstract structure. This facilitation is generally difficult to realize based on a single 
sequence, and results are not conclusive as to whether a test session of approxi-
mately 50 randomly presented grammatical and agrammatical sequences is enough 
to obtain such a mapping.

In sum, transfer studies of AGL and SRTT traditionally focus on different 
phenomena. Studies of AGL are more concerned with the transfer of abstract, 
stimulus-independent grammar between two sets of stimuli, and AGL studies so far 
provided mixed evidence regarding the existence of transfer at that level. The lack 
of transfer can reflect the lack of such an abstract grammar representation, as well as 
a methodological problem, as pointed out above. SRTT experiments on the other 
hand focus on how different stimulus-, response- or effector-based types of infor-
mation contribute to learning performance. Thus, some item-based information 
is always maintained between pre- and post-transfer stimuli. As a result, SRTT 
transfer studies do not require real abstraction or stimulus-independent transfer. 
These methodological differences and shortcomings need to be addressed in order 
to obtain conclusive results on transfer and abstraction in sequence learning.

Abstract sequence learning without transfer

The previous section focused on abstract sequence learning as evidenced by trans-
fer effects. Several studies, however, tested the learning of abstract sequences 
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without transfer. These studies were either designed to prevent the possibility of 
simply focusing on surface, stimulus-based features, or required the interpreta-
tion of the stimuli to solve the task. In a novel design, Goschke and Bolte (2007) 
used a special task in which participants saw line drawings of objects, and had to 
name the objects. The pictures were from four different categories: body parts, 
animals, clothing and furniture. Participants were instructed to pay attention to 
the categories themselves. Unknown to the participants, the order of categories 
varied according to a six-element sequence. Like in previous SRT studies, nam-
ing latencies increased when the sequential organization was replaced by random 
presentation of items. In a second experiment, (Experiment 2, Goschke and Bolte, 
2007) participants were not instructed to pay attention to the categories, but the 
first element was identical in all sequence presentations making the beginning of 
the abstract sequence more salient. This design also resulted in sequence learning. 
When this salient cue was removed in Experiment 3, sequence learning was still 
observed even in the absence of instructions to pay attention to categories. These 
results argue for abstract learning of sequential regularities, even in the absence of 
response-based information: participants showed a sequence learning effect even 
without a sequential pattern in the stimuli or responses at the item level.

Using a neural network model based on the primate fronto-striatal system, 
Dominey and colleagues (Dominey, Lelekov, Ventre-Dominey and Jeannerod, 
1998) modelled learning on the SRTT. The central question was whether similar 
learning takes place in the presence and absence of correlated predictive surface 
information. The abstract structure was the fixed repetition of given elements, that 
is, in the case of a 6–1–3–1–6–3 sequence, Stimulus 1 is repeated two items later, 
Stimulus 6 is repeated 4 items after its first appearance, while every third item is 
Stimulus 3. Note that in this case, the first three items are unpredictable. In the 
case of correlated surface features, the items are identical (i.e. the same sequence 
of the same 3 numbers are repeated over and over again), while in the case of 
abstract structure learning, each block used a different, but structurally identical 
sequence (with the first stimulus being repeated 4 items later, the second 2 items 
later and the third 3 items later). Results showed that the models could learn the 
abstract sequence as well as the specific sequence. Dominey and colleagues also 
report two human experiments with the same learning design, with both implicit 
and explicit conditions (in the explicit condition, participants were visually shown 
the abstract sequential structure of the stimuli to be presented, and were told that 
finding this structure would help them solve the task). The correlated surface and 
abstract sequence could be learned by both implicit and explicit learners, while 
only explicit learners learned the abstract sequence alone. These results show that 
abstract sequential learning can take place, but it requires awareness over the struc-
ture to be learned.

As we previously described, the basis of learning in the SRTT is debated. It is 
not obvious which type of information contributes sequence learning: stimulus-, 
response- or effector-based information, and if more than one type is in action, 
what the relative contributions of each are. Unfortunately, the structure of the 
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SRTT makes it difficult to selectively manipulate the different types of sequences. 
Selective manipulation of the different streams of information often results in a 
serious loss of statistical power, or in the lack of sequence learning. Based on 
such results, the Correlated Sequences Approach suggests that sequence learning 
only appears in the case of at least two correlated streams of information: single 
response, stimulus or effector sequences are not learned (Meier and Cock, 2010; 
Weiermann, Cock, and Meier, 2010). Testing this hypothesis required a novel 
design, the Task Sequence Learning paradigm (Heuer, Schmidtke, and Kleinsorge, 
2001; Koch, 2001). In this complex paradigm, participants are informed that they 
will face different dichotic decision tasks. In the Animals Task, participants have 
to decide whether the target stimulus is a mammal or a bird; in the Implements 
Task, they have to decide between kitchen utensils and musical instruments; while 
in the Plants Task they have to differentiate between trees and flowers (cited from 
Weiermann and Meier, 2012). All tasks use the same response keys; hence the 
order of the tasks as well as the order of the responses can be selectively manipu-
lated. Several previous studies have shown that single response sequences or task 
sequences are not acquired, but correlated sequences lead to sequence learning 
(Cock and Meier, 2013; Kemény and Meier, 2016; Meier and Cock, 2010; Meier, 
Weiermann, and Cock, 2012). It is important to note that the task sequence (e.g. 
Animals–Instruments–Plants–Animals–Plants–Instruments) is at the level of abstract 
categories, as it is the result of inference: participants see instances of categories, 
and make a categorical decision based on the task. As a result, learning corre-
lated task and response sequences means learning something not stimulus-bound. 
It would be important, however, to test whether sequence learning emerges from 
instruction or is based on the fact that some categories, like trees and flowers, are 
hierarchically organized into higher-level categories, hence the concepts of the 
higher-level categories emerge from the activation of the member categories. That 
is, would sequence learning also appear in the absence of task-based instructions? 
Or would it be possible to learn a sequence of tasks when the decisions are related 
to ad hoc categories, i.e. instead of two different categories of animals, partici-
pants have to decide between two unrelated categories? These questions of abstract 
task sequence learning await future investigation (for further related discussion see 
Meier and Cock, 2012).

The above section described the learning of abstract sequences. All the above-
mentioned tasks require the activation of information that is not directly observable 
from the physical features of stimuli, but is available through the interpretation of 
the stimuli. These results argue that abstraction might be a consequence of task 
requirements: if solving the specific experimental task requires the interpretation 
of the stimuli, abstract learning can take place (see Kemény and Lukács, 2016 for 
further discussion).

The differentiation between interpreted and non-interpreted stimuli in sequence 
learning is not new and their processing might rely on different neural pathways. 
Keele, Ivry, Mayr, Hazeltine and Heuer (2003) argue that there are two separate 
neural architectures underlying sequence learning: a dorsal and a ventral pathway. 
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The dorsal stream works with uninterpreted stimuli. As learning is bound to the 
input modality, stimuli cannot be linked to each other across dimensions or modal-
ities. That is, the dorsal stream only processes sequences with elements from the 
same dimension. Since the input signal is uninterpreted, it is difficult to verbalize 
the sequence, which makes it impossible to directly recall it (Keele et al., 2003). 
Hence, sequence representations of the dorsal stream are implicit. The ventral 
stream, in contrast, processes categorized input. The categorized nature of input 
makes it possible to integrate interdimensional stimuli into a single sequence, and 
to verbalize and/or recall that sequence. Conscious access, however, is not neces-
sary: ventral representations may be either implicit or explicit. In sum, according 
to Keele and colleagues (2003) the interpreted versus uninterpreted nature of the 
stimuli is a central aspect in the underlying neural pathways behind learning.

Task complexity

Abstractness can also be a matter of degree associated with task complexity. This is 
perhaps best exemplified by the wide variety of tasks used in the area of statistical 
learning and the resulting differences in the abstractness of the acquired representa-
tions. The following section will briefly introduce how the original AGL task was 
modified to test hypotheses related to language acquisition. The different tasks 
show a wide range of variability in task complexity: the second part of the section 
focuses on this issue.

The current literature on learning sets of artificial sequences uses a wide array of 
tasks in the domain of statistical learning. A seminal paper by Saffran and colleagues 
(1996) provided an empirical demonstration of 8-month-old infants’ sensitivity to 
differences in transitional probabilities (TPs) in sequences of nonsense syllables. In 
the experiment, infants were exposed to a 2-minute-long monotonous stream of 
CV syllables. CV syllables formed trisyllabic pseudowords. Syllables within words 
always followed each other (TPs are 1), while syllables on the pseudoword bound-
aries could be followed by three possible syllables (TPs are 0.333). In the test phase, 
participants were exposed to trisyllabic pseudowords (where both TPs are 1) and 
word boundary triplets (one TP is 1, the other is 0.333). Infants showed different 
looking times to word boundary triplets and pseudoword triplets, suggesting a sen-
sitivity to statistical information. This paper by Saffran and colleagues introduced 
the notion of statistical learning, which has later been demonstrated to be an effec-
tive learning mechanism outside the verbal domain as well (auditory non-verbal 
information: Saffran, Johnson, Aslin and Newport, 1999; visual information: Fiser 
and Aslin, 2002; Kirkham, Slemmer and Johnson, 2002; visuomotor movements: 
Hunt and Aslin, 2001). Since then, statistical learning has also been extended from 
TPs over adjacent specific items to learning of TPs over non-adjacent items (e.g. 
Gómez and Gerken, 1999) and TPs over categories (e.g. Saffran, 2002; Lany and 
Gómez, 2008). In these studies, a simple artificial grammar (a finite state grammar) is 
used to generate sentences from a vocabulary of nonsense syllables (or other items). 
Infants are trained on these grammatical sentences for a short period, and in the 
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test phase they face novel grammatical and ungrammatical sequences. Experiments 
have demonstrated that infants can learn regularities even when TPs are defined 
over categories instead of specific items (Lany and Gómez, 2008; Saffran, 2002), 
and even when a new vocabulary is introduced in the test phase (Gómez and 
Gerken, 1999; Marcus, Vijayan, Rao and Vishton, 1999; Marcus, Fernandes and 
Johnson, 2007; Peña, Bonatti, Nespor and Mehler, 2002; Saffran, Pollak, Seibel 
and Shkolnik, 2007). This is taken as evidence that infants in these cases extracted 
some abstract structure from the original sentences. It is an open question though 
whether only categories are abstract (and the sequences are still defined by first-
order statistical dependencies between them, and it is the hierarchical build-up of 
such first-order dependencies that yields a seemingly complex sentence structure) 
or the acquired structure is itself the result of abstraction.

Shortly after the Saffran et al. (1996) study, the problem of abstraction also gen-
erated heated debates in infant learning literature. Marcus and colleagues (1999) 
argued that statistical learning is not sufficient to account for all types of sequence 
learning, and a different mechanism, which they call algebraic rule learning, is also 
necessary. These algebraic rules are defined as “open-ended abstract relationships 
for which we can substitute arbitrary items” (Marcus et al., 1999, p. 77). The rules 
in their experiments were very simple, and instead of defining TPs over syllables, 
they defined abstract relations across categories of syllables: generating ABA or 
ABB sequences of CV syllables presented in the training phase. In the test phase, 
infants were more surprised to hear sequences that did not follow the rules of 
their training grammar than to hear sequences in line with it (both grammatical 
and ungrammatical sequences were composed of new syllables in the test phase). 
Marcus and colleagues argue that this is evidence of infants’ ability to extract 
abstract algebraic rules like “the first item is the same as the third item”. Marcus 
and colleagues proposed that there are two different learning mechanisms active 
and available to infants (at least in language acquisition): one is sensitive to statistical 
distributions and TPs while the other operates on abstract variables. The idea of 
two mechanisms was also taken up by Pena et al., (2002), with different arguments.

Abstractness was at the centre of the debate generated by these studies (Altmann 
and Dienes, 1999; Christiansen and Curtin, 1999; Eimas, 1999; Perruchet, 
Tyler, Galland and Peereman, 2004; Seidenberg and Elman, 1999; Seidenberg, 
MacDonald and Saffran, 2002). There is agreement that they at the very least show 
that infants can form abstract categories, and they might even demonstrate this 
knowledge, but they do not necessarily rely on algebraic rules. Although TPs are 
primarily used to describe sequences of specific items (e.g. words), the only differ-
ence in the experiments with algebraic rules is that rules are not probabilistic (TPs 
are always 1), and are defined over abstract categories (A and B). In fact, Pena et al. 
(2002) argue that in principle, the AXB structures (that is, Stimulus A predicting 
Stimulus B, with an X intervening random stimulus) in their experiments can be 
defined by TPs over non-adjacent categories. In Marcus et al.’s experiment, devel-
oping abstract representations was based on establishing the perceptual categories 
of “same” and “different” which might be remarkable, but is not the same as the 
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ability to learn algebraic rules. It is difficult to draw a clear distinction between an 
algebraic rule and a hierarchical structural description built on TPs.

Gómez and Gerken (2000) give a classification of studies on statistical learn-
ing putting abstraction in the centre. All of these studies train participants on a 
small artificial language, but the presumed level of abstraction differs. Along with 
the original AGL task (Reber, 1967), studies on segmentation of word-like ele-
ments (see above, e.g. Saffran et al., 1996; or Aslin, Saffran, and Newport, 1999; 
Saffran et al., 1996) are on the first level requiring the least amount of abstraction. 
In these tasks, participants need to show sensitivity to differences in TPs between 
specific items. The second level in abstraction considers AXB-type non-adjacent 
dependencies (first element predicting the third with an intervening random ele-
ment, Gómez, 2002), long distance dependencies (Friederici, Bahlmann, Heim, 
Schubotz, and Anwander, 2006) and context-free grammars (de Vries, Monaghan, 
Knecht and Zwitserlood, 2008). To solve these tasks, participants first need to 
identify the structured and unstructured elements, and only afterwards can they 
learn the structure. The third level of abstraction involves tasks that require par-
ticipants to extract rules and generalize those to new stimuli. Learning ABA-like 
rules (see above, Marcus et al., 1999) as well as AGL transfer studies (e.g. Altmann, 
Dienes and Goode, 1995, discussed above) are examples of this level.

The fourth level of abstraction taps into the use of abstract syntactic categories 
(Gómez and Gerken, 2000). Studies using this approach usually employ a more 
complex grammar, and a complex vocabulary in which several tokens build up 
the grammatical categories. Friederici, Steinhauer and Pfeifer (2002) trained par-
ticipants on a board game. While playing, participants were required to verbalize 
their moves using an artificial language developed specifically for the task. This 
artificial language was composed of syntactic rules, as well as the semantic coding 
of objects. Results showed that after up to six hours of training, syntactic anomalies 
elicited similar event-related potentials for the newly learned artificial language as 
in their mother tongue. Another study (Saffran, 2002) used four simple rules and 
five categories of word-like stimuli employing the AGL procedure, and found 
above-chance performance even if tokens of the categories were interchangeable 
throughout both the training and testing phases.

While it is not surprising that task complexity affects learning performance, 
studies directly addressing task complexity effects are rare. A recent study system-
atically compared the effect of grammar complexity on learning, together with the 
effect of semantic anchoring (Van den Bos and Poletiek, 2015). Results showed 
a quantitative relationship between complexity and learning: participants learned 
more on simple than on complex grammars, and semantic anchoring was beneficial 
only in the case of simple grammars.

Constraints on abstract learning

While most of the studies discussed above focused on the abstractness of the 
acquired information and assumed that the learning mechanism behind the 
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acquisition is abstract and modality- and domain-independent, there are also 
studies presuming stimulus-dependent, or at least modality-constrained learning 
mechanisms. Conway and Christiansen (2005) used the same AGL task design 
with visual, auditory and haptic stimuli looking for differences in learning in dif-
ferent modalities. Results showed both qualitative and quantitative differences: 
along with a quantitative advantage of the auditory modality, participants of the 
auditory conditions tended to focus more on sequence-final chunks, while no 
such preference was observed in the other two modalities.

In a later study, Conway and Christiansen (2006) asked whether participants 
are able to learn two simultaneously trained grammars. The relationship between 
the two stimulus sets was manipulated: they were from different modalities, or 
from the same modality, but different dimensions (e.g. colours versus shapes),  
or from the same dimensions (different sets of shapes). Results showed that partici-
pants were only able to show above-chance performance if the two stimulus sets 
differed at least in perceptual dimension. Conway and Christiansen (2006) argue 
that participants could not learn two parallel grammars from the same dimension, 
since the grammars got mixed up due to dimension overlap. This did not hap-
pen with stimuli from different dimensions or from different modalities. Conway 
and Christiansen conclude that a single, domain- and modality-general learning 
mechanism cannot explain why only intradimensional stimuli get mixed up, and 
argue for several parallel learning mechanisms (an argument further developed in 
Frost, Armstrong, Siegelman and Christiansen, 2015).

Conway and Christiansen (2006), however, do not discuss the possibility of 
transfer. In their design, participants were trained with two grammars, grammar A 
and B, with according stimulus sets, stimuli A and B. In the test phase, participants 
were exposed to grammar A sequences with stimuli A and grammar B sequences 
also with stimuli A. Only grammar A sequences with stimuli A were considered 
grammatical, while transfer sequences were considered incorrect (grammar B, 
stimuli A). Results showed that participants were able to differentiate between 
grammar A–stimuli A and grammar B–stimuli A sequences only if stimuli A and 
stimuli B differed in modality or dimension. In this design, however, chance-level 
performance cannot distinguish between the lack of learning in this dual task and a 
possible positive transfer. That is, if participants accept grammar A sentences with 
stimuli A as well as grammar B sequences with stimuli A (transfer), their classifica-
tion performance would also be at chance level.

A later study aimed at testing stimulus-dependence in the SRTT (Kemény 
and Németh, 2017). In this study, participants were trained on a visual SRTT 
without any correlated responses. Participants were instructed that they would 
see red and grey dots appearing at four different locations, and they were asked to 
count the grey dots (15% of all trials). Unknown to the participants, a 12-element 
sequence determined the appearance of the dots. After some training, an auditory 
task was introduced. Participants heard one of four possible CV syllables, and were 
asked to press the response key corresponding to the target stimulus. Unknown 
to the participants, the spatial organization of the response sequence was either 
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the same as or the reverse of the spatial organization of the visual stimuli in the 
training phase. Two further control conditions were used: one had no structure 
in the dot-counting task, while the other had no dot-counting task at all. Results 
showed that the two experimental groups performed significantly worse on learn-
ing the auditory–motor sequence of the test phase than the two control groups. 
That is, not only was no positive transfer observed between the training and test 
phases in the case of identical sequences, but a previously learned sequence caused 
a deficit in later sequence learning. According to the authors the results argue for 
stimulus-dependence in sequence learning: that is, two sequences are only identi-
cal if both the structure and the stimuli are identical. This stimulus-dependence 
is responsible for the lack of positive transfer. The negative transfer, on the other 
hand, is explained by suggesting a general sequence processor mechanism, which is 
responsible for processing different sequences, but has a limited capacity. Thus, 
learning one sequence reduces later sequence learning. Importantly, these results 
argue for both stimulus-independence and stimulus dependence on different levels: 
stimulus-dependence in the sequential representations, but stimulus-, domain- and 
modality-independence on the level of the learning mechanism.

Conclusion

The current review focused on implicit sequence learning and revolved around top-
ics related to abstractness of the acquired representations. We have discussed studies 
that focused on transfer, abstract sequence learning without transfer, task complex-
ity, and modality constraints on sequence learning. Several inconsistencies were 
identified in connection with abstract sequence learning: the difficulty of mapping 
in transfer studies, instruction- vs representation-based abstraction, or the require-
ment of stimulus interpretation to solve the task. We propose that some of these 
inconsistencies may be resolved by a theoretical distinction on whether a specific 
task requires abstraction or not. Abstraction in this sense would distinguish between 
tasks in which the input stimuli are to be interpreted versus tasks where focus on sur-
face features is enough for learning. The classic SRTT (Meulemans, Van der Linden 
and Perruchet, 1998; Nissen and Bullemer, 1987) for example, does not necessarily 
require the interpretation of stimuli. There are four target stimuli, and focusing on 
any feature that distinguishes the target stimuli can be used without interpretation. 
In the Task Sequence learning (Koch, 2001; Meier and Cock, 2010), on the other 
hand, participants have to make category decisions on the input stimuli, and the 
sequence is formed by features that can only be accessed through the interpretation 
of stimuli. As reviewed above, the AGL task has a great number of different ver-
sions, some of which do not require abstraction (e.g. extraction of TPs over specific 
syllables, Saffran et al., 1996), while others rely on both abstraction and generaliza-
tion (e.g. extracting patterns like ABA vs. ABB, Marcus et al., 1999). Since task  
requirements have a crucial role in determining abstraction of the acquired rep-
resentation, future research should focus more on carefully manipulating task 
requirements and taking this factor into account in the interpretation of results.
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Introduction

This chapter is dedicated to the problem of implicit and explicit knowledge  
relationship during learning. Implicit learning researchers have debated actively on 
the roles of consciousness and the cognitive unconscious in the learning process 
for fifty years. This discussion started much earlier and is similar to a certain swing. 
Now and then new papers confirming the “power” of cognitive unconscious 
emerge; researchers present new experimental techniques and exciting empiri-
cal effects (Reber, 1967; Lewicki, Hill and Sasaki, 1989; Chun and Jiang, 1998; 
Dijksterhuis, 2004, etc.). However, in a few years the proponents of the “weak” 
cognitive unconscious find certain drawbacks and flows in the methods used, 
allowing the conclusion that the knowledge acquired by subjects is at least par-
tially conscious or that the acquired skill is very limited (e.g. Dulany, Carlson, and 
Dewey, 1984; Perruchet and Pacteau, 1990; Shanks and St John, 1994; Hendrickx, 
de Houwer, Baeyens, Eelen, and Avermaet, 1997; Newell and Shanks, 2014; 
Vadillo, Konstantinidis, Shanks, 2015). Cleeremans and Jiménez caricatured the 
approach of powerful cognitive unconscious proponents as “zombie” theories, and 
that of the powerful consciousness camp as “Commander Data” theories of cogni-
tion (Cleeremans and Jiménez, 2002). In doing so, they correctly pointed out that 
both in the first case (when the role of consciousness in cognition is reduced to 
zero) and in the latter (when all cognition is regarded as available to total conscious 
control) consciousness turns into an epiphenomenon, as it plays no functional role.

Curiously enough, both positions produce a similar prediction: intentional 
attempts to explicate and verbalize experience acquired during learning should not 
affect learning process itself. Thus, for a long time verbalization was considered by 
most of the researchers just as a methodological technique for the assessment of the 
knowledge acquired in learning.
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In our work, we will try to show that verbalization, in fact, is an important 
factor of learning. It affects both qualitative features of learning and its efficiency. 
We will review various empirical results consistent with this approach and will also 
suggest methodological and theoretical implications for the further investigation of 
implicit learning.

Implicit learning discovery: the dissociation between 
behavior and verbal reports

About fifty years ago (in fact much earlier: recall the works of Hull (1920) and 
Thorndike (1932, 1935)) psychologists began to accumulate empirical evidence 
that learning occurs not only unintentionally but also unconsciously in some tasks. 
This phenomenon was called implicit learning. Today, there are many experimen-
tal paradigms for studying implicit learning. Since Reber’s time, the most popular 
one has been artificial grammar learning (“AGL”, Reber, 1967). The main idea 
of AGL experiments is as follows. In the first stage of the experiment, subjects are 
asked to memorize a set of 20 letter strings (e.g. PVPXVPS or PTTTVPS, etc.). 
After that, they are informed that the strings they have learned were compiled 
by a certain system of rules and then they are presented with a new set of strings, 
some of which are consistent with this set of rules and some are not. The task is 
to identify which of the new strings are grammatical, i.e. composed according to 
the same system of rules. Reber found that subjects correctly (higher than chance 
level) classify new strings and at the same time are unable to report the grammar 
rules which they seem to have learned in the memorization phase (Reber, 1967).

By the early 1990s, many experimental studies had been conducted, and 
researchers discovered various effects of unconscious processing in learning. Berry 
and Broadbent (1984) published the study in which subjects learned to control a 
dynamic system modeled by a computer program (e.g. a virtual sugar factory). After 
sixty control cycles, subjects learned to maintain the parameters of the system within 
predetermined limits but appeared to be unable to verbalize the rules that governed 
the factory operation. Nissen and Bullemer (1987) report the results of implicit 
sequence learning study. Lewicki and colleagues (Lewicki, Hill, Czyzewska, 1992) 
describe a series of ingenious experiments that investigate unconscious learning of 
hidden covariations in different perceptual tasks, in particular in social perception 
tasks, etc. Somewhat later the works of Chun and colleagues demonstrate implicit 
learning of contextual cues in visual search tasks (Chun and Jiang, 1998).

Reber’s first experiments were concluded with a free verbal report. The experi-
menter asked the participants to tell all they knew about the regularity according to 
which the experimental stimuli were compiled. Reber interpreted the absence of 
meaningful verbal reports along with quite precise stimuli classification as evidence 
for unconscious knowledge used for stimuli classification.

The problem of free verbal reports is that it is quite difficult for the experi-
menter to assess whether subjects’ reports are relevant to the actual grammar rule. 
It is obvious that none of the subjects would give a full verbal description of the 



Verbalization effect on implicit learning  191

artificial grammar used by the experimenter. Then how can we assess to what 
extent successful classification of strings as grammatical or not is related to subjects’ 
verbalized knowledge? Formalization of verbal reports as a criterion for conscious 
knowledge utilized by a person has been implemented in two versions. In a stand-
ard AGL experiment, Mathews et  al. (1989) asked participants after every ten 
experimental trials to give verbal instructions on which stimuli features one should 
rely upon to classify stimuli correctly. Detailed instructions on stimuli classification 
were collected from every participant. This instruction obtained from each subject 
was presented to new participants, who had to classify the same artificial strings 
based solely on these instructions. The new participants classified strings correctly 
at the above-chance level, but the percentage of correct responses was lower than 
that of the subjects who created the instructions. This served as evidence that 
the subjects had acquired certain knowledge that they could not transfer to other 
people, and therefore, such knowledge was implicit. Another version of formal-
ized verbal reports was presented by Dienes, Broadbent and Berry (1991). Their 
subjects also composed instructions that were not passed to new subjects but used 
for direct simulation of subjects’ behavior according to the rules only, which they 
were able to verbalize. This study showed identical results: simulation produced 
more than 50% of correct responses but significantly lower than human subjects.

However, conclusions made by Reber and other authors who stated implicitness 
of AGL based on verbal reports quickly became a target of criticism. Long before 
that, subthreshold perception studies already demonstrated that post-experiment 
reports are not sufficiently precise as a measuring procedure since, on the one hand, 
subjects tend to reconstruct their memories on the basis of experimental context, 
and on the other hand, they tend to underestimate the importance of certain infor-
mation for the experimenter and decide not to report it (Merikle and Reingold, 
1992). Moreover, verbal reports are usually retrospective, thus there is a possibility 
that some information that was conscious during the task execution can be forgot-
ten at the post-experiment interview. In other words, all the criticism which was 
directed to introspection at one time can be applied fully to the evaluation of 
knowledge awareness by verbal reports.

New approaches to measurements of consciousness:  
refusal from the post-experimental verbal report in  
favor of online measures

Shanks and St John (1994) tried to formulate criteria for a good awareness test 
for knowledge acquired through experience. These criteria were later enhanced 
(Newell and Shanks, 2014). Two criteria were suggested initially: information and 
sensitivity. The information criterion is related to the relevance of knowledge 
assessed by the awareness test, and to the learning demonstrated by a person. The 
question that the experimenter asks a subject in the awareness test should address 
the knowledge according to which the subject made decisions in the experiment. 
The sensitivity criterion refers to the amount of conscious knowledge accessed by 
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the test of awareness. The test should be sensitive to all task-relevant conscious 
knowledge. At least, it should be as sensitive as the test of learning. In this case, a 
subject’s lack of awareness of the knowledge guiding his or her behavior cannot be 
attributed to the insensitivity of the awareness test.

Newell and Shanks added two more criteria in their 2014 paper: reliability and 
immediacy; while referring to the information criterion as the relevance criterion. 
The reliability criterion requires awareness measurement not to be affected by the 
factors which do not affect the behavior of the subject. The immediacy criterion 
requires measurement of awareness to occur simultaneously with the measurement 
of behavior or as close to it as possible.

Using these criteria Newell, Shanks and St John argued that the evidence for 
learning implicitness in most of the experiments are quite unreliable since certain 
criteria of the awareness measures quality are not satisfied (Shanks and St John, 
1994; Newell and Shanks, 2014). For example, the relevance criterion is often not 
satisfied in AGL, in their opinion. The authors of the papers claim that subjects use 
unconsciously learned abstract grammar rules (Reber, 1989; Marcus et al., 1999), 
but many studies have shown that subjects can memorize the whole strings or 
fragments, or formulate micro-rules, correlated with the artificial grammar rules 
(Dulaney et al., 1984; Perruchet and Pacteau, 1990; Johnstone and Shanks 2001). 
Immediacy criterion requirements are also not met in the majority of early implicit 
learning studies, as interview used for control of knowledge awareness was held 
after the main test phase.

Timmermans and Cleeremans (2015) describe requirements for awareness tests 
in terms of exhaustiveness (the test should be sensitive to all the relevant content 
of consciousness) and exclusiveness (the test should only be sensitive to conscious 
knowledge). The first requirement matches the sensitivity criterion discussed 
above, and the latter points to a new problem: the awareness test should not be 
affected by unconscious knowledge.

As we see, criticism of awareness measures used in implicit learning studies orig-
inates in the 1980s and is still present. In response to this criticism, researchers have 
developed new measures, which seek to meet the stringent demands of critics.

Since the works of Chan (1991) and Dienes with colleagues (Dienes et  al., 
1995; Dienes and Berry, 1997) measures based on the idea of the subjective thresh-
old have been used extensively. The objective threshold is a level of learning at 
which subjects can perform the task at the above-chance level. However, it does 
not mean that representations responsible for this behavior entered the subject’s 
consciousness. The subjective threshold is a level of learning at which a person 
knows that he or she possesses some knowledge which enables him/her to per-
form the task efficiently. In such a situation, a person should be confident in his 
or her correct responses. More specifically, he or she should have a high degree of 
confidence in answers that are correct, and a low degree of confidence in answers 
that appeared to be incorrect. Two criteria were suggested within this approach: 
the guessing criterion and the zero-correlation criterion. The guessing criterion is 
met when responses are correct at the above-chance level in trials with confidence 
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rated at zero level (when subjects respond, as they think, at random). The zero- 
correlation criterion is met when the correlation between confidence ratings and 
trial correctness does not differ from zero. This approach resolves the main problem 
of retrospective verbal reports: awareness is assessed simultaneously with learning, 
therefore satisfying the immediacy criterion. This awareness measure takes into 
account another important point – that learning is not process-pure and contains 
many components including both conscious and unconscious. Satisfying the guess-
ing criterion and not satisfying the zero-correlation criterion indicates effects of 
both conscious and unconscious knowledge on learning.

As we can see, new awareness measures based on subjective confidence assess-
ment meet the immediacy criterion; however, they are still not very informative. 
The researcher finds out that a subject does have some conscious grounds for 
responses, but it remains unknown what such grounds are. Therefore, Dienes 
and Scott (Dienes and Scott, 2005; Dienes, 2012) suggested a more meaningful 
awareness measure – the decision strategy attribution test, which, in essence, is a 
structured interview that allows subjects to report the grounds for their decisions 
during the experiment. The test has been developed for AGL experiments. After 
every classification decision, a subject has to answer what bases he or she used to 
make this decision. Four possible options are usually available:

A.	 guessing;
B.	 intuition;
C.	 knowledge of grammar rules;
D.	 recollection of some strings or fragments from the learning phase.

It is assumed that the first two options (A and B) indicate a lack of explicit 
knowledge of the bases of decisions made. However, if performance in these trials 
is at the above-chance level, it demonstrates implicit, that is, unconscious, knowl-
edge. If the subject chooses C or D, it indicates that he or she had relied on explicit 
knowledge while classifying the string.

However, this approach brings us to the question of how well the subjects’ 
reflection skills must be developed for the test to be used, and whether any pre-
training is required for it. It can obviously impose certain restrictions on the use of 
the decision strategy attribution test.

So, at first, the researchers examined the verbalization process exclusively as 
an auxiliary methodological procedure that allows us to prove that the subject has 
no conscious knowledge of any hidden regularities in the task. At the same time, 
the question of interaction between implicit and explicit was not discussed at 
first – on the contrary, fundamental inaccessibility of implicitly learned regulari-
ties to consciousness was postulated (Lewicki, Czyzewska, and Hoffman, 1987; 
Reber, 1989).

The proposed alternatives to after-experiment interview are, in fact, additional 
tasks incorporated in the experimental procedure and aimed at assessing the degree 
of knowledge awareness that determines subjects’ decisions. However, the problem 
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of how these additional tasks may affect the learning process itself and alter its natu-
ral course has been barely discussed. Let us note that even David Shanks, the ardent 
critic of unconscious learning (Shanks and St John, 1994; Newell and Shanks, 
2014), does not introduce the non-reactivity criterion among other requirements 
that he proposes in his works, although in other areas (e.g. when using the thinking 
aloud method in problem-solving) this criterion is widely discussed (Ericsson and 
Simon 1993; 1998; Fox, Ericsson and Best, 2011; Schooler, 2011). The essence 
of the non-reactivity criterion is that an additional parallel task introduced in the 
learning process (for example, to assess how confident you are in your answer or 
to report the basis of decisions made) should not change the learning process itself. 
Describing the immediacy criterion, Newell and Shanks just casually mention: 
“assessments should be made concurrently (so long as they do not influence the 
behavior) or as soon after the behavior as possible to avoid forgetting and interfer-
ence” (Newell and Shanks, 2014, p. 4). Nevertheless, there is a reason to expect 
that subjects’ attempts to analyze the knowledge they apply in the course of the 
experiment have a significant impact on the learning process itself. We will now 
review some data supporting this idea.

How methods, provoking verbalization, affect learning and 
application of implicit knowledge

In the following section, we will discuss the studies indicating that participants’ 
attempts to actively explicate the grounds of their decisions block the application 
of implicit knowledge. We will focus on three similar phenomena: the effect 
of strategy, the effect of concurrent verbalization and the effect of retrospective 
verbalization.

At first, the idea of a powerful cognitive unconscious excited scientists so 
much that they began to postulate extraordinary speed and complexity of uncon-
scious information processing, fundamentally inaccessible to consciousness (see 
e.g. Lewicki, Hill and Czyzewska, 1992). However, some studies questioned this 
claim, primarily because the mere effect of implicit learning was hard to replicate. 
For example, Hendrickx and his colleagues tried to replicate the effects found 
by Lewicki, and they succeeded only in one of the nine conceptual replications 
and three exact replications (Hendrickx et  al., 1997). The main critical view 
suggested by Hendrickx was that subjects in Lewicki’s experiments noticed the 
hidden covariation between appearance and psychological features of the models 
and made decisions consciously relying on this regularity. In their own research 
Hendrickx and colleagues used a more detailed after-experiment interview that 
allowed excluding subjects that noticed the presence of hidden covariation. The 
results of the remaining subjects did not suggest any learning.

However, Lewicki came up with counterarguments (Lewicki et al., 1997). He 
accused Hendrickx of incorrectly instructing his subjects, provoking them to look 
for regularities in the learning phase, whereas in his own experiments subjects 
were encouraged to respond relying on intuition. Thus, the question of subjects’ 
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strategies in implicit learning came into being. A similar impact of subjects’ strat-
egy on the presence of implicit learning was found by Lleras and von Mühlenen 
(2004) in their study of contextual cueing in visual search. In the first two experi-
ments, Lleras and von Mühlenen tried to replicate the experiment by Chun and 
Jiang (1998) that initially discovered learning of contextual clues. Subjects were 
presented with displays where they had to find targets among distractors as fast as 
possible. There were two conditions: “old display condition” where the position 
of certain targets and distractors was always repeated and “new display condition” 
where the positions of distractors and targets kept changing constantly. No search 
acceleration was found for old displays as compared to new ones. Despite the exact 
reproduction of the experimental conditions, the effect of implicit learning was 
not manifested. When Lleras and von Mühlenen analyzed the after-experimental 
interviews, they found that participants used different search strategies: “active” 
strategy (i.e., an active effort to find the target) or “passive” strategy (i.e., intuitive 
search). In experiment 3, they instructed participants beforehand to use active or 
passive strategies. As a result, a stable implicit learning effect was found only in the 
passive strategy group.

Similar results were found in Reber’s early AGL studies. One of his experiments 
involved varying the type of instruction which was presented to subjects before the 
learning phase (Reber, 1976). In the standard “implicit” condition, subjects were 
informed that they would be presented with a set of letter strings for memoriza-
tion. In the “explicit” condition, subjects were additionally told that all the strings 
were constructed according to a set of certain rules and figuring these rules out 
would help them to perform the memorization task better. After that, both groups 
of subjects participated in the same test phase without feedback. They had to clas-
sify the set of 44 new strings presented twice, that is 88 trials in total. The results 
showed that subjects in both groups demonstrated above-chance classification per-
formance; however, subjects from the “implicit” group performed significantly 
better than subjects from the “explicit” group. Reber also analyzed patterns of 
responses to the same item. Since each string was presented twice, subjects could 
give correct-incorrect, correct-correct and incorrect-incorrect pairs of responses 
to the same stimulus. It turned out that repeated errors were significantly more 
prevalent in the “explicit” group (this effect was mentioned above). In addition, 
subjects in the explicit group tended to classify strings as non-grammatical more 
often than as grammatical. We will return to this fact later. How did Reber explain 
these results within his approach to implicit learning?

According to Reber (1976, 1989, 1993), one of the conditions for implicit 
learning to be manifested is a sufficient degree of complexity of the task per-
formed. Implicit learning will be observed if the subject has no applicable explicit 
scheme at hand that can be used to code the incoming information. From Reber’s 
perspective, the AGL task is a good reference for such a condition: the artifi-
cial grammar rules used are quite complex, unknown to the subject prior to the 
experiment and cannot be successfully processed explicitly within such a short 
period of time. When the experimenter expressively encourages the subject to 
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search for applicable rules in such a task, the subject comes up with hypotheses 
that have no relation to the real rule and application of such rules does not really 
help him/her when classifying new strings. For instance, one of the subjects in 
the described experiment always classified strings as non-grammatical if one of the 
letters appeared more than four times, though this fact did not contradict to the 
artificial grammar rules (Reber, 1976).

In general, the studies of Reber and others demonstrated that explicit rule search 
activation prevents one from applying implicit knowledge successfully. Based on 
our approach, the difference between intuitive (passive, implicit) and analytical 
(active, explicit) strategy lies in the fact that in the first case, the subject makes 
decisions based on implicit knowledge that is acquired gradually due to accumula-
tion of frequencies of the stimuli presented and is more procedural in nature. In 
the latter case, when making a transition to an analytical strategy the subject tries 
to verbalize explicit grounds for his/her decisions. However, such a transition not 
only makes him/her use another system of representations (declarative memory) 
but also process the newly acquired information differently. The person is now 
relying on internal speech that is discrete in nature and emphasizes specific details. 
As a result, no learning will be observed until a successful explicit hypothesis on 
what features are significant is produced. A lot of teachers know that an attempt 
to explicitly verbalize the basis of a decision made can harm learning. The learn-
ers themselves can often complain that when studying the rules of their native 
language they initially make more mistakes than before, when they were acting 
(writing and talking) intuitively. A lot of people, when trying to understand what 
is the correct way to spell this or that word or phrase, can first write it down and 
then look at it, using their procedural and not declarative memory.

It is worth noting that these processes take place when learning occurs and 
both declarative and procedural systems possess some knowledge. The notion of 
strategy we are trying to elaborate is related to which of these two knowledge 
stores a participant will rely on. Thus we make a distinction between the acquisi-
tion of knowledge and its application. This view is in accordance with some of the 
modern approaches to implicit learning (e.g. Poznanski and Tzelgov, 2010; Witt, 
Puspitawati and Vinter, 2013; Hendricks, Conway and Kellogg, 2013). In these 
studies, subjects with the same learning experience exhibit different learning pat-
terns due to test phase influences only. We suggest that learning phase influences 
can have the same impact on the application of acquired knowledge as the test 
phase influences. Thus, for example, rule search instruction in the learning phase 
may affect subsequent test performance in the same way as the test instruction to 
rely on the explicitly formulated knowledge only.

The studies described earlier showed fade-out of the implicit learning effect as 
soon as the subjects transited to conscious rule or regularity search. We assume that 
this search is mediated by inner speech processes (see Vygotsky, 1986 for details). 
We will now describe studies that provoked usage of external speech during learn-
ing. The most systematical studies of competing verbalization were conducted in 
the dynamic systems control paradigm. This research was initiated by the work of 
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Berry and Broadbent, (1984) where the authors tried to find performance predic-
tors for the dynamic systems control task. This paper used two dynamic systems, 
“sugar production factory” and “person interaction”, and both of them had the 
same hidden mathematical regularity in place. The “sugar factory” subjects had to 
control the number of workers in order to achieve and maintain the sugar produc-
tion level at 9,000 to 11,000 tons; initially the subjects had 600 workers and 6,000 
tons of production. The “person interaction” subjects were “interacting” with a 
computer called Clegg using a specific interface. For all trials the subjects observed 
the results of their decisions plotted on a graph.

This study demonstrated that accumulation of experience (one group of sub-
jects managed the factory for 30 trials, and another one had 2 series of 30 trials) 
significantly improves one’s ability to control complex systems but has no effect 
on questionnaire results. On the contrary, a verbal instruction on how to control 
the system given prior to the task significantly improves one’s ability to answer 
questions but has no effect on performance. A verbal instruction combined with 
online verbalization leads to a significant improvement in dynamic system con-
trol. Thinking aloud in each trial with no other factors, though, showed no effect 
on either performance or post-experimental questionnaire results (Berry and 
Broadbent, 1984).

In 1989, Stanley and colleagues tried to replicate Berry and Broadbent’s study 
and test their hypothesis of the impact that competing verbalization has on perfor-
mance in a system control task (Stanley, Mathews, Buss and Kotler-Cope, 1989). 
The experimental group subjects were asked to verbalize grounds for their deci-
sions at the end of each block and they were also told that these verbal reports 
would be given to newcomers as instructions on how to control the system. Each 
block consisted of ten trials and the next block had new conditions. The subjects 
performed 20 blocks of 200 trials in one session. The control group subjects did 
the same task but had no verbalization to do. The results of the experiment showed 
that the verbalization group subjects performed better in the sugar factory control 
task than the subjects in the control group.

McGeorge and Burton (1989) also tried to replicate Berry and Broadbent’s 
experiment with the sugar factory the same year, and their results were inconsist-
ent with the initial study. Experiment 1 involved 3 sugar factory control blocks 
of 30 trials each, and subjects in the experimental group were silent for the first 2 
blocks but had to comment on every decision in the third one, verbalizing all the 
heuristics they used to select the number of workers. The control group was silent 
throughout all the three blocks.

Their results showed that the subjects who had to verbalize all their deci-
sions showed learning (when the second and the third block were compared) 
as opposed to the control group that failed to show any differences in the first, 
second or third blocks. Intergroup comparison also demonstrated that the ver-
balization group was better. McGeorge and Burton (1989, p. 463) conclude that 
parallel verbalization is likely to improve learning. And the absence of learning in 
the control group is linked to absence of graphical feedback (let us note that the 
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initial experiment conducted by Berry and Broadbent involved a graph showing 
performance dynamics linked to trial number).

A later paper by McLennan and colleagues (Dickson, McLennan and Omodei, 
2000) studied the effect of concurrent verbalization in a micro-world control task, 
which included a significantly larger number of variables linked together by a hid-
den regularity. The subjects had to extinguish fires, and time was a crucial factor 
as if the subject did nothing, the fire would spread. The subjects were randomly 
assigned to three groups: silence (the subject is silent and comments nothing), 
associative verbalization (throughout the whole experiment the subject comments 
whatever comes to his mind) or procedural verbalization (the subject has to come 
up with grounds for his/her decision for each trial). The results demonstrated that 
the highest performance was observed in the silent group while the worst was in 
the group with procedural verbalization.

Thus, the results of the studies are more likely to indicate a change in the 
learning process itself resulting from competing verbalization within the course 
of the dynamic system control task. Verbalization is beneficial in some conditions 
(for example, when an explicit instruction is given prior to the task) and harmful 
in others (e.g. time pressure). A rich and more “ecological” visual environment 
in the last experiment may probably better suit implicit learning as well while a 
poorer visual environment (no graph in the experiments by Stanley et al. as well 
as McGeorge and Burton, unlike the original sugar factory) together with no time 
pressure seem to be more suitable for explicit learning.

Y. A. Ponomarev (1960) was one of the first researchers to describe the effect 
of verbalization. His studies did not follow the paradigms that the implicit learn-
ing researchers are used to, though the phenomena he studied resemble implicit 
learning quite closely. He studied how the introduction of a hint at different stages 
of performing a creative task alters the subjects’ behavior. One of his experiments 
involved a “polytypic panel” task: the subject had to put a set of bars on a panel fol-
lowing a set of specific rules. The subjects performed this task quite easily and then 
they were offered the next task: a labyrinth. The optimal track in the labyrinth was 
exactly identical to the final pattern of bars in the previous “polytypic panel” task. 
The subjects usually made several dozen mistakes while trying to solve the laby-
rinth task – they turned around the corner to find a dead end. But when offered 
the labyrinth task after the “polytypic panel” task they showed a significantly lower 
amount of errors. An interesting fact: when the subjects were asked to explain their 
decisions made when choosing a path in the labyrinth, the number of erroneous 
moves rapidly increased (Ponomarev, 1960).

A similar effect was found by S. Belova in her study devoted to how people 
evaluate psychological features of others based on their first impression (Belova, 
2004). She showed her subjects a video with a number of pre-school kids. The 
subjects had to make a judgment about each kid and assess his/her IQ. All the 
subjects were assigned to two groups: the first one had to first assess the intellect 
of all children and then verbalize their evaluation criteria, while the second group 
had to make a pause after evaluating half the kids, then verbalize their evaluation 
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criteria and continue to evaluate the rest of the children. When the subjects’ evalu-
ations were compared with the children’s grades in an IQ test, a correlation was 
found. But the group that had to verbalize their evaluation criteria in the middle 
of the experiment showed a decrease in accuracy both in comparison to the first 
half of evaluations given and to the control group. Belova concluded that during 
verbalization her subjects failed to explicate some of their knowledge, and after that 
they would only rely on the verbalized criteria when assessing the intellect of the 
new kids, and their implicit knowledge had no impact on the evaluations given.

Studies of witnesses’ memory showed a similar effect that was named “verbal 
overshadowing”. In short, the experiments are conducted as follows. The subjects 
are presented with a brief video where a certain person commits a crime. After that 
the subjects are assigned to two groups: the first one has to describe the criminal 
(verbalization condition) and the second one performs a distracting task (silence 
condition). After the task, all the subjects have to try and recognize the criminal 
in a set of eight photos that replicates the typical police identification procedure. 
The initial experiment (Schooler and Engstler-Schooler, 1990) demonstrated that 
subjects that had to describe the criminal verbally recognized him on the photo 
worse than the subjects who performed a distracting task. In the follow-up studies 
authors have acquired some contradictory evidence; sometimes the response accu-
racy decreased, while in other cases the decision-making criterion was altered (i.e. 
an increase in target misses was observed as the subjects said that the photo of the 
criminal was not presented).

A recent paper devoted to multi-lab replication of Schooler’s initial experi-
ment (Alogna et  al., 2014) presented convincing results demonstrating a verbal 
overshadowing effect, i.e. a decrease in criminal identification accuracy after ver-
balizing his/her distinguishing characteristics. But this is a relatively short-term 
effect. Another, even bolder, important result that manifested during replication 
was a change in the decision-making criterion: the subjects that had verbalized 
their experience switched to a stricter decision-making criterion (the number of 
target-miss errors was significantly higher than that of false alarms).

The researchers conclude that an attempt to verbalize the acquired experience 
cannot be used as a neutral measuring procedure as it leads to a change in subjects’ 
decisions.

Schooler and Fallshore successfully demonstrated a similar effect when studying 
implicit learning (Fallshore and Schooler, 1993). Some of the subjects in an AGL 
study were informed of the presence of rules governing the strings they had just 
been memorizing during the classical learning block, and they then were asked to 
try and verbalize these rules. The control group subjects had to talk on a neutral 
topic. Then both groups had to classify new strings in a test block. The subjects 
that had attempted to verbalize the grammar rules performed significantly worse 
when classifying new strings than the control group.

So if the subjects’ strategy has such a strong impact on learning and apply-
ing implicit knowledge, how can we use a subject’s behavior to understand what 
mode he/she is operating in? Is he/she using intuition or trying to apply explicit 
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rules? The easiest way is to ask a direct question of what strategy is being used, and 
this method was utilized in Dienes and Scott’s (2005) decision strategy attribution 
procedure that was described above. But the data we cited shows that the mere 
attempt to analyze and report bases of decisions made provokes application of an 
analytical strategy. Therefore, some objective behavioral markers are required for 
the experimenter to rely on without directly asking the subjects. We would sug-
gest using the decision-making criterion as one of such markers or in other words 
the ratio of target-miss errors to false alarms. As research in the field of verbal 
overshadowing shows, subjects that use verbalizations show a more conservative 
decision-making criterion. The researchers of implicit learning have paid almost no 
attention to this parameter. We will try to fill in this gap in the following section.

Methodological aspect: strategy markers

The AGL experiment results are often presented as a 2 by 2 table (see Table 8.1).
This kind of data presentation is widely used in signal detection theory (SDT, 

Macmillan and Creelman, 2005). Such presentation of results allows us to imme-
diately assess not only classification accuracy (“sensitivity”, in SDT terms) but the 
decision-making criterion as well (“bias”): how often the subject classifies strings 
as grammatical. The easiest measure is just the share of answers “this string is 
grammatical” (YesRate) though other indicators are also used (C, beta, etc., see 
Stanislaw, and Todorov, 1999). This parameter is widely discussed in the litera-
ture on decision-making theory (e.g. Fleming, Dolan and Frith, 2012). The bias 
measures allow deeper inspection of the process under investigation. For example, 
Whittlesea, Jacoby, and Girard identified different recognition strategies analyz-
ing response bias in recognition decisions (Whittlesea, Jacoby, and Girard, 1990). 
Rahnev et al. (2011) found that attention can influence visual perception changing 
subjective bias. Applying SDT analysis to second-order decisions (e.g. confidence 
reports) was also fruitful, allowing investigation of the mechanisms of human 
metacognition (Fleming, and Lau, 2014).

A high decision-making criterion (or low YesRate) is usually linked to careful 
decision-making strategy: the observer must be very confident that the stimulus 
relates to the target class to answer “Yes”. This strategy is called “conservative”. An 
opposite strategy is called “liberal”. The subjects avoid false alarms when using con-
servative strategy and avoid misses when using liberal strategy. When the degree of  

TABLE 8.1  An example of the results of an AGL experiment from Reber’s work (1976).

Answer String Total

Grammatical Non-grammatical

Grammatical H 263 FA 131 394
Non-grammatical M 177 CR 309 486
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uncertainty is high, when there is not enough explicit knowledge for decision-making 
and the subjects only have vague and non-verbalizable feelings, conservative-strategy 
subjects would prefer not to risk and answer “No, this is not the target stimulus” 
(“non-grammatical string”) while liberal-strategy subjects would try to guess and 
answer “Yes, this is the target stimulus” more often.

We looked at the response bias in AGL literature and found that many papers 
showed a lower YesRate when the subjects were instructed to search for rules in 
the training block – as compared to the condition when they were instructed just 
to memorize the strings. This data is presented in Table 8.2.

Although some experiments were quite different, the decision-making criterion 
is not discussed by the authors and not specified as a strategy marker. Nevertheless, 
one might conclude that bias may tell us what strategy a person is using (analytic 
vs holistic) and which knowledge is used (explicit or implicit). But this assumption 
requires further testing.

In a series of AGL experiments, we tried to relate the YesRate to the grounds 
the subjects used to justify their answers while classifying strings as grammatical and 
non-grammatical. The decision strategy attribution test described above was used. 
We found that subjects with a more conservative criterion, i.e. a low YesRate, 
used explicit knowledge sources more often (recalling learning stimuli and testing 
hypotheses on grammar rules) while subjects with a more liberal criterion, i.e. a 
high YesRate, referred to guessing and intuition as bases for their answers more 
often (Ivanchei, 2016). Also, when comparing the subjects’ results on the same 
AGL experiment with and without the attribution test, we found subjects’ behav-
ior to be significantly different (Ivanchei and Moroshkina, 2018). Our experiment 
demonstrated that subjects who performed the attribution test turned out to be 
more accurate and used a more conservative criterion, answering more slowly 
than the control group subjects who did not use any concurrent awareness meas-
ures. Slower response times can be related to analytical decision-making because 
deliberate decisions require time to be implemented (Kotovsky and Simon, 1973; 
Smith, Langston, and Nisbett, 1992). Reber et al. (1980) also found that with inci-
dental instruction participants exhibit much shorter RTs than with rule-searching 
instruction. At the same time, analysis of strings selected as grammatical showed 

TABLE 8.2  �YesRate in rule search and memorization conditions (we analyzed  
experiments allowing extraction of such data).

Study Rule Search Memorization

Reber, 1976 0.44 0.49
Shanks, Johnstone, Le Staggs, 1997 (experiment 3) 0.39 0.50
Shanks, Johnstone, Le Staggs, 1997 (experiment 4) 0.46 0.62
Johnstone and Shanks, 2001 (experiment 1) 0.48 0.48
Johnstone and Shanks, 2001 (experiment 2) 0.46 0.50
Opitz and Hofman, 2015 (experiment 1) 0.47 0.63
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that the only predictor of string classification as grammatical in the group with 
no attribution test was its objective similarity to the stimulus from the learning 
block, while this was not the case for the group that performed the attribution 
test. This result indicates emergence of explicit hypotheses on grammar rules and 
it is consistent with similar data obtained in the works of Scott and Dienes (2008). 
We propose that it is the requirement to report bases of decisions taken that made 
the subjects analyze their behavior and use conscious decision-making sources to a 
larger extent, shaping presumable grammar rules as early as in the test block.

Thus, our data, first of all, serves as evidence for the fact that introduction of 
an attribution test in the testing procedure itself alters the subjects’ strategy and 
secondly indicates that the response bias can indeed be used as an objective marker 
for such strategy.

In another study, we introduced two regularities to the stimulus material: we 
varied font features along with strings grammaticality (Moroshkina and Ivanchei, 
2013). Our learning procedure allowed us to let subjects learn the association 
between grammaticality and certain font features. In the learning phase, sub-
jects saw both grammatical and ungrammatical strings, but the grammatical ones 
were marked in a certain way allowing subjects to memorize them and not the 
non-grammatical items. In the control group, this association between font and 
grammaticality remained the same in the test phase. In the experimental group, this 
association was disrupted. The two groups did not differ in accuracy. However, 
subjects in the experimental group along with other attributes of explicit learning 
showed a more conservative response bias, indicating increased conscious control.

Conclusions

Let us summarize the results of our work. We were considering the question 
of how the process of verbalization affects the acquiring and usage of implicit 
knowledge.

1.	 Analysis of previous papers shows that fifty years of active research in the field 
of implicit learning applied to different tasks resulted in two opposing camps. 
The first side believes that all the important cognitive work is performed by 
the unconscious and consciousness has no access to the acquired experience. 
The opposite side presumes that cognition is always consciously controlled 
and acquired knowledge can be explicated with the help of a correctly worded 
request. Strangely enough, though, both of the camps make a similar predic-
tion: subjects’ attempts to explicate and verbalize knowledge acquired through 
learning should not affect the learning process itself. Thus the verbalization 
procedure is seen by the majority of researchers solely as a methodological 
measure to assess the degree of one’s awareness of knowledge acquired during 
the learning process.

2.	 The main trend in contemporary research in the field of implicit learning is 
more methodological and empirical. Retrospective verbal reports have been 
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widely criticized as not meeting a number of criteria (Newell and Shanks, 
2014; Timmermans and Cleeremans, 2015) and new methods have been 
developed to assess knowledge awareness. Alternatives to post-experimental 
interview proposed later (confidence ratings, post-decision wagering as well as 
a decision strategy attribution test) are in fact additional tasks included in the 
testing procedure aimed at assessing a subject’s awareness of the knowledge 
he/she uses to make this or that decision. However, the issue of how these 
additional tasks can affect the learning process itself and alter its natural course 
has almost never been discussed, except in research in the field of dynamic 
systems control where attempts were made to study competing verbalization 
from the very beginning. But inconsistent results obtained in a number of 
studies (Berry and Broadbent, 1984; McGeorge and Burton, 1989; Dickson, 
McLennan and Omodei, 2000) have not been duly theoretically processed.

3.	 From the very first emergence of implicit learning studies some papers 
appeared now and then showing impacts of subjects’ strategies on acquiring 
and usage of implicit knowledge. When the researchers provoked a conscious 
search for hidden rules or regularities, accidentally or on purpose, the implicit 
learning effect decreased or even disappeared (Reber, 1976; Hendrickx et al., 
1997; Lleras and von Mühlenen, 2004). This made some researchers even 
doubt implicit learning as a phenomenon (Hendrickx et al., 1997). Apart from 
a change in sensitivity to hidden rules, subjects’ tendency to search for rules 
consciously led to a shift in the decision-making criterion in some studies 
(Reber, 1976; Shanks, Johnstone and Le Staggs, 1997; Johnstone and Shanks, 
2001), but these facts received almost no attention from the researchers.

4.	 Targeted conscious search for rules or regularities, in our approach (follow-
ing Vygotsky’s works), is mediated by the processes of inner speech. Subjects 
are trying to form some explicit hypotheses on which features of stimuli 
allow them to be classified as a target category or rejected. The experiment-
er’s instructions play a significant role here as it is the experimenter who can 
later serve as means of testing these explicit hypotheses (the subjects almost 
always ask the experimenter what the correct answer was after the experiment 
ends). Observed effects (a change in sensitivity to hidden rules and an increase 
in decision-making criterion accuracy) are similar to verbal overshadowing 
(Schooler and Engstler-Schooler, 1990; Alogna et al., 2014) and verbalization 
effects (Ponomarev, 1960; Belova, 2004), observed in a number of other tasks.

5.	 A change in sensitivity to hidden rules and an increase in decision-making cri-
terion accuracy are related to how speech (internal or external) modulates the 
subject’s attention within the course of task execution. As speech is discrete in 
nature, a subject’s attention is driven to specific features of stimuli presented 
to the detriment of their integral continual features (analytical vs holistic strat-
egy). If a shift from holistic to analytical strategy is provoked as early as in the  
test block, there will be no transfer of implicit knowledge accumulated in the test  
block (this is the explanation of the verbalization overshadowing effect used 
by Schooler in his latest works (Schooler, 2002); this issue was addressed by 
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Whittlesea and colleagues in their works on implicit learning and memory 
(Whittlesea and Dorken, 1993; Whittlesea and Price, 2001). Also, when com-
ing up with verbal hypotheses the subject will rely on his/her memories that 
are available for report (recollection) and use a priori data and heuristics. As 
the scope of explicit knowledge does not allow subjects to confidently express 
all the hidden rules present in the testing material, they are choosing a stricter 
decision-making criterion.

6.	 The first methodological consequence from the above-mentioned state-
ments is that a strict decision-making criterion (e.g. YesRate < 50%) seen in 
implicit learning tasks can be used as an objective marker for analytical strat-
egy. Another consequence is that introduction of additional tasks requiring 
the subject not only to make decisions in the main tasks but also analyze the 
bases of such decisions, should provoke analytical strategy. This conclusion 
was proved in our experiments: introduction of an answer attribution proce-
dure in the test phase resulted in subjects’ switch to an analytical strategy and 
usage of explicit and not implicit knowledge (Ivanchei, 2016; Ivanchei and 
Moroshkina, 2017).
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FOCUSING ON GOAL RELEVANCE –  
IS IT CRUCIAL TO ARTIFICIAL 
GRAMMAR LEARNING?

Agnieszka Popławska-Boruc, Radosław Sterczyński,  
and Marta Roczniewska

Introduction

The aim of the present chapter is to summarize a research project which focused 
on the importance of goal relevance in the implicit learning process. Contrary 
to Eitam, Schul and Hassin (2009), we hypothesize that implicit learning occurs 
without goal activisation. Moreover, if no aim is set for participants, in a dual arti-
ficial grammar learning (AGL) paradigm individuals learn letters more efficiently 
than colors, because the former are more relevant due to e.g., the habit of reading. 
While Reber and Allen (1978) demonstrated that observational (goal-independent) 
learning does occur, no previous studies investigated what people learn in fact 
when they are exposed to two or more grammars simultaneously. To address this 
literature gap, we begin by discussing theoretical underpinnings of the implicit 
learning phenomenon, paying particular attention to the AGL paradigm. We then 
describe in detail Eitam and colleagues’ (2009; 2013) studies, including a review 
of research gaps that follow their design. A description of our three systematically 
modified auto-replications is then followed by careful consideration of the studies’ 
contribution and limitations. We close the chapter with a discussion of future 
directions of research.

The implicit learning phenomenon

Implicit learning is a process which allows us to acquire knowledge about regu-
larities which exist in our environment without conscious intention to do so and 
despite the fact that we have no conscious access to the rules that underlie these 
regularities (Hendricks, Conway, and Kellogg, 2013; Mealor, Dienes, and Scott, 2014; 
Reber, 1967). The process of implicit learning is contrasted with explicit learning 
which is an active, conscious process which requires effort. Implicit learning is a 
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passive process which does not require cognitive investment because it takes place 
even when we are merely exposed to appropriate stimuli (Hendricks et al., 2013). 
This process is also automatic, thereby, we are largely unaware of it happening and 
therefore do not control it, making it fast, effortless and unconscious (Bargh, 1994; 
Moors and De Houwer, 2006).

Implicit learning has been studied with the use of various paradigms (Pothos and 
Bailey, 2000; Seger, 1994). It is worth mentioning that approaches to this subject 
matter are very diverse with respect to the level of rule complexity and the effort 
which participants must put into completing the task. The most popular paradigms 
are as follows:

•• the sequence learning task,
•• the dynamic system control task,
•• the AGL task.

AGL is one of the most popular paradigms used to study implicit learning. In 
the classic version of this task, we start out by generating a finite state of rules 
governing the sequence of letters in a letter string. This set of rules will allow us to 
create shorter and longer letter strings and determine the tabbing order of all con-
tained letters (Higham, Vokey, and Pritchard, 2000; Pothos, 2007; Reber, 1967). 
In the classic procedure, participants in the experiment are first asked to memorize 
a number of rule-abiding, thereby ‘grammatical’ (‘regular’) letter strings, and then 
to classify letter strings from a different set (albeit controlled by the same grammar) 
as either ‘grammatical’ or ‘non-grammatical’ (‘irregular’). In contrast, participants 
in the control group are either asked to memorize non-grammatical letter strings 
in the learning phase or do not take part in the learning phase at all, and are imme-
diately asked to classify letter strings as either grammatical or non-grammatical.

Multiple studies have shown that participants in the experimental group are able 
to correctly classify letter strings above chance level (Chang and Knowlton, 2004; 
Knowlton, Squire, Champagne, Kronenberg, Willoughby, and Zouzounis, 1996; 
Zizak and Reber, 2004) or more effectively than the control group which did not 
take part in the learning phase (Popławska and Wierzchoń, 2008; Pothos, 2007; 
Vokey and Higham, 2005). This suggests that they have acquired some sort of tacit 
knowledge during the learning phase. There is an ongoing discussion about the 
nature of this knowledge, whether it is abstract (Meulemans and Van der Linden, 
1997; Perruchet and Pacteau, 1990) and to what extent it is conscious (Higham 
et al., 2000).

Attention and motivation in the process of implicit learning

Information processing requires cognitive resources. Hirst and Kalmar (1987) 
define cognitive resources as the fuel, structures, processes, and skills which are 
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necessary to carry out a task, thereby underlining the fact that too often cognitive 
resources are perceived merely as fuel, a source of mental energy. In this paper, 
we define cognitive resources as that which limits human performance of a task 
and can be allocated in varying degrees to different tasks. Cognitive resources can 
be defined in three areas:

•• as mental energy, dependent on biochemical processes (e.g. blood glu-
cose level); these resources are often linked to willpower and perseverance 
(Muraven, Tice, and Baumeister, 1998);

•• as information which is necessary to solve a task (Norman and Bobrow, 1975);
•• as data processing structures which are either physical (i.e. parts of the brain; 

Damasio, 1994) or psychological (i.e. the phonological loop or the visuospatial 
sketchpad; Baddeley, 1986).

Cognitive resources also include attentional resources, which can be allo-
cated in varying degrees to fit the task at hand. It is therefore important to state 
what we perceive attention to be – a mental energy resource or rather selection 
mechanism, which determines what kind of data will be processed in any given 
moment (Von Hecker, Dutke, and Sedek, 2000). If we assume that implicit 
learning is an automatic process it follows from there that it does not use up 
cognitive resources. However, this conclusion is difficult to accept when we 
consider the complexity of the knowledge acquired in paradigms such as the 
AGL task or the dynamic systems control task. It has to be said that the results 
of research on the use of cognitive resources in the process of implicit learning, 
as well as on the role of attention, have not been conclusive. Investigating the 
role of attentional resources in implicit learning is usually done by means of 
the dual-task paradigm. Hayes (1987, in: Dienes, Broadbent, and Berry, 1991) 
obtained results which suggest that acquisition of tacit knowledge takes place 
regardless of how much we are invested in the process in terms of the use of 
our cognitive resources. In his research, he used an extra task, namely the pro-
cedure of generating random figures. However, Dienes et al., 1991 were not 
able to replicate the results of the aforementioned studies. Research by Jiménez 
and Méndez (1999) showed that study participants are capable of acquiring tacit 
knowledge during a Serial Reaction Time (SRT) task while simultaneously 
counting objects that appear on the screen. What is more, participants learn 
about the links between the primary and secondary task when they are actively 
engaged in the latter. For example, they can link a shape they are presented 
with to an area on the screen where the target stimulus will appear. We may say 
then that the process of implicit learning in the SRT task is independent of the 
number of cognitive resources which are engaged in it, but is highly dependent 
on mechanisms of attentional selection which allow participants to grasp the 
complex structure of the dual task, wherein the primary task is interconnected 
with the secondary task. Research conducted by Nissen and Bullemer (1987; 
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in: Jiménez and Méndez, 1999) showed that counting tones which appear dur-
ing the SRT task impairs the process of implicit learning. On the other hand, 
research by Cohen, Ivry, and Keele (1990) showed that when the sequence 
of the strings is simple, implicit learning does take place despite the fact that 
participants have to attend to two different tasks at the same time. Jiménez and 
Vázquez (2011) demonstrated that even if we have to attend to two different 
tasks at any given time, like in the dual-task paradigm, if the two tasks involved 
are interconnected (e.g. when the secondary tasks allows us to infer where the 
target stimulus will appear) implicit learning will still take place. What is more, 
the process is not impaired despite the fact that cognitive resources available 
to us are reduced simply because we have to perform two tasks at the same 
time. Some of the few studies conducted on AGL involving a parallel secondary 
task were those conducted by Hendricks et al. (2013). While memorizing let-
ter sequences, participants were expected to remember the number sequences 
which had been presented to them on the screen beforehand. As it turned out, 
the process of implicit learning in this condition was just as effective as it was 
in the control condition. The only exception pertained to participants who, 
in the learning phase, had to perform an extra task – in their case the process 
of implicit learning was impaired. The results of these experiments allowed 
the researchers to infer that cognitive resources are needed more in the test-
ing phase than in the implicit learning phase of the AGL task. The authors of 
another experiment showed that cognitive resources are essential in a situation 
where tacit knowledge has to be transferred. When different letters were used in  
the learning and testing phase (the grammar stayed the same) participants in the 
dual-task paradigm were not able to correctly sort letter strings into grammatical 
and non-grammatical ones.

As we mentioned earlier on in the chapter, cognitive resources are important 
in the testing phase when participants have to sort letter strings into grammatical 
and non-grammatical ones. If we ask them during this phase to simultaneously 
perform an extra secondary task it may force them to change the response strat-
egy they adopted in performing the primary task. This is exactly what Deroost, 
Vandenbossche, Zeischka, Coomans, and Soetens (2012) observed when they used 
the Stroop test alongside the implicit learning process. We ourselves obtained simi-
lar results (Popławska, Roczniewska, and Sterczyński, 2014) when we presented 
participants with two sets of artificial grammars, associated with various features of 
the stimuli as well as sensory modalities. Participants changed their response style 
to a more conformational one when they were simultaneously presented with two 
artificial grammars. We may conclude that by simplifying our response strategy 
individuals make it less resource-intensive.

The presented studies do not offer a conclusive answer to the question regard-
ing the importance of attentional resources in the process of implicit learning. A 
more precise manipulation of attentional resources is needed, for instance by means 
of instructing participants to focus on the goal of the task.
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Goal relevance in the process of implicit learning

Eitam, Schul, and Hassin (2009) set out to determine what role goal relevance 
plays in the process of implicit learning. In their studies they used two sets of arti-
ficial grammar which were presented to participants simultaneously. One grammar 
set determined the sequence of letters in the letter strings, whereas the other set 
governed the colors of the background on which the letter strings were presented. 
Both grammars were balanced in terms of difficulty and the number of transitions 
between particular letters and colors, respectively. This allowed the research-
ers to manipulate the learning process and precisely assess which features of the 
strings would be memorized – the letters, the colors, or both of these features. 
The researchers stated in the instruction which feature was meant to be learned 
and stated whether it was goal relevant or not. Participants were divided into two 
groups. One group was asked to memorize the order of the letters and to ignore 
the colors, whereas the other group was asked to do just the opposite – memorize 
the sequence of background colors and ignore the letters. In the testing phase, the 
researchers assessed levels of correctness in classifying new strings as either gram-
matical or non-grammatical among participants for whom a given feature was goal 
relevant in terms of the instruction they received (because they had memorized 
either letters or colors) and those for whom it was goal irrelevant in terms of the 
instruction they had been given. The results allowed the researchers to conclude 
that participants were better at classifying only that feature of the strings which had 
been relevant to them in terms of the instruction they received. They completely 
ignored the other feature. The results of the study were replicated in a follow-up 
study in which participants were asked to memorize both the order of letters and 
the order of background colors. An analysis revealed that participants in that study 
were able to classify new letter strings with above chance level correctness regard-
less of whether they had to sort them according to the order of colors or letters. 
Thus, it is clear that they had acquired the complex rules of both sets of grammar. 
This observation allows us to infer that participants can ignore the feature of the 
letter strings which is irrelevant to them in terms of their goal. Eitam et al. (2009) 
very clearly suggest that implicit learning will not take place if we do not inform 
participants about the goal of the task. What is more, in the second study, implicit 
learning was impaired, especially in the case of memorizing the order of colors. 
This may confirm the thesis that implicit learning is to some extent dependent 
on cognitive resources, in this particular case on attentional resources. In the sec-
ond experiment, these resources had to be allocated to two different features, and 
because of this, the effect of implicit learning was weaker than it was in the first 
experiment. The researchers summed up all the studies with the conclusion that 
both the effect and the direction of implicit learning are modulated by motivation. 
In their follow-up studies, Eitam and colleagues (2013) hypothesized that atten-
tion is not a prerequisite to implicit learning; what is necessary is setting a goal and 
focusing participants’ attention on that goal. In the AGL task this means instruct-
ing participants which feature of the stimulus they are supposed to memorize.  
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The material which participants are supposed to memorize is located in the atten-
tion field, but if a particular feature of the stimulus is irrelevant in terms of the goal 
then implicit learning will not take place.

Because in previous studies (Eitam et  al., 2009) both dimensions subject to 
implicit learning pertained to different features of the strings – either the order of 
letters or the sequence of background colors – in yet another replication, Eitam 
et  al. (2013) decided to use equivalent dimensions of the presented stimuli. In 
order to achieve this they created stimuli material which consisted of colored 
circles where the order of the outer circle colors was governed by one artificial 
grammar and the order of the inner circle colors was governed by another artificial 
grammar. According to the authors, this warranted even allocation of attentional 
resources to both features (the color of the outer rings and the color of the inner 
rings) and made sure they were perceived by participants as equally important. 
Therefore, attention would not be dependent on a particular feature of the stimu-
lus. Neither of the features would be favored, which could have been the case in 
previous experiments (Eitam et al., 2009). The results of the experiment showed 
that participants acquired only those rules of artificial grammar which were rel-
evant to them in light of the instruction they had been given. Thus, the group 
which was supposed to memorize the color sequence of the outer circles classified 
new strings better if they were based on the grammar which governed this feature 
of the stimuli, whereas the other group was better at classifying strings which were 
based on the grammar that determined the color sequence of the inner circles. 
According to Eitam (Eitam et  al., 2013) this is proof that attentional resources 
alone are not enough to learn the rules of artificial grammar even if the material 
presented is structured in such a way that both features of the stimuli are located 
in the participants’ field of spatial attention. The results of this experiment were 
replicated in a follow-up study (Eitam et al., 2013), in which each circle in a circle 
string was presented to participants separately. In the classic studies within the AGL 
paradigm, participants can see an entire string (made up of letters, for example) on 
the screen. In contrast, in this experiment each element of the string was presented 
separately for about 500 ms and each presentation was followed by a 500 ms break. 
According to the researchers (Eitam et  al., 2013), this was supposed to prevent 
cognitive overloading in participants and make sure each feature of the stimulus 
was granted sufficient attentional resources. The experiment was structured in such 
a way as to exclude the possibility of there being inadequate cognitive engagement 
for a given stimulus which might occur when participants are presented with entire 
strings at once. The experiment yielded the same pattern of results as the first 
experiment. Participants learned only those grammar rules which determined the 
feature of the strings they were instructed to focus on.

Eitam et al. (2013) summed up their research with the following conclusions:

•• implicit learning is related only to those features of the stimulus which are 
relevant to the goal of the task;
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•• implicit learning occurs when the features of a stimulus differ between dimen-
sions (letters vs. background colors), and also when the features of a stimulus 
differ within a dimension (color – in case of circle strings);

•• implicit learning occurs with great involvement of cognitive resources when 
participants have to simultaneously memorize both features of a stimulus or 
when the cognitive load is not substantial.

It is worth emphasizing that Eitam et al. (2013) discuss a number of studies in 
which implicit learning took place even though participants were not instructed 
to focus on any specific goal (Cock, Berry, and Buchner, 2002; Rowland and 
Shanks, 2006). However, all these studies used a different paradigm than AGL. 
What is more, every time participants learned grammar rules which governed 
the stimuli they ignored, it turned out to have been important in terms of the 
primary task. It helped them predict where the primary, goal-relevant stimulus 
would appear. Thus, although they were told to ignore certain stimuli, in a wider 
context these stimuli helped them better predict where the primary, goal-relevant 
stimulus would appear. These types of experiments were mostly conducted in the 
SRT paradigm or in the modified version of the Contextual Cuing Paradigm. 
It is worth emphasizing that the qualitative effect of implicit learning does not 
depend on the quantity of attentional resources which are engaged in the process 
(Rausei, Makovski, and Jiang, 2007). Eitam et al. (2009) obtained similar results, 
when participants were instructed to memorize the order of both kinds of stimuli 
features – letters and background colors.

What is interesting is that subconscious goal priming can also affect the implicit 
learning process. Research by Eitam, Hassin, and Schul (2008) demonstrated that 
subconscious priming of words connected to achievement results in deeper data 
processing and consequently better results obtained in the implicit learning process. 
Participants were subliminally primed with words such as ambitious, a race, com-
petiveness etc. Then they were asked to perform a dynamic system control task. 
Participants who were primed with achievement-related words performed better 
on this test than people who were subliminally primed with neutral words. This 
goes to show that priming associated with motivational processes affects implicit 
learning. In light of these research results, it seems that people can only acquire 
tacit knowledge when it is relevant to their goal. It can be directly related to it (e.g. 
an instruction to memorize the order of background colors) or indirectly related 
to it (e.g. when some feature of the material is related to goal-relevant stimuli and 
thereby allows us to predict where the primary stimulus will appear next) like in 
the SRT task, for example.

On the basis of these studies, one cannot conclude that implicit learning is goal-
oriented because there was no condition in which the participants were presented 
with material to memorize without being told to focus on any feature of it (the lack 
of a control group). Is there a material that could be used in the AGL task which 
would automatically activate the goal without researchers having to explicitly state it 
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to participants? Eitam and colleagues (2014) demonstrated that human faces may be 
such stimuli. Although they were completely irrelevant in terms of performing the 
primary task and participants could therefore ignore them, implicit learning took 
place and participants memorized the artificial grammar-controlled sequence of 
faces in the experiment. A similar pattern was not noted when faces were replaced 
with pictures of buildings. Researchers believe this is because to us humans faces 
are chronically primed as the target of data processing because they are important 
in terms of our social functioning. In our previous studies (Popławska et al., 2014) 
we also demonstrated effective implicit learning of letter sequences in an AGL 
paradigm without explicitly stating the learning goal to the participants. In two 
studies conducted participants were instructed to just observe the screen, and still 
they were able to classify letter strings according to complex grammar rules above 
chance level.

The above-mentioned studies point to a possibility of implicit learning occur-
ring in the absence of an explicit goal statement (Hypothesis 1). However, no 
previous study investigated whether individuals are able to acquire tacit knowledge 
when exposed to more than one implicit rule. In order to address this research gap 
we used the dual-task paradigm and thereby presented participants simultaneously 
with two artificial grammars without telling them what the goal of the task was. 
The novelty of the designed study is to show observational learning in the dual-
task paradigm, which was never tested before, and to test which feature of the 
stimuli they are most likely to learn.

Method

Overview of the experiments

In the experiments reported here, we used a 2 AGL paradigm (see Eitam, Schull, 
and Hassin, 2009). The typical AGL procedure comprises two phases. During the 
first phase, the so-called learning phase, participants are presented with a series of 
objects. The objects, depending on the experimental condition, either comply 
with or violate specific rules, which are complicated and unfamiliar to partici-
pants. Objects presented to participants in the learning phase belong to one of 
the following categories: regular – rule-abiding – in the experimental condition; 
or irregular – rule-violating – in the control condition. Participants are instructed 
either to memorize the objects or just watch the objects. When the learning phase 
is completed, participants are informed about the existence of rules and asked to 
classify new objects with respect to these complementary rules. During the second 
phase, the so-called classification/testing phase, participants are presented with new 
objects that belong to two categories (regular and irregular) and must determine 
whether these objects comply with or violate the rules established by the first 
series. The modal finding is that those participants who are presented with regular 
objects during the learning phase, correctly classify new material. Typical rates 
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of accuracy in this group significantly exceed chance level and those obtained by 
controls who are presented with irregular objects during the learning phase. This 
suggests that participants have learned the grammar or its related regularities (Eitam 
et al., 2009). Research literature has noted a few AGL paradigm mutations that 
allow us to observe the process of simultaneous acquisition of two independent 
sets of rules. Rules provided during the learning phase can be connected with 
individual properties of the presented objects (e.g. Eitam et al., 2009) or divided 
into separate objects (e.g. Conway and Christiansen, 2009).

From the participants’ point of view, the dual-task AGL paradigm is quite 
similar to classic AGL. Participants are presented with a series of objects, informed 
about the existence of a rule and asked to classify new objects. However, the 
objects are more complicated than in the single version of AGL. The complexity 
of the task, understood as the number of properties that vary among objects, has to 
be big enough to differentiate objects with respect to two sets of rules. Properties 
connected with particular rules can be distinctive, in this case objects are per-
ceived as belonging to two distinct categories (e.g. letters and their background 
colors; see: Eitam et  al., 2009). On the other hand, properties can be closely 
related – objects are then perceived as more holistic but also more complex (e.g.. 
colored circles inside bigger colored circles, see Eitam et al., 2013). The property 
of an object connected with one rule can be more salient than its property con-
nected with another rule. Moreover, participants’ attention can be manipulated 
and directed towards a particular property of the object. However, because both 
regularities remain implicit, one of them should be interpreted as primary and the 
other as secondary, which makes this paradigm similar to the typical explicit dual 
task (Necka, 1997).

There are many possible experimental designs, which can be run in dual AGL, 
which makes this paradigm useful to explore a wide range of problems, e.g.: 
implicit processes rivalry (Popławska et al., 2014), modality dependence (Conway 
and Christiansen, 2009), and the role of attention (Eitam et al., 2009). Complete 
observation should contain all the possible conditions. Combinations of learning 
and classification conditions are listed in Table 9.1.

TABLE 9.1  Classification expectations in a 2AGL paradigm.

Classified material

Regular-regular Regular-irregular Irregular-regular Irregular-irregular

Learned material
Regular-regular fulfil rules fulfil/violate rules fulfil/violate rules violate rules
Regular-irregular fulfil rules fulfil rules violate rules violate rules
Irregular-regular fulfil rules violate rules fulfil rules violate rules
Irregular-irregular irregular irregular irregular irregular
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Study 1

Method

Participants

A total of 121 volunteers; 66 women, 55 men, mean age M = 25.2 years, (SD = 4.28), 
participated in the experiment. Participants were recruited from employees of two 
companies (IT and textile) or were students of Economics. Participants took part in 
the study individually and were randomly assigned to one of the four conditions. The 
experiment was conducted on a laptop computer in a room assigned by the coordina-
tor. During the experiment, nobody aside from the experimenter and the participant 
was allowed to be inside the room.

Procedure

Participants first completed the learning phase which was followed up with infor-
mation about the existence of rules, and then went on to complete the classification 
phase (Reber, 1967). In the classification phase, the participants were instructed to 
classify new objects that varied in two dimensions (color sequence order and letter 
sequence order), as either grammatical or non-grammatical.

Training phase. In each trial during the learning phase objects constructed as 
sequences of colored letters appeared in the centre of the screen for 5 seconds. 
The sequences of letters were determined by one grammar set and the sequences 
of colors by another. Each stimulus appeared only once in the course of the 
learning phase. Unlike in other other studies (e.g., Eitam et  al., 2009; Reber, 
1967; Vokey and Brooks, 1992), we did not create separate pools of objects 
for the learning phase and classification phase. Stimuli were not rigidly assigned 
to phases, to prevent constant bias towards a particular classification.1 Objects 
presented during each phase were randomized trial by trial. Thus, each partici-
pant was presented with an individually assigned set of objects in an individually 
assigned order. Participants were instructed to closely observe the presented 
objects but we did not instruct them to focus on any particular properties of the 
presented objects.

Test phase. Following training, participants were informed that the objects 
they saw adhered to a complex set of rules. They were then asked to cate-
gorize 64 new objects as either grammatical or not. A total of 16 test stimuli 
were grammatical in both dimensions, whereas 16 others violated both gram-
mars, 16 stimuli were grammatical in terms of the color sequence order and 
ungrammatical in terms of the shape/meaning sequence order, and 16 stimuli 
ware ungrammatical in terms of the color sequence order and grammatical in 
terms of the shape/meaning sequence order (see Table 9.2). In both dimensions, 
the ungrammatical stimuli started and ended with a grammatically correct let-
ter. The test objects were presented in the centre of the screen until participants 
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responded. No feedback was given, in order to minimize explicit learning during 
the test phase (e.g., Eitam et al., 2009).

Material and equipment

The objects presented to participants during both phases were letter strings in bold 
Arial font size 60. It was created from two grammars regulating the sequences of 
letters (Grammar 1) and colors (Grammar 2). The two grammars were comparable 
in their complexity, the first one contained sixteen potential paths between nodes 
and three recursions, the second one contained eighteen potential paths between 
nodes and no recursions (see Figure 9.1).

A total of 172 different sequences of letters were generated from Grammar 1 
and a total of 130 different sequences of colors were generated from Grammar 2. 
For each regular (rule-abiding) sequence in both grammars, its irregular (rule-
violating) equivalent was generated. The ungrammatical equivalents were equal 
in length and started and ended with the same element as their grammatical 
counterparts. The length of sequences generated from both grammars ranged 
from 3 to 8 elements. Objects presented to the participants were randomly com-
bined trial by trial, with the restriction of the color and letter sequences being 
equal in length. The randomization procedure consisted of three steps. At the 
beginning of the trial, the length of the sequences was selected with respect to 
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FIGURE 9.1A  �Grammars governing objects used in all three referred studies. Grammar 1 – 
letter sequence used in Studies 1–3.
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the number of each length sequences in the whole pool. Next, the letter order 
within the selected length sequences was drawn. Finally, the color order within 
the same length sequences was drawn. All three randomization steps were run 
without replacement, so each sequence presented to the participant appeared 
only once during whole experiment. The experiment was run in Inquisit 3.0.xxx 
on a laptop PC.
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Design

The experiment had a 2 (learned letters: grammatical vs. ungrammatical) × 2 
(learned colors: grammatical vs. ungrammatical) × 2 (accuracy criterion: letters 
vs. colors) mixed design (see Table 9.2). The sequence of letters was governed 
by Grammar 1; the sequence of colors was governed by Grammar 2. The 
sequence of letters and colors in the objects presented during the learning phase 
was manipulated between participants. Measures of knowledge acquired from 
each grammar were calculated within the same data, which made this variable a 
within-group factor.

Results and discussion

Classification data was computed into two separate variables. The answers YES 
(the object follows the rules) and NO (the object violates the rules) were recoded 
into two separate variables indicating the correctness of classification referring to 
each rule. The recoding scheme is described in Table 9.2. The percentage of cor-
rect answers was used as an indicator of learning particular grammar.

The primary aim of the study was to verify if IL occurs when people are 
exposed to two rules simultaneously without directing their attention to this fact. 
To answer this question we computed a three-way mixed design ANOVA: 2 
(learned letters: grammatical vs. ungrammatical) x 2 (learned colors: grammati-
cal vs. ungrammatical) x 2 (accuracy criterion: letters vs. colors), with the latter 
being with-subject. The results revealed a two-way interaction: learned letters x 
accuracy criterion F(1, 117) = 3.91 p = .05 [eta2] = .03. Participants who observed 
grammatically sequenced letters during the learning phase, classified objects pre-
sented during the test phase with greater accuracy with respect to Grammar 1,  
M = 52% (SD = 6) than participants who observed ungrammatical letter sequences 
during the learning phase M = 49% (SD = 5), t(119) = 2.59 p = .01 d = .48 (see 
Table 9.3). What is more, the percentage of correct answers obtained by partici-
pants who observed grammatical letter sequences during the learning phase was 
higher than chance level t(59) = 2.38 p = .02 d = .31, whereas the percentage 

TABLE 9.2  �Different types of objects classification recode scheme according to each 
grammar criteria.

Criterion Decision Object

Regular letters Irregular letters

Regular colors Irregular colors Regular colors Irregular colors

Grammar 1 
(letters)

fulfils correct correct incorrect incorrect
violates incorrect incorrect correct correct

Grammar 2 
(colors)

fulfils correct incorrect correct incorrect
violates incorrect correct incorrect correct
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of correct answers obtained by participants who observed ungrammatical letter 
sequences during the learning phase did not differ significantly from chance level 
t(60) = 1.24 p = .22 d = .16. The two groups of participants classified objects pre-
sented during the test phase with respect to Grammar 2 – which governed their 
color sequence – equally well: t(119) = .32 p = .75 d = .06; their level of accuracy 
did not differ much from chance level and was: M = 50% (SD = 6.1), t(59) = .43 
p = .67 and M = 50% (SD = 5.7), t(60) = 0 p = 1, respectively .

An analogous interaction between learned colors and accuracy rates was statisti-
cally insignificant: F(1, 117) = 3.91 p = .05 [eta2] = .03. Participants who observed 
objects with grammatically sequenced colors during the learning phase did not 
classify objects more accurately (M = 50% (SD = 5.7)) than participants who 
observed ungrammatical objects (M = 49% (SD = 6,0)) with respect to Grammar 
2: t(119) = .94 p = .35 d = .17. The percentage of correct answers obtained by 
both groups of participants did not differ significantly from chance level and was, 
respectively: t(59) = .46 p = .65 d = .06 and t(60) = .86 p = .39 d = .11. Participants 
who, during the learning phase, observed objects with grammatically sequenced 
colors did not classify objects more accurately (M = 50% (SD = 5.5)) than partici-
pants who observed non-grammatical objects (M = 49% (SD = 5.4)) with respect 
to Grammar 1 – which governed its letter sequences: t(119) = .80 p = .43 d = .15. 
The percentage of correct answers obtained in both groups of participants did not 
differ from chance level and was: t(59) = .04 p = .97 d = .005 and t(60) = 1.18  
p = .24 d = .15, respectively.

TABLE 9.3  Learned letters × accuracy criterion 2×2 interaction.

Learned letters sequences (Grammar 1) Classification correctness

Grammar 1 (letters) Grammar 2 (color) n

Correct SD Correct SD

Ungrammatical 49% 5.1% 50% 5.7% 61
Grammatical 52% 5.5% 50% 6.1% 60

Note: Correct = mean percentage of correct classifications.

TABLE 9.4  Learned colors × accuracy criterion 2×2 interaction (insignificant).

Learned color sequences (Grammar 1) Classification correctness

Grammar 1 (letters) Grammar 2 (color) n

Correct SD Correct SD

Ungrammatical 51% 5.4% 49% 6.0% 61
Grammatical 50% 5.5% 50% 5.7% 60

Note: Correct = mean percentage of correct classifications.
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The results provide support for the hypothesis that inclination of AGL process-
ing towards letter sequences is higher than inclination towards color sequences.

The results of Study 1 demonstrate that goal formulation is not a necessary 
condition for implicit learning to occur. In line with Hypothesis 1, participants 
were able to learn the hidden regularities, although no explicit instructions as to 
what to learn (or focus on) were given. Moreover, it appears that out of the two 
rules that were presented, participants were able to acquire the grammar of letters, 
but not the grammar of colors. We think it is because reading is more automatic 
than color-naming2 – letters attract greater attention as more relevant features of 
the stimuli than colors. Similarly to faces (Eitam et al., 2014), letters may not need 
explicit goal pursuit instructions. Therefore, our next hypothesis is as follows:

Hypothesis 2. People acquire grammar related to letters more effectively than 
grammar related to colors.

Obviously, both relevant and irrelevant information in the perception field is 
being processed simultaneously. In theory, participants in this study could learn 
the two grammars. However, the battle over cognitive resources available to the 
attention process led to their allocation to selected information. Contrary to a 
study by Eitam and colleagues (2009), in our study we did not explicitly state our 
goals to participants. Participants were initially asked to ‘observe’ the screen; we did 
not point their attention towards either the letters or the colors. This allowed us 
to observe whatever became relevant to participants when their attention was not 
directed at anything in particular.

However, we cannot rule out the possibility that – because letters and colors 
operated on different grammars – the grammar of letters was easier to acquire and 
apply than the grammar of colors. Given this assumption, we planned and exe-
cuted Study 2, wherein both letters and colors were placed according to exactly 
the same grammar.

Study 2

Method

Participants

A total of 40 participants; 33 women, 7 men, mean age M = 31.1 years, (SD = 7.16), 
participated in the experiment. Participants were university students and were 
given extra credit for their participation. They took part in the experiment one at 
a time.

Procedure

The procedure was identical to that of Experiment 1 except for one change. Both 
dimensions of objects’ variance were determined by the same grammar. A total of 
172 different sequences of letters were generated from Grammar 1 and the same 
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number of different sequences of colors were generated also from Grammar 1 (see 
Figures 9.1a and 9.1b). The presented objects were a combination of color and 
letter sequences rendered exactly like in Experiment 1.

Design

Because Grammar 1 worked well in Study 1 (compared to the control condition 
and chance level) we decided to reduce the experiment to a single group within 
subject design.3 All participants observed grammatical objects which abided by 
Grammar 1 in both its dimensions: color sequence and letter sequence. To verify 
and compare the effectiveness of learning, within subject t-test and one sample 
t-test testing differences from chance level, was planned.

Results and discussion

Just like in Experiment 1, data was computed into two separate indicators of cor-
rectness with respect to each dimension (see Table 9.2). P-value is presented as 
one-tailed, according to previous observation.

Correctness referring the letter sequence M = 54% (SD = 6.3) was significantly 
higher than chance level t(39) = 3.56 p =.001 d = .56. Correctness referring to color 
sequence M = 51% (SD = 6.3) did not differ from chance level t(39) = .90 p = .37 
d = .14. The percentage of correct answers with respect to letter sequence was 
significantly higher than the percentage of correct answers with respect to color 
sequence t(39) = 1.73 p = .05 d = .27.

The results presented here are consistent with the main finding of Study 1 –  
no explicit instructions have to be given to participants for them to acquire 
the implicit knowledge of rules governing the presented items. This confirms 
Hypothesis 1. Again, the results demonstrated that – when exposed to two rules 
simultaneously – people spontaneously focus on one of them. Namely, participants 
classified grammatical strings as such with greater accuracy when the strings were 
grammatical with respect to letters; in the case of strings which were grammatical 
with respect to colors, participants were not able to perform above chance level. 
The results of this experiment confirm Hypothesis 2, and are consistent with previ-
ous findings – people ‘chose’ the grammar of letters over the grammar of colors, 
even though both letters and colors were in their field of attention, and we did not 
tell them to focus on either aspect of the strings.

Because we used exactly the same grammar for both letters and colors, we can-
not explain the observed effect with grammar difficulty. However, it is important to 
underline that colors may have been perceived as a secondary feature of the letters 
(font color is one of the features of the letter, just like font size or font style). This 
means that the design of the stimulus presentation in the two studies described so 
far may have predisposed participants to treat letters as more important than colors 
in the perception field. Taking this into consideration, we conducted Study 3,  
wherein colors were ‘extracted’ from the letters, forming rectangles placed behind 
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black letter strings. We expected that, regardless of how the colors were presented, 
individuals would learn the grammar of letters more effectively than the grammar 
of colors (Hypothesis 2).

Study 3

Method

Participants

A total of 31 participants, 22 women and 9 men, mean age M = 29.46 years (SD = 
7.12), participated in the experiment. Participants were university students. They 
were given extra credit for their participation in the study and took part in the 
study one at a time.

Procedure

The procedure and experimental design were identical to that of Experiment 2.
The only difference lay in the objects that were used. In both of the previous 

experiments, objects were colored letters. In this experiment, objects were black 
letters in Courier font presented on colored backgrounds. Both the sequence of 
letters and the sequence of background colors were governed by Grammar 1.

Results and discussion

The data was computed identically to both of the previous experiments (see 
Table 9.2).

Correctness with respect to letter sequence M = 53% (SD = 5.8) was sig-
nificantly higher than chance level t(30) = 2.53 p = .02 d = .45, and again the 
correctness with respect to background color sequence M = 52% (SD = 7.1) did 
not differ significantly from chance level t(30) = 1.35 p = .19 d = .24. However, 
the percentage of correct answers with respect to the letter sequence did not differ 
significantly from the percentage of correct answers with respect to background 
color sequence t(30) = .51 p = .61 d = .09.

The results obtained in Study 3 are consistent with our previous findings: in the 
presence of two implicit regularities, individuals seem to be able to acquire only one 
set of rules when they are not instructed to pay attention to a particular feature of  
the presented objects. This might suggest certain limitations of implicit learning. 
Again, we observed that it was the grammar of letters that was learned and sub-
sequently applied (as compared to chance level performance), not the grammar of 
colors. Nevertheless, in this experiment the accuracy of classification with respect to 
letters did not differ significantly from the accuracy of classification with respect to 
colors. This interesting finding brings to focus the role of dimension separation as a 
means of making them equally important to the recipient.
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General discussion

Studies’ contribution

Eitam and colleagues (2009) argue that AGL is selective, and – consequently – 
learning occurs for goal-relevant dimensions only. In their studies, however, the 
goals were externally set for participants – they had been informed beforehand 
what to focus on. To expand on their idea we demonstrated that participants need 
not be told directly to focus their attention on a particular feature of an object 
and also that their previous experiences, habits, or motivational standards may 
influence implicit information processing. This points somewhat to the top-down 
approach to understanding implicit learning processes.

Possibly because the grammars used in the studies were complex, learning them 
both equally well may have been too difficult a task for participants’ capacity. To 
some degree, implicit learning is resource-consuming (Dienes et al., 1991). In their 
line of research Shanks, Rowland, and Ranger (2005) demonstrated that implicit 
learning is debilitated under conditions of divided attention – having to perform 
a secondary task impaired participants’ sequence learning. In our previous studies, 
we showed that in the presence of another implicit rule, people’s effectiveness with 
regard to the primary AGL task was not affected; however, their decision-making 
strategy changed towards a simpler one, indicating a type of trade-off (Popławska 
et al., 2014). Also, Eitam and colleagues (2009; Experiment 2) demonstrated that 
participants can simultaneously learn, and then apply, two implicit grammars; 
however, in this case the effect of learning was in fact weaker. The aforemen-
tioned studies thus point to the resource-consuming nature of implicit learning, 
which calls for attention to be allocated to certain aspects of objects in the percep-
tion field. Such selection might be based on many distinct criteria. For one thing, 
the dimensions may be attended to according to their relevance to individuals’ 
current goals, giving priority to some subset of representations over others (Eitam 
et al., 2009). It was Bruner (1957) who postulated and empirically demonstrated 
that goal activation creates perceptual readiness, leading to a faster identification 
of goal-relevant information. Multiple studies conducted since then have shown 
that goal-relevant objects become more accessible, and are implicitly assessed as 
more positive than goal-irrelevant objects when the goal is active (e.g., Brendl, 
Markman, and Messner, 2003; Ferguson and Bargh, 2004; Roczniewska and 
Kolańczyk, 2014). Furthermore, self-regulation standards that people hold tend to 
determine what becomes essential for goal pursuit. For example, ideals may pre-
dispose people to focus on objects coherent with current motives, whereas oughts 
may prompt individuals to adapt a monitoring strategy that involves attending to 
hindrances (Kolańczyk and Roczniewska, 2015). Finally, previous experiences and 
habits may predispose people to focus on certain aspects of the stimuli in the visual 
field, which can further affect their judgment. For instance, the prevalence of 
vertical over horizontal symmetry perception is present among sighted (not blind) 
participants, suggesting it is derived from visual experience (Cattaneo, Fantino, 
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Silvanto, Tinti, Pascual-Leone and Vecchi, 2010). Also, the habit of reading in a 
particular direction can affect the way people scan the perceptual field, regardless 
of whether it actually contains letters (Chokron and De Agostini, 2000). Namely, 
left-to-right readers express a preference for stimuli with a rightward directionality, 
whereas right-to-left readers – a leftward directionality.

The studies described in this chapter demonstrate that implicit learning can 
occur even in the absence of an explicitly formed goal. Participants in all three 
studies were instructed to just observe the screen (not memorize the items); yet, 
they were able to acquire tacit knowledge about the rules governing the pre-
sented objects. However, we observed that only one of the two regularities was 
acquired and applied by participants. This raises a question of attention’s selection 
criteria – what prioritizes letters over colors? The exact mechanism predisposing 
individuals to focus on letters rather than colors was studied in the experiments 
described. Possibly, Latin letters, although forming senseless chunks, activate the 
habit of reading. This, in turn, prioritizes the processing of information related 
to letters over colors. A context wherein letters appear on a screen may auto-
matically elicit the behavior of reading. Such habits do not require awareness, 
intention, or control. Although reading does not require controlled attention, it 
nevertheless uses enough attentional resources (especially since the chunks do not 
form meaningful words) to reduce the amount of attention accessible for color 
information processing. This took place not only in all of our three studies, but in 
other similar studies – Eitam and colleagues (2009) reported that grammar under-
lying letter strings was generally learned more effectively than that governing color 
strings, regardless of instructions provided by experimenters.

Limitations and future research

Although the present studies contribute to the literature on goals and implicit 
learning, some limitations need to be acknowledged. For one thing, the levels 
of learning in all three experiments have been comparatively lower than those 
observed in other papers (e.g., Eitam et al., 2009; Scott and Dienes, 2008). This 
may either be explained by participants’ low motivation, or the difficulty of gram-
mars that were to be acquired. Hence, it is possible that these factors are partially 
responsible for the trade-off effect that we observed. As for the motivation, indi-
viduals who partook in Studies 2 and 3 were rewarded for their participation with 
course credit; however, this incentive cannot be seen as a warranty of participants’ 
high motivation as they were ‘remunerated’ regardless of their performance. Eitam, 
Hassin and Schul (2008) demonstrated that – although implicit learning processes 
are involuntary – achievement motivation can increase performance in the AGL 
task. Hence, this explanation regarding low motivation cannot be ruled out, and 
the effect we observed should be tested in future studies with motivation as its 
moderator. Regarding grammar complexity, each of the grammars we applied 
consisted of 10 nodes and 16 to 18 possible paths. Indeed, when we compare it to 
other studies administering the AGL paradigm, we may observe that a great deal 
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of them used less complex structures (5–6 nodes; see: Eitam et al., 2009; Scott and 
Dienes, 2008). Also, the 16 items in our studies were presented only once during 
the learning phase; other researchers (e.g., Witt and Vinter, 2012) present more 
stimuli or repeat them, which allows participants to learn more effectively. The 
difficulty and complexity of the grammar serves as an explanation for the lower 
testing phase results. Therefore, it seems possible that in a condition of lower 
cognitive load (simpler grammars) the trade-off effect would have been smaller, 
allowing participants to learn both grammars. However, this limitation does not 
preclude the main finding in this study: people are able to acquire implicit regulari-
ties without being instructed to focus their attention on specific dimensions.

An interesting finding that was replicated across all three of our studies is that, in 
general, participants were able to acquire the grammar of letters, but not the gram-
mar of colors; neither when the font of a letter string was a particular color nor 
when the colors appeared as rectangles in the background of the letters. This effect 
cannot be explained by goal relevance (as no goal was formulated in the instruc-
tion) or self-regulation standards, but rather by habits; namely the habit of reading, 
activated by the presence of letters. The above argumentation points to the possi-
bility that if the letters do not form a familiar alphabet (e.g., the Arabic alphabet for 
an average Western citizen), they may not engage attention as strongly, hence leav-
ing a possibility for colors to become most important, or at least become equally 
likely to be selected. Future studies should thus compare cross-cultural (based on 
alphabet) effects of 2AGL learning tasks with respect to colors and letters.

Conclusion

To conclude, we suggest that the relevance of dimensions in implicit learning is 
not only a function of explicit goals, but also habits that govern human behavior. 
We demonstrated that reading can predispose individuals to focus on letters over 
other stimuli in the perception field, making other dimensions less attended to and 
therefore harder to acquire.
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Notes

1	 In most studies on AGL, objects are rigidly allocated to particular phases of the experi-
ment (the learning phase or the testing phase). However, there is a risk that doing so will 
distort the results because there is a risk of constructing two pools of objects which might 
mutually interfere with each other and thereby also with the process of implicit learning 
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because of object features that researchers do not control in the study. Namely, participants 
may classify objects in the testing phase as regular or irregular not on the basis of their 
tacit knowledge of the rules but because of a shortcut they associate with a given letter 
sequence or because a flag is similar to a color sequence. The risk of tainting participants’ 
freshly acquired tacit knowledge with this mistake is all the more real because most of the 
reported studies within the AGL task paradigm are generic in their nature.

2	 This theory is the most common theory which explains the Stroop effect.
3	 In a pilot study we demonstrated the effectiveness of implicit learning of such grammar in 

the case of a single AGL for both colors and letters.
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IMPLICIT LEARNING UNDER 
ATTENTIONAL LOAD

Michał Wierzchoń and Monika Derda

Introduction

The relation between attention and implicit learning has been intensely debated in 
the literature from both theoretical and empirical points of view (see e.g. Cleeremans, 
Destrebecqz and Boyer, 1998; Jiménez, 2003). Theoretically, it has been proposed 
that implicit learning is an automatic process (see e.g. Schumacher and Schwarb, 
2009) from which implicit knowledge may be acquired without paying attention 
to stimuli and learning protocol (Wolf and Müller, 2012). This statement is impor-
tant, as it is closely related to the very distinction between explicit and implicit 
information processing (Revonsuo and Rossetti, 2000). This is because theories 
postulating an independent character of implicit and explicit systems usually pos-
tulate a qualitative difference between these two modes of processing (Willingham 
and Goedert-Eschmann, 1999) and propose that lower vulnerability to attentional 
distraction is the main reason why the former was developed (Curran and Keele, 
1993). Empirically, multiple studies have investigated whether implicit knowledge 
can be acquired under attentional load (see e.g. Wierzchoń, Gaillard, Asanowicz 
and Cleeremans, 2012 for a review). Interestingly, even though the problem has 
been investigated since the 1980s, a consensus has still not been reached. This 
may be partially a result of the multiple empirical paradigms applied in order to 
investigate the problem. Respectively, as one can see in the following paragraphs, 
discussions of results discrepancies observed under artificial grammar learning and 
serial reaction time tasks follow different directions. However, it seems that even 
taking into account these differences, one may find not only empirical evidence 
that speaks in favour of attentional demands of implicit learning (see e.g. Jiménez 
and Vázquez, 2005; Shanks, Rowland and Ranger, 2005), but also a large body 
of studies confirming the alternative hypothesis (e.g. Barker, 2012; Chang and 
Knowlton, 2004; Rowland and Shanks, 2006). In this chapter, we will discuss in 
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detail the theoretical and empirical evidence supporting the hypothesis that implicit 
learning is independent from attentional resources. We will focus on the theoreti-
cal distinction between implicit and explicit information processing modes and the 
empirical evidence collected by studies investigating implicit learning under atten-
tional load. We will also present a set of unpublished study results investigating the 
problem that will further support possible interpretations.

Implicit learning as an automatic process

Early papers defined implicit learning as a process through which intuitive knowl-
edge about the underlying structure of a complex stimulus environment can be 
developed (Reber 1967; 1989). Typical features used to further characterise the 
process include (1) unconscious mode of processing, (2) abstract representation of 
knowledge acquired, (3) incidental character of learning and (4) its robustness over 
time, lack of attentional resources and psychological disorders resulting in defi-
cits of conscious processing (Cleeremans, Destrebecqz and Boyer, 1998; Jiménez, 
2003; Reber, 1989). All of these features have been discussed and sharply criticised 
in face of the results collected with implicit learning studies (see: Berry and Dienes, 
1993; Shanks and Channon, 2002 for a review). This has not only empirical con-
sequences, but also touches on the very problem of the independence of implicit 
and explicit processing. Many researchers assume that implicit learning is auto-
matic and thus should require minimal cognitive resources (see e.g. Frensch and 
Rünger, 2003; Schumacher and Schwarb, 2009). This assumption is derived from 
the broader theoretical context suggesting that we can process information because 
of two separate systems: the implicit and the explicit. In fact, whenever a new study 
calls into question one of these features, the very assumption of the independ-
ence of implicit and explicit information systems is questioned. This debate adopts 
multiple forms and is often conducted in the context of perception, memory and 
consciousness domains (see e.g. Evans, 2008; Graf and Schacter, 1985; Reber and 
Squire, 1998; Squire, 1987; but see: Henke, 2010). Proponents of the so-called 
dual channel approach used to suggest that implicit information can influence 
behaviour independently of that processed explicitly, whereas an alternative view 
says that those two types of information processing closely depend on each other 
(see e.g. Frensch and Rünger, 2003; Maniscalco and Lau, 2016).

The idea that attentional requirements differ between the two modes of infor-
mation processing described above has been developed in the context of automatic 
processing studies (see: Posner and Snyder, 1975; Shiffrin and Schneider, 1977 
for the classical approach). Several critical features have been proposed to dif-
ferentiate between automatic and controlled processes. Automatic processes are 
typically defined as being effortless, unconscious, autonomous, loosely controlled 
and involuntary (Hasher and Zacks, 1979; Logan, 1988). Nevertheless, it has often 
been proposed that the features do not always occur simultaneously (Neumann, 
1984; Bargh, 1994). Leaving aside the problem of its involuntary and unconscious 



234  Michał Wierzchoń and Monika Derda

character, we will here focus on the attentional requirements of automatic process-
ing. It is usually assumed that controlled processing consumes attentional resources 
and automatic processing does not (Strayer and Kramer, 1990). This assumption 
may be tested in a dual-task paradigm. Therefore, a task for which an automatic 
mode of processing is questioned (i.e. a primary task) is paired with another task 
that is assumed to be highly demanding in terms of engaged attentional resources 
(i.e. a secondary task). It is assumed that if a primary task is indeed automatic, the 
additional, secondary task should not impair participants’ performance. However, 
when one observes a decrease in primary task performance, one may conclude that 
the task requires attentional resources and is cognitively demanding (Logan, 1978; 
Logan, 1979; Posner and Snyder, 1975). Following the dual-task paradigm logic 
in the context of implicit and explicit learning studies, proponents of implicit and 
explicit learning independence would expect that implicit learning should not be 
influenced by the attentional load resulting from performing the secondary task 
(see: Frensch and Rünger, 2003; Jiménez and Méndez, 1999; Wierzchoń, Gaillard, 
Asanowicz & Cleeremans, 2012), whereas researchers assuming that both implicit 
and explicit learning are possible due to the very same information processing sys-
tem would expect that the attentional load should affect implicit learning effects 
(see: Shanks, Rowland and Ranger, 2005).

Implicit learning under attentional load

Before looking into the details of if and under which circumstances implicit learn-
ing was reported to be impaired under dual-task conditions, let us briefly introduce 
the two main paradigms through which implicit learning has been documented: 
artificial grammar learning, developed by Reber (1967), and sequence learning, 
first introduced by Nissen and Bullemer (1987).

As suggested by the implicit learning definition, the common factor in all 
implicit learning tasks is that participants acquire some information about the 
underlying structure of the material without having any intention of doing so (see 
Reber, 1989). Both paradigms share similar learning conditions, that is, partici-
pants are aware of stimuli but know nothing about the existence of hidden rules 
that organise the learned material. Thus, knowledge of the hidden rule is acquired 
incidentally. In both paradigms, participant behaviour indicates that they have 
acquired some knowledge of the rules (i.e. the acquired knowledge is exhibited by 
the indirect measure of knowledge). It is broadly assumed that implicit learning is 
observable within both paradigms (see e.g. Cleeremans, Destrebecqz and Boyer, 
1998) and both are often used in the context of studies investigating cognitive and 
neurodegenerative disorders (see e.g. Rüsseler, Gerth and Münte, 2006; Smith, 
Siegert, McDowall and Abernethy, 2001). However, whether the nature of the 
knowledge acquired in both tasks is the same is still debatable (Perruchet, 2008; 
Perruchet, and Pacton, 2006).

In the canonical version of artificial grammar, a learning task consists of two 
phases. In the first phase, strings of letters constructed around a set of rules 
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(e.g. finite-state grammar) are presented to participants. In the second phase, 
the participants are asked to classify the set of new strings (half grammatical and 
half ungrammatical, consecutively randomised) presented serially. Despite the 
fact that participants reported little verbal knowledge about the rules on which 
the strings were built, they were able to classify them above chance level 
(see e.g. Reber, 1989). Thus, it is often argued that they acquired knowledge 
implicitly and that it is represented unconsciously.

In a typical serial reaction time task experiment (Nissen and Bullemer, 1987), 
participants are asked to react to a stimulus presented at one of four possible 
locations. Each location corresponds to one of four possible response keys. The 
presented elements follow a structured sequence of events. At each trial, after see-
ing a stimulus, participants are asked to press a corresponding key as quickly and 
accurately as possible. Unknown to the participants, the sequence of stimuli fol-
lows a repetitive pattern. It is usually observed that reaction times tend to decrease 
progressively during practice (learning effect), but increase dramatically when 
the hidden sequential structure is modified in any of several ways (the so-called 
transfer effect: see e.g. Destrebecqz and Cleeremans, 2001; Wierzchoń, Gaillard, 
Asanowicz & Cleeremans, 2012). This pattern of results is usually interpreted as 
proof that participants have become sensitive to the sequential regularities 
contained in the material during the course of training.

Assuming that artificial grammar learning and sequence learning measure the 
very same process, one would expect similar effects of attentional load induced 
by a concurrent secondary task regardless of the specific implicit learning para-
digm applied. It is important to note here that, regardless of an implicit learning 
procedure applied, there are at least three possible mechanisms that may diminish 
implicit learning effects under the dual-task paradigm. Each is related to the influ-
ence of the secondary task at a different stage of a learning task. Firstly, one may 
argue that under attentional load the process of encoding regularities is disrupted in 
such a way that weaker knowledge representation is formed. Secondly, attentional 
load may influence the judgement knowledge that is needed to perform a task 
when the acquired implicit knowledge is tested (see e.g. Dienes and Scott, 2005). 
Finally, the attentional load may affect motor reactions and thus result in lower 
performance of an implicit learning test with no effect on implicit learning itself 
(see also Wierzchoń, Gaillard, Asanowicz & Cleeremans, 2012).

Artificial grammar learning under attentional load

Most artificial grammar learning studies have shown that attentional load induced 
by a secondary task does not influence implicit learning (as tested with the classi-
fication phase of the artificial grammar: Broadbent, 1989; Dienes and Scott, 2005; 
Hayes, 1989. See Table 10.1 for the review). It was even proposed that attentional 
load could facilitate the acquisition of implicit knowledge (Perruchet, 2008), as 
participants are not focusing on rule identification. However, identification is usu-
ally ineffective because of the rule difficulty (see also Reber, 1989). Other studies 
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have challenged these conclusions by demonstrating impaired classification per-
formance under attentional load (see e.g. Dienes, Broadbent and Berry, 1991; 
Chang and Knowlton, 2004). It was usually proposed that this result was an effect 
of explicit learning’s large contribution to classification task performance. This 
was independently confirmed with multiple studies investigating the availability 

TABLE 10.1  �Overview of research papers investigating effects of attentional load on 
implicit learning in an artificial grammar learning paradigm. RNG – random 
number generation task; EL – explicit learning; IL – implicit learning;  
AGL – in an artificial grammar learning (AGL) paradigm.

Author Secondary task IL under 
dual-task

Results

Hayes, 1989 RNG observed intact classification under standard 
incidental memory instruction 
(IL measure), but impaired under 
intentional learning instructions (EL 
measure)

Dienes, 
Broadbent 
and Berry, 
1991, Exp. 2

RNG impaired impaired classification, and other 
measures of IL (d’ and sequential 
letter dependencies tests) both 
under intentional and incidental 
instructions

Chang and 
Knowlton, 
2004, Exp. 2

articulatory 
suppression

observed knowledge about abstract rules can 
be acquired, but articulatory 
suppression reduces later sensitivity 
to chunk strength

Dienes and 
Scott, 2005

RNG observed no effects on classification performance 
and measures of the conscious or 
unconscious status of judgement 
knowledge (i.e. guessing criterion 
and Chun difference); decreased 
proportion of attributions to 
conscious structural knowledge (EL)

Hendricks, 
Conway 
and 
Kellogg, 
2013

Digit span 
task

observed/
impaired

Exp 1: three dual-task conditions: DA 
(secondary task during acquisition 
phase), DT (testing phase), DAT 
(both acquisition and testing phase); 
grammaticality impaired in DT, 
observed in DT and DAT condition, 
chunk strength judgements observed 
in all conditions

Ziori, Pothos 
and Dienes, 
2014

RNG observed/
impaired

AGL in natural context (cities on 
map); performance under dual-task 
condition depends on knowledge 
types: grammaticality observed under 
dual-task conditions, chunk strength 
similarity not found in the dual task
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of artificial grammar learning judgements in awareness (see e.g. Dienes and Seth, 
2010; Wierzchoń, Asanowicz, Paulewicz and Cleeremans, 2012). It seems worth 
noting that intact classification under dual-task conditions does not imply that 
implicit learning is entirely independent of attentional resources as the secondary 
task may not deplete attentional resources enough (i.e. may be too easy to exhibit 
effects of attentional load on implicit learning). We will come back to this possibil-
ity in the following paragraphs.

Serial reaction time task under attentional load

Analogously to artificial grammar learning, serial reaction time task studies exhibit 
huge differences between the results of experiments investigating the problem. 
Many studies report successive cases of implicit sequence learning under dual-task 
conditions (Cohen, Ivry, and Keele, 1990; Frensch, Buchner, and Lin, 1994; Reed 
and Johnson, 1994; Shanks and Johnstone, 1998; see Table 10.2 for a review). 
However, a large body of studies has shown that attentional load results in reduced 
learning effect, longer reaction times and a less pronounced transfer effect (Jiménez 
and Vázquez, 2005; Shanks and Channon, 2002; Shanks et al., 2005). When trying 
to explain the discrepancies of the observed results, it seems worth noting that serial 
reaction time task procedures differ between experiments. One incongruity that 
influences the effect of a secondary task is the structural complexity of a sequence 
acquired through the procedure. For instance, it was shown that sequences with 
unique associations are learned under attentional load, whereas learning ambigu-
ous sequences requires attention (see: Cohen et al., 1990). Similarly, deterministic 
sequence learning seems to be impaired more by divided attention than by proba-
bilistic learning (Jiménez and Vázquez, 2005). Finally, the interference resulting 
from attentional load decreases with serial reaction time task training (i.e., when a 
serial reaction time task is automatised; see Cohen and Poldrack, 2008).

Another factor that seems to mediate the observed effects of attentional load 
is secondary task and serial reaction time task integration. Studies have demon-
strated that the degree of overlap between the processes involved in performing 
the secondary task and the serial reaction time task (which was manipulated by 
means of task priority and stimulus onset asynchrony) modulates the way in which 
dual-tasking interferes with learning (Schumacher and Schwarb, 2009). It was 
observed that strong integration reduces dual-task interference (Rah, Reber, and 
Hsiao, 2000; Schmidtke and Heuer, 1997). Also, the temporal characteristics of 
the serial reaction time task affect the observed effects of cognitive load by dis-
organising serial reaction time task consistency (e.g., by prolonging the stimulus 
onset asynchrony and thus disturbing the temporal organisation of the sequence; 
see: Stadler, 1995).

Regardless of the type of implicit learning procedure applied, different stud-
ies applied different secondary tasks (see Tables 10.1 and 10.2, column B) and, as 
one may expect, this seems to strongly influence observed results. Assuming that 
implicit learning is attentionally demanding, one may expect that when comparing 
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different secondary tasks we should observe different effects of attentional load on 
implicit learning (see: Heuer and Schmidtke, 1996; Stadler, 1995). Surprisingly, 
this question has rarely been directly addressed experimentally (but see: Stadler, 
1995; Wierzchoń, Gaillard, Asanowicz and Cleeremans, 2012). It is well known 
that different secondary tasks have different attentional requirements. For exam-
ple, a tone-counting task is not thought to be demanding, while the opposite is 
true of random number generation. Interestingly, serial reaction time task studies 
investigating the effects of attentional load on implicit learning have most often 
applied a tone-counting task, whereas artificial grammar learning studies have used 
random number generation more often (none of the artificial grammar studies 
applied tone-counting).

Summing up, the results of studies investigating the effects of attentional load on 
implicit learning are not consistent. There are multiple reasons for this which are 
related to both the details of the implicit learning procedures and the types of sec-
ondary task applied. However, two observations seem to be crucial in the context 
of the theoretical value of those results. First, it seems that a secondary task needs 
to be properly chosen, as a secondary task that is too easy might be performed 
simultaneously, even with an attentionally demanding primary task. Thus, it may 
be that implicit learning is indeed not automatic, but attentional load manipula-
tion was too weak to prove this. Secondly, one should check whether experiments 
showing no effects of attentional load on implicit learning indeed speak in favour 
of the null hypothesis, or whether statistical evidence is unclear.

New empirical evidence

Here, we briefly present a set of results of experiments aiming to test the effect of 
attentional load on implicit learning. Some of the main disadvantages of the stud-
ies described in the previous sections are related to the fact that we are testing the 
null hypothesis when we assume no effect of attentional load on implicit learn-
ing. However, to our knowledge all of the previous experiments either provide 
evidence for the alternative hypothesis (assuming the difference between atten-
tional load and control conditions), or do not provide evidence in favour of any 
hypothesis. In other words, the null hypothesis was never directly tested. Thus, a 
method should be applied that allows us to test whether indeed there are no differ-
ences between conditions. Recently, the use of Bayesian statistics was proposed in 
order to investigate unconscious mental states (Dienes, 2015). In the same vein, we 
reanalysed a set of a simple experiments conducted in recent years in our labora-
tory, analysing whether they support the hypothesis that assumes that attentional 
load does not affect implicit learning. In other words, we tested whether our data 
are more likely assuming no difference between control and dual-task conditions. 
This can be done with the BF

01
 analysis that allows us to test whether the data are 

more probable under the null hypothesis. The result of BF
01

 larger than 3 is inter-
preted as moderate evidence in favour of the null hypothesis (see Dienes, 2015 for 
more details).
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Artificial grammar learning studies

The procedures of all experiments in this group follow the same scenario. We 
applied the typical procedure of an artificial grammar learning task. We have 
used a simple grammar and the set of materials described in early papers on 
implicit learning (Dienes, Broadbent, and Berry, 1991). First, we asked partic-
ipants to memorise a string of letters based on artificial grammar (acquisition 
phase). Seven grammatical strings were presented twice. Each string was pre-
sented for 5s. Then, we checked whether participants followed the instruction 
asking them to recall the presented strings. Finally, we informed participants 
that the strings they had seen were constructed based on a set of rules and pre-
sented them with a set of new strings, some of them following the very same 
rule and some violating it. Participants then classified the strings as grammati-
cal and ungrammatical. Forty-two strings were presented in this phase, half of 
them being grammatical. Crucially, in the experimental groups we additionally 
asked participants to perform a secondary task simultaneously with the acquisition 
phase. These manipulations aimed to influence attentional load, thus allowing us 
to test whether implicit learning, as measured with classification task accuracy, 
requires attention. Below, we report the results of two experiments based on this 
scenario, presenting only the results investigating the impact of attentional load 
on classification performance.

Experiment 1

66 (22 participants in each group) undergraduate students voluntarily participated 
in the study. The participants were randomly assigned to three groups: control (C), 
DIVA-simple (DS), DIVA-hard (DH). In the control group the artificial gram-
mar learning task was used. In addition to the AGL task, in DS and DH groups 
the secondary divided attention task was performed (DIVA, Szymura and Nęcka, 
1998). The participants in the simple DIVA condition (DS) had to hold the posi-
tion of a horizontal line in the middle of a vertically oriented rectangle by pressing 
a mouse button. The line was falling continuously and each button press allowed 
participants to lift the line. When the line crossed either the upper or lower border 
of the rectangle, participants heard an unpleasant tone. They were instructed to 
avoid such situations. In the more difficult version of the task (DH) the position of 
the line changes randomly.

The results indicate that classification accuracy was above the chance level in all 
groups (C: 59%, DS: 63%, DH: 65%; t > 2.8; p < .01). However, the secondary 
task did not affect classification performance regardless of the task difficulty condi-
tion (ANOVA with three-level factor group and dependent variable: accuracy; 
F[2,63] = 1.04, ns). In order to check whether attentional load does indeed not 
influence implicit learning, we additionally computed a Bayesian ANOVA using 
JASP®, the free open-source statistics package (JASP Team, 2016). The data was 
more probable under the null hypothesis, as BF

01
 = 3.64.
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Experiment 2

76 (25 in control and 51 in experimental group) undergraduate students voluntarily 
participated in the experiment. We randomly assigned them to two experimental 
groups and a control group. All participants followed the classical artificial grammar 
learning task procedure. The random interval generation task (Vandierendonck, 
De Vooght and Van der Goten, 1998) was used as a secondary task in experimental 
condition. Participants had to click on the left mouse button as randomly as 
possible during the acquisition phase.

The classification performance was above chance level in all groups (control: 
57%, experimental: 61% t > 2.20, p < .05). We did not observe any effects of atten-
tional load on classification performance (ANOVA with two-level factor group 
and dependent variable: accuracy: F[2,73] = 1.24, ns). Similar to the previous 
experiment, we checked whether the attentional load did not influence implicit 
learning using a Bayesian ANOVA. Again, the data was more probable under the 
null hypothesis, as BF

01
 = 3.41.

Serial reaction time task studies

In the following two experiments, we applied the typical serial reaction time task 
procedure that follows exactly the same procedure as we have used in our previous 
studies (Wierzchoń, Gaillard, Asanowicz and Cleeremans, 2012). We presented 
participants with a series of stimuli appearing sequentially at one of four possible 
locations. Participants had to react as quickly and as accurately as possible by press-
ing a key corresponding to the location of a stimulus. In the first 13 blocks (96 trials 
each), the order of stimuli presentation follows second-order contingency sequences 
(SOC1 or SOC2 sequences – see: Reed and Johnson, 1994). At the 14th block, the 
sequence was replaced with another second-order contingency sequence, and then 
at the 15th block the initial sequence was again introduced. Blocks 1–12 served as 
a learning phase, whereas the last three blocks were used as a sequence learning test 
phase. Here, we calculate the difference between reaction times in the 14th block, 
where the sequence was changed, and the averaged reaction times for the 13th 
and 15th blocks (the so-called transfer effect index). Analogously to the artificial 
grammar learning experiments described above, in the experimental groups we 
additionally asked participants to perform a secondary task simultaneously with the 
first 12 blocks of the serial reaction time task, aiming to test the effects of attentional 
load on the sequence learning process. We then tested whether implicit learning, 
as tested with the transfer effect, requires attentional resources. Below, we report 
the results of two experiments based on this scenario, presenting only the results 
investigating the impact of attentional load on the transfer effect.

Experiment 3

55 undergraduate students voluntarily participated in the experiment and were ran-
domly assigned to two experimental and a control group. 19 participants were 
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assigned to the control group (C); 18 participants were tested within each of the 
experimental groups. All participants followed the classical serial reaction time task 
procedure as described above. A mental arithmetic task was used as a secondary 
task in experimental conditions so that in 25% of trials in learning blocks a random 
digit replaced a stimulus in the serial reaction time task. Participants had to add 
‘one’ (M1 group) or ‘three’ (M3 group) (depending on the task condition) to a 
presented digit and articulate a result. It was assumed that adding ‘three’ should be 
a more demanding task than adding ‘one’.

The efficacy of training was assessed with the transfer effect that was observed 
in all experimental conditions (C: 73.23ms; M1: 43.75ms; M3: 42.11ms; Fs > 
27.72, p < .001). We also observed an effect of attentional load on the transfer 
effect (ANOVA with three-level factor group and dependent variable: transfer 
effect, F[2.52] = 4.322, p < .05). However, we did not observe any differences 
between dual-task conditions (i.e. between easy and difficult mental arithmetic 
conditions: t = .14, ns). We further compared those conditions with a Bayesian 
independent samples t test. The data was more probable under the null hypothesis, 
as BF

01
 = 3.08. Thus, even though the serial reaction time task performance was 

impaired under attentional load conditions, the difficulty of the secondary task did 
not further affect the results. Importantly, a significant transfer effect was observed 
in all experimental conditions, suggesting that participants had acquired sequence 
knowledge even under dual-task conditions.

Experiment 4

69 undergraduate students voluntarily participated in the experiment and were 
randomly assigned to two experimental groups and a control group. 19 partic-
ipants were assigned to the control group (C); 23 participants were tested in 
the first experimental group (RNG1), and 27 in the second experimental group 
(RNG20). All participants followed the classic serial reaction time task procedure 
as described above. A random number generation task was used as a secondary 
task in experimental conditions so that participants were asked to articulate ran-
dom digits between ‘1’ and ‘9’ (RNG1) or ‘2’ and ‘29’ (RNG20), depending on 
the condition. It was assumed that both conditions should be equally demanding 
for participants, but the latter would (adversely) affect the temporal structure of 
the serial reaction time task (as the time required to articulate a random num-
ber was much longer). Similarly to Experiment 3, the efficacy of training was 
assessed with the transfer effect that was observed in all experimental condi-
tions (C: 73.22ms; RNG1: 35.03ms, RNG20: 32.69ms; Fs > 40.39, p < .001). 
We observed an effect of attentional load on the transfer effect (ANOVA with 
three-level factor group and dependent variable: transfer effect, F[2.66] = 11.29,  
p < .001). However, we again did not observe any differences between dual-task 
conditions (t = .27, ns). We further compared these conditions with a Bayesian 
independent samples t test. The data was more probable under the null hypoth-
esis, as BF

01
 = 3.37. To sum up, we observed an impaired transfer effect under 
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the dual-task condition. Interestingly, the type of the secondary task applied did 
not further affect the influence of the secondary task on sequence learning effi-
ciency. Again, it is worth noting that a significant transfer effect was observed in 
all experimental conditions, thus participants had acquired sequence knowledge 
even under dual-task conditions.

Final conclusions

The question of whether attentional load influences implicit learning is cru-
cially related to the problem of the relation between implicit and explicit systems 
(Revonsuo and Rossetti, 2000), Thus, it seems worth investigating evidence that 
speaks in favour of the hypothesis that assumes that attentional load does not affect 
implicit learning. Such a pattern of results confirms the automatic character of implicit 
learning that may be interpreted in line with models assuming at least relative inde-
pendence of the implicit and explicit learning systems (Frensch and Rünger, 2003; 
Jiménez, and Méndez, 1999; Wierzchoń, Gaillard, Asanowicz and Cleeremans, 
2012, Willingham and Goedert-Eschmann, 1999). The literature review presented 
in this chapter clearly shows that the current results on this subject are not consistent. 
A large body of experiments suggests that attentional load does not affect implicit 
learning; however, multiple studies suggest the opposite (see Tables 10.1 and 10.2). 
We hypothesised that some of these inconsistencies may result from the differences 
between the implicit learning task applied and attentional load induction methods.

We proposed a series of studies using various types of the secondary tasks in 
the context of two established implicit learning procedures. Particularly, we pre-
sented two studies conducted in an artificial grammar learning paradigm showing 
that a secondary task applied over an acquisition phase did not affect classification 
accuracy (regardless of the actual type of secondary task applied). We confirmed 
this conclusion with Bayesian analysis, thereby allowing us to present evidence 
in favour of the null hypothesis. The results observed in the context of the serial 
reaction time task were less clear. We observed an impaired transfer effect under 
secondary task conditions. However, the further manipulation of the secondary 
task difficulty did not affect learning efficacy. Importantly, sequence learning was 
still observed under attentional load (as we observed a significant transfer effect in 
all the experimental conditions). This suggests that the less pronounced transfer 
effect could result from the fact that participants had to perform an additional task 
during the training phase, i.e. attentional load may affect motor reactions or other 
processes related to the task execution and thus result in lower performance of an 
implicit learning test with no effect on implicit learning itself (see also Wierzchoń, 
Gaillard, Asanowicz and Cleeremans, 2012). Serial reaction time task performance 
may be also impaired due to the changed time characteristics of the task (e.g. it 
simply takes longer to pronounce 23 than 3, as required by the RNG1 and RNG20 
protocols described in Experiment 4 – see: Stadler, 1995 for a similar view).

In the introduction we questioned at which stage of learning the secondary 
task may disturb implicit learning. Given the fact that we have observed learning 
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effects in all the experiments (even though they were slightly diminished in the 
SRT task), the most plausible explanation for now is that attentional load results 
in lower performance of an implicit learning test with no effect on implicit learn-
ing itself. Depending on the task, this could be an effect of motor (as in DIVA) or 
other types of interference related to the tasks execution (as in both SL studies). It 
is important to note, that the secondary tasks we have applied aimed to disturb dif-
ferent aspects of attention, thus they should not be directly compared. However, 
the congruency of the effects seems to suggest that implicit learning is observed 
regardless of the detailed nature of the attentional load task.

The effects of attentional load on sequence learning should be further inves-
tigated. The current empirical evidence is still not clear. For example, one may 
argue that the difficulty of the secondary task was not properly controlled (we have 
assumed the differences in the difficulty based on the literature and controlled the 
accuracy of the performance over the course of the experiments, but we have not 
analysed differences in difficulty within a given task statistically). We added the dif-
ficulty manipulation to rule out the possibility that attentional load manipulation 
was too weak. However, one may try to develop even more difficult tasks and see 
whether it will affect the performance.

We believe that our data adds to evidence supporting the thesis that attentional 
load does not affect implicit learning. It also seems worth applying the idea of com-
paring not only results collected in studies applying different types of secondary 
tasks, but also manipulating condition difficulty within one type of secondary task to 
vary the assumed attentional demands. However, in future studies this manipulation 
should be more carefully controlled. Importantly, our results confirm that data of 
implicit learning studies should be analysed with Bayesian models in order to inves-
tigate the evidence supporting not only the alternative, but also the null hypothesis.
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